WorldWideScience

Sample records for hyaluronan-modified magnetic nanoclusters

  1. Possibility of superradiance by magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V I; Yukalova, E P

    2011-01-01

    The possibility of realizing spin superradiance by an assembly of magnetic nanoclusters is analyzed. The known obstacles for realizing such a coherent radiation by magnetic nanoclusters are their large magnetic anisotropy, strong dephasing dipole interactions, and an essential nonuniformity of their sizes. In order to give a persuasive conclusion, a microscopic theory is developed, providing an accurate description of nanocluster spin dynamics. It is shown that, despite the obstacles, it is feasible to organize such a setup that magnetic nanoclusters would produce strong superradiant emission

  2. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  3. Effects of magnetic processing on electrochemical and photoelectrochemical properties of electrodes modified with nanoclusters of a phenothiazine-C60 linked compound

    International Nuclear Information System (INIS)

    Yonemura, H; Yamada, S; Wakita, Y; Moribe, S; Fujiwara, Y; Tanimoto, Y

    2009-01-01

    Effects of magnetic processing on morphological, electrochemical, and photoelectrochemical properties of electrodes modified with nanoclusters of a phenothiazine-C 60 linked compound with four methylene group (Ph(4)C 60 ) were examined in the absence and presence of magnetic processing with three different magnetic environments due to strong magnetic field. The AFM measurements indicated that the morphologies of nanostructures of Ph(4)C 60 varied with magnetic enviroments as comparison with that in the absence of magnetic processing. At top position (5.6 T; - 940 T 2 /m) with hypogravity, large spherical nanoclusters (60∼70 nm diameter) were observed as comparion with those (ca. 20 nm diameter) in the absence of magnetic processing. At middle positon (15 T; 0 T 2 /m) with normal gravity, the fiber-like nanostructure was observed. At bottom position (9.8 T; + 1070T 2 /m) with hypergravity, the rod-like nanostrucure was observed. The interesting results might be ascribed to the different solvent properties due to the different rates of evaporation of two solvents in the toluene-acetonitrile mixed solvent during drying process under various magnetic environments. First reduction peaks due to C 60 moiety of Ph(4)C 60 nanostrucures in the presence of magnetic processing at three different positions were negative-shifted as comparison with that in the absence of magnetic processing. Potential dependencies of the photocurrents of the electrodes modified with Ph(4)C 60 nanostrucures in the presence of magnetic processing at three positions were also different from that in the absence of magnetic processing. The magnetic field effects in AFM, and electrochemical and photoelectrochemical measurements are most likely ascribed to the difference of the reduction potentials due to C 60 clusters between the absence and presence of magnetic processing due to the morphological change of Ph(4)C 60 nanostrucures.

  4. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    International Nuclear Information System (INIS)

    Meerod, Siraprapa; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2015-01-01

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown

  5. Effects of magnetic processing on electrochemical and photoelectrochemical properties of electrodes modified with nanoclusters of a phenothiazine-C{sub 60} linked compound

    Energy Technology Data Exchange (ETDEWEB)

    Yonemura, H; Yamada, S [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Wakita, Y; Moribe, S [Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Fujiwara, Y; Tanimoto, Y [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: yonemura@mail.cstm.kyushu-u.ac.jp

    2009-03-01

    Effects of magnetic processing on morphological, electrochemical, and photoelectrochemical properties of electrodes modified with nanoclusters of a phenothiazine-C{sub 60} linked compound with four methylene group (Ph(4)C{sub 60}) were examined in the absence and presence of magnetic processing with three different magnetic environments due to strong magnetic field. The AFM measurements indicated that the morphologies of nanostructures of Ph(4)C{sub 60} varied with magnetic enviroments as comparison with that in the absence of magnetic processing. At top position (5.6 T; - 940 T{sup 2}/m) with hypogravity, large spherical nanoclusters (60{approx}70 nm diameter) were observed as comparion with those (ca. 20 nm diameter) in the absence of magnetic processing. At middle positon (15 T; 0 T{sup 2}/m) with normal gravity, the fiber-like nanostructure was observed. At bottom position (9.8 T; + 1070T{sup 2}/m) with hypergravity, the rod-like nanostrucure was observed. The interesting results might be ascribed to the different solvent properties due to the different rates of evaporation of two solvents in the toluene-acetonitrile mixed solvent during drying process under various magnetic environments. First reduction peaks due to C{sub 60} moiety of Ph(4)C{sub 60} nanostrucures in the presence of magnetic processing at three different positions were negative-shifted as comparison with that in the absence of magnetic processing. Potential dependencies of the photocurrents of the electrodes modified with Ph(4)C{sub 60} nanostrucures in the presence of magnetic processing at three positions were also different from that in the absence of magnetic processing. The magnetic field effects in AFM, and electrochemical and photoelectrochemical measurements are most likely ascribed to the difference of the reduction potentials due to C{sub 60} clusters between the absence and presence of magnetic processing due to the morphological change of Ph(4)C{sub 60} nanostrucures.

  6. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...... source in which the helium carrier gas was mixed with hydrogen. RBS revealed that oxidation of the Co nanoclusters is considerably reduced by the presence of hydrogen during cluster formation. The capping did not modify the influence of the passivation. The hydrogen passivation method is especially...... effective in cases when capping of the films is not desirable, for example for magnetic studies. Clear differences in the magnetic domain structures between hydrogen passivated and non-passivated Co nanocluster films were demonstrated by MFM and are attributed to a difference in inter-cluster magnetic...

  7. Magnetic properties of MnAs nanoclusters embedded in a GaAs semiconductor matrix

    International Nuclear Information System (INIS)

    Hai, Pham Nam; Takahashi, Keisuke; Yokoyama, Masafumi; Ohya, Shinobu; Tanaka, Masaaki

    2007-01-01

    We have clarified fundamental magnetic properties of MnAs nanoclusters (10 nm in diameter) embedded in a thin GaAs matrix (referred to as GaAs:MnAs) through tunneling magnetoresistance (TMR) characteristics of magnetic tunnel junctions (MTJs) consisting of a GaAs:MnAs thin film and a MnAs metal thin film as ferromagnetic electrodes. Although MnAs nanoclusters have coercive forces as small as 150 Oe at 7 K, they show unusually high blocking temperature, which is as large as 300 K. The remanent magnetization of the MnAs nanocluster system linearly decreases with increasing temperature. Those magnetic behaviors cannot be explained by the non-interacting particle model, revealing the important existence of dipolar interactions in MnAs nanocluster system

  8. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  9. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  10. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    Science.gov (United States)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  11. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  12. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  13. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2014-01-01

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe 3 O 4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  14. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  15. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  16. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  17. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  18. Evolution of magnetism of Cr nanoclusters on a Au(111) surface

    Science.gov (United States)

    Gotsis, Harry; Kioussis, Nicholas; Papaconstantopoulos, Dimitri

    2004-03-01

    Advances in low-temperature scanning tunneling microscopy under ultrahigh vacuum have provided new opportunities for investigating the magnetic structures of nanoclusters adsorbed on surfaces. Recent STM studies of Cr trimers on the Au(111) surface suggest a switching between two distinct electronic states. We have carried out ab initio electronic structure calculations to investigate the structural, electronic and magnetic properties of isolated Cr atoms, Cr dimers and trimers in different geometry. We will present results for the evolution of magnetic behavior including noncollinear magnetism and provide insight in the connection between magnetism and geometry.

  19. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    Science.gov (United States)

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be

  20. Controlling adsorption of albumin with hyaluronan on silica surfaces and sulfonated latex particles.

    Science.gov (United States)

    Berts, Ida; Fragneto, Giovanna; Porcar, Lionel; Hellsing, Maja S; Rennie, Adrian R

    2017-10-15

    Polysaccharides are known to modify binding of proteins at interfaces and this paper describes studies of these interactions and how they are modified by pH. Specifically, the adsorption of human serum albumin on to polystyrene latex and to silica is described, focusing on how this is affected by hyaluronan. Experiments were designed to test how such binding might be modified under relevant physiological conditions. Changes in adsorption of albumin alone and the co-adsorption of albumin and hyaluronan are driven by electrostatic interactions. Multilayer binding is found to be regulated by the pH of the solution and the molecular mass and concentration of hyaluronan. Highest adsorption was observed at pH below 4.8 and for low molecular mass hyaluronan (≤150kDa) at concentrations above 2mgml -1 . On silica with grafted hyaluronan, albumin absorption is reversed by changes in solvent pH due to their strong electrostatic attraction. Albumin physisorbed on silica surfaces is also rinsed away with dilute hyaluronan solution at pH 4.8. The results demonstrate that the protein adsorption can be controlled both by changes of pH and by interaction with other biological macromolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2008-01-01

    In this work, the morphological and magnetic properties of cobalt nanoclusters obtained from two different sulphate electrolyte solutions were studied. The aggregates were electrodeposited onto highly oriented pyrolytic graphite electrodes in overpotential conditions, in order to investigate the cationic influence on the final properties of the aggregates. In both cases, scanning electron microscopy and atomic force microscopy showed random isolated clusters on the electrode surface, where size variations were determined by the electrolyte solution. By using magnetic force microscopy, the distribution of the electrodeposited magnetic material was more clearly observed which gave some insights on the growth mechanism of these aggregates.

  2. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  3. Hyaluronan in human malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Sironen, R.K. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Tammi, M.; Tammi, R. [Institute of Biomedicine, Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Auvinen, P.K. [Department of Oncology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Anttila, M. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Gynecology and Obstetrics, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Kosma, V-M., E-mail: Veli-Matti.Kosma@uef.fi [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  4. Hyaluronan in human malignancies

    International Nuclear Information System (INIS)

    Sironen, R.K.; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Kosma, V-M.

    2011-01-01

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  5. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    International Nuclear Information System (INIS)

    Mehrmohammadi, M; Qu, M; Emelianov, S Y; Yoon, K Y; Johnston, K P

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.

  6. Eco-friendly (green) synthesis of magnetically active gold nanoclusters

    Science.gov (United States)

    Kadasala, Naveen Reddy; Lin, Lu; Gilpin, Christopher; Wei, Alexander

    2017-12-01

    Au-FexOy composite nanoparticles (NPs) are of great technological interest due to their combined optical and magnetic properties. However, typical syntheses are neither simple nor ecologically friendly, creating a challenging situation for process scale-up. Here we describe conditions for preparing Au-FexOy NPs in aqueous solutions and at ambient temperatures, without resorting to solvents or amphiphilic surfactants with poor sustainability profiles. These magnetic gold nanoclusters (MGNCs) are prepared in practical yields with average sizes slightly below 100 nm, and surface plasmon resonances that extend to near-infrared wavelengths, and sufficient magnetic moment (up to 6 emu g-1) to permit collection within minutes by handheld magnets. The MGNCs also produce significant photoluminescence when excited at 488 nm. Energy dispersive X-ray (EDX) analysis indicates a relatively even distribution of Fe within the MGNCs, as opposed to a central magnetic core.

  7. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Yang R

    2016-12-01

    Full Text Available Rui-Meng Yang,1,* Chao-Ping Fu,2,* Jin-Zhi Fang,1 Xiang-Dong Xu,1 Xin-Hua Wei,1 Wen-Jie Tang,1 Xin-Qing Jiang,1 Li-Ming Zhang2 1Department of Radiology, Guangzhou First People’s Hospital, Guangzhou Medical University, 2School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, China *These authors contributed equally to this work Abstract: Theranostic nanoparticles with both imaging and therapeutic abilities are highly promising in successful diagnosis and treatment of the most devastating cancers. In this study, the dual-modal imaging and photothermal effect of hyaluronan (HA-modified superparamagnetic iron oxide nanoparticles (HA-SPIONs, which was developed in a previous study, were investigated for CD44 HA receptor-overexpressing breast cancer in both in vitro and in vivo experiments. Heat is found to be rapidly generated by near-infrared laser range irradiation of HA-SPIONs. When incubated with CD44 HA receptor-overexpressing MDA-MB-231 cells in vitro, HA-SPIONs exhibited significant specific cellular uptake and specific accumulation confirmed by Prussian blue staining. The in vitro and in vivo results of magnetic resonance imaging and photothermal ablation demonstrated that HA-SPIONs exhibited significant negative contrast enhancement on T2-weighted magnetic resonance imaging and photothermal effect targeted CD44 HA receptor-overexpressing breast cancer. All these results indicated that HA-SPIONs have great potential for effective diagnosis and treatment of cancer. Keywords: iron oxide nanoparticles, surface functionalization, bioactive glycosaminoglycan, magnetic resonance imaging, cellular uptake, breast carcinoma

  8. Phenomenological model of nanocluster in polymer matrix

    International Nuclear Information System (INIS)

    Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.

    2010-01-01

    The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)

  9. Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Petran, Anca; Radu, Teodora; Nan, Alexandrina [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania); Olteanu, Diana; Filip, Adriana, E-mail: adrianafilip33@yahoo.com; Clichici, Simona; Baldea, Ioana [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology (Romania); Suciu, Maria; Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania)

    2017-01-15

    The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe{sub 3}O{sub 4} magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100–200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.

  10. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    International Nuclear Information System (INIS)

    Nishida, Yoshihiro; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-01-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion

  11. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  12. Tuning the magnetic interactions in GaAs:Mn/MnAs hybrid structures by controlling shape and position of MnAs nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Elm, Matthias Thomas

    2010-07-01

    In this work the magnetic properties of hexagonal MnAs nanoclusters and their influence on the transport properties of GaAs:Mn /MnAs hybrid structures were studied. Various arrangements of isolated nanoclusters and cluster chains were grown on (111)B-GaAs substrates by SA-MOVPE. The first part of this work deals with the manufacturing process of the different cluster arrangements investigated. By a suitable pre-structuring of the substrate it was possible to influence the cluster size, cluster shape and cluster position systematically. Preparing various arrangements it could be shown that the hexagonal nanoclusters prefer to grow along their a-axes. In the second part, the magnetic properties of the nanoclusters were studied. Ferromagnetic resonance (FMR) measurements show a hard magnetic axis perpendicular to the sample plane, i.e. parallel to the c-axis. By measurements, where the magnetic field was rotated in the sample plane, it could be demonstrated that the orientation of the magnetization can be forced into a certain direction by controlling the cluster shape. These results are confirmed by measurements using magnetic force microscopy. The third part deals with the influence of the nanoclusters and their arrangement on the transport properties of the GaAs:Mn matrix. For temperatures above 30 K the structures investigated show positive as well as negative magnetoresistance effects, which are typical for granular GaAs:Mn/MnAs hybrid structures. This behaviour can be explained in the context of transport in extended band states. The size of the magnetoresistance effects correlates strongly with the respective cluster arrangement of the sample. This behaviour has been predicted theoretically and could be confirmed experimentally in the context of this work. Below 30 K large positive magnetoresistance effects show up for the regular cluster arrangements, which cannot be observed for hybrid structures with random cluster distributions. These large positive

  13. Preparation of Au Nanoclusters-Modified Polylactic Acid Fiber with Bright Red Fluorescence and its Use as Sensing Probe.

    Science.gov (United States)

    Zhu, Wenli; Li, Huili; Wan, Ajun; Liu, Lanbo

    2017-01-01

    In present work, the Au nanoclusters-modified polylactic acid fiber (PLA-Au NCs) with bright red fluorescence were fabricated by the encapsulation of Au nanoclusters (Au NCs) in the PLA fiber treated with H 2 O 2 . The Au 25 nanoclusters stabilized by bovine serum albumin (BSA-Au NCs) were prepared via an improved "green" synthetic routine. With pretreatment of the PLA fiber in H 2 O 2 concentration of 12 and 18 %, the as-prepared PLA-Au NCs exhibited brighter red emission with a strong peak centered at ~640 nm than BSA-Au NCs. The fluorescence can be quenched by nitric oxide (NO). A good linear relationship between the relative fluorescence quenching intensity of the as-prepared PLA-Au NCs and the concentration of NO can be obtained in the range of 0.0732 to 0.7320 mM, and the detection limit was 0.0070 mM.

  14. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  15. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    International Nuclear Information System (INIS)

    Kaur, Maninder; Qiang, You; Dai, Qilin; Tang, Jinke; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr ( 2 O 3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs

  16. Production methods for hyaluronan

    NARCIS (Netherlands)

    Boeriu, C.G.; Springer, J.; Kooy, F.K.; Broek, van den L.A.M.; Eggink, G.

    2013-01-01

    Hyaluronan is a polysaccharide with multiple functions in the human body being involved in creating flexible and protective layers in tissues and in many signalling pathways during embryonic development, wound healing, inflammation, and cancer. Hyaluronan is an important component of active

  17. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Dai, Qilin; Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Bowden, Mark; Engelhard, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, Idaho 83401 (United States)

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  18. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    Science.gov (United States)

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  19. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    Science.gov (United States)

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Construction of multilayers of bare and Pd modified gold nanoclusters and their electrocatalytic properties for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Motoko Harada, Hidenori Noguchi, Nikolas Zanetakis, Satoru Takakusagi, Wenbo Song and Kohei Uosaki

    2011-01-01

    Full Text Available Multilayers of gold nanoclusters (GNCs coated with a thin Pd layer were constructed using GNCs modified with self-assembled monolayers (SAMs of mercaptoundecanoic acid and a polyallylamine hydrochloride (PAH multilayer assembly, which has been reported to act as a three-dimensional electrode. SAMs were removed from GNCs by electrochemical anodic decomposition and then a small amount of Pd was electrochemically deposited on the GNCs. The kinetics of the oxygen reduction reaction (ORR on the Pd modified GNC/PAH multilayer assembly was studied using a rotating disk electrode, and a significant increase in the ORR rate was observed after Pd deposition. Electrocatalytic activities in alkaline and acidic solutions were compared both for the GNC multilayer electrode and Pd modified GNC electrode.

  1. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    International Nuclear Information System (INIS)

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-01-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  2. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: anne.kultti@uku.fi [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Pasonen-Seppaenen, Sanna [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Jauhiainen, Marjo [Department of Pharmaceutical Chemistry, University of Kuopio, FIN-70211 Kuopio (Finland); Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I. [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland)

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  3. Hyaluronan: from biomimetic to industrial business strategy.

