WorldWideScience

Sample records for hybrid active layers

  1. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  2. Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kniprath, Rolf

    2008-11-18

    Solar cells based on thin organic/inorganic heterofilms are currently in the focus of research, since they represent promising candidates for cost-efficient photovoltaic energy conversion. In this type of cells, charges are separated at a heterointerface between dissimilar electrode materials. These materials either absorb light themselves, or they are sensitized by an additional absorber layer at the interface. The present work investigates photovoltaic cells which are composed of nanoporous TiO{sub 2} combined with conjugated polymers and semiconductor quantum dots (QDs). The method of layer-by-layer self-assembly of oppositely charged nanoparticles and polymers is used for the fabrication of such devices. This method allows to fabricate nanoporous films with controlled thicknesses in the range of a few hundred nanometers to several micrometers. Investigations with scanning electron (SEM) and atomic force microscopy (AFM) reveal that the surface morphology of the films depends only on the chemical structure of the polyions used in the production process, and not on their molecular weight or conformation. From dye adsorption at the internal surface of the electrodes one can estimate that the internal surface area of a 1 {mu}m thick film is up to 120 times larger than the projection plane. X-ray photoelectron spectroscopy (XPS) is used to demonstrate that during the layer-by-layer self-assembly at least 40% of the TiO{sub 2} surface is covered with polymers. This feature allows to incorporate polythiophene derivatives into the films and to use them as sensitizers for TiO{sub 2}. Further, electrodes containing CdSe or CdTe quantum dots (QDs) as sensitizers are fabricated. For the fabrication of photovoltaic cells the layer-by-layer grown films are coated with an additional polymer layer, and Au back electrodes are evaporated on top. The cells are illuminated through transparent doped SnO{sub 2} front electrodes. The I/V curves of all fabricated cells show diode

  3. MMP activity in the hybrid layer detected with in situ zymography.

    Science.gov (United States)

    Mazzoni, A; Nascimento, F D; Carrilho, M; Tersariol, I; Papa, V; Tjäderhane, L; Di Lenarda, R; Tay, F R; Pashley, D H; Breschi, L

    2012-05-01

    Dentinal proteases are believed to play an important role in the degradation of hybrid layers (HL). This study investigated the HL gelatinolytic activity by in situ zymography and functional enzyme activity assay. The hypotheses were that HLs created by an etch-and-rinse adhesive exhibit active gelatinolytic activity, and MMP-2 and -9 activities in dentin increase during adhesive procedures. Etched-dentin specimens were bonded with Adper Scotchbond 1XT and restored with composite. Adhesive/dentin interface slices were placed on microscope slides, covered with fluorescein-conjugated gelatin, and observed with a multi-photon confocal microscope after 24 hrs. Human dentin powder aliquots were prepared and assigned to the following treatments: A, untreated; B, etched with 10% phosphoric acid; or C, etched with 10% phosphoric acid and mixed with Scotchbond 1XT. The MMP-2 and -9 activities of extracts of dentin powder were measured with functional enzyme assays. Intense and continuous enzyme activity was detected at the bottom of the HL, while that activity was more irregular in the upper HL. Both acid-etching and subsequent adhesive application significantly increased MMP-2 and -9 activities (p < 0.05). The results demonstrate, for the first time, intrinsic MMP activity in the HL, and intense activation of matrix-bound MMP activity with both etching and adhesive application.

  4. Synthesis and Characterization of Salicylate-zinc Layered Hydroxide Nano hybrid for Antiinflammatory Active Delivery

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Munirah Ramli; Khatijah Yusoff

    2011-01-01

    The emergence of nano technology has prompted much advancement in various areas of research that includes cellular delivery systems, particularly those dealing with delivery of compounds with therapeutic effects. This study aimed at investigating the use of a layered nano material for formation of a new organic-inorganic nano hybrid material. In this work, a compound of zinc layered hydroxide (ZLH) used as a host for a guest, anti-inflammatory agent salicylate (SA) was synthesized. Through simple, direct reaction of SA solution at various concentrations with commercial zinc oxide, SA was found to be intercalated between the ZLH inorganic layers. Powder x-ray diffraction (PXRD) patterns revealed that the basal spacing of the nano hybrid is around 16.14 Angstrom. Further characterizations also confirmed that SA was successfully intercalated into the interlayers of the nano hybrid. Results generated from this work provide information beneficial for development of a new delivery system for therapeutic compounds consisting of antiinflammatory agents. (author)

  5. Evaluation of matrix metalloproteinase and cysteine cathepsin activity in dentin hybrid layer by gelatin zymography.

    Science.gov (United States)

    Mahalaxmi, Sekar; Madhubala, Manavalan Madhana; Jayaraman, Mahendran; Sathyakumar, Shanmugasundaram

    2016-01-01

    The aim of this study was to comparatively assess the gelatinolytic activity of matrix metalloproteinases(MMPs) and Cysteine Cathepsins (CCs) in the adhesive interface using etch and rinse adhesive at different time intervals using zymographic technique. Twenty freshly extracted non-carious human third molars were used in this study. Occlusal surfaces were ground flat and 1mm thick horizontal dentin slabs were obtained from each tooth using a diamond disc. The dentin surface was polished with 600-grit silicon-carbide paper. Five out of 20 samples were directly pulverized. In the remaining fifteen samples, the dentin was etched and adhesive was applied and light cured according to the manufacturer's instructions. A 1mm thick flowable composite was build up and light cured. Bonded specimens were cut vertically into 3 to 4 dentin slabs by means of diamond disc to expose the adhesive/dentin interfaces. These were then ground down to 500 µm thick resin-dentin interface using a hard tissue microtome. These sections were then pulverised into powder. Following this, every five samples were subjected to zymographic analysis after 1 day, 7 days and 21 days. Zymograms showed clear, thicker bands on all three isoforms in the etched samples compared to control samples at 1st and 7th day intervals and became inactive at 21st day for all three isoforms. MMP 9 activity was relatively higher when compared to CCs and MMP 2. Etch and rinse adhesive activated MMPs and CCs within the hybrid layer that remained active till 7th day and no gelatinolytic activity was found on 21st day and MMPs are more active compared to CCs and MMP-2.

  6. Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

    Directory of Open Access Journals (Sweden)

    Shobih Shobih

    2017-08-01

    Full Text Available Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al. In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  7. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    Science.gov (United States)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential

  8. Synthesis and characterization of hybrid carbon nanotube/polymer for use in the active layer of organic solar cells'

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luiza De Lazari; Calado, Hallen Daniel Rezende, E-mail: luizadl@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Nowadays, the fast development of portable and flexible devices such as smart phones, smart watches and adhesive sensors, has stimulated research into alternative energy generators for the operation of these devices. Organic solar cells (OPVs) are seen as a promising technology in this scenario because their properties such as low weight, semi-transparency, low cost and flexibility. Intrinsically conducting polymers (CPs) are studied as active layer in OPVs because their good electrical and optical properties. The carbon nanotube - CNT in the polymer matrix leads to the formation of interconnected nano networks influencing the crystalline CP behavior and reducing the resistance in the charge transfer. This increases the transport of electrons and minimizes recombination by p-p and p-CH{sub 2} interaction with CPs, enhancing its properties and improving the efficiency of OPVs optoelectronics. To preparing the hybrid for this work in 3 stages it was used a homemade multi-walled CNT. Initially, the CNT's were functionalized with amine 1,3-diaminopropane - DAP (CNT-DAP) and then with an amine monomer from p-aminobenzoic acid - ABA. In a subsequent step, the hybrid (CNT-DAP-ABA-P3HT) was obtained by polymerizing using FeCl{sub 3} 3- hexylthiophene (3HT) in the presence of NTC-DAP-ABA, which led to obtaining the PC directly connected to CNT. The resulting hybrid was characterized by FTIR, Raman, XPS, thermal analysis, SEM, optical absorption and fluorescence. FTIR spectra showed bands associated with functional groups present in the functionalization steps. Raman results showed the increase of the ratio ID/IG caused by greater disorder by inserting the new groups to the CNT. The electrochemical profile was studied by cyclic voltammetry at different scan rates, generating curves with almost reversible profile. The analyzes showed that the CNT were functionalized covalently and have potential for application in active layer of OPVs. (author)

  9. Polyfunctional inorganic-organic hybrid materials: an unusual kind of NLO active layered mixed metal oxalates with tunable magnetic properties and very large second harmonic generation.

    Science.gov (United States)

    Cariati, Elena; Macchi, Roberto; Roberto, Dominique; Ugo, Renato; Galli, Simona; Casati, Nicola; Macchi, Piero; Sironi, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante

    2007-08-01

    Mixed M(II)/M(III) metal oxalates, as "stripes" connected through strong hydrogen bonding by para-dimethylaminobenzaldeide (DAMBA) and water, form an organic-inorganic 2D network that enables segregation in layers of the cationic organic NLO-phore trans-4-(4-dimethylaminostyryl)-1-methylpyridinium, [DAMS+]. The crystalline hybrid materials obtained have the general formula [DAMS]4[M2M'(C2O4)6].2DAMBA.2H2O (M = Rh, Fe, Cr; M' = Mn, Zn), and their overall three-dimensional packing is non-centrosymmetric and polar, therefore suitable for second harmonic generation (SHG). All the compounds investigated are characterized by an exceptional SHG activity, due both to the large molecular quadratic hyperpolarizability of [DAMS+] and to the efficiency of the crystalline network which organizes [DAMS+] into head-to-tail arranged J-type aggregates. The tunability of the pairs of metal ions allows exploiting also the magnetic functionality of the materials. Examples containing antiferro-, ferro-, and ferri-magnetic interactions (mediated by oxalato bridges) are obtained by coupling proper M(III) ions (Fe, Cr, Rh) with M(II) (Mn, Zn). This shed light on the role of weak next-nearest-neighbor interactions and main nearest-neighbor couplings along "stripes" of mixed M(II)/M(III) metal oxalates of the organic-inorganic 2D network, thus suggesting that these hybrid materials may display isotropic 1D magnetic properties along the mixed M(II)/M(III) metal oxalates "stripes".

  10. Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles

    International Nuclear Information System (INIS)

    Masala, S.; Del Gobbo, S.; Borriello, C.; Bizzarro, V.; La Ferrara, V.; Re, M.; Pesce, E.; Minarini, C.; De Crescenzi, M.; Di Luccio, T.

    2011-01-01

    The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.

  11. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  12. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi; Zhang, Xueyi; Lee, Jong Suk; Tsapatsis, Michael; Nair, Sankar

    2012-01-01

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered

  13. Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications.

    Science.gov (United States)

    Kamila, Swagatika; Mohanty, Bishnupad; Samantara, Aneeya K; Guha, Puspendu; Ghosh, Arnab; Jena, Bijayalaxmi; Satyam, Parlapalli V; Mishra, B K; Jena, Bikash Kumar

    2017-08-21

    The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS 2 -HS) and its reduced graphene oxide hybrid (rGO/MoS 2 -S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS 2 -HS and rGO/MoS 2 -S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS 2 -S shows enhanced gravimetric capacitance values (318 ± 14 Fg -1 ) with higher specific energy/power outputs (44.1 ± 2.1 Whkg -1 and 159.16 ± 7.0 Wkg -1 ) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS 2 -S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec -1 ), higher exchange current density (0.072 ± 0.023 mAcm -2 ) and higher TOF (1.47 ± 0.085 s -1 ) values. The dual performance of the rGO/MoS 2 -S substantiates the promising application for hydrogen generation and supercapacitor application of interest.

  14. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26, Polytechnicheskaya Str., St Petersburg 194021 (Russian Federation)], E-mail: aleshin@transport.ioffe.ru

    2009-05-21

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at {approx}420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  15. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    International Nuclear Information System (INIS)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P

    2009-01-01

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at ∼420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  16. Thin layer activation

    International Nuclear Information System (INIS)

    Schweickert, H.; Fehsenfeld, P.

    1995-01-01

    The reliability of industrial equip ment is substantially influenced by wear and corrosion; monitoring can prevent accidents and avoid down-time. One powerful tool is thin layer activation analysis (TLA) using accelerator systems. The information is used to improve mechanical design and material usage; the technology is used by many large companies, particularly in the automotive industry, e.g. Daimler Benz. A critical area of a machine component receives a thin layer of radioactivity by irradiation with charged particles from an accelerator - usually a cyclotron. The radioactivity can be made homogeneous by suitable selection of particle, beam energy and angle of incidence. Layer thickness can be varied from 20 microns to around 1 mm with different depth distributions; the position and size of the wear zone can be set to within 0.1 mm. The machine is then reassembled and operated so that wear can be measured. An example is a combustion engine comprising piston ring, cylinder wall, cooling water jacket and housing wall, where wear measurements on the cylinder wall are required in a critical zone around the dead-point of the piston ring. Proton beam bombardment creates a radioactive layer whose thickness is known accurately, and characteristic gamma radiation from this radioactive zone penetrates through the engine and is detected externally. Measurements can be made either of the activity removed from the surface, or of the (reduced) residual activity; wear measurement of the order of 10 -9 metres is possible

  17. Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-11-25

    A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  19. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  20. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors

    NARCIS (Netherlands)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.; Katan, Claudine; Even, Jacky; Kepenekian, Mikael

    2016-01-01

    Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells

  1. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    International Nuclear Information System (INIS)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya; Hasanah, Yesi Ihdina Fityatal; Prajanira, Lau Bekti; Wahyuningsih, Sayekti

    2016-01-01

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO 2 NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO 2 as an electrode. Synthesis of TiO 2 nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO 3 ) 2 .4H 2 O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperature s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO 2 NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10 −3 , 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO 2 NR-P3HT’s concentration was 10 mg/mL.

  2. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya; Hasanah, Yesi Ihdina Fityatal; Prajanira, Lau Bekti; Wahyuningsih, Sayekti, E-mail: sayektiw@mipa.uns.ac.id [Chemistry Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir.Sutami 36A Kentingan Surakarta 57/26, Central Java (Indonesia)

    2016-04-19

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO{sub 2} NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO{sub 2} as an electrode. Synthesis of TiO{sub 2} nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO{sub 3}){sub 2}.4H{sub 2}O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperature s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO{sup 2} NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10{sup −3}, 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO{sup 2} NR-P3HT’s concentration was 10 mg/mL.

  3. Active and Passive Hybrid Sensor

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  4. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  5. Hybrid transfer-matrix FDTD method for layered periodic structures.

    Science.gov (United States)

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  6. Hybrid laser technology for creation of doped biomedical layers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Bačáková, Lucie; Remsa, Jan; Kocourek, Tomáš; Mikšovský, Jan; Písařík, Petr; Vandrovcová, Marta; Filová, Elena; Kubinová, Šárka

    2016-01-01

    Roč. 4, Jan (2016), s. 98-104 ISSN 2327-6045 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA15-01558S Institutional support: RVO:68378271 ; RVO:67985823 ; RVO:68378041 Keywords : hybrid laser technology * biomaterials * thin Films * doped Layers * DLC Subject RIV: BM - Solid Matter Physics ; Magnetism; JJ - Other Materials (FGU-C)

  7. Hybrid layer difference between sixth and seventh generation bonding agent

    Directory of Open Access Journals (Sweden)

    Grace Syavira Suryabrata

    2006-03-01

    Full Text Available Since etching is completed at the same stage as priming and bonding, when applying the sixth and seventh generation bonding, the exposed smear layers are constantly surrounded by primer and bonding and cannot collapse. The smear layer and the depth of penetration of resin bonding in dentinal tubules are completely integrated into hybrid layer. The purpose of this laboratory research was to study the penetration depth of two self etching adhesive. Fourteen samples of human extracted teeth were divided into two groups. Each groups consisted of seven samples, each of them was treated with sixth generation bonding agent and the other was treated with seventh generation bonding agent. The results disclosed that the penetration into dentinal tubules of seventh generation bonding agent was deeper than sixth generation bonding agent. Conclusion: bond strength will improve due to the increasing of penetration depth of resin bonding in dentinal tubules.

  8. Zymography of Hybrid Layers Created Using Extrafibrillar Demineralization.

    Science.gov (United States)

    Gu, L; Mazzoni, A; Gou, Y; Pucci, C; Breschi, L; Pashley, D H; Niu, L; Tay, F R

    2018-04-01

    A chelate-and-rinse extrafibrillar calcium chelation dentin bonding concept has recently been developed and investigated for its effectiveness in improving resin-dentin bonding by bridging the gap between wet and dry dentin bonding. The objective of the present study was to evaluate the gelatinolytic activity of hybrid layers (HLs) created using the chelate-and-rinse bonding technique. Gelatinolytic activity within the HL was examined using in situ zymography and confocal laser-scanning microscopy after 24-h storage or after thermomechanical cycling. Dentin specimens were bonded with Prime&Bond NT (Dentsply Sirona) after conditioning with 15 wt% phosphoric acid for 15 s (control) or 15 wt% polymeric chelators (sodium salt of polyacrylic acid; PAAN) of 2 different molecular weights for 60 s. For each reagent, bonding was performed using dry-bonding and wet-bonding techniques ( n = 10). Slices containing the adhesive-dentin interface were covered with fluorescein-conjugated gelatin and examined with a confocal laser-scanning microscope. Fluorescence intensity emitted by the hydrolyzed fluorescein-conjugated gelatin was quantified. Gelatinolytic activity was expressed as the percentage of green fluorescence emitted within the HL. After storage for 24 h, enzymatic activity was only detected within the completely demineralized phosphoric acid-etched dentin, with values derived from dry bonding higher than those from wet bonding ( P < 0.05). Almost no fluorescence signals were detected within the HL when dentin was conditioned with PAANs compared with the controls ( P < 0.05). After thermomechanical cycling, enzymatic activities significantly increased for the phosphoric acid-conditioned, drying-bonding group compared with 24-h storage ( P < 0.05). The present study showed that the use of the chelate-and-rinse bonding concept for both dry-bonding and wet-bonding approaches results in the near absence of matrix-bound collagenolytic activities in the HL even after aging

  9. Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

    Science.gov (United States)

    Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn

    2013-07-08

    A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.

  10. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  11. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries

    Science.gov (United States)

    Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang

    2018-06-01

    Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.

  12. Intrinsic white-light emission from layered hybrid perovskites.

    Science.gov (United States)

    Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I

    2014-09-24

    We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

  13. Hybrid white organic light-emitting diodes combining blue-fluorescent polymer and red phosphorescent Pt(II) complexes as active layer

    Energy Technology Data Exchange (ETDEWEB)

    Germino, Jose Carlos; Faleiros, Marcelo Meira; Moraes, Emmanuel Santos; Atvars, Teresa Dib Zambon, E-mail: kakagermino@hotmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Domingues, Raquel Aparecida [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Quites, Fernando Junior [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil); Freitas, Jilian Nei de [Centro de Tecnologia da Informacao Renato Archer, Campinas, SP (Brazil)

    2016-07-01

    Full text: In this work we proposed a PFO composite with two salicylidene based Pt(II) coordination compounds, the [Pt(salophen)] and [Pt(sal-3,4-ben)] (red emitters), as emissive layer (EML) for Organic Light-emitting Diodes (OLEDs), combining a blue-fluorescent polymer (PFO) with red-phosphorescent Pt(II) coordination complexes in order to obtain an efficient white electroluminescent EML for WOLEDs application. Firstly, [Pt(salophen)] and [Pt(sal-3,4-ben)] were synthesized, purified and characterized by single crystal X-ray diffraction, yielding their respective expected molecular structures. The photoluminescence properties of the devices were evaluated by steady-state (electronic absorption and emission spectroscopies) and transient (fluorescence decays and TRES) measurements. It was observed the presence of non-radiative energy transfer processes between the PFO derivative and Pt(II) complexes. Posteriorly, the Pt(II) complexes were blended with PVK at 1% mol:mol ratio and OLEDs were made, leading to red-emitting devices with high color purity for the two coordination compounds. However, the two devices present low current efficiency values. In order to improve the electroluminescence properties of Pt(II) complexes PhOLEDs, PVK host was substituted by PFO at 0.5, 1.0 and 2.5% mol:mol ratios of complex and it was observed a great improvement of their optical-electronic properties in terms of luminance, voltage, current density and current efficiency in comparison to PVK composites or pure PFO devices. At 2.5% concentration, predominant bands of Pt(II) complexes were observed at low and high voltages. For the other concentrations, a different behavior was observed: the emission bands and device color were function of applied electrical field, exhibiting a red color at lower voltages (5 to 9V) and the PFO characteristic emission between 9 and 13V, leading to a white light emission at 13V. The best results were obtained for [Pt(sal-3,4-ben)] coordination compound

  14. Active Trimming of Hybrid Integrated Circuits

    OpenAIRE

    Németh, P.; Krémer, P.

    1984-01-01

    One of the more important fields of the microelectronics industry is the manufacturing of hybrid integrated circuits.An important part of the manufacturing process is concerned with the trimming of the hybrid integratedl circuits. This article deals with the basic principles of active trimming and introduces a microprocessor controlled trimming machine. By comparing active trimming with passive techniques, it can be shown that the active system has some advantages. This article outlines these...

  15. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  16. Hybrid solar cells based on CuInS2 and organic buffer-sensitizer layers

    International Nuclear Information System (INIS)

    Bereznev, S.; Koeppe, R.; Konovalov, I.; Kois, J.; Guenes, S.; Opik, A.; Mellikov, E.; Sariciftci, N.S.

    2007-01-01

    Hybrid solar cells on the basis of CuInS 2 (CIS) photoabsorber on Cu-tape (CISCuT) in combination with organic buffer layers of Zn-phthalocyanine (ZnPc), ZnPc:fullerene (ZnPc:C 60 ) composite and conductive polymer buffer layers of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS) were prepared using vacuum evaporation and spin-casting techniques. To prepare solar cells with an active area of 2 cm 2 , the appropriate deposition parameters and thickness of ZnPc, ZnPc:C 60 and PEDOT-PSS layers were selected experimentally. For preparation of semitransparent contact-window layers, chromium and gold were evaporated on the surface of ZnPc, ZnPc:C 60 and PEDOT-PSS films. It was found that an intermediate chromium layer improves PV properties of the structures with organic buffer layers. The photosensitivity at small illumination intensities of complete structures with ZnPc and ZnPc:C 60 layers increased more than one order of magnitude in comparison with the structures where the PEDOT-PSS buffer layer was deposited. The presence of C 60 in the composite-buffer layer results in increased photoconductivity. The best structure with composite ZnPc:C 60 buffer layer showed an open-circuit voltage of 560 mV, a short-circuit current density of around 10 mA/cm 2 and a photoconversion efficiency of around 3.3% under the light illumination with an intensity of 100 mW/cm 2 from a tungsten-halogen lamp. The low transmission of the semitransparent chromium-gold window layer is the reason for relatively low current density

  17. Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Jing, Yu; Ortiz-Quiles, Edwin O.; Cabrera, Carlos R.; Chen, Zhongfang; Zhou, Zhen

    2014-01-01

    Highlights: • Layer-by-layer MoS 2 /rGO hybrids were prepared by rGO involved lithiation-exfoliation method. • This hybrid exhibited enhanced electrochemical performances due to the existence of rGO. • The roles of rGO in different charging/discharging processes were interpreted by computations. - Abstract: Two-dimensional MoS 2 shows great potential for effective Li storage due to its good thermal and chemical stability, high theoretical capacity, and experimental accessibility. However, the poor electrical conductivity and the restacking tendency significantly restrict its applications to lithium ion batteries (LIBs). To overcome these problems, we introduced reduced graphene oxides (rGO) to the intercalation-exfoliation preparation process of few-layered MoS 2 and obtained layer-by-layer MoS 2 /rGO hybrids. With the addition of rGO, the restacking of MoS 2 layers was apparently inhibited, and MoS 2 with 1 ∼ 3 layers was obtained in the composite. Due to the positive role of rGO, MoS 2 /rGO hybrids exhibited highly enhanced cyclic stability and high-rate performances as LIB anodes in comparison with bare MoS 2 layers or bulk MoS 2 . Moreover, the experimental results were well interpreted through density functional theory computations

  18. A hybrid model for the computationally-efficient simulation of the cerebellar granular layer

    Directory of Open Access Journals (Sweden)

    Anna eCattani

    2016-04-01

    Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.

  19. Use of a specific MMP inhibitor (Galardin) for preservation of hybrid layer

    Science.gov (United States)

    Breschi, Lorenzo; Martin, Patrizia; Mazzoni, Annalisa; Nato, Fernando; Carrilho, Marcela; Tjäderhane, Leo; Visintini, Erika; Cadenaro, Milena; Tay, Franklin R; De Stefano Dorigo, Elettra; Pashley, David H

    2013-01-01

    Objective Dentinal MMPs have been claimed to contribute to the auto-degradation of collagen fibrils within incompletely resin-infiltrated hybrid layers and their inhibition may, therefore, slow the degradation of hybrid layer. This study aimed to determine the contribution of a synthetic MMPs inhibitor (Galardin) to the proteolytic activity of dentinal MMPs and to the morphological and mechanical features of hybrid layers after aging. Methods Dentin powder obtained from human molars was treated with Galardin or chlorhexidine digluconate and zymographically analyzed. Microtensile bond strength was also evaluated in extracted human teeth. Exposed dentin was etched with 35% phosphoric acid and specimens were assigned to (1) pre-treatment with Galardin as additional primer for 30s; (2) no pre-treatment. A two-step etch-and-rinse adhesive (Adper Scotchbond 1XT, 3M ESPE) was then applied in accordance with manufacturer's instructions and resin composite build-ups were created. Specimens were immediately tested for their microtensile bond strength or stored in artificial saliva for 12 months prior to being tested. Data were evaluated by two-way ANOVA and Tukey's tests (〈=0.05). Additional specimens were prepared for interfacial nanoleakage analysis under light microscopy and TEM, quantified by two independent observers and statistically analyzed (|2 test, 〈=0.05). Results The inhibitory effect of Galardin on dentinal MMPs was confirmed by zymographic analysis, as complete inhibition of both MMP-2 and -9 was observed. The use of Galardin had no effect on immediate bond strength, while it significantly decreased bond degradation after 1 year (padhesive after artificial aging. PMID:20299089

  20. Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Summerhill, Richard [Internet2, Washington, DC (United States); Lehman, Tom [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst. (ISI); Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical & Computer Engineering; Boyd, Eric [Univ. Corporation for Advanced Internet Development (UCAID), Washington, DC (United States)

    2009-08-14

    There were four basic task areas identified for the Hybrid-MLN project. They are: Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation; Heterogeneous DataPlane Testing; Simulation; Project Publications, Reports, and Presentations.

  1. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  2. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  3. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-01-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  4. HYBRID LAYER THICKNESS IN PRIMARY AND PERMANENT TEETH – A COMPARISON BETWEEN TOTAL ETCH ADHESIVES

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2012-05-01

    Full Text Available Purpose: The aim this study is to compare the hybrid layer thickness and its micromorphological characteristics in samples from primary and permanent teeth following application of total etch adhesives.Materials and methods: On intact specimens of 20 primary and 10 permanent teeth was created flat dentin surfaces. The patterns were divided in 6 groups. Two different total etch adhesive systems were used – one tree steps (OptiBond, Kerr and one two steps (Exite, VivaDent. In groups 3, 4, 5 and 6 recommended etching time was used - 15 s, in groups 1 and 2 the etching time was reduced to 7 s. After applying the adhesive, resin composite build-ups were constructed. Thus restored samples are stored in saline solution for 24 hours at temperature 37 C. Then they are subjected to thermal stress in temperature between 5 C to 55 C for 1,500 cycles and to masticatory stress – 150,000 cycles with force 100 N in intervals of 0.4 s. After that the teeth are cut through the middle in medio-distal direction with a diamond disc. SEM observation was done to investigate the thickness of the hybrid layer and the presence of microgaps. Statistical analysis was performed with ANOVA and Tukey׳s tests.Results: SEM observation showed significant differences of the hybrid layer thickness between primary and permanent teeth under equal conditions and after different etching time. Group 6 presented the highest average thickness 8.85 μ and group 1 the lowest average in hybrid layer 3.74 μ.Conclusion: In primary teeth the hybrid layer thickness increases with the increased etching time. The hybrid layer thickness in primary teeth is greater than that of the hybrid layer in permanent teeth under equal conditions. For primary teeth it is more appropriate to reduce the etching time to 7s to obtain a hybrid layer with better quality

  5. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  6. Building 3D Layer-by-Layer Graphene-Gold Nanoparticle Hybrid Architecture with Tunable Interlayer Distance

    Science.gov (United States)

    2014-06-26

    saturated 0.1 M KOH electrolyte aqueous solution. Cyclic voltammetry (CV) and LSV curves were measured on a computer-controlled potentiostat (CHI 760C...analyzed by Raman spectroscopy, molecular simulation using Gaussian 09, X-ray photoelectron spectroscopy (XPS), and electron diffraction (ED). The typical... Raman features of GO are Figure 1. Synthesis of GO-Cys-GNR. Figure 2. Scheme of the representative layer-by-layer graphene−GNR hybrid architecture. The

  7. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  8. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  9. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  10. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites

    International Nuclear Information System (INIS)

    Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S.

    2015-01-01

    Highlights: • The mechanical properties of woven kenaf/Kevlar hybrid composites were analysed. • The layering sequences affect the mechanical properties of hybrid composites. • Treated kenaf improves the mechanical properties of hybrid composites. - Abstract: This work aims to evaluate the effect of layering sequence and chemical treatment on mechanical properties of woven kenaf–Kevlar composites. Woven kenaf–aramid hybrid laminated composites fabricated through hand lay-up techniques by arranging woven kenaf and Kevlar fabrics in different layering sequences and by using treated kenaf mat. To evaluate the effect of chemical treatment on hybrid composites, the woven kenaf mat was treated with 6% sodium hydroxide (NaOH) diluted solution and compared mechanical properties with untreated kenaf hybrid composites. Results shows that the tensile properties of hybrid composites improved in 3-layer composites compared to 4-layer composites. Hybrid composite with Kevlar as outer layers display a better mechanical properties as compared to other hybrid composites. Tensile and flexural properties of treated hybrid composites are better than non-treated hybrid composites. The fractured surface of hybrid composites was investigated by scanning electron microscopy. This study is a part of exploration of potential application of the hybrid composite in high velocity impact application

  11. Active flywheel control for hybrid vehicle; Compensation active des pulsations de couple dans un vehicule hybride

    Energy Technology Data Exchange (ETDEWEB)

    Tnani, S.; Coirault, P.; Champenois, G. [Ecole Superieure d' Ingenieurs, Lab. d' Automatique et d' Informatique Industrielle, 86 - Poitiers (France)

    2005-01-01

    In the paper, the authors propose a novel control strategy of torque ripple on hybrid vehicle. The combustion engine ripple's are reduced by using an active filter and an AC machine which is mounted on the crank-shaft to generate on inverse torque sequence. The control strategy is based on a multi-objectives state feedback synthesis. A complete modelling of the hybrid propulsion of the vehicle is achieved. Simulation results highlight the interest of the control scheme. (authors)

  12. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  13. A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer

    Energy Technology Data Exchange (ETDEWEB)

    Najeeb, Mansoor Ani [Qatar University, Center for Advanced Materials (CAM) (Qatar); Abdullah, Shahino Mah; Aziz, Fakhra [University of Malaya, Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa; Shakoor, R. A. [Qatar University, Center for Advanced Materials (CAM) (Qatar); Mohamed, A. M. A. [Suez University, Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering (Egypt); Khalil, Uzma [University of Peshawar, Department of Electronics, Jinnah College for Women (Pakistan); Swelm, Wageh; Al-Ghamdi, Ahmed A. [King Abdulaziz University, Department of Physics, Faculty of Science (Saudi Arabia); Sulaiman, Khaulah [University of Malaya, Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science (Malaysia)

    2016-12-15

    In this paper, ZnSTe quantum dots-based hybrid solar cells (HSC) with two different device architectures have been investigated. The improved performance of the poly(3-hexylthiophene) (P3HT) and [6,6]phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM)-based bulk heterojunction (BHJ) solar cells by the incorporation of ZnSTe quantum dots (QDs) with an average size of 2.96 nm in PEDOT:PSS layer and active layer that have been demonstrated. Although the efficiency of both types of devices is almost the same, a close comparison reveals different reasons behind their improved performance. The device prepared with QDs in the HTL has shown reduced series resistance, increased shunt resistance, and improved mobility. On the other hand, QDs in the photoactive layer demonstrates increased photo-generation leading to improved efficiency.

  14. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    Science.gov (United States)

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  15. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    International Nuclear Information System (INIS)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-01-01

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V OC = 1.041 V, J SC = 2.97 mA/cm 2 , FF = 32.3%) to 2.6% (V OC = 1.336 V, J SC = 4.65 mA/cm 2 , FF = 41.98%) due to the eliminated interfacial series resistance.

  16. Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Tom [USC; Ghani, Nasir [UNM; Boyd, Eric [UCAID

    2010-08-31

    At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.

  17. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  18. Wearable Fabrics with Self-Branched Bimetallic Layered Double Hydroxide Coaxial Nanostructures for Hybrid Supercapacitors.

    Science.gov (United States)

    Nagaraju, Goli; Chandra Sekhar, S; Krishna Bharat, L; Yu, Jae Su

    2017-11-28

    We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for in situ electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core-shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core-shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm 2 at a current density of 2 mA/cm 2 and excellent rate capability of 78.3% at 30 mA/cm 2 (420.5 μAh/cm 2 ) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm 2 at 3 mA/cm 2 , and a high energy density of 0.392 mWh/cm 2 at a power density of 2.353 mW/cm 2 . Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.

  19. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Yuan, H.; van den Nieuwenhuijzen, Karin Jacqueline Huberta; Lette, W.; Schipper, Dirk J.; ten Elshof, Johan E.

    2016-01-01

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H1.07Ti1.73O4) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray

  20. Thin hybrid pixel assembly fabrication development with backside compensation layer

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R., E-mail: richard.bates@glasgow.ac.uk [Experimental Particle Physics Group, SUPA School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F. [Experimental Particle Physics Group, SUPA School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom); Pares, G.; Vignoud, L.; Kholti, B. [CEA Leti, MINATEC, 17 rue des Martyrs, F38054, Grenoble (France); Vahanen, S. [Advacam Oy, Tietotie 3, 02150 Espoo (Finland)

    2017-02-11

    The ATLAS and CMS experiments will both replace their entire tracking systems for operation at the HL-LHC in 2026. This will include a significantly larger pixel systems, for example, for ATLAS approximately 15 m{sup 2}. To keep the tracker material budget low it is crucial to minimize the mass of the pixel modules via thinning both the sensor and readout chip to about 150 μm each. The bump yield of thin module assemblies using solder based bump bonding can be problematic due to wafer bowing during solder reflow at high temperature. A new bump-bonding process using backside compensation on the readout chip to address the issue of low yield will be presented. The objective is to compensate dynamically the stress of the front side stack by adding a compensating layer to the backside of the wafer. A SiN and Al:Si stack has been chosen for the backside layer. The bow reducing effect of applying a backside compensation layer will be demonstrated using the FE-I4 wafer. The world's first results from assemblies produced from readout wafers thinned to 100 μm with a stress compensation layer are presented with bond yields close to 100% measured using the FE-I4 readout chip.

  1. Layered Hydroxide–Porphyrin Hybrid Materials: Synthesis, Structure, and Properties

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Lang, Kamil

    2012-01-01

    Roč. 2012, č. 32 (2012), s. 5154-5164 ISSN 1434-1948 R&D Projects: GA ČR GAP207/10/1447 Institutional support: RVO:61388980 Keywords : layered compounds * intercalations * porphyrinoids * phthalocyanine s * singlet oxygen Subject RIV: CA - Inorganic Chemistry Impact factor: 3.120, year: 2012

  2. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  3. Majority ion heating near the ion-ion hybrid layer in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1995-08-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas

  4. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  5. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2008-11-01

    Full Text Available This paper presents a new architecture called FAIS for imple- menting intelligent agents cooperating in a special Multi Agent environ- ment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  6. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2005-06-01

    Full Text Available This paper presents a new architecture called FAIS for implementing intelligent agents cooperating in a special Multi Agent environment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  7. Development of smart active layer sensor

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Yoon, Dong Jin; Kwon, Jae Hwa

    2004-01-01

    Structural health monitoring (SHM) is a new technology that will be increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper. In this study, SAL sensor can be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

  8. Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.

    Science.gov (United States)

    Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre

    2010-08-01

    Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Microcapsule production by an hybrid colloidosome-layer-by-layer technique

    NARCIS (Netherlands)

    Rossier Miranda, F.J.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    Although many different methods for microencapsulation are known only some of them had been applied at industrial scale, due to complexity, lack of mechanical strength of the resulting capsules, and the costs related to their production. One of such methods is the electrostatic layer-by-layer (LbL)

  10. Investigation of the influence of hybrid layers on the life time of hot forging dies

    Directory of Open Access Journals (Sweden)

    S. Legutko

    2013-04-01

    Full Text Available The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland.

  11. Basic conception of simultaneous multi-layer hybrid type ECT apparatus 'HEADTOME-2'

    International Nuclear Information System (INIS)

    Nakanishi, Shigemasa

    1981-01-01

    Following on the one-slice hybrid type ECT (emission computer tomography) apparatus HEADTOME-1 for the measurement of local cerebral blood stream by single-photon measurement and the measurement of local cerebral metabolism by positron measurement, the development of the simultaneous multi-layer hybrid type ECT apparatus HEADTOME-2 was started for the simultaneous measurement of whole brains. Being designed also for obtaining single-photon simultaneous multi-layer tomography, a peculiar mode of collimator structure was employed, thereby the defect in HEADTOME-1 was eliminated. The design of the detector section is as follows: detector array diameter 42 cm, effective vision-field diameter 21 cm, patient tunnel diameter 25 cm, detector rings 3, slice interval 35 cm, and NaI (Tl) crystals 64 per layer. The basic conception of HEADTOME-2, such as the detectors, collimator, the number of slices, specifications, and data processing system, is described. (J.P.N.)

  12. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    Science.gov (United States)

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  13. OPTIMISATION OF BUFFER SIZE FOR ENHANCING QOS OF VIDEO TRAFFIC USING CROSS LAYERED HYBRID TRANSPORT LAYER PROTOCOL APPROACH

    Directory of Open Access Journals (Sweden)

    S. Matilda

    2011-03-01

    Full Text Available Video streaming is gaining importance, with the wide popularity of multimedia rich applications in the Internet. Video streams are delay sensitive and require seamless flow for continuous visualization. Properly designed buffers offer a solution to queuing delay. The diagonally opposite QoS metrics associated with video traffic poses an optimization problem, in the design of buffers. This paper is a continuation of our previous work [1] and deals with the design of buffers. It aims at finding the optimum buffer size for enhancing QoS offered to video traffic. Network-centric QoS provisioning approach, along with hybrid transport layer protocol approach is adopted, to arrive at an optimum size which is independent of RTT. In this combinational approach, buffers of routers and end devices are designed to satisfy the various QoS parameters at the transport layer. OPNET Modeler is used to simulate environments for testing the design. Based on the results of simulation it is evident that the hybrid transport layer protocol approach is best suited for transmitting video traffic as it supports the economical design.

  14. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  15. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    Directory of Open Access Journals (Sweden)

    Joseba Irigoyen

    2015-12-01

    Full Text Available A novel and facile method was developed to produce hybrid graphene oxide (GO–polyelectrolyte (PE capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH and polystyrenesulfonate sodium salt (PSS. Capsules where characterized by transmission electron microscopy (TEM, atomic force microscopy (AFM, dynamic light scattering (DLS and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  16. Sporadi-E layer and metereological activity

    Directory of Open Access Journals (Sweden)

    C. Scotto

    1995-06-01

    Full Text Available Obscrvations of Es laycr performed at the ionospheric observatory of Rome from 1982 to 1989 have been used to investigate a possible correlation with cold front passages. Such a correlation may exist because of the AGW excited by tropospheric activity at cold front passages. A relationship with thunderclouds electrostatic field is also marginally considered. The treatment of data shows that the distributions of the frequencies of renection at cold front passages present only small differences compared to normal days, both for the f and for the I type; therefore, a correlation between Es layer anù meteorological activity cannot be affirmed.

  17. Surface density dependence of PCR amplicon hybridization on PNA/DNA probe layers

    DEFF Research Database (Denmark)

    Yao, Danfeng; Kim, Junyoung; Yu, Fang

    2005-01-01

    at an intermediate sodium concentration (approximately 100 mM). These effects were mainly ascribed to the electrostatic cross talk among the hybridized DNA molecules and the secondary structure of PCR amplicons. For the negatively charged DNA probes, the hybridization reaction was subjected additionally to the DNA....../DNA electrostatic barrier, particularly in lower ionic strength range (e.g., 10 approximately 150 mM Na(+)). The electrostatic cross talk was shown to be largely reduced if the PNA probe layer was sufficiently diluted by following a strategic templated immobilization method. As a consequence, a pseudo...

  18. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  19. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  20. Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor

    International Nuclear Information System (INIS)

    Luo, Jing; Ma, Qiang; Gu, Huahao; Zheng, Yuan; Liu, Xiaoya

    2015-01-01

    Highlights: •A graphene-polyaniline (GR-PANI) hybrid hollow sphere is fabricated by layer-by-layer (LBL) assembly technique. •The GR-PANI hollow sphere has higher specific capacitance than stacked GR-PANI LBL film. •64% of its initial capacitance is maintained with the current density increased from 0.5 to 20 A g −1 . •A high capacity retention rate of 83% after 1000 cycles can be achieved. -- Abstract: A novel kind of three-dimensional graphene-polyaniline hybrid hollow sphere (RGO-PANI HS) has been prepared via layer-by-layer (LBL) assembly of negatively-charged reduced graphene oxide (RGO) and positively charged polyaniline (PANI) on polystyrene (PS) microsphere, followed by the removal of the PS template. The hollow structure of the obtained RGO-PANI HS is confirmed by transmission electron microscopy (TEM). When used as the electrode materials for supercapacitor, the specific capacitance of the RGO-PANI HS reaches 381 F/g at a current density of 4.0 A/g, which is much higher than 251 F/g of the stacked RGO-PANI LBL film. The higher specific capacitance of RGO-PANI HS should be attributed to its unique hollow structure which provides a larger accessible surface area and facilitate the charge and ion transport. In addition, its specific capacitance can be facilely tailored by changing the assembly cycle number. Furthermore, good cycling stability is also demonstrated with 83% of the original capacitance value maintained after 1000 charging/discharging cycles

  1. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  2. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    International Nuclear Information System (INIS)

    Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Argitis, P.; Kennou, S.; Kostis, I.; Papadimitropoulos, G.; Stathopoulos, N.A.; Iliadis, A.A.; Konofaos, N.; Davazoglou, D.; Sygellou, L.

    2011-01-01

    Tungsten oxide (WO 3 ) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO 3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO 3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO 3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  3. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  4. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  5. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  6. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-01-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC 0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  7. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    Science.gov (United States)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  8. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design

    OpenAIRE

    Yang, Yanfei; Chen, Xiaogang

    2017-01-01

    This study aims to reveal different energy absorption efficiency of each layer when armour panel is under ballistic impact. Through Finite Element (FE) modelling and ballistic tests, it is found that when fabrics are layered up in a panel, energy absorption efficiency is only 30%–60% of an individual fabric layer with free boundary condition. In addition, fabric layers in front, middle, and back exhibit different ballistic characteristics. Therefore, a new hybrid design principle has been pro...

  9. MECHANICAL PROPERTIES OF CR-DLC LAYERS PREPARED BY HYBRID LASER TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Petr Písařík

    2017-06-01

    Full Text Available Diamond like carbon (DLC layers have excellent biological properties for use in medicine for coating implants, but poor adhesion to biomedical alloys. The adhesion can be improved by doping the DLC layer by chromium, as described in this article. Chromium doped diamond like carbon layers (Cr‑DLC were deposited by hybrid deposition system using KrF excimer laser and magnetron sputtering. Carbon and chromium contents were determined by wavelength dispersive X-ray spectroscopy. Mechanical properties were studied by nanoindentation. Hardness and reduced Young's modulus reached 31.2 GPa and 271.5 GPa, respectively. Films adhesion was determined by scratch test and reached 19 N for titanium substrates. Good adhesion to biomedical alloys and high DLC hardness will help to progress in the field of implantology.

  10. Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Cruz Alejandra Santana

    2018-03-01

    Full Text Available Samples of layered double hydroxides containing carbonates as compensating anions were prepared by the urea method. These LDHs were used as hosts of anions coming from pipemidic and nalidixic acid. XRD results confirm that these anions were hosted in the interlayer space of LDHs. Further, from 27Al NMR MAS characterization of an interaction between the brucite-like layers and anions was suggested. Then the hybrids LDHs were used as biocide of Salmonella typhi and Escherichia coli. The release profile of pipemidic and nalidixic anions from hybrid LDHs occurs for periods as long as 3.5 hours. The free-organic acid LDHs were not able to kill S. Typhi, neither E. coli. In contrast, the hybrids LDHs eliminate almost completely bacteria within short times.

  11. Modelling and Vibration Control of Beams with Partially Debonded Active Constrained Layer Damping Patch

    Science.gov (United States)

    SUN, D.; TONG, L.

    2002-05-01

    A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.

  12. Hybrid Dye-Sensitized Solar Cells Consisting of Double Titania Layers for Harvesting Light with Wide Range of Wavelengths

    Science.gov (United States)

    Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2011-02-01

    We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.

  13. Exploratory Topology Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin

    2016-01-01

    The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS...... that enables designers and engineers to iteratively construct and manipulate form-active hybrid assembly topology on the fly. The pipeline implements Kangaroo2's projection-based methods for modelling hybrid structures consisting of slender beams and cable networks. A selection of design modelling sketches...

  14. Fabrication of hybrid molecular devices using multi-layer graphene break junctions

    Science.gov (United States)

    Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F. A.; Menelaou, M.; Aliaga-Alcalde, N.; Burzurí, E.; van der Zant, H. S. J.

    2014-11-01

    We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

  15. Structural origins of broadband emission from layered Pb-Br hybrid perovskites.

    Science.gov (United States)

    Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2017-06-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

  16. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    Directory of Open Access Journals (Sweden)

    Selina Olthof

    2016-09-01

    Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  17. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Jafari-Asl, Mehdi; Nabiyan, Afshin; Rezaei, Behzad; Dinari, Mohammad

    2016-01-01

    New efficient hydrogen storage hybrids were fabricated based on hydrogen spillover mechanism, including chemisorptions and dissociation of H_2 on the surface of LDH (layered double hydroxides) and diffusion of H to rGO (reduced graphene oxide). The structures and compositions of all of the hybrids (LDHs/rGO) have been verified using different methods including transmission electron microscopy, X ray diffraction spectroscopy, infrared spectroscopy and Brunauer–Emmett–Teller analysis. Then, the abilities of the LDHs/rGOs, as hydrogen spillover, were investigated by electrochemical methods. In addition, the LDHs/rGOs were decorated with palladium, using redox replacement process, and their hydrogen spillover properties were studied. The results showed that the hydrogen adsorption/desorption kinetics, hydrogen storage capacities and stabilities of Pd"#LDH/rGOs are better than Pd/rGO. Finally presence of different polymers (synthesis with monomers, 4–aminophenol, 4–aminothiophenol, o-phenylenediamine and p-phenylenediamine) at the surface of the Pd#LDH/rGOs on hydrogen storage were studied. The results showed that presence of o-phenylenediamine and p-phenylenediamine improves the kinetics of the hydrogen adsorption/desorption and increase the capacity of the hydrogen storage. - Highlights: • Efficient hydrogen storage sorbents are introduced. • The sorbents are synthesized based on hybrids of layered double hydroxide. • The compositions of all of the hybrids are verified using different methods. • Pd nanoparticles modified nanohybrids are investigated for hydrogen storage. • Presence of different polymers beside the hydrogen sorbents are investigated.

  18. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in [Department of physics, Presidency University, Kolkata-700073 (India)

    2016-05-06

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  19. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air.

    Science.gov (United States)

    Caucheteur, Christophe; Debliquy, Marc; Lahem, Driss; Megret, Patrice

    2008-10-13

    Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO(3) doped with Pt on which H(2) undergoes an exothermic reaction. The released heat increases the temperature around the gratings. In this configuration, the LPFG favors the exothermic reaction thanks to a light coupling to the sensitive layer while the FBG reflects the temperature change linked to the hydrogen concentration. Our sensor is very fast and suitable to detect low hydrogen concentrations in air whatever the relative humidity level and for temperatures down to -50 degrees C, which is without equivalent for other hydrogen optical sensors reported so far.

  20. Melanin as an active layer in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br [Department of Physics, Faculty of Sciences - UNESP, Bauru, SP (Brazil); Fernandes, Jéssica Colnaghi, E-mail: jeziga-cf@yahoo.com.br; Biziak de Figueiredo, Natália, E-mail: natbiziak@yahoo.com.br; Mulato, Marcelo, E-mail: mmulato@ffclrp.usp.br [Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  1. Melanin as an active layer in biosensors

    International Nuclear Information System (INIS)

    Piacenti da Silva, Marina; Congiu, Mirko; Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi; Biziak de Figueiredo, Natália; Mulato, Marcelo

    2014-01-01

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine

  2. An optimized hybrid Convolutional Perfectly Matched Layer for efficient absorption of electromagnetic waves

    Science.gov (United States)

    Darvish, Amirashkan; Zakeri, Bijan; Radkani, Nafiseh

    2018-03-01

    A hybrid technique is studied in order to improve the performance of Convolutional Perfectly Matched Layer (CPML) in the Finite Difference Time Domain (FDTD) medium. This technique combines the first order of Higdon's annihilation equation as Absorbing Boundary Condition (ABC) with CPML to vanish the Perfect Electric Conductor (PEC) effects at the end of the CPML region. An optimization algorithm is required to find optimum parameters of the proposed absorber. In this investigation, the Particle Swarm Optimization (PSO) is utilized with two separate objective functions in order to minimize the average and peak value of relative error. Using a standard test, the overall performance of the proposed absorber is compared to the original CPML. The results clearly illustrate this method provides approximately 10 dB enhancements in CPML absorption error. The performance, memory and time requirement of the novel absorber, hybrid CPML (H-CPML), was analyzed during 2D and 3D tests and compared to most reported PMLs. The H-CPML requirement of computer resources is similar to CPML and can simply be implemented to truncate FDTD domains. Furthermore, an optimized set of parameters are provided to generalize the hybrid method.

  3. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    Science.gov (United States)

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  4. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  5. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  6. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  7. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  8. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  9. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  10. Active Layer Monitoring, Arctic and Subarctic Canada, Version 6

    Data.gov (United States)

    National Aeronautics and Space Administration — This project involves measuring regional and site variability in maximum annual active layer development and vertical surface movement over permafrost, and...

  11. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  12. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  13. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    Science.gov (United States)

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    Science.gov (United States)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS

  15. Shunt hybrid active power filter for harmonic mitigation: A practical ...

    Indian Academy of Sciences (India)

    The increasing importance of Power Quality problems has been responsible for several improvements in Active Power Filter (APF) typologies in the last decade. The increased cost and switching losses make a pure shunt APF economically impractical for high power applications. In higher power levels shunt Hybrid Active ...

  16. The effect of fibre layering pattern in resisting bending loads of natural fibre-based hybrid composite materials

    Directory of Open Access Journals (Sweden)

    Jusoh Muhamad Shahirul Mat

    2016-01-01

    Full Text Available The effect of fibre layering pattern and hybridization on the flexural properties of composite hybrid laminates between natural fibres of basalt, jute and flax with synthetic fibre of E-glass reinforced epoxy have been investigated experimentally. Results showed that the effect fibre layering pattern was highly significant on the flexural strength and modulus, which were strongly dependent on the hybrid configuration between sandwich-like (SL and intercalation (IC sequence of fibre layers. In addition, specific modulus based on the variation densities of the hybrid laminates was used to discover the best combination either basalt, jute or flax with E-glass exhibits superior properties concerning on the strength to weight-ratio. Generally, SL sequence of glass/basalt exhibited superior strength and stiffness compared with glass/jute and glass/flax in resisting bending loads. In terms of hybridization effect, glass/jute was found to be the best combination with E-glass compared to the rest of natural fibres investigated in the present study. Hence, the proper stacking sequences and material selection are among predominant factors that influence on mechanical properties and very crucial in designing composite hybrid system to meet the desired requirements.

  17. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    package CST Microwave Studio in the frequency domain. We explore different permittivities of the ITO layer, which can be achieved by utilizing different anneal conditions. To increase transmittance and enhance modulation depth or efficiency, we propose to pattern the continuous active layer. Dependence...... from the pattern size and filling factor of the active material are analyzed for tuned permittivity of the ITO layer. Direct simulation of the device functionality validates optimization design....

  18. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yizhou; Liu, Xiangmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K. [Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Shuilin, E-mail: shuilin.wu@gmail.com [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  19. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W.K.; Chu, Paul K.; Wu, Shuilin

    2017-01-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  20. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed

    2017-05-23

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  1. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed; Kirmani, Ahmad R.; Barlow, Stephen; Marder, Seth R.; Amassian, Aram

    2017-01-01

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  2. Preparation and properties of UV curable organic/inorganic hybrid nanocomposites based on layered double hydroxides

    International Nuclear Information System (INIS)

    Shichang Lv; Wenfang Shi

    2007-01-01

    The organo-modified layered double hydroxides (LDHs), M-LDH and N-LDH, were obtained by the ionic exchange reaction of a magnesium-aluminium nitrate LDH with modifiers. The LDHs/acrylate organic/inorganic hybrid nanocomposites were prepared from organo-modified LDHs, and aliphatic polyurethane acrylate oligomer and an acrylate monomer, through a bulk photopolymerization process at the presence of a photoinitiator. The effects of LDHs content in the resin on the dispersion, and the properties of UV cured nanocomposites film were investigated by using X-ray diffraction, FTIR, thermal analysis, pendulum/pencil hardness measurement. With the good solubility in acrylate resins, the organo-modified LDHs are hopefully to be used in adhesives, coating, inks as toughness modifiers, fire-retardant additives. (Author)

  3. Bonding and bio-properties of hybrid laser/magnetron Cr-enriched DLC layers

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Miroslav, E-mail: jelinek@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance 2, 18221 Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, nam. Sitna 3105, 27201 Kladno (Czech Republic); Zemek, Josef [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance 2, 18221 Prague (Czech Republic); Vandrovcová, Marta; Bačáková, Lucie [Institute of Physiology of the Czech Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague 4 (Czech Republic); Kocourek, Tomáš; Remsa, Jan; Písařík, Petr [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance 2, 18221 Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, nam. Sitna 3105, 27201 Kladno (Czech Republic)

    2016-01-01

    Chromium-enriched diamond-like carbon (DLC) layers were prepared by a hybrid technology using a combination of pulsed laser deposition (PLD) and magnetron sputtering. XRD revealed no chromium peaks, indicating that the layers are mostly amorphous. Carbon (sp{sup 2} and sp{sup 3} bonds) and chromium bonds were determined by XPS from C 1s, O 1s, and Cr 2p photoelectron peaks. Depending on the deposition conditions, the concentration of Cr in DLC layers moved from zero to 10 at.% for as-received sample surfaces, and to about 31 at.% after mild sputter-cleaning by argon ion cluster beam. It should be noted that the most stable Cr{sup 3+} bonding state is in Cr{sub 2}O{sub 3} and Cr(OH){sub 3}, and that there is the toxic Cr{sup 6+} state in CrO{sub 3}. The surface content of hexavalent chromium in the Cr 2p3/2 spectra is rather low, but discernible. The population density of Saos-2 cells was the highest in samples containing higher concentrations of chromium 7.7 and 10 at.%. This means that higher concentrations of chromium supported the cell adhesion and proliferation. In addition, as revealed by a LIVE/DEAD viability/cytotoxicity kit, the cells on all Cr-containing samples maintained high viability (96 to 99%) on days 1 and 3 after seeding. However, this seemingly positive cell behavior could be associated with the risk of dedifferentiation and oncogenic transformation of cells. - Highlights: • DLC and chromium-enriched DLC layers were prepared by hybrid laser–magnetron deposition. • The content of chromium in DLC varied up to 10 at.% (31 at.% after ion beam sputtering). • The surface content of toxic hexavalent chromium in the Cr 2p3/2 spectra is rather low but discernible. • Higher concentrations of chromium supported the cell adhesion and proliferation. • Cells on all Cr-containing samples maintained high viability (96 to 99%).