    Science.gov (United States)

    Murano, Erminio; Perin, Danilo; Khan, Riaz; Bergamin, Massimo

    2011-04-01

    Hyaluronan (hyaluronic acid) is a naturally occurring polysaccharide of a linear repeating disaccharide unit consisting of beta-(1-->4)-linked D-glucopyranuronic acid and beta-(1-->3)-linked 2-acetamido-2-deoxy-D-glucopyranose, which is present in extracellular matrices, the synovial fluid of joints, and scaffolding that comprises cartilage. In its mechanism of synthesis, its size, and its physico-chemical properties, hyaluronan is unique amongst other glycosaminoglycans. The network-forming, viscoelastic and its charge characteristics are important to many biochemical properties of living tissues. It is an important pericellular and cell surface constituent; its interaction with other macromolecules such as proteins, participates in regulating cell behavior during numerous morphogenic, restorative, and pathological processes in the body. The knowledge of HA in diseases such as various forms of cancers, arthritis and osteoporosis has led to new impetus in research and development in the preparation of biomaterials for surgical implants and drug conjugates for targeted delivery. A concise and focused review on hyaluronan is timely. This review will cover the following important aspects of hyaluronan: (i) biological functions and synthesis in nature; (ii) current industrial production and potential biosynthetic processes of hyaluronan; (iii) chemical modifications of hyaluronan leading to products of commercial significance; and (iv) and the global market position and manufacturers of hyaluronan.

  4. Removal rate of [3H]hyaluronan injected subcutaneously in rabbits

    International Nuclear Information System (INIS)

    Reed, R.K.; Laurent, U.B.; Fraser, J.R.; Laurent, T.C.

    1990-01-01

    Hyaluronan is an important constituent of the extracellular matrix in skin, and recent studies suggest that there is a pool of easily removable (free) hyaluronan drained by lymph. The removal rate of free hyaluronan in skin was measured from the elimination of [ 3 H]hyaluronan, injected subcutaneously in 13 rabbits. The removal of radioactivity was determined from appearance of 3 H in plasma. During the first 24 h after injection, 10-87% of the tracer entered blood, less in injectates with high concentrations of hyaluronan. The removal was monoexponential with a half-life of 0.5-1 day when concentration of hyaluronan was 5 mg/ml or less. When hyaluronan concentration was 10 mg/ml or higher, the removal was slow for about 24 h and then became similar to that in experiments with low hyaluronan concentration. Free hyaluronan at physiological concentrations is thus turned over with the same rate as serum albumin, supporting the concept that hyaluronan is removed essentially by lymph flow to be degraded in lymph nodes and liver

  5. Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    2000-01-01

    We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.

  6. Removal rate of ( sup 3 H)hyaluronan injected subcutaneously in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.K.; Laurent, U.B.; Fraser, J.R.; Laurent, T.C. (Univ. of Bergen (Norway))

    1990-08-01

    Hyaluronan is an important constituent of the extracellular matrix in skin, and recent studies suggest that there is a pool of easily removable (free) hyaluronan drained by lymph. The removal rate of free hyaluronan in skin was measured from the elimination of ({sup 3}H)hyaluronan, injected subcutaneously in 13 rabbits. The removal of radioactivity was determined from appearance of {sup 3}H in plasma. During the first 24 h after injection, 10-87% of the tracer entered blood, less in injectates with high concentrations of hyaluronan. The removal was monoexponential with a half-life of 0.5-1 day when concentration of hyaluronan was 5 mg/ml or less. When hyaluronan concentration was 10 mg/ml or higher, the removal was slow for about 24 h and then became similar to that in experiments with low hyaluronan concentration. Free hyaluronan at physiological concentrations is thus turned over with the same rate as serum albumin, supporting the concept that hyaluronan is removed essentially by lymph flow to be degraded in lymph nodes and liver.

  7. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Altered expression of versican and hyaluronan in melanocytic tumors of dogs.

    Science.gov (United States)

    Docampo, María-José; Rabanal, Rosa M; Miquel-Serra, Laia; Hernández, Daniel; Domenzain, Clelia; Bassols, Anna

    2007-12-01

    To analyze the expression of versican and hyaluronan in melanocytomas and malignant melanomas of dogs, to correlate their expression with expression of the hyaluronan receptor CD44, and to identify enzymes responsible for the synthesis and degradation of hyaluronan in canine dermal fibroblasts and canine melanoma cell lines. 35 biopsy specimens from melanocytic tumors of dogs, canine primary dermal fibroblasts, and 3 canine melanoma cell lines. Versican, hyaluronan, and CD44 were detected in tumor samples by use of histochemical or immunohistochemical methods. Expression of hyaluronan-metabolizing enzymes was analyzed with a reverse transcriptase-PCR assay. Versican was found only in some hair follicles and around some blood vessels in normal canine skin, whereas hyaluronan was primarily found within the dermis. Hyaluronan was found in connective tissue of the oral mucosa. Versican and, to a lesser extent, hyaluronan were significantly overexpressed in malignant melanomas, compared with expression in melanocytomas. No significant difference was found between malignant tumors from oral or cutaneous origin. The expression of both molecules was correlated, but hyaluronan had a more extensive distribution than versican. Versican and hyaluronan were mainly associated with tumor stroma. Canine fibroblasts and melanoma cell lines expressed hyaluronan synthase 2 and 3 (but not 1) and hyaluronidase 1 and 2. Versican may be useful as a diagnostic marker for melanocytic tumors in dogs. Knowledge of the enzymes involved in hyaluronan metabolism could reveal new potential therapeutic targets.

  9. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  10. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  11. Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Nykopp, Timo K; Rilla, Kirsi; Tammi, Markku I; Tammi, Raija H; Sironen, Reijo; Hämäläinen, Kirsi; Kosma, Veli-Matti; Heinonen, Seppo; Anttila, Maarit

    2010-01-01

    Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), and correlated them with hyaluronan content and HAS1-3 immunoreactivity. A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10), post-menopausal proliferative endometrium (n = 5), complex atypical hyperplasia (n = 4), grade 1 (n = 8) and grade 2 + 3 (n = 8) endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry. The mRNA levels of HAS1-3 were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, HAS3 mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003). The median of HYAL1 mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006), and post-menopausal endometrium (p = 0.002), respectively. HYAL2 mRNA was also reduced in cancer (p = 0.02) and correlated with HYAL1 (r = 0.8, p = 0.0001). There was an inverse correlation between HYAL1 mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001). The results indicated that HYAL1 and HYAL2 were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for HASs were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan

  12. Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy

    Science.gov (United States)

    Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui

    2017-09-01

    A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.

  13. Hyaluronan and Stone Disease

    Science.gov (United States)

    Asselman, Marino

    2008-09-01

    Kidney stones cannot be formed as long as crystals are passed in the urine. However, when crystals are retained it becomes possible for them to aggregate and form a stone. Crystals are expected to be formed not earlier than the distal tubules and collecting ducts. Studies both in vitro and in vivo demonstrate that calcium oxalate monohydrate crystals do not adhere to intact distal epithelium, but only when the epithelium is proliferating or regenerating, so that it possesses dedifferentiated cells expressing hyaluronan, osteopontin (OPN) and their mutual receptor CD44 at the apical cell membrane. The polysaccharide hyaluronan is an excellent crystal binding molecule because of its negative ionic charge. We hypothesized that the risk for crystal retention in the human kidney would be increased when tubular cells express hyaluronan at their apical cell membrane. Two different patient categories in which nephrocalcinosis frequently occurs were studied to test this hypothesis (preterm neonates and kidney transplant patients). Hyaluronan (and OPN) expression at the luminal membrane of tubular cells indeed was observed, which preceded subsequent retention of crystals in the distal tubules. Tubular nephrocalcinosis has been reported to be associated with decline of renal function and thus further studies to extend our knowledge of the mechanisms of retention and accumulation of crystals in the kidney are warranted. Ultimately, this may allow the design of new strategies for the prevention and treatment of both nephrocalcinosis and nephrolithiasis in patients.

  14. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  15. Enzymatic production of hyaluronan oligo- and polysaccharides

    NARCIS (Netherlands)

    Kooy, F.K.

    2010-01-01

    Hyaluronan oligo- and polysaccharides are abundant in the human body. Depending on the chain length, hyaluronan is an important structural component or is involved in influencing cell responses during embryonic development, healing processes, inflammation and cancer. Due to these diverse roles of

  16. Importance of hyaluronan biosynthesis and degradation in cell differentiation and tumor formation

    Directory of Open Access Journals (Sweden)

    Heldin P.

    2003-01-01

    Full Text Available Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

  17. Factors that influence serum hyaluronan levels in hemodialysis patients.

    Science.gov (United States)

    de Medina, M; Ashby, M; Diego, J; Pennell, J P; Hill, M; Schiff, E R; Perez, G O

    1999-01-01

    Serum hyaluronan levels are increased in dialysis patients. We evaluated several factors that influence serum hyaluronan levels in 184 patients on chronic hemodialysis (duration 2.3 +/- 2.3 [SD] years). The levels were higher than normal in the whole group and in a subgroup of 133 patients without chronic infection, liver disease, or rheumatoid arthritis (215 +/- 19 and 205 +/- 22 microg/L, respectively). There was a tendency for the levels to be higher in a subgroup of patients with hepatitis c virus (HCV) infection. There was no correlation between hyaluronan levels, alanine aminotransferase (ALT), and duration or dose of dialysis. A weak but highly significant negative correlation between serum albumin levels and serum hyaluronan and ferritin levels was seen. The data suggest that chronic inflammation may explain, at least in part, the increased hyaluronan levels found in chronic dialysis patients.

  18. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li

    2007-01-01

    Hyaluronan (HA) plays a predominant role in tissue morphogenesis, cell migration, proliferation, and cell differentiation. The aims of the present study were to investigate whether (i) prolonged presence of high concentration (4.0 mg/mL) 800 KDa HA and (ii) pretreatment with HA can modify osteoge...

  19. Hyaluronan in vaginal secretions: association with recurrent vulvovaginal candidiasis.

    Science.gov (United States)

    Lev-Sagie, Ahinoam; Nyirjesy, Paul; Tarangelo, Nicholas; Bongiovanni, Ann Marie; Bayer, Cynthia; Linhares, Iara M; Giraldo, Paulo C; Ledger, William J; Witkin, Steven S

    2009-08-01

    We evaluated whether vaginal concentrations of hyaluronan were altered in women with recurrent vulvovaginal candidiasis (RVVC). Lavage samples from 17 women with acute RVVC, 27 women who were receiving a maintenance antifungal regimen, and 24 control women were tested for hyaluronan and interleukin (IL)-6, IL-12, and IL-23 by enzyme-linked immunosorbent assay. Median vaginal hyaluronan concentrations were 33.8 ng/mL (range, 21.6-66.3 ng/mL) in women with acute RVVC, 15.0 ng/mL (range, 11.2-50.6 ng/mL) in women who were receiving maintenance therapy, and 4.2 ng/mL (range, 3.6-12.0 ng/mL) in control subjects (P vaginal hyaluronan concentration was 27.4 ng/mL (range, 15.4-37.7 ng/mL) when Candida was detected by microscopy and 9.5 ng/mL (range, 7.7-14.6 ng/mL) in microscopy-negative cases (P = .0354). Elevated hyaluronan levels were associated with itching plus burning (40.7 ng/mL) or itching plus discharge (42.1 ng/mL), as opposed to itching only (6.2 ng/mL; P = .0152). Hyaluronan and IL-6 levels were correlated (P = .0009). Hyaluronan release is a component of the host response to a candidal infection and may contribute to symptoms.

  20. Nanocluster production for solar cell applications

    International Nuclear Information System (INIS)

    Al Dosari, Haila M.; Ayesh, Ahmad I.

    2013-01-01

    This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.6–8.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (I SC ), open circuit voltage (V OC ), fill factor, and efficiency (η) were obtained under light source with an intensity of 30 mW/cm 2 . A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency

  1. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    consisting of non-homogeneous phospholipid bilayer with hyaluronan/DPPC aggregates on top. The presence of these aggregates generates a long-range repulsive surface force as two such surfaces are brought together. However, the aggregates are easily deformed, partly rearranged into multilayer structures......Phospholipids and hyaluronan have been implied to fulfil important roles in synovial joint lubrication. Since both components are present in synovial fluid, self-assembly structures formed by them should also be present. We demonstrate by small angle X-ray scattering that hyaluronan associates...... with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...

  2. Fabrication and modification of metal nanocluster composites using ion and laser beams

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Osborne, D.H. Jr.; Magruder, R.H. III; White, C.W.; Zuhr, R.A.; Townsend, P.D.; Hole, D.E.; Leuchtner, R.E.

    1994-12-01

    Metal nanocluster composites have attractive properties for applications in nonlinear optics. However, traditional fabrication techniques -- using melt-glass substrates -- are severely constrained by equilibrium thermodynamics and kinetics. This paper describes the fabrication of metal nanoclusters in both crystalline and glassy hosts by ion implantation and pulsed laser deposition. The size and size distribution of the metal nanoclusters can be modified by controlling substrate temperature during implantation, by subsequent thermal annealing, or by laser irradiation. The authors have characterized the optical response of the composites by absorption and third-order nonlinear-optical spectroscopies; electron and scanning-probe microscopies have been used to benchmark the physical characteristics of the composites. The outlook for controlling the structure and nonlinear optical response properties of these nanophase materials appears increasingly promising

  3. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    Science.gov (United States)

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  4. Targeted Delivery of Hyaluronan-Immobilized Magnetic Ceramic Nanocrystals.

    Science.gov (United States)

    Wu, Hsi-Chin; Wang, Tzu-Wei; Hsieh, Shun-Yu; Sun, Jui-Sheng; Kang, Pei-Leun

    2016-01-01

    Effective cancer therapy relies on delivering the therapeutic agent precisely to the target site to improve the treatment outcome and to minimize side effects. Although surgery, chemotherapy, and radiotherapy are the standard methods commonly used in clinics, hyperthermia has been developed as a new and promising strategy for cancer therapy. In this study, magnetic bioceramic hydroxyapatite (mHAP) nanocrystals have been developed as heat mediator for intracellular hyperthermia. Hyaluronic acid (HA) modified mHAP nanocrystals are synthesized by a wet chemical precipitation process to achieve active targeting. The results demonstrate that the HA targeting moiety conjugated by a poly(ethylene glycol) (PEG) spacer arm is successfully immobilized on the surface of mHAP. The HA-modified mHAP possesses relatively good biocompatibility, an adequate biodegradation rate and superparamagnetic properties. The HA-modified mHAP could be localized and internalized into HA receptor-overexpressed malignant cells (e.g., MDA-MB-231 cell) and used as the heat generating agent for intracellular hyperthermia. The results from this study indicate that biocompatible HA-modified mHAP shows promise as a novel heat mediator and a specific targeting nanoagent for intracellular hyperthermia cancer therapy.

  5. Expression of Hyaluronan Synthases (HAS1–3) and Hyaluronidases (HYAL1–2) in Serous Ovarian Carcinomas: Inverse Correlation between HYAL1 and Hyaluronan Content

    International Nuclear Information System (INIS)

    Nykopp, Timo K; Anttila, Maarit; Rilla, Kirsi; Sironen, Reijo; Tammi, Markku I; Tammi, Raija H; Hämäläinen, Kirsi; Heikkinen, Anna-Mari; Komulainen, Marja; Kosma, Veli-Matti

    2009-01-01

    Hyaluronan, a tumor promoting extracellular matrix polysaccharide, is elevated in malignant epithelial ovarian tumors, and associates with an unfavorable prognosis. To explore possible contributors to the accumulation of hyaluronan, we examined the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), correlated with hyaluronidase enzyme activity hyaluronan content and HAS1–3 immunoreactivity. Normal ovaries (n = 5) and 34 serous epithelial ovarian tumors, divided into 4 groups: malignant grades 1+2 (n = 10); malignant grade 3 (n = 10); borderline (n = 4) and benign epithelial tumors (n = 10), were analyzed for mRNA by real-time RT-PCR and compared to hyaluronidase activity, hyaluronan staining, and HAS1–3 immunoreactivity in tissue sections of the same specimens. The levels of HAS2 and HAS3 mRNA (HAS1 was low or absent), were not consistently increased in the carcinomas, and were not significantly correlated with HAS protein or hyaluronan accumulation in individual samples. Instead, the median of HYAL1 mRNA level was 69% lower in grade 3 serous ovarian cancers compared to normal ovaries (P = 0.01). The expression of HYAL1, but not HYAL2, significantly correlated with the enzymatic activity of tissue hyaluronidases (r = 0.5; P = 0.006). An inverse correlation was noted between HYAL1 mRNA and the intensity of hyaluronan staining of the corresponding tissue sections (r = -0.4; P = 0.025). The results indicate that in serous epithelial ovarian malignancies HAS expression is not consistently elevated but HYAL1 expression is significantly reduced and correlates with the accumulation of hyaluronan. (233 words)

  6. Stabilizing and Organizing Bi3 Cu4 and Bi7 Cu12 Nanoclusters in Two-Dimensional Metal-Organic Networks.

    Science.gov (United States)

    Yan, Linghao; Xia, Bowen; Zhang, Qiushi; Kuang, Guowen; Xu, Hu; Liu, Jun; Liu, Pei Nian; Lin, Nian

    2018-04-16

    Multinuclear heterometallic nanoclusters with controllable stoichiometry and structure are anticipated to possess promising catalytic, magnetic, and optical properties. Heterometallic nanoclusters with precise stoichiometry of Bi 3 Cu 4 and Bi 7 Cu 12 can be stabilized in the scaffold of two-dimensional metal-organic networks on a Cu(111) surface through on-surface metallosupramolecular self-assembly processes. The atomic structures of the nanoclusters were resolved using scanning tunneling microscopy and density functional theory calculations. The nanoclusters feature highly symmetric planar hexagonal shapes and core-shell charge modulation. The clusters are arranged as triangular lattices with a periodicity that can be tuned by choosing molecules of different size. This work shows that on-surface metallosupramolecular self-assembly creates unique possibilities for the design and synthesis of multinuclear heterometallic nanoclusters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  8. Effect of cold rolling on the formation and distribution of nanoclusters during pre-aging in an Al–Mg–Si alloy

    International Nuclear Information System (INIS)

    Serizawa, A.; Sato, T.; Miller, M.K.

    2013-01-01

    The effect of high densities of dislocations on the formation behavior of two types of nano-scale clusters (nanoclusters), which are formed at room temperature or during pre-aging at ∼373 K in an Al–Mg–Si alloy, was investigated by atom probe tomography. Cold rolling was applied to modify the formation behavior and/or the characteristics of the nanoclusters and also the precipitation sequence, which involve both nanoclusters and a strengthening phase to improve the bake-hardening response. Nanoclusters formed during pre-aging tended to form along the dislocations. Cold rolling accelerated the preferential formation of the nanoclusters, whereas the number density of the nanoclusters decreased by cold rolling before pre-aging. However, the number density of the nanoclusters was considerably higher than that of the β″ phase. Cold rolling before pre-aging enhanced the age-hardenability the most compared with other processes such as the contemporary pre-aging process. It is considered that the nanoclusters along dislocations lead to the preferential transformation to the β″ phase and then the rapid growth of the β″ phase. The nanoclusters formed on dislocations are effective in improving the bake-hardening response for the duration of the bake-hardening process. The kinetics and the distribution of the nanoclusters were found to be affected by the dislocations which were induced by cold rolling.

  9. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    International Nuclear Information System (INIS)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu

    2014-01-01

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO 4 3- ) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications

  10. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2014-02-15

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO{sub 4}{sup 3-}) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

  11. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  12. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Tang, Bingtao, E-mail: tangbt@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wu, Suli; Gao, Zhanming; Ju, Benzhi [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Teng, Xiaoxu [School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 (China); Zhang, Shufen [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2017-02-01

    Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot solvothermal route with 5-sulfosalicylic acid (SSA) as the functional ligand in a mixed-solvent system of diethylene glycol/ethylene glycol (DEG/EG). Nucleation and aggregation growth model was responsible for the formation of secondary structure of the clusters. In the process, the size of the clusters can be effectively controlled by varying the amounts of SSA and the volume ratio of DEG/EG. The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value of about 68.7 emu g{sup −1} at room temperature. The water-soluble small-molecule SSA grafted on the surface of Fe{sub 3}O{sub 4} nanocrystals rendered the superparamagnetic clusters dispersible in water, which is crucial for potential applications in biomedical fields. - Graphical abstract: 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size by a mixed-solvent system of DEG/EG. - Highlights: • Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot 5-sulfosalicylic acid assisted solvothermal route. • The size of the clusters are tunable by varying the amounts of 5-sulfosalicylic acid and the volume ratio of DEG/EG. • The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value. • The 5-sulfosalicylic acid grafted Fe{sub 3}O{sub 4} nanoclusters can be dispersed in water.

  13. Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1995-11-01

    The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids

  14. Hyaluronan Biosynthesis in Prostate Cancer

    National Research Council Canada - National Science Library

    McCarthy, James B

    2006-01-01

    Despite advances in the diagnosis and treatment of prostate cancer in the last several years metastasis represents the major cause of frustration and failure in the successful treatment of prostate cancer patients. Hyaluronan (HA...

  15. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level

    Directory of Open Access Journals (Sweden)

    Athanasia Kostopoulou

    2018-05-01

    Full Text Available Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40–85 nm are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem©. Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.

  16. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level.

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Fragogeorgi, Eirini; Anthousi, Amalia; Manna, Liberato; Begin-Colin, Sylvie; Billotey, Claire; Ranella, Anthi; Loudos, George; Athanassakis, Irene; Lappas, Alexandros

    2018-05-09

    Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite) nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40⁻85 nm) are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem © . Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.

  17. Provisional matrix: A role for versican and hyaluronan.

    Science.gov (United States)

    Wight, Thomas N

    2017-07-01

    Hyaluronan and versican are extracellular matrix (ECM) components that are enriched in the provisional matrices that form during the early stages of development and disease. These two molecules interact to create pericellular "coats" and "open space" that facilitate cell sorting, proliferation, migration, and survival. Such complexes also impact the recruitment of leukocytes during development and in the early stages of disease. Once thought to be inert components of the ECM that help hold cells together, it is now quite clear that they play important roles in controlling cell phenotype, shaping tissue response to injury and maintaining tissue homeostasis. Conversion of hyaluronan-/versican-enriched provisional matrix to collagen-rich matrix is a "hallmark" of tissue fibrosis. Targeting the hyaluronan and versican content of provisional matrices in a variety of diseases including, cardiovascular disease and cancer, is becoming an attractive strategy for intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-α-dependent pathway in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-01-01

    Highlights: ► Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. ► Adiponectin also increases the phosphorylation of AMPK. ► A pharmacological activator of AMPK increases mRNA levels of PPARα and HAS2. ► Adiponectin-induced HAS2 mRNA expression is blocked by a PPARα antagonist. ► Adiponectin promotes hyaluronan synthesis via an AMPK/PPARα-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1β-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-α (PPARα), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPARα antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPARα-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  19. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  20. One-step microwave-assisted synthesis of water-dispersible Fe3O4 magnetic nanoclusters for hyperthermia applications

    Science.gov (United States)

    Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John

    2017-10-01

    To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.

  1. {Fe6O2}-Based Assembly of a Tetradecanuclear Iron Nanocluster

    Directory of Open Access Journals (Sweden)

    Svetlana G. Baca

    2011-01-01

    Full Text Available The tetradecanuclear FeIII pivalate nanocluster [Fe14O10(OH4(Piv18], comprising a new type of metal oxide framework, has been solvothermally synthesized from a hexanuclear iron pivalate precursor in dichlormethane/acetonitrile solution. Magnetic measurements indicate the presence of very strong antiferromagnetic interactions in the cluster core.

  2. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light

    Directory of Open Access Journals (Sweden)

    Ting-Wei Liao

    2018-01-01

    Full Text Available In this study, we applied cluster beam deposition (CBD as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML equivalents. Scanning Electron Microscopy (SEM images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML and aggregate at higher coverage (8 ML. A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 × 10−6 over a period of 93 h. These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.

  3. Effect of depletion of interstitial hyaluronan on hydraulic conductance in rabbit knee synovium

    Science.gov (United States)

    Coleman, P J; Scott, D; Abiona, A; Ashhurst, D E; Mason, R M; Levick, J R

    1998-01-01

    The hydraulic resistance of the synovial lining to fluid outflow from a joint cavity () is important for the retention of intra-articular lubricant. The resistance has been attributed in part to extracellular glycosaminoglycans, including hyaluronan and chondroitin sulphates. Increased permeability in joints infused with testicular hyaluronidase, which digests both chondroitin sulphates and hyaluronan, supports this view. In this study the importance of interstitial hyaluronan per se was assessed using leech and Streptomyces hyaluronidases, which degrade only hyaluronan. Ringer solution was infused into the knee joint cavity of anaesthetized rabbits for 30 min, with or without hyaluronidase, after which intra-articular pressure (Pj) was raised and the relation between pressure and outflow determined. Treatment with Streptomyces, leech or testicular hyaluronidases increased the fluid escape rates by similar factors, namely 4- to 6-fold. After Streptomyces hyaluronidase treatment the slope d/dPj, which at low pressures represents synovial hydraulic conductance, increased from a control of 0.90 ± 0.20 μl min−1 cmH2O−1 (mean ± s.e.m., n = 6) to 4.52 ± 0.70 μl min−1 cmH2O−1. The slope d/dPj increased to a similar level after testicular hyaluronidase, namely to 4.14 ± 1.06 μl min−1 cmH2O−1 (control, 0.54 ± 0.24 μl min−1 cmH2O−1). Streptomyces and leech hyaluronidases were as effective as testicular hyaluronidase (no statistically significant differences) despite differences in substrate specificity. It was shown using histochemical and immunohistochemical techniques that hyaluronan was removed from the synovium by leech, Streptomyces and testicular hyaluronidases. The binding of antibodies 2-B-6 and 3-B-3 showed that the core proteins of the chondroitin sulphate proteoglycans remained intact after treatment with hyaluronidases, and the binding of 5-D-4 showed that keratan sulphate was unaffected. An azocasein digestion assay confirmed that the

  4. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    Science.gov (United States)

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  5. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-03-02

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  6. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  7. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis

    NARCIS (Netherlands)

    Kooy, F.K.; Muyuan Ma,; Beeftink, H.H.; Eggink, G.; Tramper, J.; Boeriu, C.G.

    2009-01-01

    Hyaluronan (HA) is a polysaccharide with high-potential medical applications, depending on the chain length and the chain length distribution. Special interest goes to homogeneous HA oligosaccharides, which can be enzymatically produced using Pasteurella multocida hyaluronan synthase (PmHAS). We

  8. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  9. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  10. Direct immobilization of antibodies on Zn-doped Fe_3O_4 nanoclusters for detection of pathogenic bacteria

    International Nuclear Information System (INIS)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin

    2017-01-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe_3O_4 nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S_t_h_i_o_l bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  11. Experimental measurements of U60 nanocluster stability in aqueous solution

    Science.gov (United States)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  12. The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation.

    Science.gov (United States)

    Trommer, Hagen; Wartewig, Siegfried; Böttcher, Rolf; Pöppl, Andreas; Hoentsch, Joachim; Ozegowski, Jörg H; Neubert, Reinhard H H

    2003-03-26

    The effects of hyaluronan and its degradation products on irradiation-induced lipid peroxidation were investigated. Liposomal skin lipid models with increasing complexity were used. Hyaluronan and its fragments were able to reduce the amount of lipid peroxidation secondary products quantified by the thiobarbituric acid (TBA) assay. The qualitative changes were studied by mass spectrometry. To elucidate the nature of free radical involvement electron paramagnetic resonance (EPR) studies were carried out. The influence of hyaluronan and its fragments on the concentration of hydroxyl radicals generated by the Fenton system was examined using the spin trapping technique. Moreover, the mucopolysaccharide's ability to react with stable radicals was checked. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) showed no concentration changes of the stable radical caused by hyaluronan. Hyaluronan was found to exhibit prooxidative effects in the Fenton assay in a concentration dependent manner. A transition metal chelation was proposed as a mechanism of this behavior. Considering human skin and its constant exposure to UV light and oxygen and an increased pool of iron in irradiated skin the administration of hyaluronan or its fragments in cosmetic formulations or sunscreens could be helpful for the protection of the human skin. Copyright 2003 Elsevier Science B.V.

  13. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  14. Molecular interactions in particular Van der Waals nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Jungclas, Hartmut; Schmidt, Lothar [Marburg Univ. (Germany). Chemistry Dept.; Komarov, Viacheslav V.; Popova, Anna M. [Marburg Univ. (Germany). Chemistry Dept.; Lomonosov Moscow State Univ. (Russian Federation). Skobeltzin Inst. of Nuclear Physics

    2017-04-01

    A method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M{sub 0}) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M{sub 1} and M{sub 2}) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M{sub 0} is a linear hydrocarbon molecule C{sub 5}H{sub 10} and M{sub 1} and M{sub 2} are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M{sub 0}, M{sub 1}) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M{sub 0}, M{sub 1}) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.

  15. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    Science.gov (United States)

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  16. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  17. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  19. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  20. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  1. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  2. Hyaluronan Protects Bovine Articular Chondrocytes against Cell Death Induced by Bupivacaine under Supraphysiologic Temperatures

    Science.gov (United States)

    Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2013-01-01

    Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to

  3. Exchange bias in reduced dimensions: cobalt nanocluster arrays underthe influence of nanometer thin MnPt capping layers

    Czech Academy of Sciences Publication Activity Database

    Sessi, V.; Hertenberger, S.; Zhang, J.; Schmitz, D.; Gsell, S.; Schreck, M.; Morel, R.; Brenac, A.; Honolka, Jan; Kern, K.

    2014-01-01

    Roč. 113, č. 12 (2014), "123903-1"-"123903-10" ISSN 0021-8979 Institutional support: RVO:68378271 Keywords : antiferromagnetism * cobalt * nanoclusters * quenching * superparamagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  4. Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites

    Science.gov (United States)

    2016-05-01

    composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene-ethylene...enhancement of the BSA- protected gold nanoclusters and the corresponding conformational changes of protein, J Phys Chem C. 2013;117:639–647...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research focuses on the uses of polymer gold nanocluster (PNC

  5. Direct immobilization of antibodies on Zn-doped Fe{sub 3}O{sub 4} nanoclusters for detection of pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin, E-mail: jeons@postech.ac.kr

    2017-02-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe{sub 3}O{sub 4} nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S{sub thiol} bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  6. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering.

    Science.gov (United States)

    La Gatta, Annalisa; Ricci, Giulia; Stellavato, Antonietta; Cammarota, Marcella; Filosa, Rosanna; Papa, Agata; D'Agostino, Antonella; Portaccio, Marianna; Delfino, Ines; De Rosa, Mario; Schiraldi, Chiara

    2017-10-01

    In the field of cartilage engineering, continuing efforts have focused on fabricating scaffolds that favor maintenance of the chondrocytic phenotype and matrix formation, in addition to providing a permeable, hydrated, microporous structure and mechanical support. The potential of hyaluronan-based hydrogels has been well established, but the ideal matrix remains to be developed. This study describes the development of hyaluronan sponges-based scaffolds obtained by lysine methyl-ester crosslinking. The reaction conditions are optimized with minimal chemical modifications to obtain materials that closely resemble elements in physiological cellular environments. Three hydrogels with different amounts of crosslinkers were produced that show morphological, water-uptake, mechanical, and stability properties comparable or superior to those of currently available hyaluronan-scaffolds, but with significantly fewer hyaluronan modifications. Primary human chondrocytes cultured with the most promising hydrogel were viable and maintained lineage identity for 3 weeks. They also secreted cartilage-specific matrix proteins. These scaffolds represent promising candidates for cartilage engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication and in vitro characterization of gadolinium-based nanoclusters for simultaneous drug delivery and radiation enhancement

    Science.gov (United States)

    Yoo, Shannon S.; Guo, Linghong; Sun, Xuejun; Shaw, Andrew R.; Yuan, Zhipeng; Löbenberg, Raimar; Roa, Wilson H.

    2016-09-01

    We report the synthesis of a gadolinium hydroxide (Gd(OH)3) nanorod based doxorubicin (Dox) delivery system that can enhance both magnetic resonance imaging contrast and radiation sensitivity. A simple and cost effective wet-chemical method was utilized in the presence of manganese (Mn) ions and Dox to produce the Gd(OH)3:Mn·Dox nanocluster structure. The Gd(OH)3:Mn·Dox nanocluster was composed of Mn-doped Gd(OH)3 nanorods arranged in parallel with Dox as a linker molecule between the adjacent nanorods. No other studies have utilized Dox as both the linker and therapeutic molecule in a nanostructure to date. The Gd(OH)3 nanorod is reported to have no significant cellular or in vivo toxicity, which makes it an ideal base material for this biomedical application. The Gd(OH)3:Mn·Dox nanocluster exhibited paramagnetic behavior and was stable in a colloidal solution. The nanocluster also enabled high Dox loading capacity and specifically released Dox in a sustained and pH-dependent manner. The positively charged Gd(OH)3:Mn·Dox nanoclusters were readily internalized into MDA-MB-231 breast cancer cells via endocytosis, which resulted in intracellular release of Dox. The released Dox in cells was effective in conferring cytotoxicity and inhibiting proliferation of cancer cells. Furthermore, a synergistic anticancer effect could be observed with radiation treatment. Overall, the Gd(OH)3:Mn·Dox nanocluster drug delivery system described herein may have potential utility in clinics as a multifunctional theranostic nanoparticle with combined benefits in both diagnosis and therapy in the management of cancer.

  9. Microwave-heating synthesis and sensing applications of bright gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    He, Ding-Fei; Xiang, Yang; Wang, Xu [Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yu, Xue-Feng, E-mail: yxf@whu.edu.cn [Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We establish a microwave-heating method to synthesize protein-stabilized Au nanoclusters. Black-Right-Pointing-Pointer The obtained Au nanoclusters show bright red fluorescence. Black-Right-Pointing-Pointer The Au nanoclusters can be used as efficient fluorescence probe for Cu{sup 2+} ion sensing. -- Abstract: A rapid microwave-heating method has been developed for the synthesis of bright Au nanoclusters by using bull serum albumin as the template in an aqueous environment. The reaction time needed is only 7.0 min, and the weight of the products at one batch can reach 15 g. The Au nanoclusters exhibit bright fluorescence at {approx}613 nm with quantum yield of {approx}6.0%. By adjusting the pH value, the products can be controlled to precipitate or re-disperse in aqueous solution. Furthermore, the Au nanoclusters have exhibited high sensitivity and selectivity in the determination of Cu{sup 2+} ions in water. These results suggest an efficient method for obtaining metal nanoclusters for the detection and sensing applications.

  10. Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials

    International Nuclear Information System (INIS)

    Suzdalev, I.P.

    2005-01-01

    Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered

  11. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry.

    Science.gov (United States)

    Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M

    2017-02-10

    The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hyaluronan polymeric micelles for topical drug delivery

    Czech Academy of Sciences Publication Activity Database

    Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angelesa, G.; Marek Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, Dominika; Velebný, V.

    2017-01-01

    Roč. 156, JAN 20 (2017), s. 86-96 ISSN 0144-8617 Institutional support: RVO:61388971 Keywords : Skin penetration * Polymeric micelle * Hyaluronan Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.811, year: 2016

  13. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  14. Experimental measurements of U24Py nanocluster behavior in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Shannon L.; Szymanowski, Jennifer E.S.; Fein, Jeremy B. [Univ. of Notre Dame, IN (United States). Department of Civil and Environmental Engineering and Earth Sciences; Dembowski, Mateusz [Univ. of Notre Dame, IN (United States). Department of Chemistry and Biochemistry; Burns, Peter C. [Univ. of Notre Dame, IN (United States). Department of Civil and Environmental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Department of Chemistry and Biochemistry

    2016-07-01

    Uranyl peroxide nanoclusters may impact the mobility and partitioning of uranium at contaminated sites and could be used in the isolation of uranium during the reprocessing of nuclear waste. Their behavior in aqueous systems must be better understood to predict the environmental fate of uranyl peroxide nanoclusters and for their use in engineered systems. The aqueous stability of only one uranyl peroxide nanocluster, U60 (K{sub 16}Li{sub 44}[UO{sub 2}(O{sub 2})OH]{sub 60}), has been studied to date [Flynn, S. L., Szymanowski, J. E. S., Gao, Y., Liu, T., Burns, P. C., Fein, J. B.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochemica et Cosmochimica Acta 156, 94-105 (2015)]. In this study, we measured the aqueous stability of a second uranyl peroxide nanocluster, U24Py (Na{sub 30}[(UO{sub 2}){sub 24}(O{sub 2}){sub 24}(HP{sub 2}O{sub 7}){sub 6}(H{sub 2}P{sub 2}O{sub 7}){sub 6}]), in batch systems as a function of time, pH, and nanocluster concentration, and then compared the aqueous behavior of U24Py to U60 to determine whether the size and morphology differences result in differences in their aqueous behaviors. Systems containing U24Py nanoclusters took over 30 days to achieve steady-state concentrations of monomeric U, Na, and P, illustrating slower reaction kinetics than parallel U60 systems. Furthermore, U24Py exhibited lower stability in solution than U60, with an average of 72% of the total mass in each nanocluster suspension being associated with the U24Py nanocluster, whereas 97% was associated with the U60 nanocluster in parallel experiments [Flynn, S. L., Szymanowski, J. E. S., Gao, Y., Liu, T., Burns, P. C., Fein, J. B.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochemica et Cosmochimica Acta 156, 94-105 (2015)]. The measurements from the batch experiments were used to calculate ion activity product (IAP) values for the reaction between the U24Py nanocluster and its constituent monomeric

  15. The Anomalies of Hyaluronan Structures in Presence of Surface Active Phospholipids—Molecular Mass Dependence

    Directory of Open Access Journals (Sweden)

    Piotr Bełdowski

    2018-03-01

    Full Text Available Interactions between hyaluronan (A- and phospholipids play a key role in many systems in the human body. One example is the articular cartilage system, where the synergistic effect of such interactions supports nanoscale lubrication. A molecular dynamics simulation has been performed to understand the process of formation of hydrogen bonds inside the hyaluronan network, both in the presence and absence of phospholipids. Additionally, the effect of the molecular mass of (A- was analyzed. The main finding of this work is a robust demonstration of the optimal parameters (H-bond energy, molecular mass influencing the facilitated lubrication mechanism of the articular cartilage system. Simulation results show that the presence of phospholipids has the greatest influence on hyaluronan at low molecular mass. We also show the specific sites of H-bonding between chains. Simulation results can help to understand how hyaluronan and phospholipids interact at several levels of articular cartilage system functioning.