  4. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene.

    Science.gov (United States)

    Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin

    2018-02-15

    The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

  5. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  6. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Thawing permafrost and the resulting mineralization of previously frozen organic carbon (C) is considered an important future feedback from terrestrial ecosystems to the atmosphere. Here, we use a dynamic process oriented permafrost model, the CoupModel, to link surface and subsurface temperatures....... The model is successfully adjusted and applied for the study area and shown to be able to simulate active layer dynamics. Subsequently, the model is used to predict the active layer thickness under future warming scenarios. The model predicts an increase of maximum active layer thickness from today 70 to 80......–105 cm as a result of a 2–6 °C warming. An additional increase in the maximum active layer thickness of a few centimetres may be expected due to heat production from decomposition of organic matter. Simulated future soil temperatures and water contents are subsequently used with measured basal soil...

  7. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  8. Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Lai, Feili; Huang, Yunpeng; Miao, Yue-E; Liu, Tianxi

    2015-01-01

    Graphical Abstract: Multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets grown on electrospun carbon nanofiber membranes were prepared via electrospinning combined with solution co-deposition for high-performance supercapacitor electrodes. - Highlights: • Ni-Co LDH@CNFhybridswerepreparedbyelectrospinningandsolutionco-deposition. • Ni-Co LDH@CNF hybrids show high electrochemical performance for supercapacitors. • This method can be extended to other bimetallic@CNF hybrids for electrode materials. - Abstract: Hybrid nanomaterials with hierarchical structures have been considered as one kind of the most promising electrode materials for high-performance supercapacitors with high capacity and long cycle lifetime. In this work, multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanorods/nanosheets on carbon nanofibers (CNFs) were prepared by electrospinning technique combined with one-step solution co-deposition method. Carbon nanofiber membranes were obtained by electrospinning of polyacrylonitrile (PAN) followed by pre-oxidation and carbonization. The successful growth of Ni-Co LDH with different morphologies on CNF membrane by using two kinds of auxiliary agents reveals the simplicity and universality of this method. The uniform and immense growth of Ni-Co LDH on CNFs significantly improves its dispersion and distribution. Meanwhile the hierarchical structure of carbon nanofiber@nickel-cobalt layered double hydroxide nanorods/nanosheets (CNF@Ni-Co LDH NR/NS) hybrid membranes provide not only more active sites for electrochemical reaction but also more efficient pathways for electron transport. Galvanostatic charge-discharge measurements reveal high specific capacitances of 1378.2 F g −1 and 1195.4 F g −1 (based on Ni-Co LDH mass) at 1 A g −1 for CNF@Ni-Co LDH NR and CNF@Ni-Co LDH NS hybrid membranes, respectively. Moreover, cycling stabilities for both hybrid membranes are

  9. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  10. Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.

    Science.gov (United States)

    Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun

    2012-04-01

    Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.

  11. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  12. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    Science.gov (United States)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  13. Hybrid nanomaterial of α-Co(OH)2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors.

    Science.gov (United States)

    Cheng, J P; Liu, L; Ma, K Y; Wang, X; Li, Q Q; Wu, J S; Liu, F

    2017-01-15

    Supercapacitor with metal hydroxide nanosheets as electrode can have high capacitance. However, the cycling stability and high rate capacity is low due to the low electrical conductivity. Here, the exfoliated α-Co(OH) 2 nanosheets with high capacitance has been assembled on few-layer graphene with high electric conductivity by a facile yet effective and scalable solution method. Exfoliated hydrotalcite-like α-Co(OH) 2 nanosheets and few-layer graphene suspensions were prepared by a simple ultrasonication in formamide and N-methyl-2-pyrrolidone, respectively. Subsequently, a hybrid was made by self-assembly of α-Co(OH) 2 and few-layer graphene when the two dispersions were mixed at room temperature. The hybrid material provided a high specific capacitance of 567.1F/g at 1A/g, while a better rate capability and better stability were achieved compared to that mad of pristine and single exfoliated α-Co(OH) 2 . When the hybrid nanocomposite was used as a positive electrode and activated carbon was applied as negative electrode to assembly an asymmetric capacitor, an energy density of 21.2Wh/kg at a power density of 0.41kW/kg within a potential of 1.65V was delivered. The high electrochemical performance and facile solution-based synthesis method suggested that the hybrid of exfoliated α-Co(OH) 2 /few-layer graphene could be a potential electrode material for electrochemical capacitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hybrid combination of multi-layer perceptron and neutron activation ...

    Indian Academy of Sciences (India)

    2017-01-04

    Jan 4, 2017 ... 1Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. 2Radiation ... method for the qualitative and quantitative analyses of ... ferent types of cement using reactor, inertial elec-.

  15. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  16. Novel building units with bimetallic rings in inorganic/organic hybrid chains and layers

    International Nuclear Information System (INIS)

    Mahenthirarajah, Thushitha; Li Yang; Lightfoot, Philip

    2009-01-01

    Hydrothermal synthesis has produced three new compounds constructed from novel building units containing vanadium-oxide (or oxyfluoride) subunits linked together via covalently bound cationic copper complexes. Each new compound exhibits novel structural features: [Cu(dipa)][VOF 4 ] (1) incorporates a corner-sharing octahedral vanadium(IV) oxyfluoride chain decorated by copper-(2,2'-dipyridyl amine) complexes which form intra-chain bridges. Within a similar reactant system [Cu(dipa)] 2 [V 6 O 17 ] (2) is produced, the structure of which exhibits edge-sharing trigonal bipyramidal vanadium(V) 'ladder-like' double chains which are bridged into layers by tetrahedral pyrovanadate dimers together with the copper-(2,2'-dipyridyl amine) complexes. [Cu(py) 4 ] 2 [V 4 O 12 ] (3), is a 2-D structure featuring exclusively tetrahedral vanadium(V) in four-membered ring building blocks, linked through octahedral copper-pyridine complexes to form two crystallographically different bimetallic layers. - Graphical abstract: Hydrothermal synthesis is used to prepare hybrid mixed metal oxides and oxyfluorides with novel extended connectivities

  17. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  18. Ultraviolet/visible and Fourier transform infrared spectroscopic investigations of organic–inorganic hybrid layers for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Präfke, Christiane, E-mail: christiane.praefke@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany); Schulz, Ulrike, E-mail: ulrike.schulz@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kaiser, Norbert, E-mail: norbert.kaiser@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Tünnermann, Andreas, E-mail: andreas.tuennermann@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany)

    2013-04-01

    A study of vacuum-deposited organic–inorganic hybrid coatings for ultraviolet (UV) protection of polycarbonate is presented. For this purpose, UV-absorbing organic molecules were embedded in a silica matrix by thermal co-evaporation. Typical UV absorbers, namely a benzotriazole, a hydroxyphenyltriazine, and a cyanoacrylate, were used as organic materials. The hybrid layers were investigated by means of ultraviolet/visible (UV/VIS) and Fourier transform infrared spectroscopy (FTIR) concerning their UV/VIS absorption properties and the influence of the silica network on the organic molecules. The porosity and silica–organic interactions are discussed with reference to the infrared spectra. UV irradiation experiments were carried out to demonstrate the UV protection ability of the hybrid layers. Hybrid layers containing the hydroxyphenyltriazine compound showed the best results. - Highlights: ► Vacuum deposited organic–inorganic UV protective coatings for polycarbonate ► Thermal co-evaporation of organic UV absorbing compounds with silica ► Matrix materials and the absorber concentration influence the absorption behavior. ► The coatings on PC show improved UV stability under artificial irradiation. ► The hydroxyphenyltriazine–silica layer shows best UV protection results.

  19. Active unjamming of confluent cell layers

    Science.gov (United States)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  20. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  1. Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO{sub 2} on fly ash cenospheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jingke; Wang, Xuejiang, E-mail: wangxj@tongji.edu.cn; Bu, Yunjie; Wang, Xin; Zhang, Jing; Huang, Jiayu; Ma, RongRong; Zhao, Jianfu

    2017-01-01

    Highlights: • Multifunctional TiO{sub 2} was coated on floating fly ash cenospheres. • TiO{sub 2} was integrated with carbonaceous layer from chitosan and Fe-N co-doping. • Carbonized chitosan improved the adsorption of pollutant and photon absorption ability of TiO{sub 2}. • Modified TiO{sub 2} exhibited superior photocatalytic activity and better recyclability. - Abstract: Due to the advantage of floating on water surface, floating photocatalysts show higher rates of radical formation and collection efficiencies. And they were expected to be used for solar remediation of non-stirred and non-oxygenated reservoirs. In this research, floating fly ash cenospheres (FAC) supported layer-by- layer hybrid carbonized chitosan and Fe-N-codoped TiO{sub 2} was prepared by a simple sol-gel method. The catalysts were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy(DRS), nitrogen adsorption analyses for Brunauer-Emmett-Teller (BET) specific surface area. It is indicated that Fe-N codoped narrowed the material’s band gap, and the layer of carbonized chitosan (Cts) increased the catalyst’s adsorption capacity and the absorption ability of visible light. Comparing with Fe-N-TiO{sub 2}/FAC and N-TiO{sub 2}/FAC, the composite photocatalyst show excellent performance on the degradation of RhB. Photodegradation rate of RhB by Fe-N-TiO{sub 2}/FAC-Cts was 0.01018 min{sup −1}, which is about 1.5 and 2.09 times higher than Fe-N-TiO{sub 2}/FAC and N-TiO{sub 2}/FAC under visible light irradiation in 240 min, respectively. The dye photosentization, capture of holes and electrons by Fe{sup 3+} ion, and synergistic effect of adsorption and photodegradation were attributed to the results for the improvement of photocatalytic performance. The floating photocatalyst can be reused for at least three consecutive

  2. Thin layer activation techniques in research and industry

    International Nuclear Information System (INIS)

    Conlon, T.W.

    1993-01-01

    The following key application of thin layer activation technique (TLA) are discussed: ion-erosion in fusion tokamaks, bio-engineering technology, automobile industry. Future developments of the techniques, such as fission fragment TLA, multi-layer TLA and recoil implantation are discussed as well. 7 refs, 6 figs, 1 tab

  3. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-01-01

    Graphical abstract: -- Highlights: •A new highly sensitive bifunctional electrochemical sensor developed. •As-prepared sensor fabricated by alternate assembly of HA and exfoliated LDH nanosheets. •Such a newly designed sensor combining the individual properties of HA and LDH nanosheets. •Simultaneous determination of pentachlorophenol and copper ions achieved. •Practical applications demonstrated in water samples. -- Abstract: A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu 2+ ) has been developed, where organic–inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg–Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV–vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA) n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu 2+ , much below the guideline value (2.0 mg L −1

  4. Active layer thickness and ground temperatures, Svea, Svalbard, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Snow and soil temperature records for January 1988 - May 1996 are presented. Included are snow depth and weight measurements, snow density (calculated), active layer...

  5. Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    International Nuclear Information System (INIS)

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-01-01

    Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 °C for 2 h and also possesses high total pore volumes (0.41 cm³ g −1 ) and high specific BET surface area (161 m 2 g −1 ), which is nine times larger than that of the pristine (19 m 2 g −1 ). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic–inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: ► A two-step synthesis method was used to prepare the CTAB-Al-MO. ► The CTAB-Al-MO has the large basal spacing and high specific BET surface area. ► The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. ► The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  6. Design and control of hybrid active power filters

    CERN Document Server

    Lam, Chi-Seng

    2014-01-01

    Design and Control of Hybrid Active Power Filters presents an overview of the current quality problems and their compensators. To get a balance between the system cost and performance, hybrid active power filters (HAPFs) are valuable. The book presents the coverage of resonance phenomena prevention capability, filtering performance and system robustness analysis of HAPF; nonlinear inverter current slope characteristics and their linear operation region requirement analysis of the hysteresis PWM for the HAPF; minimum inverter capacity design procedure of HAPF, adaptive dc-link voltage controller for the HAPF and the real design example of a 220V 10kVA HAPF, in which the system performance analysis method, minimum dc voltage deduction concept and adaptive dc voltage idea can be further extended into the other active compensators, such as APF, static synchronous compensator STATCOM, etc. This book will benefit researchers, graduate students, and electrical power engineers in the field of power-quality compensati...

  7. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  8. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    Science.gov (United States)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade

  9. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    Science.gov (United States)

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  10. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    Directory of Open Access Journals (Sweden)

    Jun-qing Li

    2014-01-01

    Full Text Available A hybrid algorithm which combines particle swarm optimization (PSO and iterated local search (ILS is proposed for solving the hybrid flowshop scheduling (HFS problem with preventive maintenance (PM activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron’s benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

  11. Hybrid particle swarm optimization for hybrid flowshop scheduling problem with maintenance activities.

    Science.gov (United States)

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

  12. Bonding techniques for hybrid active pixel sensors (HAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bigas, M. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: Marc.Bigas@cnm.es; Cabruja, E. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: Enric.Cabruja@cnm.es; Lozano, M. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  13. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  14. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    Science.gov (United States)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  15. Fast electron flux driven by lower hybrid wave in the scrape-off layer

    International Nuclear Information System (INIS)

    Li, Y. L.; Xu, G. S.; Wang, H. Q.; Wan, B. N.; Chen, R.; Wang, L.; Gan, K. F.; Yang, J. H.; Zhang, X. J.; Liu, S. C.; Li, M. H.; Ding, S.; Yan, N.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Shao, L. M.; Li, J.; Chen, L.; Zhao, N.

    2015-01-01

    The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m 2 and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n || components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau damping of the LHW. The analytical results support the RFA measurements, showing a certain level of consistency. In addition, the deposition profile of the LHW power density in SOL is also calculated utilizing this simple model. This study provides some fundamental insight into the heating and current drive effects induced by LHW in SOL, and should also help to interpret the observations and related numerical analyses of the behaviors of bright belts and hot spots induced by LHW

  16. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  17. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  18. A Scalable and Highly Configurable Cache-Aware Hybrid Flash Translation Layer

    Directory of Open Access Journals (Sweden)

    Jalil Boukhobza

    2014-03-01

    Full Text Available This paper presents a cache-aware configurable hybrid flash translation layer (FTL, named CACH-FTL. It was designed based on the observation that most state-of­­-the-art flash-specific cache systems above FTLs flush groups of pages belonging to the same data block. CACH-FTL relies on this characteristic to optimize flash write operations placement, as large groups of pages are flushed to a block-mapped region, named BMR, whereas small groups are buffered into a page-mapped region, named PMR. Page group placement is based on a configurable threshold defining the limit under which it is more cost-effective to use page mapping (PMR and wait for grouping more pages before flushing to the BMR. CACH-FTL is scalable in terms of mapping table size and flexible in terms of Input/Output (I/O workload support. CACH-FTL performs very well, as the performance difference with the ideal page-mapped FTL is less than 15% in most cases and has a mean of 4% for the best CACH-FTL configurations, while using at least 78% less memory for table mapping storage on RAM.

  19. A Hybrid Double-Layer Master-Slave Model For Multicore-Node Clusters

    International Nuclear Information System (INIS)

    Liu Gang; Schmider, Hartmut; Edgecombe, Kenneth E

    2012-01-01

    The Double-Layer Master-Slave Model (DMSM) is a suitable hybrid model for executing a workload that consists of multiple independent tasks of varying length on a cluster consisting of multicore nodes. In this model, groups of individual tasks are first deployed to the cluster nodes through an MPI based Master-Slave model. Then, each group is processed by multiple threads on the node through an OpenMP based All-Slave approach. The lack of thread safety of most MPI libraries has to be addressed by a judicious use of OpenMP critical regions and locks. The HPCVL DMSM Library implements this model in Fortran and C. It requires a minimum of user input to set up the framework for the model and to define the individual tasks. Optionally, it supports the dynamic distribution of task-related data and the collection of results at runtime. This library is freely available as source code. Here, we outline the working principles of the library and on a few examples demonstrate its capability to efficiently distribute a workload on a distributed-memory cluster with shared-memory nodes.

  20. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  1. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  2. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    Science.gov (United States)

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  3. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  4. Quinoline hybrids and their antiplasmodial and antimalarial activities.

    Science.gov (United States)

    Hu, Yuan-Qiang; Gao, Chuan; Zhang, Shu; Xu, Lei; Xu, Zhi; Feng, Lian-Shun; Wu, Xiang; Zhao, Feng

    2017-10-20

    Malaria, in particular infection with P. falciparum (the most lethal of the human malaria parasite species, responsible for nearly one million deaths every year), is one of the most devastating and common infectious disease throughout the world. Beginning with quinine, quinoline containing compounds have long been used in clinical treatment of malaria and remained the mainstays of chemotherapy against malaria. The emergence of P. falciparum strains resistant to almost all antimalarials prompted medicinal chemists and biologists to study their effective replacement with an alternative mechanism of action and new molecules. Combination with variety of quinolines and other active moieties may increase the antiplasmodial and antimalarial activities and reduce the side effects. Thus, hybridization is a very attractive strategy to develop novel antimalarials. This review aims to summarize the recent advances towards the discovery of antiplasmodial and antimalarial hybrids including quinoline skeleton to provide an insight for rational designs of more active and less toxic quinoline hybrids antimalarials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    International Nuclear Information System (INIS)

    Chen, S-H; Chuang, Y-C; Lu, Y-C; Lin, H-C; Yang, Y-L; Lin, C-S

    2009-01-01

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (ΔF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml -1 and a linear correlation (R 2 = 0.987) of ΔF versus virus titration from 2 x 10 0 to 2 x 10 6 PFU ml -1 was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  6. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  7. Homoepitaxial VPE growth of SiC active layers

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr. [Northrop Grumman Electron. Sensors and Syst. Div., Baltimore, MD (United States); Rowland, L.B. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-01

    SiC active layers of tailored thickness and doping form the heart of all SiC electronic devices. These layers are most conveniently formed by vapor phase epitaxy (VPE). Exacting requirements are placed upon the SiC-VPE layers` material properties by both semiconductor device physics and available methods of device processing. In this paper, the current ability of the SiC-VPE process to meet these requirements is described along with continuing improvements in SiC epitaxial reactors, processes and materials. (orig.) 48 refs.

  8. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  9. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons

    Science.gov (United States)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey

    2018-05-01

    In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.

  10. Significantly improved efficiency of organic solar cells incorporating Co3O4 NPs in the active layer

    Science.gov (United States)

    Yousaf, S. Amber; Ikram, M.; Ali, S.

    2018-03-01

    Effect of various concentrations of fabricated cobalt oxide (Co3O4) nanoparticles (NPs) in the active layer of different donors and acceptors based hybrid organic bulk heterojunction-BHJ devices were investigated using inverted architecture. The organic active layer comprising different donors P3HT (poly(3-hexylthiophene-2,5-diyl) and PTB7 (Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl

  11. Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte

    Science.gov (United States)

    Ghosh, Subrata; Sahoo, Gopinath; Polaki, S. R.; Krishna, Nanda Gopala; Kamruddin, M.; Mathews, Tom

    2017-12-01

    Supercapacitors are becoming the workhorse for emerging energy storage applications due to their higher power density and superior cycle life compared to conventional batteries. The performance of supercapacitors depends on the electrode material, type of electrolyte, and interaction between them. Owing to the beneficial interconnected porous structure with multiple conducting channels, vertical graphene nanosheets (VGN) have proved to be leading supercapacitor electrode materials. Herein, we demonstrate a novel approach based on the combination of surface activation and a new organo-aqueous hybrid electrolyte, tetraethylammonium tetrafluoroborate in H2SO4, to achieve significant enhancement in supercapacitor performance of VGN. As-synthesized VGN exhibits an excellent supercapacitance of 0.64 mF/cm2 in H2SO4. However, identification of a novel electrolyte for performance enhancement is the subject of current research. The present manuscript demonstrates the potential of the hybrid electrolyte in enhancing the areal capacitance (1.99 mF/cm2) with excellent retention (only 5.4% loss after 5000 cycles) and Coulombic efficiency (93.1%). In addition, a five-fold enhancement in the capacitance of VGNs (0.64 to 3.31 mF/cm2) with a reduced internal resistance is achieved by the combination of KOH activation and the hybrid electrolyte.

  12. Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides

    Science.gov (United States)

    Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.

    2018-06-01

    Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.

  13. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  14. Tyrosinase Inhibitor Activity of Coumarin-Resveratrol Hybrids

    Directory of Open Access Journals (Sweden)

    Giovanna Delogu

    2009-07-01

    Full Text Available In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC50 values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3’,4’,5’-trihydroxyphenyl-6,8-dihydroxycoumarin (8is the most potentcompound (0.27 mM, more so than umbelliferone (0.42 mM, used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  15. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids.

    Science.gov (United States)

    Fais, Antonella; Corda, Marcella; Era, Benedetta; Fadda, M Benedetta; Matos, Maria Joao; Quezada, Elias; Santana, Lourdes; Picciau, Carmen; Podda, Gianni; Delogu, Giovanna

    2009-07-13

    In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC(50) values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin (8)is the most potentcompound (0.27 mM), more so than umbelliferone (0.42 mM), used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  16. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  17. The Tower: Modelling, Analysis and Construction of Bending Active Tensile Membrane Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Schmeck, Michel; Charles Quinn, Gregory

    2015-01-01

    The project is the result of an interdisciplinary research collaboration between CITA, KET and Fibrenamics exploring the design of integrated hybrid structures employing bending active elements and tensile membranes with bespoke material properties and detailing. Hybrid structures are defined her...

  18. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  19. Global Hybrid Simulations of The Magnetopause Boundary Layers In Low- and High-latitude Magnetic Reconnections

    Science.gov (United States)

    Lin, Y.; Perez, J. D.

    A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.

  20. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  1. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  2. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  3. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    Science.gov (United States)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  4. Analysis of light propagation in quasiregular and hybrid Rudin-Shapiro one-dimensional photonic crystals with superconducting layers

    Science.gov (United States)

    Gómez-Urrea, H. A.; Escorcia-García, J.; Duque, C. A.; Mora-Ramos, M. E.

    2017-11-01

    The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin-Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin-Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter-Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc - a forbidden frequency band for propagation - that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin-Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity - which reaches a value of several tens - corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers.

  5. COED Transactions, Vol. X, No. 9, September 1978. Use of the Analog/Hybrid Computer in Boundary Layer and Convection Studies.

    Science.gov (United States)

    Mitchell, Eugene E., Ed.

    In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…

  6. Active diagnosis of hybrid systems - A model predictive approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and fault...... can be used as a test signal for sanity check at the commissioning or for detection of faults hidden by regulatory actions of the controller. The method is tested on the two tank benchmark example. ©2009 IEEE....

  7. Calibrated and Interactive Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel

    2016-01-01

    Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... software packages which introduce interruptions and data exchange issues in the modelling pipeline. The mechanical precision, stability and open software architecture of Kangaroo has facilitated the development of proof-of-concept modelling pipelines which tackle this challenge and enable powerful...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....

  8. Neutron activation analysis of baths forming conversion layer on aluminium

    International Nuclear Information System (INIS)

    Szilagyi, Istvan; Maleczki, Emil; Bodizs, Denes

    1988-01-01

    Chromate layers were formed on the surface of aluminium using yellow and green chromating solutions. For the determination of the aluminium content neutron activation method was used. Nuclear effects disturbing the determination were eliminated by double irradiation technique. (author) 8 refs.; 4 figs

  9. Water permeability, hybrid layer long-term integrity and reaction mechanism of a two-step adhesive system.

    Science.gov (United States)

    Grégoire, Geneviève; Dabsie, Firas; Delannée, Mathieu; Akon, Bernadette; Sharrock, Patrick

    2010-07-01

    Our aim was to investigate the reaction mechanism of formation of the hybrid layer by a HEMA-containing self-etch adhesive and to study fluid filtration, contact angle and interfacial ultrastructure by SEM following a 1 year ageing period. Acidic behaviour and chemical interactions between Silorane System Adhesive and dentine were studied by potentiometric titrations, atomic absorption spectroscopy and infrared spectroscopy. The hydrophilicity of the adhesive was evaluated using the sessile drop method and dentine permeability by hydraulic conductance. The morphological study of the dentine/adhesive system interface was conducted using SEM. The Silorane System Adhesive behaved as a multi-acid with several different pK(a) values. When the adhesive was in contact with dentine, the acid was progressively consumed and calcium ions were released. The acrylate substituted phosphonate bound strongly to apatite crystals. The polyacrylic acid copolymer reacted with calcium ions and formed an interpenetrating polymer network (IPN). Water contact angle measurements showed rapid spreading on primer (angles reached 15 degrees at 30s) and larger contact angles when the Silorane bonding layer was added (from over 60 degrees to 44 degrees ). A thick, homogeneous hybrid layer was observed both initially and after 1 year of ageing, with a corresponding hydraulic conductance of -48.50% initially and -52.07% at 12 months. The Silorane System Adhesive is capable of both dissolving calcium ions and binding to apatite surfaces. The results showed the hydrophilicity of the adhesive, which formed an IPN-like hybrid layer that conserved adequate impermeability over a 1-year period. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  11. CuNi/Nb S-F hybrid heterostructures for investigation of induced magnetization in superconducting layer

    International Nuclear Information System (INIS)

    Khaydukov, Yu.; Kim, J.-H.; Logvenov, G.; Morari, R.; Babakova, E.; Sidorenko, A.

    2013-01-01

    The mutual influence of the magnetism and superconductivity in superconductor/ferromagnet (S/F) nano fabricated thin films hybrid heterostructures has been an exciting topic in solid-state physics during last decade. However, the interesting theoretical predictions still wait for unambiguous experimental verification. One of such effect is the so-called spin screening (often called inverse proximity effect), which designates a spin polarization in the superconducting layer close to the S/F interface. It is theoretically shown that a spin polarization develops in the S layer with direction opposite to the spin polarization of the conduction electrons in the F layer. If the thicknesses of the ferromagnetic and superconducting layers are small compared to the London penetration length, then the orbital effect, caused by Meissner screening currents of superconductor will be small compared to the spin effect due to spin polarization. The thickness of the spin polarized sub-layer is comparable to the coherence length ξ of the superconductor. Therefore an advanced technology should be used for fabrication of S/F nanostructures with thin superconducting layers. (authors)

  12. Thin layer activation technique applied to the measurement of wear

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, P [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1978-01-01

    A thin layer of radioactive atoms is produced in the material by bombardment with charged particles, and as the material is worn away the total activity level is monitored. If the activity to depth relationship is then known the amount of material worn away can be determined. By a selective choice of the charged particle species and energy the depth of the active layer, its natural decay rate, and the energy of the emitted radiation can be pre-determined. The Harwell Tandem Electrostatic Generator has been found very suitable for the work. The total activity level can be made as little or as large as required, but a level around 5 to 10 microcuries is usually found to be adequate, and the active layer usually has a depth of 50 to 300 ..mu..m. The activated area can be from < 1 mm/sup 2/ to 4 cm/sup 2/. Particular reference is made to the production of /sup 56/Co in Fe. Experimental arrangements for the irradiation of components are described. Some practical applications undertaken by Harwell for industry are briefly mentioned, including wear of diesel engine valve seatings and fuel injection equipment, engine testing of lubricants, surface loss of rails and railway wheels, wear of gears, wear of graphite bearing materials, and corrosion and erosion of materials. 4 references.

  13. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  14. Effective Passivation and Tunneling Hybrid a-SiOx(In) Layer in ITO/n-Si Heterojunction Photovoltaic Device.

    Science.gov (United States)

    Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan

    2017-05-24

    In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device

  15. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S-H; Chuang, Y-C; Lu, Y-C; Lin, H-C; Yang, Y-L; Lin, C-S [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China)], E-mail: lincs@mail.nctu.edu.tw

    2009-05-27

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change ({delta}F) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml{sup -1} and a linear correlation (R{sup 2} = 0.987) of {delta}F versus virus titration from 2 x 10{sup 0} to 2 x 10{sup 6} PFU ml{sup -1} was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  16. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2016-09-01

    Full Text Available Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight. The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  17. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  18. Voltage harmonics mitigation through hybrid active power filer

    International Nuclear Information System (INIS)

    Sahito, A.A.; Tunio, S.M.; Khizer, A.N.

    2016-01-01

    Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion) of 18.91 and 7.61 percentage in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter) is proposed to reduce these THD values below 5 percentage as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5 percentage. (author)

  19. Voltage Harmonics Mitigation through Hybrid Active Power Filter

    Directory of Open Access Journals (Sweden)

    Anwer Ali Sahito

    2016-01-01

    Full Text Available Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion of 18.91 and 7.61% in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter is proposed to reduce these THD values below 5% as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5%.

  20. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO_2 thin films to produce a new hybrid material coating

    International Nuclear Information System (INIS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M.G.; Chaussé, A.; Andrieux, M.

    2016-01-01

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO_2 thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO_2 thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO_2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO_2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  1. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    International Nuclear Information System (INIS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-01-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW 12 O 40 3− , as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  2. Active metal oxides and polymer hybrids as biomaterials

    Science.gov (United States)

    Jarrell, John D.

    show that silver doping improved the photoactivity of oxide coatings, but hindered activity of a specific hybrid. Doped titanium oxide and polymer hybrid coatings have potential for improving soft tissue integration of medical implants and wound healing by modulating cell proliferation, attachment, inflammation and providing controlled delivery of bioactive and antimicrobial compounds and photon induced electro-chemical activity.

  3. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    Science.gov (United States)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  4. Ciprofloxacin-intercalated Zinc Layered Hydroxides Hybrid Material: Synthesis and in Vitro Release Profiles of an Antibiotic Compound

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Stanslas, J.; Abdul Halim Abdullah

    2011-01-01

    The intriguing anion exchange properties of layered hydroxides salts, combined with its high layer charge density have provided strong motivations for the potential use of the inorganic layered host material in drug delivery applications. Ciprofloxacin (CFX), a wide spectrum antibiotic has been anion exchanged with nitrate of zinc hydroxide nitrate (ZHN), which belongs to the LHS family, resulted in the expansion of the basal spacing from 9.92 Amstrom of ZHN to 21.5 Angstrom of ZCFX, the obtained hybrid material. Other characterizations, such as Fourier transform infra red spectroscopy (FTIR), CHNS analysis and TGA/ DTG have further corroborated this finding. Electron microscopy study reveals the plate-like structure of the nano hybrid material. The in vitro release of CFX was performed in phosphate saline buffer at pH 7.4 and it behaves in a slow and sustained release profile over a period of 72 hours. This study suggests that ZHN, which demonstrates a controlled release behavior, could be a potential host material in the drug delivery applications. (author)

  5. MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-01-01

    Multi-walled carbon nanotubes (MWCNT)/CdS hybrid nanocomposite were synthesized by one step hydrothermal method. MWCNTs were used as a substrate for the growth of CdS nanoparticles. MWCNT/CdS nanocomposite and pure CdS were characterized by XRD, TEM, UV-vis and photoluminescence spectroscopy. HRTEM study confirms the intimate contact of CdS with MWCNT. The photocatalytic activity of nanocomposite was studied for the degradation of methylene blue dye under UV irradiation. The enhanced photocatalytic activity of MWCNT/CdS nanocomposite as compared to pure CdS has been attributed to reduced recombination of photogenerated charge carriers due to interfacial electron transfer from CdS to MWCNT.

  6. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  7. Development of Smart Active Layer Sensor (II): Manufacturing and Application

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Kwon, Jae Hwa; Yoon, Dong Jin

    2004-01-01

    This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves

  8. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  9. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.

    Science.gov (United States)

    Xing, Ling-Li; Huang, Ke-Jing; Fang, Lin-Xia

    2016-11-01

    Tungsten oxide (WO 3 ), which was originally poor in capacitive performance, is made into an excellent electrode material for supercapacitors by dispersing it on graphene (Gr). The obtained Gr-WO 3 hybrids are characterized by X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy techniques, and evaluated as electrode materials for high-performance supercapacitors by cyclic voltammetry, galvanostatic charge-discharge curves and electrochemical impedance spectroscopy. A great improvement in specific capacitance is achieved with the present hybrids, from 255 F g -1 for WO 3 nanoparticles to 580 F g -1 for Gr-WO 3 hybrids (scanned at 1 A g -1 in 2 M KOH over a potential window of 0 to 0.45 V). The Gr-WO 3 hybrid exhibits an excellent high rate capability and good cycling stability with more than 92% capacitance retention over 1000 cycles at a current density of 5 A g -1 . The enhancement in supercapacitor performance of Gr-WO 3 is not only attributed to its unique nanostructure with large specific surface area, but also its excellent electro-conductivity, which facilitates efficient charge transport and promotes electrolyte diffusion. As a whole, this work indicates that Gr-WO 3 hybrids are a promising electrode material for high-performance supercapacitors.

  10. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  11. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  12. Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density

    Science.gov (United States)

    Tang, Xiaohui; Lui, Yu Hui; Chen, Bolin; Hu, Shan

    2017-06-01

    A hybrid electrochemical capacitor (EC) with enhanced energy density is realized by integrating functionalized carbon nanotube (FCNT) electrodes with redox-active electrolyte that has a neutral pH value (1 M Na2SO4 and 0.5 M KBr mixed aqueous solution). The negative electrode shows an electric double layer capacitor-type behavior. On the positive electrode, highly reversible Br-/Br3- redox reactions take place, presenting a battery-type behavior, which contributes to increase the capacitance of the hybrid cell. The voltage window of the whole cell is extended up to 1.5 V because of the high over-potentials of oxygen and hydrogen evolution reactions in the neutral electrolyte. Compared with raw CNT, the FCNT has better wettability in the aqueous electrolyte and contributes to increase the electric double layer capacitance of the cell. As a result, the maximum energy density of 28.3 Wh kg-1 is obtained from the hybrid EC at 0.5 A g-1 without sacrificing its power density, which is around 4 times larger than that of the electrical double layer capacitor constructed by FCNT electrodes and 1 M Na2SO4 electrolyte. Moreover, the discharge capacity retained 86.3% of its initial performance after 10000 cycles of galvanostatic charge and discharge test (10 A/g), suggesting its long life cycle even at high current loading.

  13. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  14. Hybrid density functional study on the mechanism for the enhanced photocatalytic properties of the ultrathin hybrid layered nanocomposite g-C3N4/BiOCl

    Science.gov (United States)

    Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu

    2018-03-01

    To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.

  15. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  16. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  17. Typology of nonlinear activity waves in a layered neural continuum.

    Science.gov (United States)

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  18. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  19. SiC.sub.x./sub. layers prepared by hybrid laser deposition and PLD

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Kadlec, J.

    2009-01-01

    Roč. 6, S1 (2009), s. 5366-5369 ISSN 1612-8850 Institutional research plan: CEZ:AV0Z10100521 Keywords : SiC * composites * hybrid deposition * puls laser deposition * magnetron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.037, year: 2009

  20. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  1. Layer-by-Layer Assembly and Photocatalytic Activity of Titania Nanosheets on Coal Fly Ash Microspheres

    Directory of Open Access Journals (Sweden)

    Xing Cui

    2014-01-01

    Full Text Available In order to address the problem with titania distribution and recovery, series of Ti0.91O2/CFA photocatalysts (Ti0.91O2/CFA-n, n=2,4,6, and 8 were fabricated by assembling Ti0.91O2 nanosheets on coal fly ash (CFA microspheres via the layer-by-layer assembly (LBLA process and characterized by scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, N2-sorption, and ultraviolet-visible absorption (UV-vis techniques. The SEM images and UV-vis spectra illustrated that Ti0.91O2 nanosheets were immobilized successfully on the CFA by the LBLA approach and changed the characteristics of CFA noticeably. The photocatalytic activity of Ti0.91O2/CFA was evaluated by the photodegradation of methylene blue (MB under UV irradiation. The results demonstrated that Ti0.91O2/CFA-6 showed the best photocatalytic activity among the series of Ti0.91O2/CFA irradiated for 60 min, with a decoloration rate above 43%. After photocatalysis, the Ti0.91O2/CFA could be easily separated and recycled from aqueous solution and Ti0.91O2 nanosheets were still anchored on the CFA.

  2. Albert-Lembert versus hybrid-layered suture in hand sewn end-to-end cervical esophagogastric anastomosis after esophageal squamous cell carcinoma resection.

    Science.gov (United States)

    Feng, Fan; Sun, Li; Xu, Guanghui; Hong, Liu; Yang, Jianjun; Cai, Lei; Li, Guocai; Guo, Man; Lian, Xiao; Zhang, Hongwei

    2015-11-01

    Hand sewn cervical esophagogastric anastomosis (CEGA) is regarded as preferred technique by surgeons after esophagectomy. However, considering the anastomotic leakage and stricture, the optimal technique for performing this anastomosis is still under debate. Between November 2010 and September 2012, 230 patients who underwent esophagectomy with hand sewn end-to-end (ETE) CEGA for esophageal squamous cell carcinoma (ESCC) were analyzed retrospectively, including 111 patients underwent Albert-Lembert suture anastomosis and 119 patients underwent hybrid-layered suture anastomosis. Anastomosis construction time was recorded during operation. Anastomotic leakage was recorded through upper gastrointestinal water-soluble contrast examination. Anastomotic stricture was recorded during follow up. The hybrid-layered suture was faster than Albert-Lembert suture (29.40±1.24 min vs. 33.83±1.41 min, P=0.02). The overall anastomotic leak rate was 7.82%, the leak rate in hybrid-layered suture group was significantly lower than that in Albert-Lembert suture group (3.36% vs. 12.61%, P=0.01). The overall anastomotic stricture rate was 9.13%, the stricture rate in hybrid-layered suture group was significantly lower than that in Albert-Lembert suture group (5.04% vs. 13.51%, P=0.04). Hand sewn ETE CEGA with hybrid-layered suture is associated with lower anastomotic leakage and stricture rate compared to hand sewn ETE CEGA with Albert-Lembert suture.

  3. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong

    2015-01-01

    TM is a hybrid process, based on the integrated fixed-film activated sludge technology, where plastic carriers for biofilm growth are suspended within activated sludge. To investigate the potential of a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series...

  4. Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II Coordination Polymer and NiAl-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Gonzalo Abellán

    2015-12-01

    Full Text Available The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH nanosheets and a 1D-coordination polymer (1D-CP has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora of different functional hybrid systems.

  5. Bonding and bio-properties of hybrid laser/magnetron Cr-enriched DLC layers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Zemek, Josef; Vandrovcová, Marta; Bačáková, Lucie; Kocourek, Tomáš; Remsa, Jan; Písařík, Petr

    2016-01-01

    Roč. 58, Jan (2016), s. 1217-1224 ISSN 0928-4931 R&D Projects: GA ČR GA15-05864S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 ; RVO:67985823 Keywords : DLC * chromium * hybrid PLD * hexavalent chromium * trivalent chromium * cell adhesion * cell proliferation Subject RIV: BM - Solid Matter Physics ; Magnetism; BO - Biophysics (FGU-C) Impact factor: 4.164, year: 2016

  6. Optimization of hybrid token-CDMA MAC system using cross-layer information

    CSIR Research Space (South Africa)

    Liu, I-S

    2007-08-01

    Full Text Available The hybrid MAC scheme is capable to implement in either ad hoc or wireless mesh networks (WMN). For WMN configuration, stations are served as access networks utilizing non-mobile relaying nodes to provide wireless backbone services for nomadic users... University and a PhD degree from University of Cambridge, United Kingdom. His research interests are in the general areas of adaptive signal processing, digital and wireless communications and data networks. Co-author: Professor Hong-Jun Xu...

  7. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  8. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  9. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  10. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  11. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  12. The thin layer activation method and its applications in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools.

  13. Thin layer activation and ultra thin layer activation: two complementary techniques for wear and corrosion studies in various fields

    International Nuclear Information System (INIS)

    Sauvage, T.; Vincent, L.; Blondiaux, G.

    2002-01-01

    Thin layer activation (TLA) is widely used since more than 25 years to study surface wear or corrosion. This well known technique uses most of the time charged particles activation, which gives sensitivity in the range of the micrometer, except when the fluid mode of detection is utilized. In this case application of the method is limited to phenomena where we have transport of radioactive fragments to detection point. The main disadvantage of this procedure is the error due to trapping phenomena between the wear or corrosion point and detection setup. So the ultra thin layer activation (UTLA) has been developed to get nanometric sensitivity without using any fluid for radioactivity transportation, which is the main source of error of the TLA technique. In this paper we shall briefly describe the TLA technique and the most important fields of application. Then we shall emphasise on UTLA with a presentation of the principle of the method and actual running of application. The main problem concerning UTLA is calibration which requires the use of thin films (usually 10 to 100 nanometers) deposited on substrate. This process is time consuming and we shall demonstrate how running software developed in the lab can solve it. We shall finish the presentation by giving some potential application of the technique in various fields. (authors)

  14. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO{sub 2} thin films to produce a new hybrid material coating

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, R., E-mail: richarddrevet@yahoo.fr [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Dragoé, D.; Barthés-Labrousse, M.G. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Chaussé, A. [Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Andrieux, M. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France)

    2016-10-30

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO{sub 2} thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO{sub 2} thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO{sub 2}) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO{sub 2} layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  15. Oxaliplatin immuno hybrid nanoparticles for active targeting: an approach for enhanced apoptotic activity and drug delivery to colorectal tumors.

    Science.gov (United States)

    Tummala, Shashank; Gowthamarajan, K; Satish Kumar, M N; Wadhwani, Ashish

    2016-06-01

    Tumor necrosis factor related apoptosis inducing ligand (TRAIL) proved to be a promising new target for colorectal cancer treatment. Elevated expression of TRAIL protein in tumor cells distinguishes it from healthy cells, thereby delivering the drug at the specific site. Here, we formulated oxaliplatin immunohybrid nanoparticles (OIHNPs) to deliver oxaliplatin and anti-TRAIL for colorectal cancer treatment in xenograft tumor models. The polymeric chitosan layer binds to the lipid film with the mixture of phospholipids by an ultra sound method followed by conjugating with thiolated antibody using DSPE-PEG-mal3400, resulting in the formation of OIHNPs. The polymer layer helps in more encapsulation of the drug (71 ± 0.09%) with appreciable particle size (95 ± 0.01 nm), and lipid layer prevents degradation of the drug in serum by preventing nanoparticle aggregation. OIHNPs have shown a 4-fold decrease in the IC50 value compared to oxaliplatin in HT-29 cells by the MTT assay. These immuno-nanoparticles represent the successful uptake and internalization of oxaliplatin in HT-29 cells rather than in MCF-7 cells determined by triple fluorescence method. Apoptotic activity in vitro of OIHNPs was determined by the change in the mitochondria membrane potential that further elevates its anti-tumor property. Furthermore, the conjugated nanoparticles can effectively deliver the drug to the tumor sites, which can be attributed to its ability in reducing tumor mass and tumor volume in xenograft tumor models in vivo along with sustaining its release in vitro. These findings indicated that the oxaliplatin immuno-hybrid nanoparticles would be a promising nano-sized active targeted formulation for colorectal-tumor targeted therapy.

  16. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  17. Lanthanide-Porphyrin Hybrids: from Layered Structures to Metal-Organic Frameworks with Photophysical Properties

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Kubát, Pavel; Millange, F.; Marrot, J.; Císařová, I.; Lang, Kamil

    2013-01-01

    Roč. 52, č. 5 (2013), s. 2779-2786 ISSN 0020-1669 R&D Projects: GA ČR GAP207/10/1447 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : layered hydroxide * TPPS * MOF Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 4.794, year: 2013

  18. Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density

    Science.gov (United States)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-05-01

    In this present work we have synthesized few layered MnO2 nanosheets by mixed solvent exfoliation process for the application as electrode material of in-plane supercapacitor. The Structure and surface morphology of the as prepared samples are characterized by Raman, Transmission electron microscopy and Scanning electron microscopy. The patterns of the hybrids were directly fabricated by (50: 50 wt %) mixture of MnO2 and SWCNT dispersions with the help of a customized mask, and directly transferred onto a flexible PET substrate. Remarkably, the prepared in-plane supercapacitors deliver high energy density of 2.62mWh/cm2. Furthermore, our supercapacitors shows exceptional flexibility and stable performance under bending conditions

  19. Cross Layer Analysis of P2MP Hybrid FSO/RF Network

    KAUST Repository

    Rakia, Tamer

    2017-02-22

    This paper presents and analyzes a point-tomultipoint (P2MP) network that uses a number of freespace optical (FSO) links for data transmission from the central node to the different remote nodes of the network. A common backup radio frequency (RF) link can be used by the central node for data transmission to any remote node in case any one of the FSO links fails. Each remote node is assigned a transmit buffer at the central node. Considering the transmission link from the central node to a tagged remote node, we study various performance metrics. Specifically,we study the throughput from the central node to the tagged node, the average transmit buffer size, the symbol queuing delay in the transmit buffer, the efficiency of the queuing system, the symbol loss probability, and the RF link utilization. Numerical examples are presented to compare the performance of the proposed P2MP hybrid FSO/RF network with that of a P2MP FSO-only network and show that the P2MP hybrid FSO/RF network achieves considerable performance improvement over the P2MP FSO-only network.

  20. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication

    International Nuclear Information System (INIS)

    Wang Langping; Huang Lei; Xie Zhiwen; Wang Xiaofeng; Tang Baoyin

    2008-01-01

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder

  1. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication.

    Science.gov (United States)

    Wang, Langping; Huang, Lei; Xie, Zhiwen; Wang, Xiaofeng; Tang, Baoyin

    2008-02-01

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.

  2. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  3. Detection of lower hybrid waves in the scrape-off layer of tokamak plasmas with microwave backscattering

    International Nuclear Information System (INIS)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Bonoli, P. T.; Marmar, E. S.; Wallace, G. M.; Lau, C.; Dominguez, A.; Kramer, G. J.

    2014-01-01

    Microwave backscattering experiments have been performed on the Alcator C-Mod tokamak in order to investigate the propagation of lower hybrid (LH) waves in reactor-relevant, high-density plasmas. When the line-averaged density is raised above 1 × 10 20 m –3 , lower hybrid current drive efficiency is found to be lower than expected [Wallace et al., Phys. Plasmas 19, 062505 (2012)] and LH power is thought to be dissipated at the plasma edge. Using a single channel (60 GHz) ordinary-mode (O-mode) reflectometer system, we demonstrate radially localized LH wave measurements in the scrape-off layer of high density plasmas (n ¯ e  ≳ 0.9×10 20  m −3 ). Measured backscattered O-mode power varies depending on the magnetic field line mapping, suggesting the resonance cone propagation of LH waves. Backscattered power is also sensitive to variations in plasma density and the launched parallel refractive index of the LH waves. LH ray-tracing simulations have been carried out to interpret the observed variations. To understand the measured LH waves in regions not magnetically connected to the launcher, two hypotheses are examined. One is the weak single pass absorption and the other is scattering of LH waves by non-linear effects

  4. Hybrid Co2Al-ABTS/reduced graphene oxide Layered Double Hydroxide: Towards O2 biocathode development

    International Nuclear Information System (INIS)

    Vialat, Pierre; Leroux, Fabrice; Mousty, Christine

    2015-01-01

    Highlights: • Synthesis of new redox mediator intercalated Layered Double Hydroxide using the coprecipitation synthesis. • Presence of electroactive Co into the LDH layers to enhance electroactivity of the system. • Improvement of the electronic conductivity by association with reduced graphene oxide (GOr) into composite system. • Application potentiality as biocathode material for O 2 reduction with immobilization of Bilirubin Oxidase enzyme. • Enhancement of the electrocatalytic response in the presence of a biopolymer like carrageenan into the electrode formulation - Abstract: Co 2 Al-ABTS layered double hydroxides and associated Co 2 Al-ABTS@graphene composite were prepared in one pot technique by in situ coprecipitation. The as-obtained materials were then fully characterized by means of Powder X-Ray Diffraction, Fourier Transformed InfraRed and Scanning Electron Microscopy confirming the intercalation of azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) between the LDH layers. Their electrochemical properties, according to Cyclic Voltammetry and Electrochemical Impedance Spectroscopy data, were improved compared to Zn 2 Al-ABTS reference material. Co 2 Al-ABTS hybrid LDH was found to combine both electronic transfers: interlayer provided by the presence of ABTS and intralayer due to the Co redox species. Moreover, an improvement of electronic transfer between the LDH particles was further achieved by addition of graphene. The resulting composite assemblies were tested for the first time as oxygen bioelectrode based on bilirubin oxidase. This original approach gives rise to enhanced electroenzymatic currents (×2.5) for oxygen reduction at 0 V and pH 7.0 as regard to that obtained for the reference laccase/LDH-ABTS based bioelectrode at pH 5.5

  5. Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum

    Directory of Open Access Journals (Sweden)

    Anatoly Filippov

    2018-03-01

    Full Text Available Three types of bi-layer hybrid nanocomposites on the base of perfluorinated cation-exchange membrane MF-4SC (Russian analogue of Nafion®-117 were synthesized and characterized. It was found that two membranes possess the noticeable asymmetry of the current–voltage curve (CVC under changing their orientation towards the applied electric field, despite the absence of asymmetry of diffusion permeability. These phenomena were explained in the frame of the “fine-porous model” expanded for bi-layer membranes. A special procedure to calculate the real values of the diffusion layers thickness and the limiting current density was proposed. Due to asymmetry effects of the current voltage curves of bi-layer hybrid membranes on the base of MF-4SC, halloysite nanotubes and platinum nanoparticles, it is prospective to assemble membrane switches (membrane relays or diodes with predictable transport properties, founded upon the theory developed here.

  6. Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.

    Science.gov (United States)

    Raaijmakers, Michiel J T; Ogieglo, Wojciech; Wiese, Martin; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E

    2015-12-09

    Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompanied by dilation, or swelling, of the polymer material. In turn, this dilation can result in penetrant induced plasticization and physical aging that affect the nonequilibrium status of the polymer. Here, we investigate the dilation and sorption behavior of ultrathin membrane layers of a hybrid inorganic-organic network material that consists of alternating polyhedral oligomeric silsesquioxane and imide groups, upon exposure to compressed carbon dioxide and methane. The imide precursor contains fluoroalkene groups that provide affinity toward carbon dioxide, while the octa-functionalized silsesquioxane provides a high degree of cross-linking. This combination allows for extremely high sorption capacities, while structural rearrangements of the network are hindered. We study the simultaneous uptake of gases and dilation of the thin films at high pressures using spectroscopic ellipsometry measurements. Ellipsometry provides the changes in both the refractive index and the film thickness, and allows for accurate quantification of sorption and swelling. In contrast, gravimetric and volumetric measurements only provide a single parameter; this does not allow an accurate correction for, for instance, the changes in buoyancy because of the extensive geometrical changes of highly swelling films. The sorption behavior of the ultrathin hybrid layers depends on the fluoroalkene group content. At low pressure, the apparent molar volume of the gases is low compared to the liquid molar volume of carbon dioxide and methane, respectively. At high gas concentrations in the polymer film, the apparent molar volume of carbon dioxide and methane exceeds that of the liquid molar volume, and

  7. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank

  8. Synthesis and anthelmintic activity of some hybrid Benzimidazolyl ...

    African Journals Online (AJOL)

    Erah

    parasites a major economic and food security issue. In this context ... a new hybrid chemical profile of chalcone and benzimidazole .... standard anthelmintic drugs (fenbendazole ... laboratory according to the classical Claisen-. Schmidt using.

  9. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  10. Metasomatized and hybrid rocks associated with a Palaeoarchaean layered ultramafic intrusion on the Johannesburg Dome, South Africa

    Science.gov (United States)

    Anhaeusser, Carl R.

    2015-02-01

    The Johannesburg Dome occurs as an inlier of Palaeoarchaean-Mesoarchaean granitic rocks, gneisses and greenstones in the central part of the Kaapvaal Craton, South Africa. In the west-central part of the dome a large greenstone remnant is surrounded and intruded by ca. 3114 Ma porphyritic granodiorites. Referred to locally as the Zandspruit greenstone remnant, it consists of a shallow-dipping ultramafic complex comprised of a number of alternating layers of harzburgite and pyroxenite. The ultramafic rocks are metamorphosed to greenschist grade and have largely been altered to serpentinite and amphibolite (tremolite-actinolite). In the granite-greenstone contact areas the porphyritic granodiorite has partially assimilated the greenstones producing a variety of hybrid rocks of dioritic composition. The hybrid rocks contain enclaves or xenoliths of greenstone and, in places, orbicular granite structures. Particularly noteworthy is an unusual zone of potash-metasomatized rock, occurring adjacent to the porphyritic granodiorite, consisting dominantly of biotite and lesser amounts of carbonate, quartz and sericite. Large potash-feldspar megacrysts and blotchy aggregated feldspar clusters give the rocks a unique texture. An interpretation placed on these rocks is that they represent metasomatized metapyroxenites of the layered ultramafic complex. Field relationships and geochemical data suggest that the rocks were influenced by hydrothermal fluids emanating from the intrusive porphyritic granodiorite. The adjacent greenstones were most likely transformed largely by the process of infiltration metasomatism, rather than simple diffusion, as CO2, H2O as well as dissolved components were added to the greenstones. Element mobility appears to have been complex as those generally regarded as being immobile, such as Ti, Y, Zr, Hf, Ta, Nb, Th, Sc, Ni, Cr, V, and Co, have undergone addition or depletion from the greenstones. Relative to all the rocks analyzed from the greenstones

  11. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  12. High energy density layered-spinel hybrid cathodes for lithium ion rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S., E-mail: sbasumajumder@yahoo.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Dahiya, P.P.; Akhtar, Mainul [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Ray, S.K. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Chang, J.K. [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Majumder, S.B. [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India)

    2016-11-15

    Highlights: • Structural integration of layered domains in spinel matrix of the composite particles. • Highest discharge capacity (275 mAh g{sup −1}) in composite with 30.0 mole% Li{sub 2}MnO{sub 3}. • Reasonably good rate capability of layered-spinel composite cathode. • Capacity fading with cycling is related to cubic to tetragonal structural phase transition. - Abstract: High energy density Li{sub 2}MnO{sub 3} (layered)–LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (spinel) composite cathodes have been synthesized using auto-combustion route. Rietveld refinements together with the analyses of high resolution transmission electron micrographs confirm the structural integration of Li{sub 2}MnO{sub 3} nano-domains into the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} matrix of the composite cathodes. The discharge capacity of the composite cathodes are due to the intercalation of Li{sup +} ion in the tetrahedral (8a) and octahedral (16c) sites of the spinel component and also the insertion of Li{sup +} in the freshly prepared MnO{sub 2} lattice, formed after Li{sub 2}O extraction from the Li{sub 2}MnO{sub 3} domains. The capacity fading of the composite cathodes are explained to be due to the layered to spinel transition of the Li{sub 2}MnO{sub 3} component and Li{sup +} insertion into the octahedral site of the spinel lattices which trigger cubic to tetragonal phase transition resulting volume expansion which eventually retard the Li{sup +} intercalation with cycling.