  16. A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters

    International Nuclear Information System (INIS)

    Chevrier, D M; Chatt, A; Zhang, P; Sham, T K

    2013-01-01

    Tiopronin-capped gold nanoparticles and gold nanoclusters of sizes 3.0 and 1.5 nm, respectively, were investigated with XAFS at the gold L 3 -edge. The specific EXAFS fitting procedure is discussed for obtaining reliable fit parameters for each system. The difficulties and challenges faced when analysing EXAFS data for gold nanoparticles and nanoclusters are also mentioned. Fitting results for gold nanoparticles reveal a small amount of surface Au-thiolate interactions with a large Au-Au metal core. For gold nanoclusters, only a one-shell fit was obtainable. Instead of Au-Au metal core, long-range interactions are expected for gold nanoclusters. Tiopronin-capped gold nanoclusters are proposed to be polymeric in nature, which helps explain the observed red luminescence.

  17. Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma.

    Science.gov (United States)

    Delpech, B; Maingonnat, C; Girard, N; Chauzy, C; Maunoury, R; Olivier, A; Tayot, J; Creissard, P

    1993-01-01

    Hyaluronan (HA) and the hyaluronan-binding glycoprotein hyaluronectin (HN) were measured in 23 gliomas and 8 meningiomas and their location was revisited in 35 tumours. A clear-cut difference was found in the HN/HA ratio values of glioblastomas (below 0.5) and that of astrocytomas (above 0.5 P edification of the extracellular matrix. In meningiomas only the stroma would be responsible for HA and HN production.

  18. Modified BEM calculations on magnetic systems

    International Nuclear Information System (INIS)

    Christoph, V.; Toepfer, J.

    1998-01-01

    A modified boundary element method is presented for the calculation of 3d magnetic fields of magnetic systems including any permanent and soft magnetic materials as well as current distributions. Using an automatic mesh generation inside the magnetic bodies the method is especially suited for the investigation of open air gap systems. The influence of eddy currents on the magnetisation process can be investigated. For illustration, the flux concentration by pole pieces and the generation of magnetic stripe structures in magnetic thick films by pulse fields are considered. (orig.)

  19. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm)

    Science.gov (United States)

    Martin, Matthew N.; Li, Dawei; Dass, Amala; Eah, Sang-Kee

    2012-06-01

    An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning.An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning. Electronic supplementary information (ESI) available: Experimental details of gold nanocluster synthesis and mass-spectrometry. See DOI: 10.1039/c2nr30890h

  20. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  1. Atomistic fingerprint of hyaluronan-CD44 binding

    DEFF Research Database (Denmark)

    Vuorio, Joni; Vattulainen, Ilpo; Martinez-Seara, Hector

    2017-01-01

    that hyaluronan can bind CD44 with three topographically different binding modes that in unison define an interaction fingerprint, thus providing a plausible explanation for the disagreement between the earlier studies. Our results confirm that the known crystallographic mode is the strongest of the three binding...

  2. Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials

    Energy Technology Data Exchange (ETDEWEB)

    Ribis, J., E-mail: joel.ribis@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Thual, M.A. [LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette (France); Guilbert, T.; Carlan, Y. de [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legris, A. [UMET, CNRS/UMR 8207, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq (France)

    2017-02-15

    ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y{sub 2}O{sub 3} ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y{sub 2}Ti{sub 2}O{sub 7}-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters. - Highlights: • The nanoclusters display a f.c.c. cubic symmetry and a non-equilibrium YTiCrO chemical composition. • During thermal annealing the coherent nanocluster transform into semi-coherent pyrochlore particles. • A Cr ring is observed around the relaxed pyrochlore type particles.

  3. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  4. Structural, magnetic and electronic properties of FenPt13−n clusters with n=0–13: A first-principle study

    International Nuclear Information System (INIS)

    Du, Xiaoli; Liu, Chuan; Zhang, Shengli; Wang, Peng; Huang, Shiping; Tian, Huiping

    2014-01-01

    The structural, magnetic and electronic properties of Fe n Pt 13−n (n=0–13) nanoclusters are investigated using a density functional theory. It is found that the original icosahedra structure of Fe n Pt 13−n nanoclusters with n=3–8 deforms completely and exhibits the maximum Fe–Pt bonds. Furthermore, all the energetically preferable Fe n Pt 13−n (n=0–13) nanoclusters are found to be ferromagnetic coupling, and the magnetic moments of both Fe and Pt are enhanced. The large exchange splitting between the majority and the minority spin states indicates high magnetic moments based on the analysis of electronic density of states. In addition, electrons transfer from Fe to Pt atoms enhances the local atomic magnetic moments of Fe and Pt in Fe n Pt 13−n nanoclusters. - Highlights: • Magnetic properties of Fe n Pt 13−n are investigated using the density functional theory. • Structure of Fe n Pt 13−n nanoclusters with n=3–8 deforms completely. • Electron transfer from Fe to Pt atoms enhances local atomic magnetic moments. • The large exchange splitting in the spin states indicates high magnetic moments

  5. Formation of nanoclusters of gadolinium atoms in silicon

    International Nuclear Information System (INIS)

    Iliev, Kh.M.; Saparniyazova, Z.M.; Ismajlov, K.A.; Madzhitov, M.Kh.

    2011-01-01

    A technology of stage wise low temperature diffusion of gadolinium into silicon that makes it possible to form nanoclusters of impurity atoms with a significant magnetic moment distributed throughout the volume of the material has been developed. It is shown that, unlike the samples obtained by high temperature diffusion doping, the samples prepared by the new technology do not have surface erosion, and alloys and silicides are not formed in the near surface region. Nanoclusters of impurity atoms of gadolinium in the volume of the crystal lattice of the silicon are studied using an MIK-5 infrared microscope. It is found that, in the stage wise low temperature diffusion, the temperature and time of the diffusion have an effect not only on the depth of penetration of the impurities but also on the sizes of the resulting clusters; these factors can also prevent the formation of clusters. The study of the effect of low temperature treatments on the size and distribution of clusters shows that, upon annealing in the temperature range of 500-700 degrees Celsius, the ordering of the clusters of gadolinium impurity atoms is observed. A further increase in the annealing temperature leads to the destruction of gadolinium clusters in the silicon bulk. (authors)

  6. Hybrid Complexes of High and Low Molecular Weight Hyaluronans Highly Enhance HASCs Differentiation: Implication for Facial Bioremodelling

    Directory of Open Access Journals (Sweden)

    Antonietta Stellavato

    2017-11-01

    Full Text Available Background/Aims: Adipose-derived Stem Cells (ASCs are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation. Methods: Comparative analyses using high (H and low (L molecular weight hyaluronans (HA, hyaluronan hybrid cooperative complexes (HCCs, and high and medium cross-linked hyaluronan based dermal fillers were performed. Human ASCs were characterized by flow cytometry using CD90, CD34, CD105, CD29, CD31, CD45 and CD14 markers. Then, cells were treated for 7, 14 and 21 days with hyaluronans. Adipogenic differentiation was evaluated using Oil red-O staining and expression of leptin, PPAR-γ, LPL and adiponectin using qRT-PCR. Adiponectin was analyzed by immunofluorescence, PPAR-γ and adiponectin were analyzed using western blotting. ELISA assays for adiponectin and leptin were performed. Results: HCCs highly affected ASCs differentiation by up-regulating adipogenic genes and related proteins, that were also secreted in the culture medium. H-HA and L-HA induced a lower level of ASCs differentiation. Conclusion: HCCs-based formulations clearly enhance adipogenic differentiation and proliferation, when compared with linear HA and cross-linked hyaluronans. Injection of HCCs in subdermal fat compartment may recruit and differentiate stem cells in adipocytes, and considerably improving fat tissue renewal.

  7. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  8. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-05-01

    Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to catalysis. This success resulted from the manipulation of the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal nanoclusters, such as doped Ag29 with five gold (Au) atoms leading to enhance its quantum yield with remarkable stability. We also developed half-doped (alloyed) cluster of Ni6 nanocluster with molybdenum (Mo). This enabled enhanced stability and better catalytic activity. The third metal nanocluster that we synthesized was Au28 nanocluster by using di-thiolate as the ligand stabilizer instead of mono-thiolate. The new metal clusters obtained have been characterized by spectroscopic, electrochemical and crystallographic methods.

  9. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    Science.gov (United States)

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  10. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  11. Deposition and characterization of Pt nanocluster films by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Prokeš, Jan; Polonskyi, Oleksandr; Čechvala, Juraj; Kousal, Jaroslav; Pešička, Josef; Hanuš, Jan; Biederman, Hynek

    2014-11-28

    In this study we report on the deposition of Pt nanocluster films prepared by gas aggregation source that was operated with argon as working gas. The aim of this study was optimization of deposition process as well as determination of properties of deposited nanocluster films and their temporal stability. It was found that the production of Pt nanoclusters reached maximum value for pressure of 100 Pa and increases monotonously with magnetron current. The deposition rate at optimized deposition conditions was 0.7 nm of the Pt nanocluster film per second. Deposited films were porous and composed of 4 nm Pt nanoclusters. The nanoclusters were metallic and no sights of their oxidation were observed after 1 year on open air as witnessed by X-ray photoelectron spectroscopy. Regarding the electrical properties, a dramatic decrease of the resistivity was observed with increasing amount of deposited nanoclusters. This decrease saturated for the films approximately 50 nm thick. Such behavior indicates transition between different mechanisms of electrical conductivity: charge hopping for thin discontinuous films and current conduction through conducting path formed when higher amount of nanoclusters is deposited. Different mechanisms of electrical conduction for thin and thick layers of Pt were confirmed by subsequent investigation of temperature dependence of resistivity. In addition, no changes in resistivity were observed after one year on open air that confirms stability of produced Pt nanocluster films. - Highlights: • Pt nanocluster films were deposited by gas aggregation nanocluster source. • Conditions leading to effective deposition of Pt nanocluster films were found. • Deposited nanocluster films have good temporal stability. • Electrical properties of Pt films were found to depend on their thickness.

  12. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-09-01

    Full Text Available Cetyltrimethyl ammonium bromide cationic (CTAB surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD, scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS. This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  13. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  14. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  15. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  16. Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Billo, Tadesse; Fu, Fang-Yu; Raghunath, Putikam; Shown, Indrajit; Chen, Wei-Fu; Lien, Hsiang-Ting; Shen, Tzu-Hsien; Lee, Jyh-Fu; Chan, Ting-Shan; Huang, Kuo-You; Wu, Chih-I; Lin, M C; Hwang, Jih-Shang; Lee, Chih-Hao; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-01

    One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO 2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO 2 (Ni/TiO 2[Vo] ) with built-in dual active sites for selective photocatalytic CO 2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO 2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO 2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO 2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer.

    Science.gov (United States)

    Skandalis, Spyros S; Gialeli, Chrisostomi; Theocharis, Achilleas D; Karamanos, Nikos K

    2014-01-01

    Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants. © 2014 Elsevier Inc. All rights reserved.

  18. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: cytological studies.

    Science.gov (United States)

    Rakkhumkaew, Numfon; Shibatani, Shigeo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2013-04-01

    Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Copyright © 2012 Wiley Periodicals, Inc.

  19. Hyaluronan, CD44, and Emmprin Regulate Lactate Efflux and Membrane Localization of Monocarboxylate Transporters in Human Breast Carcinoma Cells

    Science.gov (United States)

    Slomiany, Mark G.; Grass, G. Daniel; Robertson, Angela D.; Yang, Xiao Y.; Maria, Bernard L.; Beeson, Craig; Toole, Bryan P.

    2013-01-01

    Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin)is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells. PMID:19176383

  20. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    Science.gov (United States)

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  1. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  2. Self-organization of nanocluster δ-layers at ion-beam-mixed Si-SiO2 interfaces

    International Nuclear Information System (INIS)

    Roentzsch, L.

    2003-11-01

    This diploma thesis presents experimental evidence of a theoretical concept which predicts the self-organization of δ-layers of silicon nanoclusters in the buried oxide of a MOS-like structure. This approach of ''bottom-up'' structuring might be of eminent importance in view of future semiconductor memory devices. Unconventionally, a 15 nm thin SiO 2 layer, which is enclosed by a 50 nm poly-Si capping layer and the Si substrate, is irradiated with Si + ions. Ion impact drives the system to a state far from thermodynamic equilibrium, i.e. the local composition of the target is modified to a degree unattainable in common processes. A region of SiO x (x 2 matrix at a distance of ∼3 nm from the Si substrate. The physical mechanisms of ion mixing of the two Si-SiO 2 interfaces and subsequent phase separation, which result in the desired sample structure, are elucidated from the viewpoint of computer simulations. In addition, experimental evidence is presented based on various methods, including TEM, RBS, and SIMS. A novel method of Si nanocluster decoration is of particular importance which applies Ge as contrast enhancing element in TEM studies of tiny Si nanoclusters. (orig.)

  3. Size effect on the adsorption and dissociation of CO{sub 2} on Co nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haiyan; Cao, Dapeng; Fisher, Adrian [International Research Center for Soft Matter, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Johnston, Roy L. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Cheng, Daojian, E-mail: chengdj@mail.buct.edu.cn [International Research Center for Soft Matter, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2017-02-28

    Highlights: • Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters were predicted as the high-symmetry structures. • CO{sub 2} dissociation on the size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters was studied. • Co{sub 55} nanocluster possesses the highest activity relevant to CO{sub 2} dissociation. • A non-monotonous behavior of the dissociation barrier of CO{sub 2} with the size was found. - Abstract: Spin-polarized density functional theory calculations were carried out to study the adsorption and dissociation properties of CO{sub 2} on size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters. Based on genetic algorithm method, Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters were predicted as the most stable high-symmetry structures among these Co{sub n} (n = 2–58) nanoclusters from the Gupta potential. For the adsorption of CO{sub 2}, CO and O on size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters, the lowest adsorption strength is found for all the different adsorbates on Co{sub 55} nanocluster. For the dissociation of CO{sub 2} on these size-selected Co nanoclusters, the largest Co{sub 55} nanocluster possesses the greatest catalytic activity for the dissociation of CO{sub 2}, with the smallest reaction barrier of 0.38 eV. Our results reveal a non-monotonous behavior of the catalytic activities of Co nanoclusters on size, which is of fundamental interest for the design of new Co catalysts for the conversion of CO{sub 2}.

  4. Evolution of embedded lithium nanoclusters in lithium implanted alumina

    International Nuclear Information System (INIS)

    Gaikwad, P.V.; Sharma, S.K.; Mukherjee, S.; Sudarshan, K.; Kshirsagar, A.; Pujari, P.K.

    2016-01-01

    High dose of ion implantation followed by annealing is considered a feasible way to generate thermally stable nanoclusters inside a transparent host matrix. Low energy (50 keV) Li ions have been implanted into single crystals of alumina with different fluence (1 × 10"1"5–1 × 10"1"7 ions/cm"2). The samples have been annealed at temperatures ranging from 500 to 1100 °C in air in step of 100 °C. Depth dependent Doppler broadening measurements have been carried out using high purity germanium detector coupled to a variable energy slow positron beam. Fractional area in the central and wing regions of Doppler broadened annihilation radiation spectrum, namely, S- and W- parameters, were evaluated from each spectrum. Any variation in positron annihilation probability with valence and core electrons which occurs on trapping of positrons at a defect site is reflected in these parameters. The effect of ion fluence and annealing temperature on evolution of defects and formation of embedded Li nanoclusters have been studied by indexing the variation in line shape S- (W-) parameter as a function of positron implantation depth. These studies supplemented by theoretical calculations confirm that with annealing up to 700 °C, vacancy clusters are created due to the aggregation of vacancies wherein Li nanoclusters are formed. On annealing at higher temperature, there is evidence for the breakdown of these Li clusters leaving behind vacancy clusters in the samples. - Highlights: • Embedded Li nanoclusters are efficiently created by annealing Li implanted Al_2O_3 crystal. • Depth dependent DBAR is a suitable method to characterize embedded nanoclusters. • The formation of Li nanoclusters is assisted by vacancy migration to form clusters. • At very high annealing temperature (>1000 °C), Li nanoclusters undergo breakdown. • e"+ annihilation at V_A_l site shows a unique observation i.e. a reduction in S-parameter.

  5. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP.

    Directory of Open Access Journals (Sweden)

    Zhuowei Li

    Full Text Available Ozone exposure is associated with exacerbation of reactive airways disease. We have previously reported that the damage-associated molecular pattern, hyaluronan, is required for the complete biological response to ambient ozone and that hyaluronan fragments signal through toll-like receptor 4 (TLR4. In this study, we further investigated the role of TLR4 adaptors in ozone-induced airway hyperresponsiveness (AHR and the direct response to hyaluronan fragments (HA. Using a murine model of AHR, C57BL/6J, TLR4-/-, MyD88-/-, and TIRAP-/- mice were characterized for AHR after exposure to either ozone (1 ppm × 3 h or HA fragments. Animals were characterized for AHR with methacholine challenge, cellular inflammation, lung injury, and production of pro-inflammatory cytokines. Ozone-exposed C57BL/6J mice developed cellular inflammation, lung injury, pro-inflammatory cytokines, and AHR, while mice deficient in TLR4, MyD88 or TIRAP demonstrated both reduced AHR and reduced levels of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, IL-6 and KC. The level of hyaluronan was increased after inhalation of ozone in each strain of mice. Direct challenge of mice to hyaluronan resulted in AHR in C57BL/6J mice, but not in TLR4-/-, MyD88-/-, or TIRAP-/- mice. HA-induced cytokine production in wild-type mice was significantly reduced in TLR4-/-, MyD88-/-, or TIRAP-/- mice. In conclusion, our findings support that ozone-induced airway hyperresponsiveness is dependent on the HA-TLR4-MyD88-TIRAP signaling pathway.