  13. Organic-Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Hao; Cong, Shan; Lou, Yanhui; Han, Liang; Zhao, Jie; Sun, Yinghui; Zou, Guifu

    2017-09-20

    4,7-Diphenyl-1,10-phenanthroline (Bphen) is an efficient electron transport and hole blocking material in organic photoelectric devices. Here, we report cesium carbonate (Cs 2 CO 3 ) doped Bphen as cathode interfacial layer in CH 3 NH 3 PbI 3-x Cl x based planar perovskite solar cells (PSCs). Investigation finds that introducing Cs 2 CO 3 suppresses the crystallization of Bphen and benefits a smooth interface contact between the perovskite and electrode, resulting in the decrease in carrier recombination and the perovskite degradation. In addition, the matching energy level of Bphen film in the PSCs effectively blocks the holes diffusion to cathode. The resultant power conversion efficiency (PCE) achieves as high as 17.03% in comparison with 12.67% of reference device without doping. Besides, experiments also demonstrate the stability of PSCs have large improvement because the suppressed crystallization of Bphen by doping Cs 2 CO 3 as a superior barrier layer blocks the Ag atom and surrounding moisture access to the vulnerable perovskite layer.

  14. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    Science.gov (United States)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  15. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); Burian, Petr; Broulim, Pavel [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); University of West Bohemia, Faculty of Electrical Engineering, Pilsen (Czech Republic); Jakubek, Jan [Advacam s.r.o., Praha (Czech Republic)

    2017-06-15

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 x 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for ''4D'' particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation (x,y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm. (orig.)

  16. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Science.gov (United States)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  17. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  18. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    Science.gov (United States)

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity

    International Nuclear Information System (INIS)

    Wei, Ang; Xiong, Li; Sun, Li; Liu, Yanjun; Li, Weiwei; Lai, Wenyong; Liu, Xiangmei; Wang, Lianhui; Huang, Wei; Dong, Xiaochen

    2013-01-01

    Graphical abstract: - Highlights: • Graphene–ZnO hybrid was synthesized by one-step electrochemical deposition. • Graphene–ZnO hybrid presents a special structure and wide UV–vis absorption spectra. • Graphene–ZnO hybrid exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue. - Abstract: A graphene–ZnO (G-ZnO) hybrid was synthesized by one-step electrochemical deposition. During the formation of ZnO nanostructure by cathodic electrochemical deposition, the graphene oxide was electrochemically reduced to graphene simultaneously. Scanning electron microscope images, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectra, and UV–vis absorption spectra indicate the resulting G-ZnO hybrid presents a special structure and wide UV–vis absorption spectra. More importantly, it exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue than that of pure ZnO nanostructure under both ultraviolet and sunlight irradiation

  20. Hybrid TiO2 Solar Cells Produced from Aerosolized Nanoparticles of Water-Soluble Polythiophene Electron Donor Layer

    Directory of Open Access Journals (Sweden)

    Marshall L. Sweet

    2014-01-01

    Full Text Available Hybrid solar cells (HSCs with water soluble polythiophene sodium poly[2-(3-thienyl-ethyloxy-4-butylsulfonate] (PTEBS thin films produced using electrospray deposition (ESD were fabricated, tested, and modeled and compared to devices produced using conventional spin coating. A single device structure of FTO/TiO2/PTEBS/Au was used to study the effects of ESD of the PTEBS layer on device performance. ESD was found to increase the short circuit current density (Jsc by a factor of 2 while decreasing the open circuit voltage (Voc by half compared to spin coated PTEBS films. Comparable efficiencies of 0.009% were achieved from both device construction types. Current-voltage curves were modeled using the characteristic solar cell equation and showed a similar increase in generated photocurrent with an increase by two orders of magnitude in the saturation current in devices from ESD films. Increases in Jsc are attributed to an increase in the interfacial contact area between the TiO2 and PTEBS layers, while decreases in Voc are attributed to incomplete film formation from ESD.

  1. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  2. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  3. Porous Media and Immersed Boundary Hybrid-Modelling for Simulating Flow in Stone Cover-Layers

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Liu, Xiaofeng; Christensen, Erik Damgaard

    In this paper we present a new numerical modelling approach for coastal and marine applications where a porous media conceptual model was combined with a free surface volume-of-fluid (VOF) model and an immersed boundary method (IBM). The immersed boundary model covers the method of describing....... In this paper, the model is applied to investigate two practical cases in terms of a cover layer of stones on a flat bed under oscillatory flow at different packing densities, and a rock toe structure at a breakwater....

  4. Activity Recognition Using Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors

    Directory of Open Access Journals (Sweden)

    Araceli Sanchis

    2013-04-01

    Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.

  5. Study in electron microscopy of the formation of the hybrid layer using adhesive systems One Coat and Experimental (EXL 759), at the Facultad de Odontologia of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Santamaria Guzman, S. Marcela; Guevara Lopez, Rodrigo

    2012-01-01

    The formation of the hybrid layer is observed in dental pieces in vitro, utilizing conventional adhesives systems and of self etching with different times of acid etching, by applying of electron microscopy. Samples of dental pieces are prepared utilizing conventional adhesive systems as Single Bond 2 of 3M, One Coat of Coltene and the adhesive self etching Experimental (EXL 759) of 3M. Samples of dental pieces collected have been molars recently extracted and later stored in jars with water. Samples prepared with the adhesive systems are observed in the electron microscope to obtain images of the hybrid layers formed. The hybrid layers formed are compared observing the photographs of the images obtained in the electron microscope. The adhesive system that has allowed the formation of a hybrid layer more convenient is determined. The time of acid etching is determined and has interfered in the formation of a hybrid layer more stable [es

  6. High-current electron beam coupling to hybrid waveguide and plasma modes in a dielectric Cherenkov maser with a plasma layer

    International Nuclear Information System (INIS)

    Shlapakovski, Anatoli S.

    2002-01-01

    The linear theory of a dielectric Cherenkov maser with a plasma layer has been developed. The dispersion relation has been derived for the model of infinitely thin, fully magnetized, monoenergetic hollow electron beam, in the axisymmetric case. The results of the numerical solution of the dispersion relation and the analysis of the beam coupling to hybrid waves, both hybrid waveguide and hybrid plasma modes, are presented. For the hybrid waveguide mode, spatial growth rate dependences on frequency at different plasma densities demonstrate improvement in gain for moderate densities, but strong shifting the amplification band and narrowing the bandwidth. For the hybrid plasma mode, the case of mildly relativistic, 200-250 keV beams is of interest, so that the wave phase velocity is just slightly greater than the speed of light in a dielectric medium. It has been shown that depending on beam and plasma parameters, the hybrid plasma mode can be separated from the hybrid waveguide mode, or be coupled to it through the beam resulting in strong gain increase, or exhibit a flat gain vs frequency dependence over a very broad band. The parameters, at which the -3 dB bandwidth calculated for 30 dB peak gain exceeds an octave, have been found

  7. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group.

    Science.gov (United States)

    Samosorn, Siritron; Tanwirat, Bongkot; Muhamad, Nussara; Casadei, Gabriele; Tomkiewicz, Danuta; Lewis, Kim; Suksamrarn, Apichart; Prammananan, Therdsak; Gornall, Karina C; Beck, Jennifer L; Bremner, John B

    2009-06-01

    Conjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1H-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, 3. A series of simpler arylmethyl ether hybrid structures were also synthesized. The hybrid 3 showed excellent antibacterial activity (MIC Staphylococcus aureus, 1.7 microM), which was over 382-fold more active than the parent antibacterial berberine, against this bacterium. This compound was also shown to block the NorA efflux pump in S. aureus.

  8. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    Science.gov (United States)

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  9. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  10. Review and applicative perspectives of thin layer activation in Romania

    International Nuclear Information System (INIS)

    Racolta, P.M.

    1999-01-01

    The Thin Layer Activation (TLA) is an ion beam based technique. It consists in an accelerated ion bombardment of the surface of interest of a machine part subjected to wear. Wear and some types of corrosion phenomena characterized by a loss of material can be studied by monitoring the resulted changes in radioactivity. In this paper some general considerations on the physical phenomena involved, a short description of the two developed measuring methods, a zoom on the specific steps of the experiments (irradiation, calibration, experimental setups and instrumentation), and some applications will be presented. Although the level of activity used in TLA lies under the limit of the range considered to be safe from the point of view of radiation protection, industry hesitates to use this technique mainly due to psychological reasons with respect to the handling of radioactive material. Recognizing this problem we have decided to offer to industry wear/corrosion measurements using TLA in the form of a 'complete package'. The conception of this procedure will be presented also. (author)

  11. Nature of Interlayer Binding and Stacking of sp–sp 2 Hybridized Carbon Layers: A Quantum Monte Carlo Study

    International Nuclear Information System (INIS)

    Shin, Hyeondeok; Lee, Hoonkyung; Heinonen, Olle; Benali, Anouar; Kwon, Yongkyung

    2017-01-01

    α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult to model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.

  12. Influence of voids in the hybrid layer based on self-etching adhesive systems: a 3-D FE analysis

    Directory of Open Access Journals (Sweden)

    Ana Paula Martini

    2009-01-01

    Full Text Available The presence of porosities at the dentin/adhesive interface has been observed with the use of new generation dentin bonding systems. These porosities tend to contradict the concept that etching and hybridization processes occur equally and simultaneously. Therefore, the aim of this study was to evaluate the micromechanical behavior of the hybrid layer (HL with voids based on a self-etching adhesive system using 3-D finite element (FE analysis. MATERIAL AND METHODS: Three FE models (Mr were built: Mr, dentin specimen (41x41x82 μm with a regular and perfect (i.e. pore-free HL based on a self-etching adhesive system, restored with composite resin; Mp, similar to M, but containing 25% (v/v voids in the HL; Mpp, similar to Mr, but containing 50% (v/v voids in the HL. A tensile load (0.03N was applied on top of the composite resin. The stress field was obtained by using Ansys Workbench 10.0. The nodes of the base of the specimen were constrained in the x, y and z axes. The maximum principal stress (σmax was obtained for all structures at the dentin/adhesive interface. RESULTS: The Mpp showed the highest peak of σmax in the HL (32.2 MPa, followed by Mp (30 MPa and Mr (28.4 MPa. The stress concentration in the peritubular dentin was high in all models (120 MPa. All other structures positioned far from voids showed similar increase of stress. CONCLUSION: Voids incorporated into the HL raised the σmax in this region by 13.5%. This behavior might be responsible for lower bond strengths of self-etching and single-bottle adhesives, as reported in the literature.

  13. Design, synthesis and antibacterial activity of a novel hybrid ...

    African Journals Online (AJOL)

    Antimicrobial peptides produced by many tissues and cell types of invertebrates, insects and humans as part of their innate immune system, have received increasing attention as potential candidates due to their administration as pharmaceutical agents. In the present study, a novel hybrid antimicrobial peptide LFM23 ...

  14. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  16. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity

    International Nuclear Information System (INIS)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-01-01

    Graphical abstract: - Highlights: • Two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion. • Effective interfacial heterojunction and high specific surface were observed. • Interstratified nanohybrid exhibits a superior photocatalytic activity. - Abstract: Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl–Ti 3 O 7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10 −2 min −1 , which is about 9 and 4 times higher than its precursors H 2 Ti 3 O 7 and ZnAl-LDH, respectively. Based on UV–vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior

  18. Synthesis and characterization of (zinc-layered hydroxide-hippurate) nano hybrid by direct reaction of zinc oxide under aqueous environment

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Samer Hasan Al Ali; Zulkarnain Zainal

    2011-01-01

    A new method for synthesis of hippurate nano hybrid has been developed. In this method, zinc oxide was added directly into aqueous solution of hippurate anions (A - ). The resulting hippurate nano hybrid (HAN) is composed of the organic moieties sandwiched between zinc layered hydroxide (ZLH) inorganic interlayers. HAN synthesized using 0.2 M hippuric acid showed the best crystallinity compared to other samples synthesized in this work. X-ray powder diffraction shows the basal spacing of the HAN was 21.3 Angstrom indicating that the monolayer of A - was arranged vertically to the ZLH interlayers. (author)

  19. An Application of CFD to Guide Forced Boundary-Layer Transition for Low-Speed Tests of a Hybrid Wing-Body Configuration

    Science.gov (United States)

    Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.

    2016-01-01

    A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.

  20. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4:Mn color-conversion layer

    International Nuclear Information System (INIS)

    Choo, D.C.; Ahn, S.D.; Jung, H.S.; Kim, T.W.; Lee, J.Y.; Park, J.H.; Kwon, M.S.

    2010-01-01

    Zn 2 SiO 4 :Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn 2 SiO 4 :Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn 2 SiO 4 :Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn 2 SiO 4 :Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4 T 1 - 6 A 1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn color-conversion layer are described on the basis of the EL and PL spectra.

  1. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  2. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  3. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    Science.gov (United States)

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  4. Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface

    Science.gov (United States)

    Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.

    2018-03-01

    Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.

  5. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  6. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  7. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules.

    Science.gov (United States)

    Venepally, Vijayendar; Reddy Jala, Ram Chandra

    2017-12-01

    Heterocyclic compounds are the interesting core structures for the development of new bioactive compounds. Fatty acids are derived from renewable raw materials and exhibit various biological activities. Several researchers are amalgamating these two bioactive components to yield bioactive hybrid molecules with some desirable features. Heterocyclic-fatty acid hybrid derivatives are a new class of heterocyclic compounds with a broad range of biological activities and significance in the field of medicinal chemistry. Over the last few years, many research articles emphasized the significance of heterocyclic-fatty acid hybrid derivatives. The present review article focuses the developments in designing and biological evaluation of heterocyclic-fatty acid hybrid molecules. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  9. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  10. Promoting Student Autonomy and Competence Using a Hybrid Model for Teaching Physical Activity

    Directory of Open Access Journals (Sweden)

    Christine Bachman

    2015-01-01

    Full Text Available For approximately twenty-years, Web-enhanced learning environments have been popular in higher education. Much research has examined how best practices can integrate technology, pedagogical theories, and resources to enhance learning. Numerous studies of hybrid teaching have revealed mostly positive effects. Yet, very little research has examined how to teach a successful physical activity course using a hybrid format. Review of the literature: We reviewed the research regarding the design and implementation of a Web-enhanced physical activity course in a college population using pedagogical principles of learning and the10 self-determination theory. Method: Data were collected from students at the beginning and end of the course. The hybrid course consisted of completing weekly online activities, and selecting and participating in a face-to-face physical activity based on student’s choice. Conclusion: The authors propose this template as a model to assist faculty in designing and implementing a blended physical activity course.

  11. Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity

    International Nuclear Information System (INIS)

    Bera, Susanta; Khan, Hasmat; Biswas, Indranil; Jana, Sunirmal

    2016-01-01

    Highlights: • Polyaniline (PANI) hybridized ZnO nanorods was synthesized by solution method. • Surface defects were found in the nanorods. • The hybrid material exhibited an enhancement in visible light absorption. • A long-term stable photoelectrochemical activity of the material was found. • Advancement in the properties would be PANI hybridization and surface defects. - Abstract: We report surfactant/template free precursor solution based synthesis of polyaniline (PANI) hybridized surface defective ZnO nanorods by a two-step process. Initially, ZnO nanorods have been prepared at 95 °C, followed by hybridization (coating) of PANI onto the ZnO via in situ polymerization of aniline monomer, forming ZnO-PANI nanohybrid (ZP). The structural properties of ZP have been analyzed by X-ray diffraction (XRD) and transmission electron microscopic (TEM) studies. The presence of surface defects especially the oxygen vacancies in ZnO has been characterized by photoluminescence emission, high resolution TEM, X-ray photoelectron spectroscopy (XPS) and micro-Raman spectral measurements. The chemical interaction of PANI with ZnO has been examined by Fourier transform infrared (FTIR) and XPS analyses. A significant enhancement in visible absorption of ZP sample is found as evidenced from UV–vis diffused reflectance spectral study. BET nitrogen adsorption-desorption isotherm shows an improved textural property (pore size, pore volume) of ZP. Moreover, a long-term stable photoelectrochemical activity (PEC) of ZP is found compare to pristine ZnO. The synergic effect of PANI hybridization and the presence of surface defects in ZnO NRs can enhance the PEC by prolonging the recombination rate of photogenerated charge carriers. The effect can also provide large number of active sites to make electrolyte diffusion and mass transportation easier in the nanohybrid. This simple synthesis strategy can be adopted for PANI hybridization with different metal oxide semiconductors

  12. Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Susanta; Khan, Hasmat [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India); Biswas, Indranil [Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India); Jana, Sunirmal, E-mail: sjana@cgcri.res.in [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India)

    2016-10-15

    Highlights: • Polyaniline (PANI) hybridized ZnO nanorods was synthesized by solution method. • Surface defects were found in the nanorods. • The hybrid material exhibited an enhancement in visible light absorption. • A long-term stable photoelectrochemical activity of the material was found. • Advancement in the properties would be PANI hybridization and surface defects. - Abstract: We report surfactant/template free precursor solution based synthesis of polyaniline (PANI) hybridized surface defective ZnO nanorods by a two-step process. Initially, ZnO nanorods have been prepared at 95 °C, followed by hybridization (coating) of PANI onto the ZnO via in situ polymerization of aniline monomer, forming ZnO-PANI nanohybrid (ZP). The structural properties of ZP have been analyzed by X-ray diffraction (XRD) and transmission electron microscopic (TEM) studies. The presence of surface defects especially the oxygen vacancies in ZnO has been characterized by photoluminescence emission, high resolution TEM, X-ray photoelectron spectroscopy (XPS) and micro-Raman spectral measurements. The chemical interaction of PANI with ZnO has been examined by Fourier transform infrared (FTIR) and XPS analyses. A significant enhancement in visible absorption of ZP sample is found as evidenced from UV–vis diffused reflectance spectral study. BET nitrogen adsorption-desorption isotherm shows an improved textural property (pore size, pore volume) of ZP. Moreover, a long-term stable photoelectrochemical activity (PEC) of ZP is found compare to pristine ZnO. The synergic effect of PANI hybridization and the presence of surface defects in ZnO NRs can enhance the PEC by prolonging the recombination rate of photogenerated charge carriers. The effect can also provide large number of active sites to make electrolyte diffusion and mass transportation easier in the nanohybrid. This simple synthesis strategy can be adopted for PANI hybridization with different metal oxide semiconductors

  13. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    International Nuclear Information System (INIS)

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-01-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca 2+ -exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag + -exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca 2+ -exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag + -exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10 6 CFU mL −1 E. coli concentration to zero within 4 h of incubation time with the Ag + -exchanged hybrid composite amount of 0.4 g L −1 . The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca 2+ and then with Ag + . These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical application. Highlights: • Zeolite A

  14. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang; Gong, Jie [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zeng, Changfeng [College of Mechanic and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zhang, Lixiong, E-mail: lixiongzhang@yahoo.com [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2013-10-15

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca{sup 2+}-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag{sup +}-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca{sup 2+}-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag{sup +}-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10{sup 6} CFU mL{sup −1}E. coli concentration to zero within 4 h of incubation time with the Ag{sup +}-exchanged hybrid composite amount of 0.4 g L{sup −1}. The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca{sup 2+} and then with Ag{sup +}. These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical

  15. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Directory of Open Access Journals (Sweden)

    Feifel Sven C

    2011-12-01

    Full Text Available Abstract Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET reaction cascades of cytochrome c (cyt c immobilized by the use of modified silica nanoparticles (SiNPs to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS, Fourier transformed infrared spectroscopy (FT-IR, Zeta-potential and transmission electron microscopy (TEM. The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the

  16. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells

    International Nuclear Information System (INIS)

    Romanelli, Steven M.; Fath, Karl R.; Phekoo, Aruna P.; Knoll, Grant A.; Banerjee, Ipsita A.

    2015-01-01

    In this work we have developed a new family of biocomposite scaffolds for bone tissue regeneration by utilizing self-assembled fluorenylmethyloxycarbonyl protected Valyl-cetylamide (FVC) nanoassemblies as templates. To tailor the assemblies for enhanced osteoblast attachment and proliferation, we incorporated (a) Type I collagen, (b) a hydroxyapatite binding peptide sequence (EDPHNEVDGDK) derived from dentin sialophosphoprotein and (c) the osteoinductive bone morphogenetic protein-4 (BMP-4) to the templates by layer-by-layer assembly. The assemblies were then incubated with hydroxyapatite nanocrystals blended with varying mass percentages of TiO 2 nanoparticles and coated with alginate to form three dimensional scaffolds for potential applications in bone tissue regeneration. The morphology was examined by TEM and SEM and the binding interactions were probed by FITR spectroscopy. The scaffolds were found to be non-cytotoxic, adhered to mouse preosteoblast MC3T3-E1 cells and promoted osteogenic differentiation as indicated by the results obtained by alkaline phosphatase assay. Furthermore, they were found to be biodegradable and possessed inherent antibacterial capability. Thus, we have developed a new family of tissue-engineered biocomposite scaffolds with potential applications in bone regeneration. - Highlights: • Fmoc-val-cetylamide assemblies were used as templates. • Collagen, a short dentin sialophosphoprotein derived sequence and BMP-4 were incorporated. • Hydroxyapatite–TiO 2 nanocomposite blends and alginate were incorporated. • The 3D scaffold biocomposites adhered to preosteoblasts and promoted osteoblast differentiation. • The biocomposites also displayed antimicrobial activity

  17. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, Steven M. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Fath, Karl R. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); The Graduate Center, The City University of New York, 365 Fifth Avenue, NY 10016 (United States); Phekoo, Aruna P. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); Knoll, Grant A. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Banerjee, Ipsita A., E-mail: banerjee@fordham.edu [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States)

    2015-06-01

    In this work we have developed a new family of biocomposite scaffolds for bone tissue regeneration by utilizing self-assembled fluorenylmethyloxycarbonyl protected Valyl-cetylamide (FVC) nanoassemblies as templates. To tailor the assemblies for enhanced osteoblast attachment and proliferation, we incorporated (a) Type I collagen, (b) a hydroxyapatite binding peptide sequence (EDPHNEVDGDK) derived from dentin sialophosphoprotein and (c) the osteoinductive bone morphogenetic protein-4 (BMP-4) to the templates by layer-by-layer assembly. The assemblies were then incubated with hydroxyapatite nanocrystals blended with varying mass percentages of TiO{sub 2} nanoparticles and coated with alginate to form three dimensional scaffolds for potential applications in bone tissue regeneration. The morphology was examined by TEM and SEM and the binding interactions were probed by FITR spectroscopy. The scaffolds were found to be non-cytotoxic, adhered to mouse preosteoblast MC3T3-E1 cells and promoted osteogenic differentiation as indicated by the results obtained by alkaline phosphatase assay. Furthermore, they were found to be biodegradable and possessed inherent antibacterial capability. Thus, we have developed a new family of tissue-engineered biocomposite scaffolds with potential applications in bone regeneration. - Highlights: • Fmoc-val-cetylamide assemblies were used as templates. • Collagen, a short dentin sialophosphoprotein derived sequence and BMP-4 were incorporated. • Hydroxyapatite–TiO{sub 2} nanocomposite blends and alginate were incorporated. • The 3D scaffold biocomposites adhered to preosteoblasts and promoted osteoblast differentiation. • The biocomposites also displayed antimicrobial activity.

  18. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID.

    Science.gov (United States)

    Abdouni, Hala S; King, Justin J; Ghorbani, Atefeh; Fifield, Heather; Berghuis, Lesley; Larijani, Mani

    2018-01-01

    Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hybridization of two major termite invaders as a consequence of human activity.

    Science.gov (United States)

    Chouvenc, Thomas; Helmick, Ericka E; Su, Nan-Yao

    2015-01-01

    While hybridization of an invasive species with a native species is a common occurrence, hybridization between two invasive species is rare. Formosan subterranean termites (Coptotermes formosanus) and Asian subterranean termites (C. gestroi) are both ecologically successful and are the two most economically important termite pests in the world. Both species have spread throughout many areas of the world due to human activity; however, their distributions overlap in only three narrow areas because of distinct ecological requirements. In south Florida, where C. formosanus and C. gestroi are both invasive, the dispersal flight seasons of both species overlapped for the first time on record in 2013 and 2014. Pairings of heterospecific individuals were readily observed in the field and C. gestroi males preferentially engaged in mating behavior with C. formosanus females rather than females from their own species. In the laboratory, heterospecific and conspecific pairings had an equal colony establishment rate, but heterospecific incipient colonies had twice the growth rate of conspecific incipient colonies, suggesting a potential case of hybrid vigor. As all pre-zygotic barriers were lifted between the two species in the field, the apparent absence of post-zygotic barriers in the laboratory raises the possibility for introgressive hybridization in south Florida. While laboratory observations remain to be confirmed in the field, and the alate hybrid fertility is currently unknown, our results raise a tangible concern about the hybridization of two major destructive pest species. Such hybridization would likely be associated with a new economic impact.

  20. Hybridization of two major termite invaders as a consequence of human activity.

    Directory of Open Access Journals (Sweden)

    Thomas Chouvenc

    Full Text Available While hybridization of an invasive species with a native species is a common occurrence, hybridization between two invasive species is rare. Formosan subterranean termites (Coptotermes formosanus and Asian subterranean termites (C. gestroi are both ecologically successful and are the two most economically important termite pests in the world. Both species have spread throughout many areas of the world due to human activity; however, their distributions overlap in only three narrow areas because of distinct ecological requirements. In south Florida, where C. formosanus and C. gestroi are both invasive, the dispersal flight seasons of both species overlapped for the first time on record in 2013 and 2014. Pairings of heterospecific individuals were readily observed in the field and C. gestroi males preferentially engaged in mating behavior with C. formosanus females rather than females from their own species. In the laboratory, heterospecific and conspecific pairings had an equal colony establishment rate, but heterospecific incipient colonies had twice the growth rate of conspecific incipient colonies, suggesting a potential case of hybrid vigor. As all pre-zygotic barriers were lifted between the two species in the field, the apparent absence of post-zygotic barriers in the laboratory raises the possibility for introgressive hybridization in south Florida. While laboratory observations remain to be confirmed in the field, and the alate hybrid fertility is currently unknown, our results raise a tangible concern about the hybridization of two major destructive pest species. Such hybridization would likely be associated with a new economic impact.

  1. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities.

    Science.gov (United States)

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-10-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20-55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation-gelation-hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca(2+)-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag(+)-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca(2+)-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag(+)-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9×10(6) CFU mL(-1)E. coli concentration to zero within 4h of incubation time with the Ag(+)-exchanged hybrid composite amount of 0.4 g L(-1). The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca(2+) and then with Ag(+). These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Activated graphene as a cathode material for Li-ion hybrid supercapacitors.

    Science.gov (United States)

    Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S

    2012-03-14

    Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).

  3. Digital Simulation of a Hybrid Active Filter - An Active Filter in Series with a Shunt Passive Filter

    OpenAIRE

    Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V

    1998-01-01

    Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.

  4. A hybrid active filter for damping of harmonic resonance in industrial power systems

    OpenAIRE

    Fujita, Hideaki; Yamasaki, Takahiro; Akagi, Hirofumi

    1998-01-01

    This paper proposes a hybrid active filter for damping of harmonic resonance in industrial power systems. The hybrid filter consists of a small-rated active filter and a 5th tuned passive filter. The active filter is characterized by detecting the 5th harmonic current flowing into the passive filter. It is controlled in such a way as to behave as a negative or positive resistor by adjusting a feedback gain from a negative to positive value, and vice versa. The negative resistor presented by t...

  5. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  6. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  7. Synthesis of active absorber layer by dip-coating method for perovskite solar cell

    Science.gov (United States)

    Singh, Rahul; Noor, I. M.; Singh, Pramod K.; Bhattacharya, B.; Arof, A. K.

    2018-04-01

    In this paper, we develop the hybrid perovskite-based n-i-p solar cell using a simple, fast and low-cost dip-coating method. Hot solution and the pre-annealed substrate are used for coating the perovskite thin film by this method this is further used for studying its structural and electrical properties. UV-vis spectroscopy is carried out for calculating the band gap of the hybrid perovskite layer which is ∼1.6 eV. X-ray spectroscopy confirms that the formation of hybrid perovskite layer. The profilometer is used to study the surface roughness and also for measuring the thickness of the perovskite layer with varying substrate temperature. The optimized sample was further used for cross-sectional SEM image to verify the thickness measured from the profiler. The electrical parameter of JV characteristic with varying temperature is tabulated in the table. Whereas, the perovskite sensitized solar cell exhibits highest short circuit current density, Jsc of 11 mA cm-2, open circuit voltage, Voc of 0.87 V, fill factor of 0.55 and efficiency, η of >5%.

  8. Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon

    NARCIS (Netherlands)

    Maagd, de R.A.; Weemen-Hendriks, M.; Molthoff, J.W.; Naimov, S.

    2003-01-01

    Twelve Cry1 and two Cry9 ?-endotoxins fromBacillus thuringiensis were tested for their activity against black cutworm (Agrotis ipsilon).A. ipsilon was not susceptible to many toxins, but three toxins had significant activity. Cry9Ca was the most toxic, followed by Cry1Aa and Cry1Fb. Hybrids between

  9. Influence of the active layer pattern on the electrical characteristics of organic inverters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hyun; Kwon, Jin-Hyuk; Bae, Jin-Hyuk [Kyungpook National University, Daegu (Korea, Republic of); Park, Jae-Hoon; Baang, Sung-Keun [Hallym University, Chuncheon (Korea, Republic of)

    2014-12-15

    We describe the importance of a patterned active layer for the fine driving of organic inverters. In the case of a non-patterned inverter, the capacitance as a function of the applied bias in an organic capacitor structure exhibits a slow saturation nature due to the slow movement of charge carriers. Hence, during the operation of organic inverters with non-patterned active layers, the voltage gains inevitably exhibit lower values whereas higher gains are achieved in the case of sharply-patterned pentacene layers. These results suggest that the patterning of the active layer can be a decisive factor for realizing high-performance electronic circuits based on organic semiconductors.

  10. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification.

    Science.gov (United States)

    Liu, Yifei; Li, Dawei; Zhang, Qiong; Song, Chi; Zhong, Caihong; Zhang, Xudong; Wang, Ying; Yao, Xiaohong; Wang, Zupeng; Zeng, Shaohua; Wang, Ying; Guo, Yangtao; Wang, Shuaibin; Li, Xinwei; Li, Li; Liu, Chunyan; McCann, Honour C; He, Weiming; Niu, Yan; Chen, Min; Du, Liuwen; Gong, Junjie; Datson, Paul M; Hilario, Elena; Huang, Hongwen

    2017-07-01

    Reticulate speciation caused by interspecific hybridization is now recognized as an important mechanism in the creation of biological diversity. However, depicting the patterns of phylogenetic networks for lineages that have undergone interspecific gene flow is challenging. Here we sequenced 25 taxa representing natural diversity in the genus Actinidia with an average mapping depth of 26× on the reference genome to reconstruct their reticulate history. We found evidence, including significant gene tree discordance, cytonuclear conflicts, and changes in genome-wide heterozygosity across taxa, collectively supporting extensive reticulation in the genus. Furthermore, at least two separate parental species pairs were involved in the repeated origin of the hybrid lineages, in some of which a further phase of syngameon was triggered. On the basis of the elucidated hybridization relationships, we obtained a highly resolved backbone phylogeny consisting of taxa exhibiting no evidence of hybrid origin. The backbone taxa have distinct demographic histories and are the product of recent rounds of rapid radiations via sorting of ancestral variation under variable climatic and ecological conditions. Our results suggest a mode for consecutive plant diversification through two layers of radiations, consisting of the rapid evolution of backbone lineages and the formation of hybrid swarms derived from these lineages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  12. Hybrid coded aperture and Compton imaging using an active mask

    International Nuclear Information System (INIS)

    Schultz, L.J.; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M.; Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E.; Wakeford, D.; Lanza, R.C.; Horn, B.K.P.; Wehe, D.K.

    2009-01-01

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  13. Exposure assessment of kneeling work activities among floor layers

    DEFF Research Database (Denmark)

    Jensen, L K; Rytter, S; Bonde, Jens Peter

    2010-01-01

    high external knee forces ranging from 0.3 Newton (SD 0.2) times body weight when floor layers were kneeling back on the heels, to 3.5 Newton (SD 0.3) times body weight in the crawling work position. The study highlights the need for prevention by minimizing the amount of kneeling work positions among...

  14. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    Science.gov (United States)

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  15. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    Directory of Open Access Journals (Sweden)

    Lidia Benea

    2016-04-01

    Full Text Available This research work describes the effect of dispersed titanium carbide (TiC nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM. The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX. X-ray diffractometer (XRD has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  16. Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems

    DEFF Research Database (Denmark)

    Lee, Tzung-Lin; Wang, Yen-Ching; Li, Jian-Cheng

    2015-01-01

    Unintentional series and/or parallel resonances, due to the tuned passive filter and the line inductance, may result in severe harmonic distortion in the industrial power system. This paper presents a hybrid active filter to suppress harmonic resonance and reduce harmonic distortion as well...... expensive. A reasonable trade-off between filtering performances and cost is to use the hybrid active filter. Design consideration are presented and experimental results are provided to validate effectiveness of the proposed method. Furthermore, this paper discusses filtering performances on line impedance...

  17. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork.

    Science.gov (United States)

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-04-23

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity.

  18. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Mizrahi Joseph

    2006-11-01

    Full Text Available Abstract Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES. Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.

  19. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork

    Directory of Open Access Journals (Sweden)

    Diego José Díaz

    2016-04-01

    Full Text Available This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds. HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.. Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity.

  20. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork

    Science.gov (United States)

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-01-01

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity. PMID:27120601

  1. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    International Nuclear Information System (INIS)

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-01-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds

  2. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergemann, Claudia [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Cornelsen, Matthias [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Quade, Antje [Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Laube, Thorsten; Schnabelrauch, Matthias [INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena (Germany); Rebl, Henrike [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Weißmann, Volker [Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar (Germany); Seitz, Hermann [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Nebe, Barbara, E-mail: barbara.nebe@med.uni-rostock.de [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany)

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds.

  3. Amino Acid Composition, Urease Activity and Trypsin Inhibitor Activity after Toasting of Soybean in Thick and Thin Layer

    OpenAIRE

    Krička, Tajana; Jurišić, Vanja; Voća, Neven; Ćurić, Duška; Brlek Savić, Tea; Matin, Ana

    2009-01-01

    The objective of this study was to determine amino acid content, urease activity and trypsin inhibitor activity in soybean grain for polygastric animals’ feed aft er toasting with the aim to introduce thick layer in toasting technology. Hence, soybean was toasted both in thick and thin layer at 130 oC during 10 minutes. In order to properly monitor the technological process of soybean thermal processing, it was necessary to study crude protein content, urease activity, trypsin inhibitor activ...

  4. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  5. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    International Nuclear Information System (INIS)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae

    2013-01-01

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m 2 /g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn 2 O 4 , LiCoO 2 as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF 6 , TEABF 4 ) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn 2 O 4 /AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg

  6. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  7. Voc enhancement of a solar cell with doped Li+-PbS as the active layer

    Science.gov (United States)

    Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.

    2018-06-01

    In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.

  8. Layered silicate films with photochemically active porphyrin cations

    Czech Academy of Sciences Publication Activity Database

    Čeklovský, A.; Czímerová, A.; Lang, Kamil; Bujdák, J.

    2009-01-01

    Roč. 81, č. 8 (2009), s. 1385-1396 ISSN 0033-4545 R&D Projects: GA AV ČR KAN100500651; GA ČR(CZ) GA203/06/1244 Grant - others:GA(SK) VEGA2/6180/27 Institutional research plan: CEZ:AV0Z40320502 Keywords : clay minerals * layer charge * smectites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.289, year: 2009

  9. Phosphorous digestibility and activity of intestinal phytase in hybrid tilapia, Oreochromis niloticus X O. aureus

    Science.gov (United States)

    La Vorgna, M.W.; Hafez, Y.; Hughes, S.G.; Handwerker, T.

    2003-01-01

    Experiments were conducted to determine the degree to which phytate-bound phosphorus from plant protein sources could be used by hybrid tilapia (Oreochromis niloticus X O. aureus). Utilizing an inert marker technique with chromic oxide, hybrid tilapia in our study were effective at utilizing both inorganic and phytate phosphorus as evidenced by average apparent digestibility values of 93.2% and 90.0% for total and phytate phosphorus, respectively. Analysis of the intestinal brush border membrane of the tilapia revealed enzyme activity that was capable of hydrolyzing phytic acid. The presence of phytic acid hydrolyzing enzyme activity in the intestinal brush border provides a probable mechanism by which these hybrid tilapia are able to utilize phytate phosphorus effectively. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  10. Active Boundary Layer Control on a Highly Loaded Turbine Exit Case Profile

    Directory of Open Access Journals (Sweden)

    Julia Kurz

    2018-03-01

    Full Text Available A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as well as boundary layer investigations with a flattened Pitot probe. Active boundary layer control by fluidic oscillators was applied to achieve improved performance in the low Reynolds number regime. Low solidity, which can be applied to reduce the number of blades, increases the risk of flow separation resulting in increased total pressure losses. Active boundary layer control is supposed to overcome these negative effects. The experiments show that active boundary layer control by fluidic oscillators is an appropriate way to suppress massive open separation bubbles in the low Reynolds number regime.

  11. Co-Deposition of a Hydrogel/Calcium Phosphate Hybrid Layer on 3D Printed Poly(Lactic Acid Scaffolds via Dip Coating: Towards Automated Biomaterials Fabrication

    Directory of Open Access Journals (Sweden)

    Matthias Schneider

    2018-03-01

    Full Text Available The article describes the surface modification of 3D printed poly(lactic acid (PLA scaffolds with calcium phosphate (CP/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.

  12. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  13. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    Science.gov (United States)

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  15. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    OpenAIRE

    Asif Khan; Zafar Abas; Heung Soo Kim; Jaehwan Kim

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active pa...

  16. Stereospecificity of oligonucleotide interactions revisited: no evidence for heterochiral hybridization and ribozyme/DNAzyme activity.

    Directory of Open Access Journals (Sweden)

    Kai Hoehlig

    Full Text Available A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.

  17. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  18. Magnetic hybride layers. Magnetic properties of locally exchange-coupled NiFe/IrMn layers; Magnetische Hybridschichten. Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine

    2010-10-06

    By the lateral modification of the magnetic properties of exchange-coupled NiFe/IrMn layers soft-magnetic layers were produced, which show both new static and dynamic properties. As lateral structuration methods hereby the localoxidation as well as ion implantation were applied. By means of thes procedures it has been succeeded to mould specific magnetic domain configurations with strp structure into the layers. In dependence of the structure orientation as well as strip period the remagnetization behavior as well as the magnetic-resonance frequency and damping of the layers could directly be modified. The new dynamical properties are hereby discussed in the framework of the coupling via dynamical charges and the direct affection of the effective field of the artificially inserted domain state. The presented results prove by this the large potential of the lateral magneto-structuration for the tuning of specifical static as well as dynamic properties of magnetically thin layers.

  19. Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces.

    Science.gov (United States)

    Al-Harthi, Salim Hamood; Elzain, Mohammed; Al-Barwani, Muataz; Kora'a, Amal; Hysen, Thomas; Myint, Myo Tay Zar; Anantharaman, Maliemadom Ramaswamy

    2012-08-19

    Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously.

  20. MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Hui; Wang, Yunsong; Zhao, Wenqi; Zou, Mingchu; Chen, Yijun; Yang, Liusi; Xu, Lu; Wu, Huaisheng; Cao, Anyuan

    2017-11-01

    Metal-organic frameworks (MOFs) have many promising applications in energy and environmental areas such as gas separation, catalysis, supercapacitors, and batteries; the key toward those applications is controlled pyrolysis which can tailor the porous structure, improve electrical conductivity, and expose metal ions in MOFs. Here, we present a systematic study on the structural evolution of zeolitic imidazolate frameworks hybridized on carbon nanotubes (CNTs) during the carbonization process. We show that a number of typical products can be obtained, depending on the annealing time, including (1) CNTs wrapped by relatively thick carbon layers, (2) CNTs grafted by ZnO nanoparticles which are covered by thin nitrogen-doped carbon layers, and (3) CNTs grafted by aggregated ZnO nanoparticles. We also investigated the electrochemical properties of those hybrid structures as freestanding membrane electrodes for lithium ion batteries, and the second one (CNT-supported ZnO covered by N-doped carbon) shows the best performance with a high specific capacity (850 mA h/g at a current density of 100 mA/g) and excellent cycling stability. Our results indicate that tailoring and optimizing the MOF-CNT hybrid structure is essential for developing high-performance energy storage systems.

  1. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  2. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  3. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Tian Lihong; Ye Liqun; Deng Kejian; Zan Ling

    2011-01-01

    MWCNT/TiO 2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO 2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO 2 was 20%, MWCNT/TiO 2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO 2 nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO 2 nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: → Anatase TiO 2 nanoparticles were anchored on CNTs surface uniformly via solvothermal method → The morphology facilitated the electron transfer between CNTs and TiO 2 → Ti-C bonds extended the absorption of MWCNT/TiO 2 to the whole visible light region. → The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

  4. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...

  5. Electrical double layer modulation of hybrid room temperature ionic liquid/aqueous buffer interface for enhanced sweat based biosensing.

    Science.gov (United States)

    Jagannath, Badrinath; Muthukumar, Sriram; Prasad, Shalini

    2018-08-03

    We have investigated the role of kosmotropic anionic moieties and chaotropic cationic moieties of room temperature hydrophilic ionic liquids in enhancing the biosensing performance of affinity based immunochemical biosensors in human sweat. Two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM[BF 4 ]) and choline dihydrogen phosphate (Choline[DHP]) were investigated in this study with Choline[DHP] being more kosmotropic in nature having a more protein stabilizing effect based on the hofmeister series. Non-faradaic interfacial charge transfer has been employed as the mechanism for evaluating the formation and the biosensing of capture probe antibodies in room temperature ionic liquids (RTILs)/aqueous human sweat interface. The charge of the ionic moieties were utilized to form compact electrical double layers around the antibodies for enhancing the stability of the antibody capture probes, which was evaluated through zeta potential measurements. The zeta potential measurements indicated stability of antibodies due to electrostatic repulsion of the RTIL charged moieties encompassing the antibodies, thus preventing any aggregation. Here, we report for the first time of non-faradaic electrochemical impedance spectroscopy equivalent circuit model analysis for analyzing and interpreting affinity based biosensing at hybrid electrode/ionic liquid-aqueous sweat buffer interface guided by the choice of the ionic liquid. Interleukin-6 (IL-6) and cortisol two commonly occurring biomarkers in human sweat were evaluated using this method. The limit of detection (LOD) obtained using both ionic liquids for IL-6 was 0.2 pg mL -1 with cross-reactivity studies indicating better performance of IL-6 detection using Choline[DHP] and no response to cross-reactive molecule. The LOD of 0.1 ng/mL was achieved for cortisol and the cross-reactivity studies indicated that cortisol antibody in BMIM[BF 4 ] did not show any signal response to cross-reactive molecules

  6. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian [Univ. of Macau, Macau (China)

    2012-10-15

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics.

  7. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    International Nuclear Information System (INIS)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian

    2012-01-01

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics

  8. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    Science.gov (United States)

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-12

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  9. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode.

    Science.gov (United States)

    Zhang, Shijia; Li, Chen; Zhang, Xiong; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2017-05-24

    Lithium-ion capacitors (LICs) are considered as promising energy storage devices to realize excellent electrochemical performance, with high energy-power output. In this work, we employed a simple method to synthesize a composite electrode material consisting of Fe 3 O 4 nanocrystallites mechanically anchored among the layers of three-dimensional arrays of graphene (Fe 3 O 4 -G), which exhibits several advantages compared with other traditional electrode materials, such as high Li storage capacity (820 mAh g -1 at 0.1 A g -1 ), high electrical conductivity, and improved electrochemical stability. Furthermore, on the basis of the appropriated charge balance between cathode and anode, we successfully fabricated Fe 3 O 4 -G//activated carbon (AC) soft-packaging LICs with a high energy density of 120.0 Wh kg -1 , an outstanding power density of 45.4 kW kg -1 (achieved at 60.5 Wh kg -1 ), and an excellent capacity retention of up to 94.1% after 1000 cycles and 81.4% after 10 000 cycles. The energy density of the Fe 3 O 4 -G//AC hybrid device is comparable with Ni-metal hydride batteries, and its capacitive power capability and cycle life is on par with supercapacitors (SCs). Therefore, this lithium-ion hybrid capacitor is expected to bridge the gap between Li-ion battery and SCs and gain bright prospects in next-generation energy storage fields.

  10. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  11. Diamagneto-dielectric anisotropic wide angle impedance matching layers for active phased arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  12. Multifunctional Inverse Opal-Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui

    2015-09-01

    A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

  13. Overview of PV Wind hybrid system activities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines, in some cases additionally with wind energy converters, and battery energy storage are powering isolated mountain lodges, information centers in nature parks, isolated farms or dwellings all over Europe. A total of 300,000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaic, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilization of the electric energy produced by the PV generator. [Espanol] Para la electrificacion en toda Europa de casas de campo en la montana, centros de informacion, parques naturales, granjas aisladas o conjuntos habitacionales, se estan usando generadores fotovoltaicos combinados con maquinas diesel, en algunos casos adicionalmente con convertidores de energia del viento y baterias para el almacenamiento de energia. Se estima que en Europa un total de 300,000 edificios no estan conectados a la red publica. Esto representa un gran mercado potencial para los sistemas fotovoltaicos, ya que a menudo la generacion fotovoltaica es menos costosa que una conexion a la empresa electrica. El Instituto Fraunhofer para Sistemas de Energia Solar ISE ha planeado, llevado a cabo y monitoreado alrededor de 30 sistemas hibridos remotos de suministro de energia con generadores fotovoltaicos

  14. Overview of PV Wind hybrid system activities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G; Gabler, H; Kiefer, K; Preiser, K; Wiemken, E [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1998-12-31

    Photovoltaic solar generators combined with diesel engines, in some cases additionally with wind energy converters, and battery energy storage are powering isolated mountain lodges, information centers in nature parks, isolated farms or dwellings all over Europe. A total of 300,000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaic, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilization of the electric energy produced by the PV generator. [Espanol] Para la electrificacion en toda Europa de casas de campo en la montana, centros de informacion, parques naturales, granjas aisladas o conjuntos habitacionales, se estan usando generadores fotovoltaicos combinados con maquinas diesel, en algunos casos adicionalmente con convertidores de energia del viento y baterias para el almacenamiento de energia. Se estima que en Europa un total de 300,000 edificios no estan conectados a la red publica. Esto representa un gran mercado potencial para los sistemas fotovoltaicos, ya que a menudo la generacion fotovoltaica es menos costosa que una conexion a la empresa electrica. El Instituto Fraunhofer para Sistemas de Energia Solar ISE ha planeado, llevado a cabo y monitoreado alrededor de 30 sistemas hibridos remotos de suministro de energia con generadores fotovoltaicos

  15. New porphyrin-polyoxometalate hybrid materials: synthesis, characterization and investigation of catalytic activity in acetylation reactions.

    Science.gov (United States)

    Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj

    2012-10-14

    New hybrid complexes based on covalent interaction between 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatozinc(II) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatotin(IV) chloride, and a Lindqvist-type polyoxometalate, Mo(6)O(19)(2-), were prepared. These new porphyrin-polyoxometalate hybrid materials were characterized by (1)H NMR, FT IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided several spectral data for synthesis of these compounds. Cyclic voltammetry showed the influence of the polyoxometalate on the redox process of the porphyrin ring. The catalytic activity of tin(IV)porphyrin-hexamolybdate hybrid material was investigated in the acetylation of alcohols and phenols with acetic anhydride. The reusability of this catalyst was also investigated.

  16. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun

    2016-12-01

    Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.

  17. The Power Quality Compensation Strategy for Power Distribution System Based on Hybrid Parallel Active Power Filters

    Directory of Open Access Journals (Sweden)

    Rachid DEHINI

    2010-12-01

    Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFET’s. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.

  18. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    Science.gov (United States)

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  19. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Regioselective synthesis of isoxazole-mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies

    DEFF Research Database (Denmark)

    Kankala, Shravankumar; Kankala, Ranjith Kumar; Gundepaka, Prasad

    2013-01-01

    Regioselective synthesis of isoxazole-mercaptobenzimidazole hybrids and their efficiency in in vivo analgesic and anti-inflammatory activity was described. A comparison of structure-activity relationship for there compounds was also emphasized....

  1. P3HT:PCBM-based organic solar cells : Optimisation of active layer nanostructure and interface properties

    Science.gov (United States)

    Kadem, Burak Yahya

    Organic solar cells (OSCs) have attracted a significant attention during the last decade due to their simple processability on a flexible substrate as well as scope for large-scale production using role to role technique. Improving the performance of the organic solar cells and their lifetime stability are one of the main challenges faced by researchers in this field. In this thesis, work has been carried out using a blend of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl C[61] butyric acid methyl ester (PCBM) as an active layer in the ratio of (1:1) (P3HT:PCBM). The efficiency and stability of P3HT:PCBM-based solar cells have been examined using different methods and employing novel materials such as1-[N-(2-ethoxyethyl) pent-4-ynamide] -8 (11), 15 (18), 22 (25) -tris-{2-[2-(2-ethoxyethoxy) ethoxy]-1-[2-((2- ethoxyethoxy) - ethoxy) methyl] ethyloxy} phthalocyaninato zinc (II) (ZnPc) to construct a ternary hybrid as the active layer. Controlling the morphology and crystallinity of P3HT:PCBM active layer was carried out using different solvents including chloroform (CF), chlorobenzene (CB) and dichlorobenzene (DCB) and their co-solvents in the ratio of (1:1) to dissolve the P3HT:PCBM blend. Optimum morphology and crystallinity were achieved using a co-solvent made of CB:CF with the obtained solar cell exhibiting the highest performance with PCE reaching 2.73% among other devices prepared using different solvents. Further device performance improvement was observed through optimization of active layer thickness with studied thickness falling in range 65-266 nm. Measurements of the PV characteristics of the investigated OSC devices have revealed optimum performance when active layer thickness was 95 nm with PCE=3.846%. The stability of the P3HT:PCBM-based devices on optimisation of the active layer thickness has shown a decrease in PCE of about 71% over a period of 41 days. Furthermore, P3HT has been blended with different fullerene derivatives (PC[60]BM, PC

  2. Synthesis of nanolayers hydroxo-(SnxOyHz) and heteropoly-(HxPWyOz) compounds of hybrid-type on silica surfaces by successive ionic layer deposition method

    International Nuclear Information System (INIS)

    Tolstoy, V.P.; Gulina, L.B.; Korotchenkov, G.S.; Brynsari, V.I.

    2004-01-01

    We determined the synthesis conditions for successive ionic layer deposition of the Sn 16 (OH) x PW 19 O y ·nH 2 O nanolayers on silica surfaces. The synthesized layers were characterized using UV-Vis and FTIR absorption spectroscopies, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). On heating the as-synthesized layers to 200-500 deg. C in air, incorporated water evaporate, while M-OH groups are condensed and concentration of the W-O-W and W-O-Sn bonds increase. The layers have amorphous agglomerate-like structure. The agglomerate size is from 20 to 100 nm. Upon heating to 600 deg. C, the size insignificantly increases, the agglomerate form being practically unchanged. The data obtained allow conclusion that the layers present a hybrid compound consisting of fragments of isopoly-(Sn x O y H z ) and heteropoly-(H x PW y O z ) compounds

  3. Root activity and soil feeding zones of some Bajra hybrids (Pennisetum typhoids Stapf.)

    International Nuclear Information System (INIS)

    Shriniwas

    1980-01-01

    Root activity and soil feeding zones of five bajra hybrids (Hybrid D-356, HB-3, HB-4, HB-1 and Bil-3B) were determined under natural field conditions by placement of 32 P labelled superphosphate enclosed in gelatinous capsules at different soil locations around the plant. Percent root activity varied significantly from one depth to another and it decreased with increase in depths and lateral distances. More than 44 percent of the root activity occurred in a soil feeding zone consisting of 0-15 cm depth having double of this much lateral distance. Percent root activity in HB-3 and HB-4 was almost found identical both horizontally and vertically. Hybrid D-356 and HB-1 approximated more than 38 percent root activity in a soil feeding zone of 0-15 cm in depth and 0-10 cm in lateral distance. 32 P placement in capsules appeared to hold promise over Hall's technique since it overcomes the differences caused by disturbance of the feeding activity of roots at the point of 32 P injection into the soil. (author)

  4. Shunt hybrid active power filter for harmonic mitigation: A practical ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The increasing importance of Power Quality problems has been responsible for several improvements in Active Power Filter (APF) typologies in the last decade. The increased cost and switching losses make a pure shunt APF economically impractical for high power applications. In higher power levels ...

  5. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  6. Circumpolar Active Layer Monitoring (CALM) Program Network, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CALM network includes 168 active sites in both hemispheres with 15 participating countries. This network represents the only coordinated and standardized program...

  7. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors

    Science.gov (United States)

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-01

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.

  8. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs.

    Science.gov (United States)

    Han, Guanghui; Liu, Xiabi; Zheng, Guangyuan; Wang, Murong; Huang, Shan

    2018-06-06

    Ground-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis

  9. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    International Nuclear Information System (INIS)

    Laukhin, V; Lebedev, V; Laukhina, E; Rovira, C; Veciana, J

    2016-01-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF) 2 I 3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy. (paper)

  10. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience...... of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show...

  11. Murein Hydrolase Activity in the Surface Layer of Lactobacillus acidophilus ATCC 4356▿

    OpenAIRE

    Prado Acosta, Mariano; Palomino, María Mercedes; Allievi, Mariana C.; Rivas, Carmen Sanchez; Ruzal, Sandra M.

    2008-01-01

    We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal domain in Bacillus subtilis resulted in the functional verificati...