  6. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    Science.gov (United States)

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dispersion of gold nanoclusters in TMBPA-polycarbonate by a combination of thermal embedding and vapour-induced crystallization

    International Nuclear Information System (INIS)

    Kruse, J; Dolgner, K; Greve, H; Zaporojtchenko, V; Faupel, F

    2006-01-01

    Gold nanoclusters can be dispersed into the surface of a bisphenol-A polycarbonate film by acetone vapour induced crystallization, an effect which has been demonstrated in a previous publication of our group. Gold nanoclusters were deposited by physical vapour deposition on an amorphous thin film of polycarbonate. After vapour induced crystallization these clusters were detected by depth profiling to be embedded into the surface, with a concentration maximum in a depth of approximately 100 nm. In this work, we replaced the BPA by the modified tetramethyl bisphenol-A polycarbonate, which shows a slower crystallization kinetics. A strong enhancement of the dispersion depth has been achieved by thermal pre-embedding of the clusters into the surface. Surface analysis by means of atomic force microscopy reflects the rearrangement of polymer material in the course of crystallization

  8. Generalized rate-equation analysis of excitation exchange between silicon nanoclusters and erbium ions

    International Nuclear Information System (INIS)

    Kenyon, A. J.; Wojdak, M.; Ahmad, I.; Loh, W. H.; Oton, C. J.

    2008-01-01

    We discuss the use of rate equations to analyze the sensitization of erbium luminescence by silicon nanoclusters. In applying the general form of second-order coupled rate-equations to the Si nanocluster-erbium system, we find that the photoluminescence dynamics cannot be described using a simple rate equation model. Both rise and fall times exhibit a stretched exponential behavior, which we propose arises from a combination of a strongly distance-dependent nanocluster-erbium interaction, along with the finite size distribution and indirect band gap of the silicon nanoclusters. Furthermore, the low fraction of erbium ions that can be excited nonresonantly is a result of the small number of ions coupled to nanoclusters

  9. Study of nanocluster-assembled ZnO thin films by nanocluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing [School of Electronic Science and Engieering, Southeast University, Nanjing (China); Tay, Beng Kang [School of Electronical and Electronic Engineering, Nanyang Technological University, Nanyang (Singapore)

    2012-01-15

    Nanocluster-assembled ZnO thin films were obtained by nanocluster-beam deposition, in which nanoclusters were produced by a magnetron sputtering gas aggregation source. Two kinds of ZnO thin films were obtained using this method with the one grown under the on-line heating temperature of 700 C, and the other grown without on-line heating. Film microstructure and optical properties are investigated by various diagnostic techniques. It was found that both of film microstructure of ZnO thin films keep wurtzite structure as that of ZnO bulk materials. The averaged particle size for the film grown without on-line heating is around 6 nm, which is a little lower than that grown with the on-line heating. It was also found that as increasing the wavelength, both of the absorbance spectra for the films decrease sharply near ultra-visible to extend slowly to the visible and infrared wavelength range. For the film grown without on-line heating, the bandgap energy was estimated to 3.77 eV, while for the film grown with on-line heating, the bandgap energy was redshift to 3.71 eV. Similar behavior was also found for PL spectra analysis, where PL spectrum exhibited a peak centered at 3.31 eV without on-line heating, while it redshift to 3.20 eV with on-line heating. The mechanisms behind these behaviors were presented in this article. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    Science.gov (United States)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  11. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  12. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  13. Silver Nanocluster Reparative Effect in Hernioplasty

    Directory of Open Access Journals (Sweden)

    Nikolay M. Anichkov

    2014-06-01

    Full Text Available Background: The acceleration of re-epithelialization and fibroblast differentiation were noted during the experiments with silver nanoclusters (SNs by interrupting the negative development of inflammation at the level of cytokines and promoting a positive course of reparative processes. The aim of this work was to elaborate the experimental model of prosthesis hernioplasty in subcutaneous and intraperitoneal locations of hernioprostheses with SNs, which allowed us to study the course of reparative reactions in all layers of the anterior abdominal wall. Material and Methods: We used a modified hernioprosthesis made from polyester fibers coated with a metal-polymer composition, including the stabilized SN in a concentration of 6.8 and 11.3 mg per 1 g of the hernioprosthesis mesh. During this research we used guinea pigs to study the in vivo tissue reactions. The clinical part of the study included the group of 212 patients who underwent removal of an inguinal hernia. We have identified various factors associated with infectious and toxic effects on the body by determining the level of the serum glutamate-pyruvate-transaminase (SGPT. Results: In implantation of the hernioprostheses, including the high concentration of SN in the laparotomy wound, the exudative component of the inflammation was weakly expressed. It was mostly the proliferative changes that took place. We did not find either CD8-positive type T lymphocytes or PAX5-positive type B activated cells in the exudate. Conclusion: Our research has shown that the use of hernioprostheses that include silver nanoclusters leads to the reduction of inflammation in the exudative phase and to a more favorable course of reparative processes.

  14. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  15. Magnetic field induced low temperature upturn of magnetization in highly Ca-doped La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3} polycrystalline compound

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kalipada, E-mail: kalipadadasphysics@gmail.com [Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 (India); Dasgupta, P.; Poddar, A. [CMP Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

    2017-06-15

    Highlights: • Magnetic field induced super paramagnetic nanoclusters formation. • Magnetic field dependent change of the curvature of the magnetization. • We report the training effect in polycrystalline La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3} compound. - Abstract: In our present study we have reported the magnetic properties of highly Ca-doped polycrystalline compound La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3}. Along with the conventional charge ordered antiferromagnetic ground state, a small ferromagnetic phase fraction is present at the low temperature. The effect of the external magnetic field markedly modifies the ground state of the compound. Our experimental results indicate that in addition to the ferromagnetic phase fraction, another field induced super paramagnetic phase grow at low temperature (T < 50 K) above H = 10 kOe magnetic field within the charge ordered antiferromagnetic matrix. The nature of the temperature dependent magnetization curves influenced by the external applied magnetic field was observed and analyzed using Langevin theory of super paramagnetism.

  16. Nanostructure of hyaluronan acyl-derivatives in the solid state

    Czech Academy of Sciences Publication Activity Database

    Chmelař, J.; Bělský, P.; Mrázek, J.; Švadlák, D.; Hermannová, M.; Šlouf, Miroslav; Krakovský, I.; Šmejkalová, D.; Velebný, V.

    2018-01-01

    Roč. 195, 1 September (2018), s. 468-475 ISSN 0144-8617 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 Keywords : hyaluronan * hydrophobization * nanostructure Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.811, year: 2016

  17. Synthesis and magnetic properties of prussian blue modified Fe nanoparticles

    International Nuclear Information System (INIS)

    Arun, T.; Prakash, K.; Justin Joseyphus, R.

    2013-01-01

    Fe nanoparticles are prepared using a unique polyol process and modified with prussian blue (PB) at various concentrations. The presence of PB in the Fe nanoparticles are confirmed from thermal, Fourier transform infrared spectroscopy and electron microscopic analyses. The prussian blue existed on ;the surface of the nanoparticles when the concentration is 200 μM and in excess with 1000 μM. ;Fe nanoparticles are reduced in size using Pt as nucleating agent and modified with the optimum concentration of PB. The saturation magnetization decreases with the concentration of PB whereas the coercivity is influenced by the size of the Fe nanoparticles. The presence of oxide layer in Fe nanoparticles helps in the surface modification with PB. The Fe nanoparticles of particle size 53 nm modified with 200 μM of PB showed a saturation magnetization of 110 emu/g. The magnetic properties suggest that the PB modified Fe nanoparticles are better candidates for detoxification applications. - Highlights: • Fe nanoparticles surface modified with prussian blue (PB) were synthesized. • Optimum PB concentration on size reduced Fe showed better magnetic properties. • Coercivity decreased with increasing concentration of PB. • Fe-PB nanoparticles could be used for detoxification applications

  18. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Kei; Yanagida, Shozo [Osaka Univ. (Japan). Graduate School of Engineering; Capel, M. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  19. pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters.

    Science.gov (United States)

    Waszkielewicz, Magdalena; Olesiak-Banska, Joanna; Comby-Zerbino, Clothilde; Bertorelle, Franck; Dagany, Xavier; Bansal, Ashu K; Sajjad, Muhammad T; Samuel, Ifor D W; Sanader, Zeljka; Rozycka, Miroslawa; Wojtas, Magdalena; Matczyszyn, Katarzyna; Bonacic-Koutecky, Vlasta; Antoine, Rodolphe; Ozyhar, Andrzej; Samoc, Marek

    2018-05-01

    Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

  20. Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palesch, E. [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic); Marek, A. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Solar, P.; Kylian, O. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Vyskocil, J. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Biederman, H. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Cech, V., E-mail: cech@fch.vutbr.cz [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic)

    2013-10-01

    The mechanical stability of nanoclusters embedded in nanocomposite coatings was investigated by scratch and wear tests supported by atomic force microscopy using surface topography mode. Titanium and plasma polymer nanoclusters were deposited on planar substrates (glass, titanium) using a magnetron-based gas aggregation cluster source. The deposited clusters were overcoated with a thin titanium film of different thicknesses to stabilize the position of the clusters in the nanocomposite coating. Nanotribological measurements were carried out to optimize the thickness of the overcoating film for sufficient interfacial adhesion of the cluster/film system. - Highlights: ► Titanium and plasma polymer nanoclusters were overcoated with thin titanium film. ► The mechanical stability of nanoclusters was characterized by nanotribological tests. ► The film thickness was optimized to stabilize the position of the clusters in coating.

  1. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  2. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan.

    Science.gov (United States)

    Wendling, Rian J; Christensen, Amanda M; Quast, Arthur D; Atzet, Sarah K; Mann, Brenda K

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30-40% modification. This was followed by an increase in viscosity around 45-50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions.

  3. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Chib, Rahul, E-mail: Rahul.chib@live.unthsc.edu [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Butler, Susan [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Raut, Sangram [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Shah, Sunil; Borejdo, Julian [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Gryczynski, Zygmunt [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Gryczynski, Ignacy, E-mail: ignacy.gryczynski@unthsc.edu [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2015-12-15

    In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The photophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties. - Highlights: • Tryptophan is easily accessible in native BSA compared to BSA Au nanoclusters. • Guanidine HCL denatures native BSA more compared to BSA Au nanoclusters. • High temperature decreases the quantum yield of tryptophan and BSA Au nanocluster. • Emission wavelength of BSA Au nanoclusters remains constant with increasing pH. • BSA Au nanoclusters are robust to the changes in their environments.

  4. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters

    International Nuclear Information System (INIS)

    Chib, Rahul; Butler, Susan; Raut, Sangram; Shah, Sunil; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2015-01-01

    In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The photophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties. - Highlights: • Tryptophan is easily accessible in native BSA compared to BSA Au nanoclusters. • Guanidine HCL denatures native BSA more compared to BSA Au nanoclusters. • High temperature decreases the quantum yield of tryptophan and BSA Au nanocluster. • Emission wavelength of BSA Au nanoclusters remains constant with increasing pH. • BSA Au nanoclusters are robust to the changes in their environments.

  5. Protein mediated synthesis of fluorescent Au-nanoclusters for metal sensory coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Fluorescent Au-nanocluster were successfully synthesized and used for the selective detection of Cu{sup 2} {sup +}. The synthesized Au-BSA-nanoclusters remain functional also after immobilization and show high thermal stability. Additionally, the transfer of the protein mediated Au-nanocluster synthesis route to S-layer proteins was achieved. (The presented work is part of the project BIONEWS dealing with long-term stable cells for the set-up and regeneration of sensor and actor materials for strategic relevant metals, in particular rare earth elements).

  6. Formation of ring-patterned nanoclusters by laser–plume interaction

    International Nuclear Information System (INIS)

    Sivayoganathan, Mugunthan; Tan Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures.

  7. Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging

    Directory of Open Access Journals (Sweden)

    Jie L-Y

    2012-07-01

    Full Text Available Li-Yong Jie,1 Li-Li Cai,2 Le-Jian Wang,2 Xiao-Ying Ying,2 Ri-Sheng Yu,1 Min-Ming Zhang,1 Yong-Zhong Du21Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 2College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of ChinaBackground: Magnetic resonance imaging (MRI is widely used in modern clinical medicine as a diagnostic tool, and provides noninvasive and three-dimensional visualization of biological phenomena in living organisms with high spatial and temporal resolution. Therefore, considerable attention has been paid to magnetic nanoparticles as MRI contrast agents with efficient targeting ability and cellular internalization ability, which make it possible to offer higher contrast and information-rich images for detection of disease.Methods: LTVSPWY peptide-modified PEGylated chitosan (LTVSPWY-PEG-CS was synthesized by chemical reaction, and the chemical structure was confirmed by 1H-NMR. LTVSPWY-PEG-CS-modified magnetic nanoparticles were prepared successfully using the solvent diffusion method. Their particle size, size distribution, and zeta potential were measured by dynamic light scattering and electrophoretic mobility, and their surface morphology was investigated by transmission electron microscopy. To investigate their selective targeting ability, the cellular uptake of the LTVSPWY-PEG-CS-modified magnetic nanoparticles was observed in a cocultured system of SKOV-3 cells which overexpress HER2 and A549 cells which are HER2-negative. The in vitro cytotoxicity of these nanoparticles in SKOV-3 and A549 cells was measured using the MTT method. The SKOV-3-bearing nude mouse model was used to investigate the tumor targeting ability of the magnetic nanoparticles in vivo.Results: The average diameter and zeta potential of the LTVSPWY-PEG-CS-modified magnetic nanoparticles was 267.3 ± 23.4 nm and 30.5 ± 7.0 mV, respectively, with a narrow size distribution and

  8. A DFT study for the structural and electronic properties of Zn m Se n nanoclusters

    Science.gov (United States)

    Yadav, Phool Singh; Pandey, Dheeraj Kumar

    2012-09-01

    An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.

  9. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.

    Science.gov (United States)

    He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun

    2018-03-14

    Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.

  10. Hyaluronan minimizes effects of UV irradiation on human keratinocytes

    Czech Academy of Sciences Publication Activity Database

    Hašová, M.; Crhák, Tomáš; Šafaříková, Barbora; Dvořáková, J.; Muthný, T.; Velebný, V.; Kubala, Lukáš

    2011-01-01

    Roč. 303, č. 4 (2011), s. 277-284 ISSN 0340-3696 R&D Projects: GA ČR(CZ) GA305/08/1704 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hyaluronan * keratinocyte * ultraviolet light Subject RIV: BO - Biophysics Impact factor: 2.279, year: 2011

  11. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  12. Effects of ventilation on hyaluronan and protein concentration in pleural liquid of anesthetized and conscious rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1998-01-01

    The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.

  13. Pressurized polyol synthesis of Al-doped ZnO nanoclusters with high electrical conductivity and low near-infrared transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Nyun; Shin, Chi-Ho [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of); Hwang, Duck Kun [Department of Corporate Diagnosis, Small and Medium Business Corporation, Seoul 150-718 (Korea, Republic of); Kim, Haekyoung [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Oh, Kyeongseok [Department of Chemical and Environmental Technology, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Hyun-Jong, E-mail: hjkim23@kitech.re.kr [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of)

    2015-09-25

    Highlights: • Low-temperature pressurized polyol method synthesized Al-doped ZnO nanoclusters. • Reaction time affected the doping efficiency, resistivity, and NIR transmittance. • The near-IR blocking efficiency of Al-doped ZnO (AZO) nanoclusters reached 85%. • AZO nanocluster coatings could be used for heat reflectors or artificial glasses. - Abstract: In this study, a novel pressurized polyol method is proposed to synthesize aluminum-doped ZnO (AZO) nanoclusters without utilizing additional thermal treatment to avoid the merging of nanoclusters. The size of the AZO nanoclusters range from 100 to 150 nm with a resistivity of 204 Ω cm. The AZO nanoclusters primarily consist of approximately 10-nm nanocrystals that form a spherically clustered morphology. A two-stage growth model has been proposed based on the results of scanning electron microscopy and transmission electron microscopy images, nanocluster sizes, and X-ray diffraction patterns. The primary AZO nanocrystals first nucleate under pressurized conditions and then spontaneously aggregate into larger nanoclusters. Optically, the AZO nanoclusters exhibit a significant decrease in the near-infrared (NIR) transmittance compared to pure ZnO nanoparticles. The NIR blocking efficiency of AZO nanoclusters reached 85%. Moreover, the doping efficiency, resistivity, and NIR transmittance of AZO nanoclusters are influenced by the reaction time in the pressurized polyol solution. On the other hand, the reaction time has no effect on the particle size and crystallinity. An optically transparent coating for the AZO nanoclusters, which consisted of iso-propanol solvent and ultraviolet-curable acrylic binder, was also demonstrated.

  14. High magnetoresistance at low magnetic fields in self-assembled ZnO-Co nanocomposite films.

    Science.gov (United States)

    Jedrecy, N; Hamieh, M; Hebert, C; Perriere, J

    2017-07-27

    The solid phase growth of self-assembled nanocrystals embedded in a crystalline host matrix opens up wide perspectives for the coupling of different physical properties, such as magnetic and semiconducting. In this work, we report the pulsed laser growth at room temperature of thin films composed of a dispersed array of ferromagnetic Co (0001) nanoclusters with an in-plane mono-size width of 1.3 nm, embedded in a ZnO (0001) crystalline matrix. The as-grown films lead to very high values of magnetoresistance, ranging at 9 T from -11% at 300 K to -19% at 50 K, with a steep decrease of the magnetoresistance at low magnetic fields. We establish the relationship between the magnetoresistance behavior and the magnetic response of the Co nanocluster assembly. A spin-dependent tunneling of the electrons between the Co nanoclusters through and by the semi-insulating ZnO host is achieved in our films, promising with regard to magnetic field sensors or Si-integrated spintronic devices. The effects of thermal annealing are also discussed.

  15. The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes

    Science.gov (United States)

    Dabaghmanesh, Samira; Neek-Amal, Mehdi; Partoens, Bart; Neyts, Erik C.