  12. Charge transfer properties and photoelectrocatalytic activity of TiO{sub 2}/MWCNT hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liaochuan [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.c [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2010-12-15

    The vertically aligned multiwalled carbon nanotube (MWCNT) arrays on tantalum foils were successfully coated with TiO{sub 2} nanoparticles by a hydrothermal process. The prepared TiO{sub 2}/MWCNT hybrid was characterized by scanning electron microscopy and transmission electron microscopy. The charge transfer properties and photocatalytic degradation of rhodamine B with and without bias potential under UV irradiation were investigated. The MWCNTs promoted the separation of photoinduced carriers in the TiO{sub 2}, thus enhanced photocatalytic activity. Applying bias potential on the photoanode further enhanced its catalytic activity. The efficient charge transportation and high photoelectrocatalytic activity towards degradation of rhodamine B made this hybrid material promising for photocatalyst and for the development of photoelectrical devices.

  13. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  14. Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach

    Energy Technology Data Exchange (ETDEWEB)

    Du Shengzhi [Department of EAD, ICT Faculty, Tshwane University of Technology, Pretoria 0001 (South Africa); French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)], E-mail: dushengzhi@gmail.com; Wyk, Barend J. van; Qi Guoyuan; Tu Chunling [French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)

    2009-11-15

    In this paper, a hybrid method using active control and a High Order Differentiator (HOD) methodology is proposed to synchronize chaotic systems. Compared to some traditional active control methods, this new method can synchronize chaotic systems where only output states of the master system are available, i.e. the system is considered a black box. The HOD is used to estimate the derivative information of the master system followed by an active control methodology relying on HOD information. The Qi hyperchaotic system is used to verify the performance of this hybrid method. The proposed method is also compared to some traditional methods. Experimental results show that the proposed method has high synchronization precision and speed and is robust against uncertainties in the master system. The circus implements of the proposed synchronizing scheme are included in this paper. The simulation results show the feasibility of the proposed scheme.

  15. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.

    Science.gov (United States)

    Bhat, Hans Raj; Singh, Udaya Pratap; Thakur, Anjali; Kumar Ghosh, Surajit; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-10-01

    A series of novel hybrid 4-aminoquinoline 1,3,5-triazine derivatives was synthesized in a five-steps reaction and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Entire synthetic derivatives showed higher antimalarial activity on the sensitive strain while two compounds, viz., 9a and 9c displayed good activity against both the strains of P. falciparum. The observed activity was further substantiated by docking study on both wild and qradruple mutant type P. falciparum dihydrofolate reductase-thymidylate synthase (pf-DHFR-TS). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Hybridization of active and passive elements for planar photonic components and interconnects

    Science.gov (United States)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  17. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Energy Technology Data Exchange (ETDEWEB)

    Parali, Levent, E-mail: levent.parali@cbu.edu.tr [Department of Electronics and Automation, Celal Bayar University, Manisa (Turkey); Şabikoğlu, İsrafil [Department of Physics, Celal Bayar University, Manisa (Turkey); Kurbanov, Mirza A. [Institute of Physics, Academy of Sciences of Azerbaijan, Baku (Azerbaijan)

    2014-11-01

    Highlights: • We prepared hybrid structured piezocomposites. • We examine thermostimulated depolarization of piezocomposites. • We examine frequency characteristic of piezocomposites with SiO{sub 2} and BaTiO{sub 3}. • The piezocomposites can be used in acoustic applications at 5 Hz–40 kHz. - Abstract: A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO{sub 3}, SiO{sub 2} to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO{sub 3} or SiO{sub 2}), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT–PVDF) and the hybrid structure (PZT–PVDF–BaTiO{sub 3}) composite are compared. The d{sub 33} value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d{sub 33} value and the coupling factor of the hybrid structure (PZT–HDPE–SiO{sub 2}) have exhibited about 68 and 52% increase according to microstructure composite (PZT–HDPE), respectively.

  18. Active Fault Detection and Isolation for Hybrid Systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2009-01-01

    An algorithm for active fault detection and isolation is proposed. In order to observe the failure hidden due to the normal operation of the controllers or the systems, an optimization problem based on minimization of test signal is used. The optimization based method imposes the normal and faulty...... models predicted outputs such that their discrepancies are observable by passive fault diagnosis technique. Isolation of different faults is done by implementation a bank of Extended Kalman Filter (EKF) where the convergence criterion for EKF is confirmed by Genetic Algorithm (GA). The method is applied...

  19. Nonlinear optical activity in Bridgman growth layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M.I., E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2010-02-15

    Layered semiconductor compound CdI{sub 2} has been grown with the Bridgman technique and studied by nonlinear transmittance spectroscopy. The optical absorption in CdI{sub 2} shows a nonlinear transmission of the incident laser power (P{sub 0}) within a lower power limit. The transmission, however, is found to saturate at high powers, giving a clamped output. The value of the incident power (P{sub 0C}) at which clamping starts is also found to depend on the crystal temperature (T{sub L}). The values of P{sub OC} ranges from 55 to 65 MW cm{sup -2} for T{sub L} = 4.2-180 K. The dynamic range (D{sub R}) as a function of T{sub L} is calculated and the values are found to range from D{sub R} = 2 to 1.6. The optical limiting mechanisms are discussed. The two-photon absorption (TPA) coefficient ({beta}) of the optical nonlinear process in CdI{sub 2} is estimated. The values are found to be within a range from {beta} = 47 to 25 cm GW{sup -1} and be decreasing with increasing T{sub L}. As expected for the TPA process, the experimental data within a certain range follows the linear relation: log (P{sub 0}/P{sub T}) = A{sub G} + {Omega}(P{sub 0} - P{sub T}), where P{sub T} is the transmitted power, A{sub G} is the absorbance of the ground state and {Omega} is a constant depending on the absorption cross-section and the relaxation time. The values of A{sub G} and {Omega} estimated from the fits to the measured data vary with T{sub L}. The findings resulting from this investigation might have potential applications in optical sensors protection.

  20. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    Science.gov (United States)

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Plasmonic modulator optimized by patterning of active layer and tuning permittivity

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    as electrodes. External field changes carrier density in the ultra-thin ITO layer, which influences the permittivity. The metal-insulator-metal system possesses a plasmon resonance, and it is strongly affected by changes in the permittivity of the active layer. To improve performance of the structure we propose...... several optimizations. We examine influence of the ITO permittivity on the modulator's performance and point out appropriate values. We analyze eigenmodes of the waveguide structure and specify the range for its efficient operation. We show that substituting the continuous active layer by a one......-dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside...

  2. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

    Science.gov (United States)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

    2017-10-01

    A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

  3. Human Blood Feeding Activity of Female Hybrids between Culex pipiens pipiens and Culex pipiens quinquefasciatus(Diptera: Culicidae)

    OpenAIRE

    Yoshii, Manabu; Mine, Mariko; Kurokawa, Kenji; Oda, Tsutomu; Kato, Katsutomo; Ogawa, Yasunori; Eshita, Yuuki; Uchida, Keikichi

    2007-01-01

    Human blood feeding activity was examined in females of hybrids between Culex pipiens pipiens and Culex pipiens quinquefasciatus during long photoperiod at 25℃. Blood feeding rates of hybrids were lower than in Culex pipiens quinquefasciatus and Culex pipiens pallens, and higher than in Culex pipiens pipiens, because no females fed on human blood in Culex pipiens pipiens.

  4. Effect of photoperiod on blood feeding activity of female hybrids between Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae)

    OpenAIRE

    Kurokawa, Kenji; Yoshii, Manabu; Oda, Tsutomu; Kato, Katsutomo; Uchida, Keikichi; Eshita, Yuki; Tahara, Hiroyuki; Mine, Mariko; Ogawa, Yasunori

    2004-01-01

    Blood feeding activity was examined in females of hybrids (F1) between Culex pipiens pipiens and Culex pipiens quinquefasciatus in long and short photoperiods at 2l℃ to examine the effect of photoperiod on blood feeding rate. Blood feeding rates (F1) were lower in short photoperiods than in long photoperiods. From this, it seems that the hybrids show diapause.

  5. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-01-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes. (technical note)

  6. (Bio)hybrid materials based on optically active particles

    Science.gov (United States)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  7. An investigation into the reduction of log-layer mismatch in wall-modeled LES with a hybrid RANS/LES approach

    Science.gov (United States)

    Balin, Riccardo; Spalart, Philippe R.; Jansen, Kenneth E.

    2017-11-01

    Hybrid RANS/LES modeling approaches used in the context of wall-modeled LES (WMLES) of channel flows and boundary layers often suffer from a mismatch in the RANS and LES log-layer intercepts of the mean velocity profile. In the vicinity of the interface between the RANS and LES regions, the mean velocity gradient is too steep causing a departure from the log-law, an over-prediction of the velocity in the outer layer and an under-prediction of the skin-friction. This steep gradient is attributed to inadequate modeled Reynolds stresses in the upper portion of the RANS layer and at the interface. Channel flow computations were carried out with the IDDES approach of Shur et al. in WMLES mode based on the Spalart-Allmaras RANS model. This talk investigates the robustness of this approach for unstructured grids and explores changes required for grids where insufficient elevation of the Reynolds stresses is observed. Awards of computer time were provided by Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and Early Science programs. Resources of the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, were used.

  8. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites.

    Science.gov (United States)

    Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin

    2015-12-08

    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.

  10. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    Science.gov (United States)

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  11. Characterisation of Wear Resistant Boride Layers on a Tool Steel by Activity Controlled Pack Boronising

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work addresses the production and characterisation of iron boride layers by pack boronising of a Vanadis 6 tool steel. The boride layers were produced at 900°C for 2h using different pack compositions in order to obtain a single-phase boride layer. The layers were characterized...... by electron microscopy, glow discharge optical emission spectroscopy, X-ray diffraction, Vickers hardness tests and wear testing with a pin-on-disc tribometer. It was found that the type of boride phases (FeB and/or Fe2B) present in the treated layer can be controlled by changing the boron activity...... by pack boronising for all conditions as compared to the heat treated tool steel....

  12. Surface tailoring of newly developed amorphous Znsbnd Sisbnd O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells

    Science.gov (United States)

    Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo

    2018-03-01

    We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.

  13. Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2010-12-01

    Full Text Available We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002 than low solar activity (2006-2008. It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF Bs (IMF Bz <0 component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

  14. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  15. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  16. Preparation of AgBr@SiO{sub 2} core@shell hybrid nanoparticles and their bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Yang, Lisu [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Henna Sports School, Zhengzhou 450045 (China); Zhao, Yanbao, E-mail: yanbaozhao@126.com [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie; Sun, Lei; Luo, Huajuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2013-04-01

    AgBr@SiO{sub 2} core@shell hybrid nanoparticles (NPs) were successfully prepared by sol-gel method. Their morphology and structure were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The hybrid NPs are predominantly spherical in shape, with an average diameter of 180–200 nm, and each NP contains one inorganic core. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the hybrid NPs were examined against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), respectively. Results indicated that the AgBr@SiO{sub 2} NPs had excellent antibacterial activity. - Highlights: ► Presents a novel antibacterial agent “AgBr@ SiO{sub 2} NPs”. ► AgBr@SiO{sub 2} hybrid NPs could provide long-term antimicrobial effect. ► AgBr@SiO{sub 2} hybrid NPs have excellent antibacterial activity.

  17. Evaluation of polyethylenimine/carrageenan multi-layer for antibacterial activity of pathogenic bacteria

    International Nuclear Information System (INIS)

    Briones, Annabelle V.; Bigol, Urcila G.; Sato, Toshinori

    2012-01-01

    The purpose of this study is to investigate the antibacterial activity of multi-layer of polyethylenimine (PEI) and carrageenan (κ,ι, λ) for potential use as coating on biomaterial surface. The multi-layer of PEI/carrageenan was formed using the layer-by-layer assembly absorption technique and was monitored by atomic force microscopy (AFM) and bio molecular interaction analysis. All samples were prepared in phosphate buffer solution and applied to mica disk alternately. The micrographs showed the formation of bi-layer of polyethylenimine and carrageenan (κ, ι, λ) as observed in the change of height of the layer and surface morphology. The bimolecular binding of carrageenan with polyethylenimine was also investigated using a biosensor. The sensorgram showed that PEI interacted molecularly with carrageenan. Results were: 1,916.08 pg/nm 2 for kappa type; 1,844.1 pg/nm 2 for iota type and 6,074.24 pg/nm 2 for lambda type. The multi-layer showed antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcal strains (Enterococcus faecalis (EF) 29212 and 29505). (author)

  18. Novel Platinum (Pt)-Vandetanib Hybrid Compounds: Design, Synthesis and Investigation of Anti-cancer Activity and Mechanism of Action

    Science.gov (United States)

    Fei, Rong

    Purpose: Lung cancer is one of the most common cancers and non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancers. 70% of individuals with NSCLC harboring somatic mutations in exons of the epidermal growth factor receptor (EGFR) gene that encode tyrosine kinase domain. EGFR tyrosine kinase inhibitors (TKIs) are promising molecular targeted therapy for NSCLC with sensitizing EGFR mutations. However, secondary mutation of EGFR after treatment of TKIs develops resistance. Vandetanib is introduced to overcome erlotinib resistance as a multi-targeted TKI. However, its anticancer effect is still compromised by EGFR T790M mutation. Therefore, new molecular anticancer strategies are necessarily needed. In this study, vandetanib is incorporated with Pt-based anticancer agents as hybrid compounds, aiming to circumvent TKI resistance. Furthermore, hybrid compounds are investigated in cisplatin resistant problem to expect to overcome resistance by introduction of vandetanib. Methods: Three novel Pt-vandetanib hybrid compounds were synthesized and its physicochemical properties were characterized. Anticancer activity and cytotoxicity were evaluated by sulforhodamine B assay and lactate dehydrogenase release. Docking simulation was performed to investigate the interaction of compounds with EGFR harboring different mutations. Inhibition efficacy of hybrids to kinases was evaluated by kinase inhibition profiling service and cell-free kinase inhibition assay. Mechanistic studies on cytotoxicity activity of the hybrid compounds were carried out. DNA damage response of hybrid compounds was further investigated in KB cells. The cytotoxicity of hybrids was tested in cisplatin resistant KB CP20 cells. Mechanistic of anticancer activity was studied to test inhibition on oncoprotein CIP2Aand DNA damage. Results: Platinum-vandetanib hybrid compounds were synthesized and test to be stable under extracellular condition. Hybrids reacted with 5'-GMP2- and glutathione, and both

  19. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  20. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping.

    Science.gov (United States)

    Jeong, Seung-Ki; Kim, Myeong-Ho; Lee, Sang-Yeon; Seo, Hyungtak; Choi, Duck-Kyun

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 10(13) cm(-2), resistivity at 4.6 × 10(-3) Ω∙cm, and Hall mobility at 14.6 cm(2)/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm(2)/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm(2)/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs.

  1. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    Science.gov (United States)

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Use of 3D Scanning Methods to Evaluate the Hybrid Layer Used in Forging Tools in Order to Improve their Durability

    Directory of Open Access Journals (Sweden)

    Gronostajski Z.

    2017-09-01

    Full Text Available This study is focused on tools used in the industrial process of hot forging of a front wheel forging (gear wheel manufactured for the automotive industry. Five different variants were applied for the tools: 3 die inserts were coated with three different hybrid layers (PN + PVD type, i.e. AlCrTiN, AlCrTiSiN and CrN, one insert was only nitrided, and one was pad welded, to improve tool durability. The tool wear was analysed and represented by the material degradation on the working surface, based on the 3D scanning and the material growth of the periodically collected forgings. Additionally, the scanned tools were divided into two areas, in which it was found, based on the analysis, that various degradation mechanisms are predominant. Microstructural tests and hardness measurements of the analyzed tools were also performed. Based on the results, it was found that, in the central part of the die insert, thermo-mechanical fatigue, abrasive wear and plastic deformation occurred, while in the area of the bridge insert, only abrasive wear could be observed. For these areas, the loss of material was determined separately. It was established that the use of the GN+CrN and GN+AlCrTiN hybrid layers on forging tools improves their durability, while the best results in the central area were observed on the tool with the GN+CrN layer, which is the most resistant to thermo-mechanical fatigue. In the second analyzed area, good wear resistance occurred on GN+CrN, GN+AlCrTiN and pad welded inserts, for which, together with the increase of the forging number, a proportional, slight growth of the loss of material occurred.

  3. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sujing; Li, Jing, E-mail: jingli@rutgers.edu

    2015-04-15

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn{sub 2}S{sub 2}(bza) (1), Zn{sub 2}S{sub 2}(mbza) (2), Zn{sub 2}S{sub 2}(fbza) (3), Zn{sub 2}S{sub 2}(pca) (4), and Zn{sub 2}S{sub 2}(thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn{sub 2}S{sub 2}(L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy.

  4. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    International Nuclear Information System (INIS)

    Wang, Sujing; Li, Jing

    2015-01-01

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn 2 S 2 (bza) (1), Zn 2 S 2 (mbza) (2), Zn 2 S 2 (fbza) (3), Zn 2 S 2 (pca) (4), and Zn 2 S 2 (thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn 2 S 2 (L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy

  5. Classification of permafrost active layer depth from remotely sensed and topographic evidence

    International Nuclear Information System (INIS)

    Peddle, D.R.; Franklin, S.E.

    1993-01-01

    The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to this study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth

  6. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  7. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  8. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  9. Incorporation of nano-clay saponite layers in the organo-clay hybrid films using anionic amphiphile stearic acid by Langmuir–Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed Arshad, E-mail: sa_h153@hotmail.com [Department of Physics, Tripura University, Suryamaninagar-799022 (India); Chakraborty, S.; Bhattacharjee, D. [Department of Physics, Tripura University, Suryamaninagar-799022 (India); Schoonheydt, R.A. [Centres for Surface Chemistry and Catalysis, K.U. Leuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgium)

    2013-06-01

    In general cationic amphiphiles are used to prepare organo-clay hybrid film in Langmuir–Blodgett (LB) technique. In this present communication we demonstrated a unique technique to prepare the organo–clay hybrid films using an anionic amphiphile. The T–O–T type clay saponite was incorporated onto a floating stearic acid monolayer via a divalent cation Mg{sup 2+}. Salt MgCl{sub 2} was mixed along with the clay dispersion in the LB trough and amphiphile solution was spread onto the subphase in order to make the organo-clay hybrid films. It was observed that salt (MgCl{sub 2}) concentration on the subphase affects the organization of nano-dimensional clay platelet (saponite) in organo-clay hybrid films at air–water interface as well as in LB films. Noticeable changes in area per molecule and shape of the isotherms were observed and measured at subphases with different salt concentrations. Infrared reflection absorption spectroscopy studies reveal that only an in-plane (996 cm{sup −1}) vibration of ν (Si-O) band occurred when the salt concentration was 10 mM. However, both in-plane (996 cm{sup −1}) and out-of-plane (1063 cm{sup −1}) vibrations of the ν (Si-O) band of saponite occurred when the subphase salt concentration was 100 mM. Also the out-of-plane vibration of ν (OH) of saponite was prominent at higher salt concentration. This is because at lower salt concentration clay sheets remain flat on the surface whereas; at higher MgCl{sub 2} concentration they aggregated and form stacks of saponite layers. Also they may be slightly tilted with a very small tilt angle at higher salt concentration making a favorable condition for both in-plane and out-of-plane vibrations of ν (Si-O) in the hybrid films. Observed decrease in starting area per molecule in the pressure area isotherm measured at higher salt concentration also supports the tilting of clay layers at air–clay dispersion interface. Attentuated total reflectance Fourier transform infrared

  10. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    Science.gov (United States)

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. Copyright © 2015 the American Physiological Society.

  11. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ajmal, Muhammad; Siddiq, Mohammad [Quaid-I-Azam University, Islamabad (Pakistan); Farooqi, Zahoor Hussain [University of the Punjab, Lahore (Pakistan)

    2013-11-15

    Multi-responsive poly(N-isopropylacrylamide-methacrylic acid-acrylamide) [P(NIPAM-MAA-AAm)] copolymer microgel was prepared by free radical emulsion polymerization. Silver nanoparticles were fabricated inside the microgel network by in-situ reduction of silver nitrate. Swelling and deswelling behavior of the pure microgels was studied under various conditions of pH and temperature using dynamic light scattering. A red shift was observed in surface plasmon resonance wavelength of Ag nanoparticles with pH induced swelling of hybrid microgel. The catalytic activity of the hybrid system was investigated by monitoring the reduction of p-nitrophenol under different conditions of temperature and amount of catalysts. For this catalytic reaction a time delay of 8 to 10min was observed at room temperature, which was reduced to 2 min at high temperature due to swelling of microgels, which facilitated diffusion of reactants to catalyst surface and increased rate of reaction.

  12. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  13. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  14. Study in electron microscopy the formation of the hybrid layer using adhesive systems One Coat and Single Bond Universal, at the Facultad de Medicina of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Parra Barillas, Adriana; Montoya, Michael

    2013-01-01

    The formation of the hybrid layer is observed in dental pieces in vitro, using systems of conventional adhesives (Single Bond 2 of 3M and One Coat of Coltene), with different times of acid etching, through the use of atomic force microscopy (AFM). The images of the hybrid layer obtained from samples prepared with adhesive systems are analyzed by AFM. Samples collected have been of dental pieces (molars and premolars) recently extracted and later placed in water. The pieces used have provided more surface to be observed under the microscope, greater accessibility to the be cut for its study, and to the great pieces have facilitated their placement on the Isomet low speed saw. The differences are evaluated between hybrid layers according the adhesive system used and the mode of application of the images obtained in the atomic force microscope. The adhesive system that has allowed the formation of a hybrid layer more appropriate between the adhesive system One Coat and the adhesive system Single Bond Universal is determined. The time of acid etching as variable of procedure is determined and has interfered with the formation of a hybrid layer more stable. The images evaluated that were provided by the atomic force microscope and compared with the images of electron microscopy of other studies, have determined that the AFM is without providing detailed information, as well as the appropriate images to evaluate the hybrid layer of the adhesive systems Single Bond 2 and One Coat of Coltene, or the different times of acid etching. Therefore, for this type of study, the image of choice must be of an electron microscope [es

  15. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  16. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  17. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  18. Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.

    Science.gov (United States)

    Lu, Haiyun; Rusling, James F; Hu, Naifei

    2007-12-27

    Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.

  19. Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals.

    Science.gov (United States)

    Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen

    2017-10-19

    In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.

  20. Research of acceptor impurity thermal activation in GaN: Mg epitaxial layers

    Directory of Open Access Journals (Sweden)

    Aleksandr V. Mazalov

    2016-06-01

    The effect of thermal annealing of GaN:Mg layers on acceptor impurity activation has been investigated. Hole concentration increased and mobility decreased with an increase in thermal annealing temperature. The sample annealed at 1000 °C demonstrated the lowest value of resistivity. Rapid thermal annealing (annealing with high heating speed considerably improved the efficiency of Mg activation in the GaN layers. The optimum time of annealing at 1000 °C has been determined. The hole concentration increased by up to 4 times compared to specimens after conventional annealing.

  1. Effect of nest design, passages, and hybrid on use of nest and production performance of layers in furnished cages.

    Science.gov (United States)

    Wall, H; Tauson, R; Elwinger, K

    2002-03-01

    Production performance, including egg quality, and proportion of eggs laid in nests were studied in furnished experimental cages incorporating nests, litter baths, and perches. The study comprised a total of 972 hens of two genotypes: Lohmann Selected Leghorn (LSL) and Hy-Line White. The birds were studied from 20 to 80 wk of age, and conventional four-hen cages were included as a reference. In furnished cages for six hens, the effects of 30 or 50% vs. 100% nest bottom lining (Astro turf) were studied with LSL hens. Nest bottom lining had no significant effect on egg production or proportions of cracked or dirty eggs, but the use of nests was significantly higher in cages incorporating nests with 100% lining, compared with 50 or 30%. The two hybrids were compared when housed in large, group-furnished cages for 14 or 16 hens of two designs; with a rear partition with two pop holes or fully open, i.e., no rear partition. LSL birds produced significantly better and had a significantly lower proportion of cracked eggs. There was no difference between H- and O-cages, either in production or in egg quality. LSL birds laid a significantly lower proportion of eggs in the nests, especially in O-cages, implying a significant hybrid x cage interaction. When housed in conventional cages, the hybrids did not differ in proportion of cracked eggs but differed in production traits. It was concluded that with the present nest design, the proportion of nest bottom lining cannot be reduced without affecting birds' use of nests, but the proportion did not affect exterior egg quality. The effect of genotype should be considered in the further development of furnished cages.

  2. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    International Nuclear Information System (INIS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  3. Study of wear in piston ring of the vehicle engine using thin layer activation technique

    International Nuclear Information System (INIS)

    Khan, I.H.; Farooq, M.; Ghiyas-ud-Din; Gul, S.; Qureshi, R.M.; Jin Joon Ha; Wallace, G.

    2004-01-01

    Thin Layer Activation (TLA) technique was used to investigate piston ring wear of a six cylinders vehicle engine at various engine speeds and load conditions. The activated ring was installed in cylinder no.5 of the engine at middle position (compression ring). Monitoring was carried out on-line (extremely on the engine block) using 'Thin Layer Difference Method'. The calibration curve of the activity profile was prepared with the help of activation parameters determined at the time of ring activation in particle accelerator. The results show that the piston ring wear varies from 0.309 micron/hour to 0.404 micron/hour at given engine speed and load conditions. (author)

  4. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    Science.gov (United States)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  6. Structural features of the adsorption layer of pentacene on the graphite surface and the PMMA/graphite hybrid surface

    Science.gov (United States)

    Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.

    2017-08-01

    Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.

  7. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  8. Hybrid Organic/ZnO p-n Junctions with n-Type ZnO Grown by Atomic Layer Deposition

    Science.gov (United States)

    Łuka, G.; Krajewski, T.; Szczerbakow, A.; Łusakowska, E.; Kopalko, K.; Guziewicz, E.; Wachnicki, Ł.; Szczepanik, A.; Godlewski, M.; Fidelus, J. D.

    2008-11-01

    We report on fabrication of hybrid inorganic-on-organic thin film structures with polycrystalline zinc oxide films grown by atomic layer deposition technique. ZnO films were deposited on two kinds of thin organic films, i.e. pentacene and poly(dimethylosiloxane) elastomer with a carbon nanotube content (PDMS:CNT). Surface morphology as well as electrical measurements of the films and devices were analyzed. The current density versus voltage (I-V) characteristics of ITO/pentacene/ZnO/Au structure show a low-voltage switching phenomenon typical of organic memory elements. The I-V studies of ITO/PDMS:CNT/ZnO/Au structure indicate some charging effects in the system under applied voltages.

  9. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    International Nuclear Information System (INIS)

    Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Wukitch, S.; Shinya, T.; Takase, Y.

    2016-01-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k || increases for the fixed launched k || , and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k || are observed in the spectrally broadened wave components, as compared to the measured k || at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k || resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  10. Modelling and Experimental Testing of Hybrid Joints Made of: Aluminium Adherends, Adhesive Layers and Rivets for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Sadowski T.

    2017-09-01

    Full Text Available The contemporary demands in different branches of engineering require application of new multi-component materials and structural systems. Appropriately chosen joining technology can offer significant enhancement of structural system performance in terms of effectiveness, reliability, safety and other design criteria. The modern applications of complex joints are of great technological interest as they permit to combine and to enhance the individual effects of each kind of joint. This is of great importance for modern applications in different branches of engineering: aerospace, mechanical and civil. Therefore in this paper we will focus on the analysis of mechanical response of adhesive joint of aluminium strips reinforced by rivets. The aim of the paper is to investigate experimentally the mechanical behaviour of adhesive joint of aluminium strips reinforced by rivets for industrial applications in aerospace. The considered joint was subjected to uniaxial loading. The tests in this paper were performed for: • classical adhesive joint in order to investigate material parameters for numerical modelling of the hybrid joint • hybrid joining of the structural elements in order to investigate the reinforcement effect. The experiments with application of digital image ARAMIS system allowed for on-line monitoring of the deformation process of the considered joining elements. The particular distributions of displacement fields at the joint surface were estimated for any stage of loading process. Numerical modelling was performed for experimentally investigated specimens. The materials parameters, necessary for calculation, were estimated from experiments. FEA modelling was done with the help of ABAQUS code.