    2017-11-01

    Carbon supported metal oxide nanoparticles hold promise for various future applications in diverse areas including spintronics, catalysis and biomedicine. These applications, however, typically depend on the structure and morphology of the nanoparticles. In this contribution, we employ classical molecular dynamic simulations based on a recently developed force field to study the structural properties of Cr2O3 nanoclusters over graphene and carbon nanotubes. We observe that Cr2O3 nanoclusters tend to aggregate over both freestanding graphene and carbon nanotubes and form larger nanoclusters. These large nanoclusters are characterized by their worm-like shape with a lattice constant similar to that of bulk Cr2O3. We also investigate the structural deformation induced in graphene due to the presence of Cr2O3 nanoclusters.

  16. The effect of different doses of hyaluronan on sperm morphology, motility, vitality and fertilization capability in mouse

    Directory of Open Access Journals (Sweden)

    S. Sayadi

    2006-07-01

    Full Text Available Background: Hyaluronan has an important role on the permeability and motility of sperm and the interaction of gametes and these can play a considerable role on the fertility rate. Therefore, in this study, we assessed the effect of different doses of hyaluronan on the morphology, motility, vitality and fertility rate of mice. Methods: We used 40 mice (6-8 week in this study which twenty of them were male and the rest were female. The sperm of each male mouse were divided into four groups. The group 1 (control: They were maintained in RPMI media without any hyaluronan supplementation for 2 hour. Hyaluronan with the doses of 750, 1000 and 1250 µg/ml were added into RPMI media in groups 2, 3 and 4, respectively. After 2 hour. incubation, the numbers of sperms were assessed, using haemocytometer. Also, their morphology with papanicolaeu staining and their vitality with Eosin B dye were assessed. As well as sperms motility measured under inverted microscope by observation and fertility rate evaluated after routine IVF by counting two-cell stage embryos. Results: Our results demonstrated that, the dose of 750 µ g/ml has the greatest effect on the motility, vitality and fertility rate of sperms. The effect of dose of 1000 µ g/ml also was positive on them. On the other hand, none of these doses had any effect on sperm morphology. Conclusion: Hyaluronan may have an influence on motility, vitality and fertility rate of sperms and the dose of 750µ g/ml had a significant effect on these factors.

  17. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ge nanoclusters in PECVD-deposited glass caused only by heat treatment

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2008-01-01

    This paper reports the formation of Ge nanoclusters in a multi-layer structure consisting of alternating thin films of Ge-doped silica glass and SiGe, deposited by plasma-enhanced chemical vapor deposition (PECVD) and post annealed at 1100 °C in N2 atmosphere. We studied the annealed samples...... embedded with Ge nanoclusters after annealing. These nanoclusters are crystalline and varied in size. There were no clusters in the Ge-doped glass layer. Raman spectra verified the existence of crystalline Ge clusters. The positional shift of the Ge vibrational peak with the change of the focus depth...

  19. Gait patterns after intraarticular treatment of patients with osteoarthritis of the Knee - Hyaluronan versus triamcinolone: a prospective, randomized, doubleblind, monocentric study

    Directory of Open Access Journals (Sweden)

    Skwara A

    2009-04-01

    Full Text Available Abstract Objective Evaluation of gait performance and muscle activity patterns as well as clinical efficacy and safety after single intraarticular injection with hyaluronan compared with triamcinolone in patients with knee osteoarthritis. Materials and Methods This trial evaluated the influence of a single injection of hyaluronan or triamcinolone on gait pattern and muscle activity. For clinical evaluation a visual analogue scale for pain, Lequesne index, and Knee Society Score were used. Quality of life was assessed with the SF-36. Results The complete analysis was performed in 50 of 60 patients. 26 patients were treated with triamcinolone and 24 with hyaluronan. Hyaluronan treatment led to significant improvement of range of motion at hip and knee. Significant improvement could be either demonstrated for the pain scale, Lequesne and Knee Society score in both groups. Quality of life showed greater improvement in the triamcinolone group. Conclusion Single application of high-viscosity hyaluronan shows superior range of motion and pain reduction as well as improvement in clinical results. Even if there was a lack of significant differences compared to triamcinolone, this therapy classified as safe and effective in the short follow up.

  20. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  1. Rapid determination of iron oxide content in magnetically modified particulate materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Nýdlová, L.; Pospíšková, K.; Baldíková, E.; Maděrová, Z.; Šafaříková, Miroslava

    2016-01-01

    Roč. 26, June (2016), s. 114-117 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic iron oxide s * magnetic permeability meter * magnetically modified materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  2. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  3. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  4. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com; Guo, Zhengze, E-mail: zhzeguo@163.com; Li, Dehua, E-mail: lidehuafmmu@163.com

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.

  5. Peptide-stabilized, fluorescent silver nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon; Vosch, Tom André Jos; Jensen, Knud Jørgen

    2016-01-01

    Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA...

  6. Parylene nanocomposites using modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Luzuriaga, A. Ruiz de; Grande, H.; Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H.; Mecerreyes, D.; Cabanero, German

    2010-01-01

    Parylene/Fe 3 O 4 nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe 3 O 4 nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe 3 O 4 nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  7. Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiation

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2007-01-01

    This paper reports the formation of Ge nanoclusters in silica glass thin films deposited by plasma-enhanced chemical vapor deposition (PECVD). We studied the samples by transmission electron microscopy (TEM) and Raman spectroscopy after annealing. TEM investigation shows that the Ge nanoclusters...... at two areaswere formed by different mechanisms. The Ge nanoclusters formed in a single row along the interface of a silicon substrate and the silica glass film by annealing during high-temperature heat treatment. Ge nanoclusters did not initially form in the bulk of the film but could be subsequently...... formed by the electron-beam irradiation. The interface between the silicon substrate and the silica glass film was investigated by Raman spectroscopy. The shift of the Raman peaks around 286.8 cm−1 and 495 cm−1 suggests that the interface is a Si1−xGex alloy film and that the composition x varies along...

  8. The effect of different molecular weight hyaluronan on macrophage physiology

    Czech Academy of Sciences Publication Activity Database

    Krejčová, Daniela; Pekarová, Michaela; Šafránková, B.; Kubala, Lukáš

    2009-01-01

    Roč. 30, č. 1 (2009), s. 106-111 ISSN 0172-780X R&D Projects: GA ČR(CZ) GA305/08/1704 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : inflammation * phagocytes * hyaluronan Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  9. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    International Nuclear Information System (INIS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-01-01

    In this paper, a facile approach for preparation of AuAgS/Ag 2 S nanoclusters was developed. The unique AuAgS/Ag 2 S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag 2 S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag 2 S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg 2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag 2 S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract

  10. Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Jian Rong; Zeng, Ai Lian; Luo, Hong Qun; Li, Nian Bing

    2016-01-01

    Highlights: • Fluorescent Ag nanoclusters were first applied to Cr(VI) detection. • The proposed method is simple, rapid, and environmentally friendly. • The sensor shows a wide linear range, low detection limit, and good selectivity. • The system can also be used for the indirect assay of total chromium and Cr(III). • The analyses in real water samples are satisfactory. - Abstract: In this work, a simple and sensitive Cr(VI) sensor is proposed based on fluorescent polyethyleneimine-stabilized Ag nanoclusters, which allows the determination over a wide concentration range of 0.1 nM–3.0 μM and with a detection limit as low as 0.04 nΜ and a good selectivity. The quenching mechanism was discussed in terms of the absorption and fluorescence spectra, suggesting that Cr(VI) is connected to Ag nanoclusters by hydrogen bond between the oxygen atom at the vertex of tetrahedron structure of Cr(VI) and the amino nitrogen of polyethyleneimine that surrounded Ag nanoclusters and electron transfer from Ag nanoclusters to highly electron-deficient Cr(VI) results in fluorescence quenching. Despite the failure to quench the fluorescence efficiently, Cr(III) can also be measured using the proposed Ag nanoclusters by being oxidized to Cr(VI) in alkaline solution (pH ∼9) containing H 2 O 2 . Therefore, our approach could be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution. In addition, Cr(VI) analysis in real water samples were satisfactory, indicating this method could be practically promising for chromium measurements.

  11. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    Science.gov (United States)

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  12. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  13. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    OpenAIRE

    Marija Matulionyte; Dominyka Dapkute; Laima Budenaite; Greta Jarockyte; Ricardas Rotomskis

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. The...

  14. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  15. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    Science.gov (United States)

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  16. Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing

    Science.gov (United States)

    Halder, Avik; Kresin, Vitaly V.

    2015-12-01

    A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.

  17. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  18. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  19. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    International Nuclear Information System (INIS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-01-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au 13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au 8 -Au 11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Au n precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au 13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters. (paper)

  20. Influence of serum albumin on intracellular delivery of drug-loaded hyaluronan polymeric micelles

    Czech Academy of Sciences Publication Activity Database

    Nešporová, K.; Sogorková, J.; Smejkalova, D.; Kulhánek, J.; Huerta-Angeles, G.; Kubala, Lukáš; Velebný, V.

    2016-01-01

    Roč. 511, č. 1 (2016), s. 638-647 ISSN 0378-5173 Institutional support: RVO:68081707 Keywords : Polymeric micelle * Hyaluronan * Fatty acid Subject RIV: BO - Biophysics Impact factor: 3.649, year: 2016

  1. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Science.gov (United States)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  2. Hyaluronan-lecithin foils and their properties

    International Nuclear Information System (INIS)

    BiaIopiotrowicz, Tomasz; Janczuk, BronisIaw; Fiedorowicz, Maciej; Khachatryan, Gohar; Tomasik, Piotr; Bakos, Dusan

    2006-01-01

    Thin, elastic foils of good resistance to the air exposure, patented as wound healing aids, were prepared by evaporation of a blend of lecithin (L) and sodium hyaluronan (H) taken under varying proportions. The contact angle for water, glycerol, formamide, ethylene glycol and diiodomethane, was determined for these foils. The contact angle was correlated against the H:L foil composition. For all liquids but formamide the highest contact angle was noted for the H:L = 2:1 (g g -1 ) ratio. The contact angles provided estimation of the work of adhesion. At the same L:H ratio the work of adhesion was the lowest. It was suggested that lecithin cross-linked hyaluronan. Since the work of adhesion of the studied liquids was similar to that of diiodomethane, it could be concluded that almost all functional groups on the foil surface were completely blocked. Perhaps, at H:L = 2:1 (g g -1 ) a stoichiometric complex of hyaluronic acid with lecithin was formed, and polar functional groups from both reagents were involved. Foils seem to be electrostatic complexes of H with L. Foils with the H:L equal to 2:1 exhibited specific properties confirmed by the IR reflectance spectra of the foils. The thermogravimetry (TG/DTG) also revealed unique thermal behaviour confirming other specific properties of the foil of this composition. For the same ratio a thorough inspection of the scanning electron micrographs (SEM) revealed few irregularly distributed perforations of 1-2 μm in diameter seen as black points, which can be recognized as pores. Properties of the foils determined in the contact angle measurements are nicely backed by the results from thermogravimetric and scanning electron microscopic studies

  3. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  4. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  5. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  6. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    OpenAIRE

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5...

  7. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  8. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    International Nuclear Information System (INIS)

    Borisyuk, P.V.; Krasavin, A.V.; Tkalya, E.V.; Lebedinskii, Yu.Yu.; Vasiliev, O.S.; Yakovlev, V.P.; Kozlova, T.I.; Fetisov, V.V.

    2016-01-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters’ tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  9. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    Science.gov (United States)

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  10. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  11. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  12. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    Science.gov (United States)

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.; Ashraf, Sumaira; Katsiev, Khabiboulakh; Kirmani, Ahmad R.; Kothalawala, Nuwan; Anjum, Dalaver H.; Abbas, Sikandar Zameer; Amassian, Aram; Stellacci, Francesco; Dass, Amala; Hussain, Irshad; Bakr, Osman

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  14. Theoretical Studies of Nanoclusters (Briefing Charts)

    Science.gov (United States)

    2015-07-23

    nanoclusters. However, scanning transmission electron microscopy ( STEM ) measures show cluster inversion occurred to produce MgyCux(!) a) copper atoms b...methane (née CLL -1) as a potential explosive ingredient: a theoretical study”, Propellants, Explosives, Pyrotechnics 38, 9-13 (2013). Jesus Paulo L

  15. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter , which is vital in high performance fuel cells, batteries and nanodevices.

  16. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  17. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  18. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  20. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  1. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity.

    Science.gov (United States)

    Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Cai, Jie; Wu, Shuyan; Cai, Ziping

    2012-05-30

    In this contribution, bovine serum albumin stabilized gold nanoclusters as novel fluorescent probes were successfully utilized for the detection of ciprofloxacin for the first time. Our prepared gold nanoclusters exhibited strong emission with peak maximum at 635 nm. Cu(2+) was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of ciprofloxacin caused the fluorescence intensity restoration of the Cu(2+)-gold nanoclusters system. The increase in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by ciprofloxacin allows the sensitive detection of ciprofloxacin in the range of 0.4 ng mL(-1) to 50 ng mL(-1). The detection limit for ciprofloxacin is 0.3 ng mL(-1) at a signal-to-noise ratio of 3. The present sensor for ciprofloxacin detection possesses a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    Science.gov (United States)

    2016-01-13

    affected by the environment of the stabilizing protein, allowing these hybrid systems to act as sensors in many applications.2,9,14–19 This has led...Biosens Bioelectron. 2012;32:297–299. 8. Joseph D, Geckeler KE. Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Colloids Surf...Chang HW, Chien YC, Hsiao JK, Cheng JT, Chou PT. Insulin -directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and

  4. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  5. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Modified coulomb law in a strongly magnetized vacuum.

    Science.gov (United States)

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  8. Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal

    International Nuclear Information System (INIS)

    Angelova, Ralitsa; Baldikova, Eva; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-01-01

    The goal of this study was to assess the biosorption of Amido black 10B dye from aqueous solutions on magnetically modified sheaths of Leptothrix sp. in a batch system. The magnetic modification of the sheaths was performed using both microwave synthesized iron oxide nano- and microparticles and perchloric acid stabilized ferrofluid. The native and both magnetically modified sheaths were characterized by SEM. Various parameters significantly affecting the adsorption process, such as pH, contact time, temperature and initial concentration, were studied in detail using the adsorbent magnetized by both methods. The highest adsorption efficiency was achieved at pH 2. The maximum adsorption capacities of both types of magnetized material at room temperature were found to be 339.2 and 286.1 mg of dye per 1 g of ferrofluid modified and microwave synthesized particles modified adsorbent, respectively. Thermodynamic study of dye adsorption revealed a spontaneous and endothermic process in the temperature range between 279.15 and 313.15 K. The data were fitted to various equilibrium and kinetic models. Experimental data matched well with the pseudo-second-order kinetics and Freundlich isotherm model. The Leptothrix sheaths have excellent efficacy for dye adsorption. This material can be used as an effective, low-cost adsorbent. - Highlights: • Magnetic modification of Leptothrix sheaths using two methods is proposed. • Such magnetic material is an excellent adsorbent for Amido black 10B. • The magnetically modified sheaths can be easily separated by magnets.

  9. Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Ralitsa [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd, 1164 Sofia (Bulgaria); Laboratory Microwave Magnetics, Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd, 1784 Sofia (Bulgaria); Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, Branisovska 1457, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic)

    2017-04-01

    The goal of this study was to assess the biosorption of Amido black 10B dye from aqueous solutions on magnetically modified sheaths of Leptothrix sp. in a batch system. The magnetic modification of the sheaths was performed using both microwave synthesized iron oxide nano- and microparticles and perchloric acid stabilized ferrofluid. The native and both magnetically modified sheaths were characterized by SEM. Various parameters significantly affecting the adsorption process, such as pH, contact time, temperature and initial concentration, were studied in detail using the adsorbent magnetized by both methods. The highest adsorption efficiency was achieved at pH 2. The maximum adsorption capacities of both types of magnetized material at room temperature were found to be 339.2 and 286.1 mg of dye per 1 g of ferrofluid modified and microwave synthesized particles modified adsorbent, respectively. Thermodynamic study of dye adsorption revealed a spontaneous and endothermic process in the temperature range between 279.15 and 313.15 K. The data were fitted to various equilibrium and kinetic models. Experimental data matched well with the pseudo-second-order kinetics and Freundlich isotherm model. The Leptothrix sheaths have excellent efficacy for dye adsorption. This material can be used as an effective, low-cost adsorbent. - Highlights: • Magnetic modification of Leptothrix sheaths using two methods is proposed. • Such magnetic material is an excellent adsorbent for Amido black 10B. • The magnetically modified sheaths can be easily separated by magnets.

  10. Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer.

    Science.gov (United States)

    Pályi-Krekk, Zsuzsanna; Barok, Márk; Isola, Jorma; Tammi, Markku; Szöllosi, János; Nagy, Peter

    2007-11-01

    Although trastuzumab, a recombinant humanised anti-ErbB2 antibody, is widely used in the treatment of breast cancer, neither its mechanism of action, nor the factors leading to resistance are fully understood. We have previously shown that antibody-dependent cellular cytotoxicity is pivotal in the in vivo effect of trastuzumab against JIMT-1, a cell line showing in vitro resistance to the antibody, and suggested that masking of the trastuzumab-binding epitope by MUC-4, a cell surface mucin, took place. Here, we further explored the role of masking of ErbB2 in connection with CD44 expression and synthesis of its ligand, hyaluronan. We show that high expression of CD44 observed in JIMT-1 cells correlates with ErbB2 downregulation in vivo, while siRNA-mediated inhibition of CD44 expression leads to decreased rate of trastuzumab internalisation and low cell proliferation in vitro. An inhibitor of hyaluronan synthesis, 4-methylumbelliferon (4-MU) significantly reduced the hyaluronan level of JIMT-1 cells both in vivo and in vitro leading to enhanced binding of trastuzumab to ErbB2 and increased ErbB2 down-regulation. Furthermore, the inhibitory effect of trastuzumab on the growth of JIMT-1 xenografts was significantly increased by 4-MU treatment. Our results point to the importance of the CD44-hyaluronan pathway in the escape of tumour cells from receptor-oriented therapy.

  11. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  12. Synthesis of indium nanoclusters and formation of thin film contacts on plastic substrates for organic and flexible electronics applications

    International Nuclear Information System (INIS)

    Shi, Frank F; Bulkowski, Michal; Hsieh, K C

    2007-01-01

    In this work, we described the processes of synthesizing free-standing indium nanoclusters using inverse micelles and microemulsions as well as synthesizing organic-encapsulated indium nanoclusters using alkanethiols as the organic encapsulants. The synthesized organic-encapsulated indium nanoclusters have demonstrated the feasibilities to be used as plastic compatible soft metal contacts for emerging organic devices. The homogeneously distributed indium nanoclusters with sizes of 10-30 nm have been fabricated on a few different plastic substrates. By changing the alkanethiol carbon chain length and the sizes of the indium nanoclusters, the annealing temperature required to form low-resistance indium thin film conductors has been reduced to 80-100 deg. C, which is acceptable for a variety of organic thin films

  13. Modulation of hyaluronan synthase activity in cellular membrane fractions

    OpenAIRE

    Vigetti, Davide; Genasetti, A; Karousou, Evgenia; Viola, Manuela; Clerici, M; Bartolini, B; Moretto, Paola; DE LUCA, Giancarlo; Hascall, Vc; Passi, Alberto

    2009-01-01

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in euk...

  14. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-01-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10 16 Cd ions cm -2 and 210 keV, 1 x 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions

  15. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  16. Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media

    Directory of Open Access Journals (Sweden)

    Daisuke Kino

    2017-12-01

    Full Text Available Layered double hydroxides (LDHs have attracted attention as green materials due to their catalytic ability in benign aqueous solvents. We here demonstrate the synthesis of colloidal Co–Al LDH nanoclusters with an average size of <10 nm via a facile liquid-phase reaction for the enhancement of the catalytic activity. To the best of our knowledge, the present LDH is the smallest Co–Al LDH with an extremely large surface area and stability in an aqueous solvent, forming a stable and concentrated colloidal solution as high as 40 g/L. We investigated the formation mechanism, and the catalytic activity of Co–Al LDH nanoclusters. The Co–Al LDH nanoclusters showed 47 times higher rate of the reduction of dye molecules in the aqueous media than standard Co–Al LDH particles with a micrometer size. LDH nanoclusters demonstrated here are promising green nanocatalysts for the aqueous reaction processes.

  17. Magnetism of unconventional nanoscaled materials. An X-ray circular dichroism and muon spin rotation study

    International Nuclear Information System (INIS)

    Tietze, Thomas Hermann

    2014-01-01

    The physical properties of nanoparticles deviate strongly from its bulk counterparts. In particular, the magnetic properties change strongly due to an elevated number of surface compared to bulk atoms. As a consequence the orbital magnetic moment in nanoparticles as well as the magnetic anisotropy is enhanced. Therefore, such nanoparticles have great potential in e.g. next generation high density data storage devices. A promising way to realize such devices is to deposit nanoparticles on graphene. Depending on the preparation conditions the templated growth of nanocluster arrays with different particle size and shape is possible. Since graphene possesses outstanding properties as well it is congruous to combine the advantages of both systems and to investigate its principle properties in more detail. Thus, one part of this work is dedicated to the size and shape dependence of electronic and magnetic properties of Ni nanoclusters on graphene. The magnetic properties were investigated using X-ray Magnetic Circular Dichroism (XMCD). From the corresponding absorption spectra, the electronic structure and the nanoparticle substrate interaction could be determined. Two sets of nanoparticles were investigated, with triangular and spherical shape. For each set the size was varied. Nonmagnetic absorption spectra indicate a strong interaction between the Ni nanoclusters and the graphene substrate. The integrated absorption signal which is a measure of the number of unoccupied states in the Ni d shell decreases strongly with decreasing cluster size. This means an enhanced occupancy of the Ni d states, most likely caused by charge transfer at the Ni nanocluster/graphene interface. As a consequence the magnetic moment was much smaller than expected for nanoclusters for all samples investigated. The smallest value obtained was only 50% of the respective bulk magnetic moment. The magnetic moment increases disproportionally and converges towards bulk properties above 2 ML. No

  18. Increased Levels of Type I and III Collagen and Hyaluronan in Scleroderma Skin

    DEFF Research Database (Denmark)

    Søndergaard, Klaus; Heickendorff, Lene; L, Risteli

    1997-01-01

    The aminoterminal propeptide of type III procollagen (PIIINP) and the carboxyterminal propeptide of type I procollagen (PICP) and hyaluronan (HA) were measured in plasma and suction blister fluid from 13 systemic sclerosis patients and 11 healthy volunteers. Suction blisters and skin biopsies were...

  19. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  20. Preparation and Characterization of Chitosan/Soy Protein Isolate Nanocomposite Film Reinforced by Cu Nanoclusters

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-06-01

    Full Text Available Soy protein isolate (SPI based films have received considerable attention for use in packaging materials. However, SPI-based films exhibit relatively poor mechanical properties and water resistance ability. To tackle these challenges, chitosan (CS and endogenous Cu nanoclusters (NCs capped with protein were proposed and designed to modify SPI-based films. Attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray diffraction patterns of composite films demonstrated that interactions, such as hydrogen bonds in the film forming process, promoted the cross-linking of composite films. The surface microstructure of CS/SPI films modified with Cu NCs was more uniform and transmission electron microscopy (TEM showed that uniform and discrete clusters were formed. Compared with untreated SPI films, the tensile strength and elongation at break of composite films were simultaneously improved by 118.78% and 74.93%, respectively. Moreover, these composite films also exhibited higher water contact angle and degradation temperature than that of pure SPI film. The water vapor permeation of the modified film also decreased. These improved properties of functional bio-polymers show great potential as food packaging materials.

  1. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  2. Formation and growth of embedded indium nanoclusters by In2+ implantation in silica

    International Nuclear Information System (INIS)

    Santhana Raman, P.; Nair, K.G.M.; Kesavamoorthy, R.; Panigrahi, B.K.; Dhara, S.; Ravichandran, V.

    2007-01-01

    Indium nanoclusters are synthesized in an amorphous silica matrix using an ion-implantation technique. Indium ions (In 2+ ) with energy of 890 keV are implanted on silica to fluences in the range of 3 x 10 16 -3 x 10 17 cm -2 . The formation of indium nanoclusters is confirmed by optical absorption spectrometry and glancing incidence X-ray diffraction studies. A low frequency Raman scattering technique is used to study the growth of embedded indium nanoclusters in the silica matrix as a function of fluence and post-implantation annealing duration. Rutherford backscattering spectrometry studies show the surface segregation of implanted indium. Photoluminescence studies indicate the formation of a small quantity of indium oxide phase in the ion-implanted samples. (orig.)

  3. Self-trapping nature of Tl nanoclusters on the Si(111)-7x7 surface

    International Nuclear Information System (INIS)

    Hwang, C G; Kim, N D; Lee, G; Shin, S Y; Kim, J S; Chung, J W

    2008-01-01

    We have studied properties of thallium (Tl) nanoclusters formed on the Si(111)-7x7 surface at room temperature (RT) by utilizing photoemission spectroscopy (PES) and high-resolution electron-energy-loss spectroscopy (HREELS) combined with first principles calculations. Our PES data reveal that the surface states stemming from the Si substrate remain quite inert with Tl adsorption producing no Tl-induced state until saturation at Tl coverage θ=0.21 monolayers. Such a behavior, in sharp contrast with the extremely reactive surface states upon the formation of Na or Li nanoclusters, together with the presence of a unique Tl-induced loss peak in HREELS spectra suggests no strong Si-Tl bonding, and is well understood in terms of gradual filling of Si dangling bonds with increasing θ. Our calculation further indicates the presence of several metastable atomic structures of Tl nanoclusters at RT rapidly transforming from one to another faster than 10 10 flippings per second. We thus conclude that the highly mobile Tl atoms form self-trapped nanoclusters within the attractive basins of the Si substrate at RT with several metastable phases. The mobile and multi-phased nature of Tl nanoclusters not only accounts for all the existing experimental observations available at present, but also provides an example of self-trapping of atoms in a nanometre-scale region

  4. Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters

    International Nuclear Information System (INIS)

    Kukushkin, V. A.

    2015-01-01

    The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime

  5. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Nilsonne, Gustav; Arslan, Sertaç; Csürös, Karola; Hillerdal, Gunnar; Yildirim, Huseyin; Metintas, Muzaffer; Dobra, Katalin; Hjerpe, Anders

    2013-01-01

    Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39), N-ERC/mesothelin (4.81, 3.19-7.93), CERC/mesothelin (3.58, 2.43-5.59) and syndecan-1 (1.34, 1.03-1.77). A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00) in the model generation dataset and 0.83 (0.74-0.91) in the validation dataset, respectively. A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.

  6. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma.

    Directory of Open Access Journals (Sweden)

    Filip Mundt

    Full Text Available PURPOSE: Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. PATIENTS AND METHODS: Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. RESULTS: Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39, N-ERC/mesothelin (4.81, 3.19-7.93, CERC/mesothelin (3.58, 2.43-5.59 and syndecan-1 (1.34, 1.03-1.77. A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00 in the model generation dataset and 0.83 (0.74-0.91 in the validation dataset, respectively. CONCLUSIONS: A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.

  7. Spiral patterns of gold nanoclusters in silicon (100) produced by metal vapour vacuum arc implantation of gold ions

    International Nuclear Information System (INIS)

    Venkatachalam, Dinesh Kumar; Sood, Dinesh Kumar; Bhargava, Suresh Kumar

    2008-01-01

    Self-assembled gold nanoclusters are attractive building blocks for future nanoscale sensors and optical devices due to their exciting catalytic properties. In this work, we report direct bottom-up synthesis of spiral patterns of gold nanoclusters in silicon (100) substrates by Au ion implantation followed by thermal annealing. This unique phenomenon is observed only above a critical threshold implantation dose and annealing temperature. Systematic study by electron microscopy, analytical x-ray diffraction and atomic force microscopy shows the temperature- and time-dependent nucleation, growth of Au nanoclusters and evolution of the spiral patterns. The observed patterns of gold nanoclusters bear a resemblance to the spiral growth prevalent in some directionally solidified eutectic alloys. Based on this systematic study of the growth and morphology of nanoclusters, a tentative model has been proposed for the formation mechanism of this unusual self-assembled pattern in an amorphous Si/Au system. This model shows that melting of the implanted layer is essential and without which no spiral patterns are observed. A better understanding of this self-assembly process will open up new ways to fabricate ordered arrays of gold nanoclusters in silicon substrates for seeding selective growth of one-dimensional nanostructures

  8. Synthesis of a hexasaccharide partial sequence of hyaluronan for click chemistry and more

    Directory of Open Access Journals (Sweden)

    Marina Bantzi

    2015-04-01

    Full Text Available In the present work, the synthesis of a hexasaccharide partial sequence of hyaluronan equipped with a terminal azido moiety is reported. This hexasaccharide can be used for the attachment on surfaces by means of click chemistry and after suitable deprotection for biophysical studies.

  9. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  10. Force Spectroscopy of Hyaluronan by AFM; From H-bonded Networks Towards Single Chain Behavior

    NARCIS (Netherlands)

    Giannotti, M.I.; Rinaudo, Marguerite; Vancso, Gyula J.

    2007-01-01

    The conformational behavior of hyaluronan (HA) polysaccharide chains in aqueous NaCl solution was characterized directly at the single-molecule level. This comunication reports on one of the first single-chain atomic force microscopy (AFM) experiments performed at variable temperatures,

  11. Enzymatic reduction of U60 nanoclusters by Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiang; Fein, Jeremy B. [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences

    2018-04-01

    In this study, a series of reduction experiments were conducted using a representative uranyl peroxide nanocluster, U60 (K{sub 16}Li{sub 44}[UO{sub 2}(O{sub 2})OH]{sub 60}) and a bacterial species, Shewanella oneidensis MR-1, that is capable of enzymatic U(VI) reduction. U60 was reduced by S. oneidensis in the absence of O{sub 2}, but the reduction kinetics for U60 were significantly slower than was observed in this study for aqueous uranyl acetate, and were faster than was reported in previous studies for solid phase U(VI). Our results indicate that U60 aggregates bigger than 0.2 μm formed immediately upon mixing with the bacterial growth medium, and that these aggregates were gradually broken down during the process of reduction. Neither reduction nor dissolution of U60 was observed during 72 h of control experiments open to the atmosphere, indicating that the breakdown and dissolution of U60 aggregates is caused by the reduction of U60, and that S. oneidensis is capable of direct reduction of the U(VI) within the U60 nanoclusters, likely due to the adsorption of U60 aggregates onto bacterial cells. This study is first to show the reduction capacity of bacteria for uranyl peroxide nanoclusters, and the results yield a better understanding of the long term fate of uranium in environmental systems in which uranyl peroxide nanoclusters are present.

  12. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van E-mail: vanhuis@iri.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10{sup 16} Cd ions cm{sup -2} and 210 keV, 1 x 10{sup 16} Se ions cm{sup -2} in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  13. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    Science.gov (United States)

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  14. Organic dyes removal using magnetically modified rye straw

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2015-04-15

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid–NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green. - Highlights: • Rye derivatives can be considered as efficient adsorbents for organic dyes. • Magnetic modification of straw by microwave-synthesized magnetic iron oxides. • Citric acid–NaOH modification increased the maximum adsorption capacities.

  15. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  16. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n.

    Science.gov (United States)

    Lahtinen, Tanja; Hulkko, Eero; Sokołowska, Karolina; Tero, Tiia-Riikka; Saarnio, Ville; Lindgren, Johan; Pettersson, Mika; Häkkinen, Hannu; Lehtovaara, Lauri

    2016-11-10

    We present the synthesis, separation, and characterization of covalently-bound multimers of para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters. The multimers were synthesized by performing a ligand-exchange reaction of a pre-characterized Au 102 (p-MBA) 44 nanocluster with biphenyl-4,4'-dithiol (BPDT). The reaction products were separated using gel electrophoresis yielding several distinct bands. The bands were analyzed by transmission electron microscopy (TEM) revealing monomer, dimer, and trimer fractions of the nanocluster. TEM analysis of dimers in combination with molecular dynamics simulations suggest that the nanoclusters are covalently bound via a disulfide bridge between BPDT molecules. The linking chemistry is not specific to Au 102 (p-MBA) 44 . The same approach yields multimers also for a larger monodisperse p-MBA-protected cluster of approximately 250 gold atoms, Au ∼250 (p-MBA) n . While the Au 102 (p-MBA) 44 is not plasmonic, the Au ∼250 (p-MBA) n nanocluster supports localized surface plasmon resonance (LSPR) at 530 nm. Multimers of the Au ∼250 (p-MBA) n exhibit additional transitions in their UV-vis spectrum at 630 nm and 810 nm, indicating the presence of hybridized LSPR modes. Well-defined structures and relatively small sizes make these systems excellent candidates for connecting ab initio theoretical studies and experimental quantum plasmonics. Moreover, our work opens new possibilities in the controlled synthesis of advanced monodisperse nanocluster superstructures.

  17. Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuni, Wulan Tri, E-mail: wulantriws@gmail.com [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680 (Indonesia); Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Ivandini, Tribidasari A.; Saepudin, Endang [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); CREST, JST, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Biomolecule modified magnetic beads has been widely used in separation and sensing process. This study used streptavidin modified magnetic beads to immobilize biotin modified zanamivir. Biotin-streptavidin affinity facilitates immobilization of zanamivir on magnetic beads. Then interaction of zanamivir and neuraminidase was adopted as basic for enzyme detection. Detection of neuraminidase was performed at gold modified BDD using cyclic voltammetry technique. The measurement was carried out based on alteration of electrochemical signals of working electrode as neuraminidase response. The result showed that zanamivir was successfully immobilized on magnetic beads. The optimum amount of magnetic beads for zanamivir immobilization was 120 ug. Linear responses of neuraminidase were detected in concentration range of 0-15 mU. Detection limit (LOD) of measurement was 2.32 mU (R2 = 0.959) with precision as % RSD of 1.41%. Measurement of neuraminidase on magnetic beads could be also performed in the presence of mucin matrix. The linearity range was 0-8 mU with LOD of 0.64 mU (R2 = 0.950) and % RSD of 7.25%.

  18. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Seong Uk Son

    2017-12-01

    Full Text Available We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA and dodecylamine (Do by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A: 82.7 ± 4.7%, HA–Do (B: 87.1 ± 3.9% and HA–Do (C: 81.4 ± 4.5%. Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A: 118.0 ± 2.2 nm, nanohydrogel (B: 121.9 ± 11.4 nm, and nanohydrogel (C: 142.2 ± 3.8 nm. The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.

  19. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    Science.gov (United States)

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  20. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    Science.gov (United States)

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  1. Dyes adsorption on magnetically modified Chlorella vulgaris cells

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Pona, B. M. R.; Mosiniewicz-Szablewska, E.; Weyda, František; Šafařík, Ivo

    2008-01-01

    Roč. 17, č. 4 (2008), s. 486-492 ISSN 1018-4619 R&D Projects: GA MŠk OC 108; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z50070508 Keywords : Chlorella vulgaris * magnetically modified cells * dyes Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.463, year: 2008

  2. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane-modified

  3. Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate

    Energy Technology Data Exchange (ETDEWEB)

    Banzato, Alessandra; Rondina, Maria [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Melendez-Alafort, Laura; Zangoni, Elena; Nadali, Anna [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Renier, Davide [Fidia Farmaceutici, Abano Terme (Italy); Moschini, Giuliano [Department of Physics, University of Padua, Padova (Italy); Mazzi, Ulderico [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Zanovello, Paola [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy); Rosato, Antonio [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy)], E-mail: antonio.rosato@unipd.it

    2009-07-15

    Introduction: Gamma-ray detectors represent sensitive and noninvasive instruments to evaluate in vivo the metabolic trapping of radiopharmaceuticals. This study aimed to assess the imaging biodistribution of a [{sup 99m}Tc]-radiolabelled new prototype bioconjugate composed of paclitaxel linked to hyaluronan (ONCOFID-P). Methods: A small gamma camera providing high-resolution images was employed. Imaging of biodistribution following intravenous, intraperitoneal, intravesical and oral administration was carried out for a 2-h period in anesthetized mice receiving [{sup 99m}Tc]ONCOFID-P. At the end of the observation time, radioactivity in organs was directly measured. As a control, groups of mice were treated with free [{sup 3}H]paclitaxel given according to the same administration routes, and organ biodistribution of the drug was assessed after 2 h. Results: Intravenous inoculation of [{sup 99m}Tc]ONCOFID-P was followed by a rapid and strong liver uptake. In fact, almost 80% of the imaging signal was detected in this organ 10 min after injection and such value remained constant thereafter, thus indicating that the bioconjugate given through the intravenous route could be well suited to targeting primary or metastatic liver neoplasias. Imaging of the bladder, abdomen and gastrointestinal tract after local administration disclosed that the radiolabelled compound remained confined to the cavities, suggesting a potential regional application for transitional bladder cell carcinomas, ovarian cancers and gastric tumors, respectively. Free [{sup 3}H]paclitaxel biodistribution profoundly differed from that of [{sup 99m}Tc]ONCOFID-P. Conclusions: Conjugation of drugs with polymers results in new chemical entities characterized by a modified biodistribution pattern. Therefore, preclinical studies based on imaging analysis of such new compounds can suggest novel therapeutic applications.