  11. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    Science.gov (United States)

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  12. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  13. MAC-Layer Active Dropping for Real-Time Video Streaming in 4G Access Networks

    KAUST Repository

    She, James

    2010-12-01

    This paper introduces a MAC-layer active dropping scheme to achieve effective resource utilization, which can satisfy the application-layer delay for real-time video streaming in time division multiple access based 4G broadband wireless access networks. When a video frame is not likely to be reconstructed within the application-layer delay bound at a receiver for the minimum decoding requirement, the MAC-layer protocol data units of such video frame will be proactively dropped before the transmission. An analytical model is developed to evaluate how confident a video frame can be delivered within its application-layer delay bound by jointly considering the effects of time-varying wireless channel, minimum decoding requirement of each video frame, data retransmission, and playback buffer. Extensive simulations with video traces are conducted to prove the effectiveness of the proposed scheme. When compared to conventional cross-layer schemes using prioritized-transmission/retransmission, the proposed scheme is practically implementable for more effective resource utilization, avoiding delay propagation, and achieving better video qualities under certain conditions.

  14. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Directory of Open Access Journals (Sweden)

    Gabriele Radnikow

    2018-01-01

    Full Text Available From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.

  15. A new hybrid observer based rotor imbalance vibration control via passive autobalancer and active bearing actuation

    Science.gov (United States)

    Jung, DaeYi; DeSmidt, Hans

    2018-02-01

    Many researchers have explored the use of active bearings, such as non-contact Active Magnetic Bearings (AMB), to control imbalance vibration in rotor systems. Meanwhile, the advantages of a passive Auto-balancer device (ABD) eliminating the imbalance effect of rotor without using other active means have been recently studied. This paper develops a new hybrid imbalance vibration control approach for an ABD-rotor system supported by a normal passive bearing in augmented with an AMB to enhance the balancing and vibration isolation capabilities. Essentially, an ABD consists of several freely moving eccentric balancing masses mounted on the rotor, which, at supercritical operating speeds, act to cancel the rotor's imbalance at steady-state. However, due to the inherent nonlinearity of the ABD, the potential for other, non-synchronous limit-cycle behavior exists resulting in increased rotor vibration. To address this, the algorithm of proposed hybrid control is designed to guarantee globally asymptotic stability of the synchronous balanced condition. This algorithm also incorporates with a "Luenberger-like" observer that continuously estimates the states of a balancer ball circulating around within ABD. In particular, it is shown that the balanced equilibrium can be made globally attractive under the hybrid control strategy, and that the control power levels of AMB are significantly reduced via the addition of the ABD because the control is designed such that it is only switched on for the abnormal operation of ABD and will be disengaged otherwise. Moreover, unlike other imbalance vibration control applications based upon ABD such as rotor speed regulator [21,22], this approach enables the controller to achieve the desirable performance without altering rotor speed once the rotor initially reaches the target speed. These applications are relevant to limited power applications such as in satellite reaction wheels, flywheel energy storage batteries or CD-ROM application.

  16. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    Science.gov (United States)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  17. Synthesis and characterization of a new porphyrin-polyoxometalate hybrid material and investigation of its catalytic activity.

    Science.gov (United States)

    Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj

    2012-03-14

    In the present work, the preparation of a new organic-inorganic hybrid material in which tetrakis(p-aminophenylporphyrin) is covalently linked to a Lindqvist structure of polyoxometalate, is reported. This new porphyrin-polyoxometalate hybrid material was characterized by (1)H NMR, FT-IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided spectral data of the synthesis of this compound. Cyclic voltammetry showed the influence of the porphyrin on the redox process of the polyoxometalate. The catalytic activity of this hybrid material was investigated in the alkene epoxidation with NaIO(4).

  18. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  19. Lipidated alpha-Peptide/beta-Peptoid Hybrids with Potent Antiinflammatory Activity

    DEFF Research Database (Denmark)

    Skovbakke, Sarah L.; Larsen, Camilla J.; Heegaard, Peter M. H.

    2015-01-01

    is dependent on the length and position of the lipid element(s). The resulting lead compound, Pam-(Lys-beta NSpe)(6)-NH2, blocks LPS-induced cytokine secretion with a potency comparable to that of polymyxin B. The mode of action of this HDP mimic appears not to involve direct LPS interaction since it......, in contrast to polymyxin B, displayed only minor activity in the Limulus amebocyte lysate assay. Flow cytometry data showed specific interaction of a fluorophore-labeled lipidated a-peptide/beta-peptoid hybrid with monocytes and granulocytes indicating a cellular target expressed by these leukocyte subsets....

  20. Investigation into Composites Property Effect on the Forming Limits of Multi-Layer Hybrid Sheets Using Hydroforming Technology

    Science.gov (United States)

    Liu, Shichen; Lang, Lihui; Guan, Shiwei; Alexandrov, Seigei; Zeng, Yipan

    2018-04-01

    Fiber-metal laminates (FMLs) such as Kevlar reinforced aluminum laminate (ARALL), Carbon reinforced aluminum laminate (CARALL), and Glass reinforced aluminum laminate (GLARE) offer great potential for weight reduction applications in automobile and aerospace construction. In order to investigate the feasibility for utilizing such materials in the form of laminates, sheet hydroforming technology are studied under the condition of uniform blank holder force for three-layered aluminum and aluminum-composite laminates using orthogonal carbon and Kevlar as well as glass fiber in the middle. The experimental results validate the finite element results and they exhibited that the forming limit of glass fiber in the middle is the highest among the studied materials, while carbon fiber material performs the worst. Furthermore, the crack modes are different for the three kinds of fiber materials investigated in the research. This study provides fundamental guidance for the selection of multi-layer sheet materials in the future manufacturing field.

  1. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  2. Synergy of exchange bias with superconductivity in ferromagnetic-superconducting layered hybrids: the influence of in-plane and out-of-plane magnetic order on superconductivity

    International Nuclear Information System (INIS)

    Stamopoulos, D; Manios, E; Pissas, M

    2007-01-01

    It is generally believed that superconductivity and magnetism are two antagonistic long-range phenomena. However, as was preliminarily highlighted in Stamopoulos et al (2007 Phys. Rev. B 75 014501), and extensively studied in this work, under specific circumstances these phenomena instead of being detrimental to each other may even become cooperative so that their synergy may promote the superconducting properties of a hybrid structure. Here, we have studied systematically the magnetic and transport behavior of such exchange biased hybrids that are comprised of ferromagnetic (FM) Ni 80 Fe 20 and low-T c superconducting (SC) Nb for the case where the magnetic field is applied parallel to the specimens. Two structures have been studied: FM-SC-FM trilayers (TLs) and FM-SC bilayers (BLs). Detailed magnetization data on the longitudinal and transverse magnetic components are presented for both the normal and superconducting states. These data are compared to systematic transport measurements including I-V characteristics. The comparison of the exchange biased BLs and TLs that are studied here with the plain ones studied in Stamopoulos et al (2007 Phys. Rev. B 75 184504) enable us to reveal an underlying parameter that may falsify the interpretation of the transport properties of relevant FM-SC-FM TLs and FM-SC BLs investigated in the recent literature: the underlying mechanism motivating the extreme magnetoresistance peaks in the TLs relates to the suppression of superconductivity mainly due to the magnetic coupling of the two FM layers as the out-of-plane rotation of their magnetizations takes place across the coercive field where stray fields emerge in their whole surface owing to the multidomain magnetic state that they acquire. The relative in-plane magnetization configuration of the outer FM layers exerts a secondary contribution on the SC interlayer. Since the exchange bias directly controls the in-plane magnetic order it also controls the out-of-plane rotation of

  3. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing; Sato, Riku [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2017-08-01

    Highlights: • We modify PA6 surface using silane coupling agent layer of APTMS to link HNBR. • APTMS greatly improved heat resistance of PA6 from 153 °C up to 325 °C. • A PA6/HNBR joined body was obtained, and it exhibits high adhesion strength with cohesive failure. • Chemical structures of the adhesion interfaces of PA6/HNBR were confirmed by Nano-IR. - Abstract: A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  4. Active-charging based powertrain control in series hybrid electric vehicles for efficiency improvement and battery lifetime extension

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Yin, Chengliang

    2014-01-01

    This paper presents a powertrain control strategy for a series hybrid electric vehicle (SHEV) based on the integrated design of an active charging scenario and fixed-boundary-layer sliding mode controllers (FBLSMCs). An optimized charging curve for the battery is predetermined rather than subject to engine output and vehicle power demand, which is a total inverse of normal SHEV powertrain control process. This is aimed to remove surge and high-frequency charge current, keep the battery staying in a high state-of-charge (SOC) region and avoid persistently-high charge power, which are positive factors to battery lifetime extension. Then two robust chattering-free FBLSMCs are designed to locate the engine operation in the optimal efficiency area. One is in charge of engine speed control, and the other is for engine/generator torque control. Consequently, not only fuel economy is improved but also battery life expectancy could be extended. Finally, simulation and experimental results confirm the validity and application feasibility of the proposed strategy.

  5. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    International Nuclear Information System (INIS)

    Kikuchi, T; Jin, Y; Fukushima, K; Akai, H; Furusho, J

    2009-01-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named 'Hybrid-PLEMO' in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  6. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T; Jin, Y; Fukushima, K; Akai, H; Furusho, J [Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka (Japan)], E-mail: kikuchi@mech.eng.osaka-u.ac.jp

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named 'Hybrid-PLEMO' in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  7. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Science.gov (United States)

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  8. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  9. Transition layers formation on the boundaries carbon fiber-copper dependence on the active additions

    International Nuclear Information System (INIS)

    Wlosinski, W.; Pietrzak, K.

    1993-01-01

    The basic problem connected with fabrication of carbon fiber-copper composites is to overcome the problem of low wettability of carbon fiber by copper. One of the possible solutions of that problem is to use the copper doped with active metals. The investigation results of transition layer forming on the phase boundary in the system have been discussed in respect of the kind and content of active elements added to the copper. 5 refs, 5 figs, 5 tabs

  10. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-qiao; Zou, Ying; Xia, Yong-yao [Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2007-01-01

    We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C. (author)

  11. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  12. Electrical and mechanical characterization of nanoscale-layered cellulose-based electro-active paper.

    Science.gov (United States)

    Yun, Gyu-Young; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2011-01-01

    In order to understand the electro-mechanical behavior of piezoelectric electro active paper (EAPap), the converse and direct piezoelectric characterization of cellulose EAPap was studied and compared. A delay between the electrical field and the induced strain of EAPap was observed due to the inner nano-voids or the localized amorphous regions in layer-by-layered structure to capture or hold the electrical charges and remnant ions. The linear relation between electric field and induced strain is also observed. The electro-mechanical performance of EAPap is discussed in detail in this paper.

  13. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  14. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.

    Science.gov (United States)

    Fleischmann, Simon; Zeiger, Marco; Quade, Antje; Kruth, Angela; Presser, Volker

    2018-05-25

    Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg -1 and a high specific power of 4 kW·kg -1 at 34 W·h·kg -1 . The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

  15. Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance.

    Science.gov (United States)

    Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop

    2018-02-21

    Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

  16. Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation.

    Directory of Open Access Journals (Sweden)

    Antonietta Stellavato

    Full Text Available Hyaluronic Acid (HA-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM, acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing. Moreover, intradermal HA formulations (injectable HA provide an attractive tool to counteract skin aging (e.g., facial wrinkles, dryness, and loss of elasticity and restore normal dermal functions, through simple and minimally invasive procedures. Biological activity of a commercially available hyaluronic acid, Profhilo®, based on NAHYCO™ technology, was compared to H-HA or L-HA alone. The formation of hybrid cooperative complexes was confirmed by the sudden drop in η0 values in the rheological measurements. Besides, hybrid cooperative complexes proved stable to hyaluronidase (BTH digestion. Using in vitro assays, based on keratinocytes, fibroblasts cells and on the Phenion® Full Thickness Skin Model 3D, hybrid cooperative complexes were compared to H-HA, widely used in biorevitalization procedures, and to L-HA, recently proposed as the most active fraction modulating the inflammatory response. Quantitative real-time PCR analyses were accomplished for the transcript quantification of collagens and elastin. Finally immunofluorescence staining permitted to evaluate the complete biosynthesis of all the molecules investigated. An increase in the expression levels of type I and type III collagen in fibroblasts and type IV and VII collagen in keratinocytes were found with the hybrid cooperative complexes, compared to untreated cells (CTR and to the H-HA and L-HA treatments. The increase in elastin expression found in both cellular model and in the Phenion® Full Thickness Skin Model 3D also at

  17. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-01-01

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  18. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoying; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Guo, Yuxi; Zhang, Yihe, E-mail: zyh@cugb.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  19. High polysilicon TFT field effect mobility reached thanks to slight phosphorus content in the active layer

    International Nuclear Information System (INIS)

    Zaghdoudi, M.; Rogel, R.; Alzaied, N.; Fathallah, M.; Mohammed-Brahim, T.

    2008-01-01

    The paper deals with the effect of slightly phosphorus atoms introduced during deposition of polysilicon films. Polysilicon films are used as an active layer in thin film transistors (TFTs) fabricated on glass substrates at a maximum temperature of 600 deg. C.Three phosphorus atoms contents, determined by the value of the phosphine to silane ratio: Γ (3.7 x 10 -7 , 8 x 10 -7 , 26 x 10 -6 ), are used to optimize the active layer quality. The in-situ doped layers induce a better stability of the electrical characteristics, a higher mobility and lower value of the threshold voltage for the slightly doped active layers [M. Zaghdoudi, M.M. Abdelkrim, M. Fathallah, T. Mohammed-Brahim and F. Le-Bihan Control of the weak phosphorus doping in polysilicon, Materials Science and Forum, Vols. 480-481 (2005) pp.305.]. The present work shows that the effect of slightly phosphorus content improves the quality of oxide/polysilicon interface and decreases the defects density. Degradation of electrical properties is shown to originate from the creation of defect at the channel-interface oxide and in the grain boundaries. The effect of temperature change on the electrical properties was studied and the behaviour was also analyzed

  20. Geochemical fingerprints by activation analysis of tephra layers in Lake Van sediments, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Landmann, Guenter [Technische Universitaet Darmstadt, Institut fuer Angewandte Geowissenschaften, Schnittspahnstr. 9, 64287 Darmstadt (Germany); Steinhauser, Georg; Sterba, Johannes H. [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Kempe, Stephan [Technische Universitaet Darmstadt, Institut fuer Angewandte Geowissenschaften, Schnittspahnstr. 9, 64287 Darmstadt (Germany); Bichler, Max, E-mail: bichler@ati.ac.a [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2011-07-15

    We discuss geochemical and sedimentological characteristics of 12 tephra layers, intercalated within the finely laminated sediments of Lake Van. Within the about 15 kyr long sediment record studied, volcanic activity concentrated in the periods 2.6-7.2 and 11.9-12.9 kyr B.P. Concentrations of 25 elements provide the geochemical fingerprint of each tephra layer and allow comparison to literature values of potential source volcanoes such as Mts. Nemrut and Suephan. The youngest two tephra layers (and probably also the other three ashes from the 2.6-7.2 kyr B.P. eruptions) originate from the Nemrut volcano. The source of the older tephra (11.9-12.9 kyr B.P.), however, remains unidentified.

  1. Effect of ethanethiolate spacer on morphology and optical responses of Ag nanoparticle array-single layer graphene hybrid systems

    Czech Academy of Sciences Publication Activity Database

    Sutrová, Veronika; Šloufová, I.; Melníková Komínková, Zuzana; Kalbáč, Martin; Pavlova, Ewa; Vlčková, B.

    2017-01-01

    Roč. 33, č. 50 (2017), s. 14414-14424 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61389013 ; RVO:61388955 Keywords : Ag nanoparticle * single layer graphene * ethanethiol Subject RIV: JI - Composite Materials; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Physical chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  2. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Yang, Wulin; Liu, Jia; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  3. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  4. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  5. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids.

    Science.gov (United States)

    Tommonaro, Giuseppina; Speranza, Giovanna; De Prisco, Rocco; Iodice, Carmine; Crudele, Egle; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2017-12-01

    The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  7. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    Directory of Open Access Journals (Sweden)

    Maha S. Almutairi

    2014-12-01

    Full Text Available Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2 have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src and platelet-derived growth factor receptor, PDGFR (c-Kit. The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src.

  8. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    Science.gov (United States)

    Almutairi, Maha S.; Hegazy, Gehan H.; Haiba, Mogedda E.; Ali, Hamed I.; Khalifa, Nagy M.; Soliman, Abd El-mohsen M.

    2014-01-01

    Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl) amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2) have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src) and platelet-derived growth factor receptor, PDGFR (c-Kit). The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src). PMID:25490139

  9. Antiplasmodial activity of novel keto-enamine chalcone-chloroquine based hybrid pharmacophores.

    Science.gov (United States)

    Sashidhara, Koneni V; Kumar, Manoj; Modukuri, Ram K; Srivastava, Rajeev Kumar; Soni, Awakash; Srivastava, Kumkum; Singh, Shiv Vardan; Saxena, J K; Gauniyal, Harsh M; Puri, Sunil K

    2012-05-01

    A series of novel keto-enamine chalcone-chloroquine based hybrids were synthesized following new methodology developed in our laboratory. The synthesized compounds were screened against chloroquine sensitive strain (3D7) of Plasmodium falciparum in an in vitro model. Some of the compounds were showing comparable antimalarial activity at par with chloroquine. Compounds with significant in vitro antimalarial activity were then evaluated for their in vivo efficacy in Swiss mice against Plasmodium yoelii (chloroquine resistant N-67 strain), wherein compounds 25 and 27 each showed an in vivo suppression of 99.9% parasitaemia on day 4. Biochemical studies reveal that inhibition of hemozoin formation is the primary mechanism of action of these analogues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Secondary clarifier hybrid model calibration in full scale pulp and paper activated sludge wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sreckovic, G.; Hall, E.R. [British Columbia Univ., Dept. of Civil Engineering, Vancouver, BC (Canada); Thibault, J. [Laval Univ., Dept. of Chemical Engineering, Ste-Foy, PQ (Canada); Savic, D. [Exeter Univ., School of Engineering, Exeter (United Kingdom)

    1999-05-01

    The issue of proper model calibration techniques applied to mechanistic mathematical models relating to activated sludge systems was discussed. Such calibrations are complex because of the non-linearity and multi-model objective functions of the process. This paper presents a hybrid model which was developed using two techniques to model and calibrate secondary clarifier parts of an activated sludge system. Genetic algorithms were used to successfully calibrate the settler mechanistic model, and neural networks were used to reduce the error between the mechanistic model output and real world data. Results of the modelling study show that the long term response of a one-dimensional settler mechanistic model calibrated by genetic algorithms and compared to full scale plant data can be improved by coupling the calibrated mechanistic model to as black-box model, such as a neural network. 11 refs., 2 figs.

  11. Air-Coupled Piezoelectric Transducers with Active Polypropylene Foam Matching Layers

    Directory of Open Access Journals (Sweden)

    Tomás E. Gómez Alvarez-Arenas

    2013-05-01

    Full Text Available This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1–3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl. These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz, then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  12. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Gao, Xu; Mao, Bao-Hua; Wang, Sui-Dong; Lin, Meng-Fang; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Liu, Zhi

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O 2 /air. The device with a thick IGZO layer shows similar electron mobility in O 2 /air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O 2 /air due to the electron transfer to adsorbed gas molecules. The O 2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results. (paper)

  13. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle

    NARCIS (Netherlands)

    Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; Maagd, de R.A.

    2001-01-01

    Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have

  14. The lysine-peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Ingmer, Hanne; Thomsen, Line E.

    2016-01-01

    The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained...

  15. Expanding the "Active Layer": Discussion of Church and Haschenburger (2017) What is the "Active Layer"? Water Resources Research 53, 5-10, Doi:10.1002/2016WR019675

    Science.gov (United States)

    Ashmore, Peter; Peirce, Sarah; Leduc, Pauline

    2018-03-01

    Church and Haschenburger (2017, https://doi.org/10.1002/2016WR019675) make helpful distinctions around the issue of defining the active layer, with which we agree. We propose expanding discussion and definition of the "active layer" in fluvial bedload transport to include the concept of the "morphological active layer." This is particularly applicable to laterally unstable rivers (such as braided rivers) in which progressive morphological change over short time periods is the process by which much of the bedload transport occurs. The morphological active layer is also distinguished by variable lateral and longitudinal extent continuity over a range of flows and transport intensity. We suggest that the issue of forms of active layer raised by Church and Haschenburger opens up an important discussion on the nature of bedload transport in relation to river morpho-dynamics over the range of river types.

  16. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, George R.S., E-mail: grsandrade@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Nascimento, Cristiane C. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Federal Institute of Education, Science and Technology of Sergipe, Glória Campus, Nossa Senhora da Glória, SE (Brazil); Lima, Zenon M. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); Teixeira-Neto, Erico [LNNano − Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP (Brazil); Costa, Luiz P. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); ITPS − Technological and Research Institute of Sergipe, Aracaju, SE (Brazil); Gimenez, Iara F. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2017-03-31

    Highlights: • A new and simple one-pot method for preparing star-shaped ZnO particles was reported. • ZnO particles were decorated with Ag nanoparticles (SNPs) by a photodeposition method. • The presence of SNC{sup −} ions on ZnO surface prevented uncontrollable growth of SNPs. • ZnO/Ag particles showed plasmon-enhanced photocatalytic activity toward an AZO dye. • SNP improved 16 times the antibacterial activity of ZnO toward 4 bacterial strains. - Abstract: Zinc oxide (ZnO) particles with a star-shaped morphology have been synthesized by a novel and simple room-temperature method and decorated with silver nanoparticles (SNPs) for enhanced photocatalysis and bactericide applications. The presence of thiourea during the precipitation of ZnO in alkaline conditions allowed the control of morphological features (e.g. average size and shape) and the surface functionalization with thiocyanate ions (SCN{sup −}). SNPs were deposited into the ZnO surface by a photoreduction method and their sizes could be easily controlled by changing the ZnO/AgNO{sub 3} ratio. The presence of SCN{sup −} on the semiconductor surface prevents uncontrollable growth of Ag nanoparticles into different morphologies and high degrees of polydispersity. XRD, SEM, TEM, FTIR, UV-vis-NIR and PL were employed for characterizing the structure, morphology and optical properties of the as-obtained pure and hybrid nanostructures. Finally, the hybrid ZnO/Ag particles have shown plasmon-enhanced performance for applications in photocatalysis and antibacterial activity compared to the pure ZnO counterpart. In this work, evaluation of the photodegradation of an aqueous methylene blue solution under UV-A irradiation and the antibacterial activity toward 4 bacterial strains, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300, ATCC 25923 and ATCC 33591) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853).

  17. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Chhetri, Ravi Kumar [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Ooi, Gordon [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Litty, Klaus [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Christensson, Magnus [AnoxKaldnes, Klosterängsvägen 11A, 226 47 Lund (Sweden); Kragelund, Caroline [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Bester, Kai, E-mail: kb@envs.au.dk [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark)

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h{sup −1}, from 0 to 7.78 × 10{sup −1} h{sup −1}, from 0 to 7.86 × 10{sup −1} h{sup −1} and from 0 to 1.07 × 10{sup −1} h{sup −1} for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase

  18. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M.S.; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R.; Bester, Kai

    2015-01-01

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h −1 , from 0 to 7.78 × 10 −1 h −1 , from 0 to 7.86 × 10 −1 h −1 and from 0 to 1.07 × 10 −1 h −1 for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step

  19. Optimization of the etch-and-rinse technique: New perspectives to improve resin-dentin bonding and hybrid layer integrity by reducing residual water using dimethyl sulfoxide pretreatments.

    Science.gov (United States)

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu

    2018-04-13

    To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30s air drying) with DMSO/ethanol or DMSO/H 2 O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24h and sectioned into resin-dentin beams (0.8mm 2 ) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n=8) under SEM. Additional teeth (n=2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20cm H 2 O) using 5mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (α=0.05). While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (padhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin-dentin interfaces. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  20. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers

    NARCIS (Netherlands)

    Duan, C.; Gao, K.; Colberts, F. J. M.; Liu, F.; Meskers, S. C. J.; Wienk, M. M.; Janssen, R. A. J.

    2017-01-01

    Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and

  1. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    Science.gov (United States)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  2. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  3. Network Layer Protocol Activation for Packet Data Access in UMTS WCDMA Laboratory Network

    OpenAIRE

    Lakkisto, Erkka

    2011-01-01

    The purpose of this Bachelor’s Thesis was to set up the UMTS WCDMA network in the laboratory environment of Helsinki Metropolia University of Applied Sciences and to study the network layer protocol activation for packet data access. The development of 3G technology has been very rapid and it can be considered as one of the main technologies in telecommunication. Implementing the laboratory network in Metropolia enables teaching and researching of the modern network technology. Labora...

  4. Preparation and characterization of a layered perovskite-type organic-inorganic hybrid compound (C8NH6-CH2CH2NH3)2CuCl4

    International Nuclear Information System (INIS)

    Zheng Yingying; Wu Gang; Deng Meng; Chen Hongzheng; Wang Mang; Tang, B.-Z.

    2006-01-01

    The organic-inorganic hybrid compound (C 8 NH 6 -CH 2 CH 2 NH 3 ) 2 CuCl 4 (AEI-CuCl 4 ) was synthesized from ethanol solution containing copper chloride and 3-2-(aminoethyl) indole hydrochloride (AEI-HCl). High order diffraction peaks corresponding to (0 0 l; l = 2, 4, 6, ...) observed in the X-ray diffraction profile of AEI-CuCl 4 indicated the formation of hybrid crystal with layered perovskite structure. The organic-inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the AEI-CuCl 4 perovskite and it showed characteristic absorptions of CuCl-based layered perovskite centered at 288 and 388 nm, as well as the photoluminescence peak at around 420 nm. The unaided-eye-detectable blue fluorescence emission comes from the cooperation of AEI-HCl and AEI-CuCl 4 perovskite, in which protonized aminoethyl indole dominates the shape of the spectrum and the enhancement of emission intensity is due to the formation of the perovskite structure. The thermal analysis presented that the AEI-CuCl 4 perovskite started to melt at 182 deg. C, together with the beginning of the decomposition of the hybrids. Compared with the organic-inorganic perovskite hybrids reported previously, the AEI-CuCl 4 perovskite shows a novel stepwise decomposition behavior

  5. Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.

    Science.gov (United States)

    Tan, Shu Min; Pumera, Martin

    2017-12-06

    Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.

  6. Interoperability In Multi-Layered Active Defense:The Need For Commonality And Robustness Between Active Defense Weapon Systems

    Science.gov (United States)

    2016-02-16

    into areas where there is no access to maritime platforms. Sea-based interceptor platforms have the ability to intercept targets at each stage of the...argues that the most efficient concept for integrating active defense weapon systems is a multi- layered architecture with redundant intercept ...faster data transfer and will prevent data loss. The need for almost 100% interception successes is increasing as the threat becomes more

  7. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  8. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  9. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    Science.gov (United States)

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.

    Science.gov (United States)

    Du, Yuzhang; Yu, Meng; Chen, Xiaofeng; Ma, Peter X; Lei, Bo

    20