  4. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Joshi, Chakra Prasad; Alhilaly, Mohammad J.; Bakr, Osman

    2016-01-01

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed

  5. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO

  6. "light-on" sensing of antioxidants using gold nanoclusters

    KAUST Repository

    Hu, Lianzhe; Deng, Lin; Alsaiari, Shahad K.; Zhang, Dingyuan; Khashab, Niveen M.

    2014-01-01

    preservatives, and cosmetics has proved to be very vital. Gold nanoclusters (Au-NCs) have a core size below 2 nm and contain several metal atoms. They have interesting photophysical properties, are readily functionalized, and are safe to use in various

  7. Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    NARCIS (Netherlands)

    Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon

    2011-01-01

    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The

  8. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer

    International Nuclear Information System (INIS)

    Jin, Hyung Dae; Chang, Chih-Hung; Garrison, Anna; Tseng, T; Paul, Brian K

    2010-01-01

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 μm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s -1 ) was achieved using a microreactor with a size of 1.687 cm 3 . This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  9. Tetrahedral 1B4Sb nanoclusters in GaP:(B, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Elyukhin, V A, E-mail: elyukhin@cinvestav.m [Departamento de Ingenieria Electrica-SEES, CINVESTAV-IPN, Avenida IPN 2508, Col. San Pedro Zacatenco, C. P. 07360, Mexico, D. F. (Mexico)

    2009-05-01

    Self-assembling conditions of 1B4Sb tetrahedral nanoclusters in GaP doped with boron and Sb isoelectronic impurities are represented in the ultradilute and dilute limits of the boron and Sb contents, respectively. The fulfilled estimates demonstrated the preferential complete or almost complete allocation of boron atoms in 1B4Sb nanoclusters at temperatures of 500 {sup 0}C and 900 {sup 0}C, respectively. The significant decrease of the sum of the free energies of the constituent compounds is the main origin of self-assembling. The reduction of the strain energy is the additional cause of this phenomenon.

  10. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

    Science.gov (United States)

    Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.

    2018-01-01

    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787

  11. Hyaluronan synthase mediates dye translocation across liposomal membranes

    Directory of Open Access Journals (Sweden)

    Medina Andria P

    2012-01-01

    Full Text Available Abstract Background Hyaluronan (HA is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS, which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS to liposomes preloaded with the fluorophore Cascade Blue (CB. Results CB translocation (efflux was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL. An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL and that, in contrast, tetramyristoyl cardiolipin (TM-CL is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006. Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL. Conclusions The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.

  12. Silver and copper nanoclusters in the lustre decoration of Italian Renaissance pottery: an EXAFS study

    Science.gov (United States)

    Padovani, S.; Borgia, I.; Brunetti, B.; Sgamellotti, A.; Giulivi, A.; D'Acapito, F.; Mazzoldi, P.; Sada, C.; Battaglin, G.

    Lustre is one of the most important decorative techniques of the Medieval and Renaissance pottery of the Mediterranean basin, capable of producing brilliant metallic reflections and iridescence. Following the recent finding that the colour of lustre decorations is mainly determined by copper and silver nanoclusters dispersed in the glaze layer, the local environment of copper and silver atoms has been studied by extended X-ray absorption fine structure (EXAFS) spectroscopy on original samples of gold and red lustre. It has been found that, in gold lustre, whose colour is attributed mainly to the silver nanocluster dispersion, silver is only partially present in the metallic form and copper is almost completely oxidised. In the red lustre, whose colour is attributed mainly to the copper nanocluster dispersion, only a fraction of copper is present in the metallic form. EXAFS measurements on red lustre, carried out in the total electron yield mode to probe only the first 150 nm of the glaze layer, indicated that in some cases lustre nanoclusters may be confined in a very thin layer close to the surface.

  13. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    Science.gov (United States)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  14. Stability and magnetic tearing of finite-β modified drift waves

    International Nuclear Information System (INIS)

    Chen, L.; Hsu, J.; Kaw, P.K.; Rutherford, P.H.

    1977-10-01

    A new simplified approach to the analysis of radial eigenmodes of finite-β modified drift waves in a sheared magnetic field is described. Applying this approach to the universal drift mode, one recovers, for the lowest (n = 0) radial eigenmode, the previous result that finite-β effects are stabilizing. For the next (n = 1) radial eigenmode, however, one finds that finite-β effects further destabilize the mode. Moreover, the corresponding mode structure exhibits nonzero radial (tearing) magnetic perturbations around the mode-rational surface. The consequences of a structure of microscopic magnetic islands, created in this way, for plasma transport are also briefly discussed

  15. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis.

    Science.gov (United States)

    Viola, Manuela; Brüggemann, Kathrin; Karousou, Evgenia; Caon, Ilaria; Caravà, Elena; Vigetti, Davide; Greve, Burkhard; Stock, Christian; De Luca, Giancarlo; Passi, Alberto; Götte, Martin

    2017-06-01

    Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.

  16. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  17. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharat; Sundar, C.S.; Raj, Baldev

    2010-01-01

    Nanostructured ferritic alloys derive their strength from the dispersion of oxide nanoclusters in the ferritic matrix. We have explored the relative role of minor alloying elements like Ti and Zr on the stability of nanoclusters of vacancy-Y-Ti-O by density functional theory calculations and shown that the binding energy of these clusters increases when we replace Ti with Zr. This could imply faster nucleation of the nanoclusters which, in turn, may lead to finer dispersion of nanoclusters resulting in improved performance of ferritic alloys. Further, we show a core/shell structure for these nanoclusters in which the core is enriched in Y, O, Ti while the shell is enriched in Cr.

  18. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion.

    Science.gov (United States)

    Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek

    2018-04-18

    The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.

  19. Synthesis of hydrophobic gold nanoclusters: growth mechanism study, luminescence property and catalytic application

    International Nuclear Information System (INIS)

    Selvam, Tamil Selvi; Chi, Kai-Ming

    2011-01-01

    One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH 3 AuPPh 3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.

  20. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  1. Organization of copper nanoclusters in Langmuir–Blodgett films

    Indian Academy of Sciences (India)

    Stable nanoclusters of Cu were synthesized using Langmuir–Blodgett films of octadecylsuccinic acid (ODSA) as template. The Langmuir–Blodgett films of ODSA formed from subphase containing copper ions were first subjected to sulphidation (S) using sodium sulphide and then hydrogenated (H) using hydrogen gas.

  2. In-vitro Synthesis of Gold Nanoclusters in Neurons

    Science.gov (United States)

    2016-04-01

    ARL-TN-0753 ● APR 2016 US Army Research Laboratory In-vitro Synthesis of Gold Nanoclusters in Neurons by Maggie Gillan and...longer needed. Do not return it to the originator. ARL-TN-0753 ● APR 2016 US Army Research Laboratory In-vitro Synthesis of...

  3. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  4. Shell model for REO{sub x} nanoclusters in amorphous SiO{sub 2}: charge trapping and electroluminescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Tiagulskyi, S.; Nazarov, A.; Tyagulskii, I.; Lysenko, V. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kiev (Ukraine); Rebohle, L.; Lehmann, J.; Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf e.V., POB 510119, 01314 Dresden (Germany)

    2012-06-15

    In this work charge trapping and electroluminescence (EL) quenching in rare-earth (RE) implanted SiO{sub 2} on Si as a function of injected charge into the dielectric were studied. The blocking of the luminescent REO{sub X} nanoclusters from the hot exciting electrons by negative charge trapping in a defect region (shell) located in the vicinity of the REO{sub X} nanocluster/SiO{sub 2} interface is considered as the main mechanism of EL quenching for small size (up to 10 nm) REO{sub X} nanoclusters. It is suggested that the increase of the nanoclusters size results in disordering of the SiO{sub 2} matrix but in a decrease of local blocking for excitation of the luminescent centers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva

    2018-01-01

    Roč. 19, č. 1 (2018), č. článku 283. E-ISSN 1422-0067 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : extracellular matrix * hyaluronan * inter-alpha-trypsin inhibitor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 3.226, year: 2016

  6. Adsorption of small gas molecules on B36 nanocluster

    Indian Academy of Sciences (India)

    Supplementary Information. Journal of Chemical Sciences. Adsorption of small gas molecules on B36 nanocluster. YOUNES VALADBEIGI. *. , HOSSEIN FARROKHPOUR and MAHMOUD TABRIZCHI. Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran. *. Corresponding Author: Younes ...

  7. Bulky Counterions: Enhancing the Two-Photon Excited Fluorescence of Gold Nanoclusters.

    Science.gov (United States)

    Bertorelle, Franck; Moulin, Christophe; Soleilhac, Antonin; Comby-Zerbino, Clothilde; Dugourd, Philippe; Russier-Antoine, Isabelle; Brevet, Pierre-François; Antoine, Rodolphe

    2018-01-19

    Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions.

    Science.gov (United States)

    Cai, Jiaying; Ma, Hong; Zhang, Junjie; Song, Qi; Du, Zhongtian; Huang, Yizheng; Xu, Jie

    2013-10-11

    Au nanoclusters with an average size of approximately 1 nm size supported on HY zeolite exhibit a superior catalytic performance for the selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furandicarboxylic acid (FDCA). It achieved >99 % yield of 2,5-furandicarboxylic acid in water under mild conditions (60 °C, 0.3 MPa oxygen), which is much higher than that of Au supported on metal oxides/hydroxide (TiO2 , CeO2 , and Mg(OH)2 ) and channel-type zeolites (ZSM-5 and H-MOR). Detailed characterizations, such as X-ray diffraction, transmission electron microscopy, N2 -physisorption, and H2 -temperature-programmed reduction (TPR), revealed that the Au nanoclusters are well encapsulated in the HY zeolite supercage, which is considered to restrict and avoid further growing of the Au nanoclusters into large particles. The acidic hydroxyl groups of the supercage were proven to be responsible for the formation and stabilization of the gold nanoclusters. Moreover, the interaction between the hydroxyl groups in the supercage and the Au nanoclusters leads to electronic modification of the Au nanoparticles, which is supposed to contribute to the high efficiency in the catalytic oxidation of HMF to FDCA. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and analysis of gold nanoclusters on silicon substrates by ion beams

    International Nuclear Information System (INIS)

    Sood, D.K.; Venkatachalam, D.K.; Bhargava, S.K.; Evans, P.J.

    2005-01-01

    To facilitate the growth of silica nanowires on silicon substrates, two different seeding techniques: 1) ion implantation and 2) chemical deposition of as-synthesised gold colloids have been compared for the formation of catalysing gold nanoclusters. The prepared substrates of both types were analysed using Rutherford backscattering spectrometry at ANSTO to determine the amount of gold and its depth distribution. The topography of the substrates deposited with chemically synthesised gold nanoparticles were studied under SEM. The preliminary ion beam (RBS) analysis has shown ion implantation as a novel technique for seeding Au nanoclusters on silicon substrates facilitating growth of nanowires. This method holds a great potential for using any metal across the periodic table that can act as catalysing seed nanoclusters for nanowire growth. The use of chemical deposition as a seeding technique to deposit as-synthesised gold nanoparticles requires further investigations. RBS results show significant difference in the depth distribution of the gold nanoparticles on silicon substrates seeded by two different techniques. (author). 6 refs., 4 figs

  10. Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling.

    Science.gov (United States)

    Remorino, Amanda; De Beco, Simon; Cayrac, Fanny; Di Federico, Fahima; Cornilleau, Gaetan; Gautreau, Alexis; Parrini, Maria Carla; Masson, Jean-Baptiste; Dahan, Maxime; Coppey, Mathieu

    2017-11-14

    Rac1 is a small RhoGTPase switch that orchestrates actin branching in space and time and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single-molecule imaging and super-resolution microscopy, we show an additional supramolecular organization of Rac1. We find that Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble because of the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs and possibly GAPs, downstream effectors, and other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  12. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    Science.gov (United States)

    Zhang, Xiao-Dong; Luo, Zhentao; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-03-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29-43(SG)27-37 nanoclusters (protecting shell. The GSH-coated Au29-43(SG)27-37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29-43(SG)27-37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.

  13. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters.

    Science.gov (United States)

    Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2015-01-25

    In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Modeling of hyaluronan clearance with application to estimation of lymph flow

    International Nuclear Information System (INIS)

    Rössler, Andreas; Goswami, Nandu; Fink, Martin; Batzel, Jerry J

    2011-01-01

    One of the important factors in blood pressure regulation is the maintenance of the level of blood volume, which depends on several factors including the rate of lymph flow. Lymph flow can be measured directly using cannulation of lymphatic vessels, which is not clinically feasible, or indirectly by the tracer appearance rate, which is the rate at which macromolecules appear into the blood from the peritoneal cavity. However, indirect lymph flow measurements do not always provide consistent results. Through its contribution to osmotic pressure and resistance to flow, the macromolecule hyaluronan takes part in the regulation of tissue hydration and the maintenance of water and protein homeostasis. It arrives in blood plasma through lymph flow. Lymphatic hyaluronic acid (HA, hyaluronan) concentration is several times higher than that in plasma, suggesting that the lymphatic route may account for the majority of HA found in plasma. Furthermore, circulating levels of HA reflect the dynamic state between delivery to—and removal from—the bloodstream. To develop an accurate estimation of the fluid volume distribution and dynamics, the rate of lymph flow needs to be taken into account and hyaluronan could be used as a marker in estimating this flow. To examine the HA distribution and system fluid dynamics, a six-compartment model, which could reflect both the steady-state relationships and qualitative characteristics of the dynamics, was developed. This was then applied to estimate fluid shifts from the interstitial space via the lymphatic system to the plasma during different physiological stresses (orthostatic stress and the stress of ultrafiltration during dialysis). Sensitivity analysis shows that during ultrafiltration, lymph flow is a key parameter influencing the total HA level, thus suggesting that the model may find applications in addressing the problem of estimating lymph flow. Since the fluid balance between interstitium and plasma is maintained by lymph

  15. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    Science.gov (United States)

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intra-articular hyaluronan is without clinical effect in knee osteoarthritis: a multicentre, randomised, placebo-controlled, double-blind study of 337 patients followed for 1 year

    DEFF Research Database (Denmark)

    Jørgensen, Anette; Stengaard-Pedersen, Kristian; Simonsen, Ole

    2010-01-01

    OBJECTIVE: To examine the long-term efficacy and safety of five intra-articular injections with hyaluronan in knee osteoarthritis. METHODS: A multicentre, randomised, placebo-controlled double-blind study of 337 patients fulfilling the American College of Rheumatology (ACR) criteria for knee...... osteoarthritis (clinical and laboratory) and with a Lequesne algofunctional index score (LFI) of 10 or greater. Patients received a hyaluronan product (sodium hyaluronate; Hyalgan) (n=167) or saline (n=170) intra-articularly weekly for 5 weeks and were followed up to 1 year. Time to recurrence was the primary...... the ACR criteria for osteoarthritis of the knee with moderate to severe disease activity (LFI > or = 10), five intra-articular injections of hyaluronan did not improve pain, function, paracetamol consumption or other efficacy parameters 3, 6, 9 and 12 months after the treatment....

  17. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, magnetic, and optical properties of subnanometer Au N and AuN-1Gd1 gas phase clusters (N = 2 to 8) are systematically investigated in the framework of (time-dependent) density functional theory, using the B3LYP hybrid exchange correlation functional. The size dependent evolution of the gap between the highest occupied and lowest unoccupied molecular orbitals, the magnetism, and the absorption spectra are studied. The simultaneous appearance of large magnetic moments, significant band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  18. A hyaluronan-based nerve guide : in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat

    NARCIS (Netherlands)

    Jansen, K; van Wachem, PB; Nicolai, JPA; de Leij, LFMH; van Luyn, MJA; van der Werf, J.F.A.

    We investigated possible cytotoxic effects, biocompatibility, and degradation of a hyaluronan-based conduit for peripheral nerve repair. We subjected the conduits to an in vitro fibroblast cytotoxicity test and concluded that the conduits were not cytotoxic. Subsequently, we implanted the conduits

  19. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host.

    Science.gov (United States)

    Kuznetsov, A S; Tikhomirov, V K; Moshchalkov, V V

    2012-09-10

    A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

  20. Distinct metal-exchange pathways of doped Ag25 nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Sinatra, Lutfan; Bakr, Osman

    2016-01-01

    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs

  1. Surface Modification of Carbon Nanotube Networked Films with Au Nanoclusters for Enhanced NO2 Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    M. Penza

    2008-01-01

    Full Text Available Multiwalled carbon nanotube (MWCNT films have been deposited by using plasma-enhanced chemical vapor deposition (PECVD system onto alumina substrates, provided with 6 nm thick cobalt (Co growth catalyst for remarkably improved NO2 gas sensing, at working temperature in the range of 100–250∘C. Functionalization of the MWCNTs with nanoclusters of gold (Au sputtering has been performed to modify the surface of carbon nanotube networked films for enhanced and specific NO2 gas detection up to sub-ppm level. It is demonstrated that the NO2 gas sensitivity of the MWCNT-based sensors depends on Au-loading used as surface-catalyst. The gas response of MWCNT-based chemiresistor is attributed to p-type conductivity in the Au-modified semiconducting MWCNTs with a very good short-term repeatability and faster recovery. The sensor temperature of maximum NO2 sensitivity of the Au-functionalized MWCNTs is found to decrease with increasing Au-loading on their surface, and continuous gas monitoring at ppb level of NO2 is effectively performed with Au-modified MWCNT chemiresistors.

  2. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    Science.gov (United States)

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-05-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.

  3. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.

    Science.gov (United States)

    Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank

    2017-03-15

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  4. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO_2_-_δ Films

    International Nuclear Information System (INIS)

    Cortie, David L.; Khaydukov, Yury; Max Planck Society, Garching

    2017-01-01

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO_2_-_δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ_B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO_2_-_δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co"0, with a minor fraction of Co"2"+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co"0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  5. Fabrication of Hyaluronan-Poly(vinylphosphonic acid-Chitosan Hydrogel for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Dang Hoang Phuc

    2016-01-01

    Full Text Available A new hydrogel made of hyaluronan, poly(vinylphosphonic acid, and chitosan (HA/PVPA/CS hydrogel was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally, in vivo study was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity against E. coli. Finally, in vivo study indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.

  6. Magnetic properties of co-modified Fe,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Zolnierkiewicz Grzegorz

    2015-01-01

    Full Text Available Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe, were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.

  7. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  8. Ab initio study of structural, electronic, optical, and vibrational properties of ZnxSy (x + y = 2 to 5) nanoclusters

    International Nuclear Information System (INIS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-01-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS 2 , ZnS 3 , and ZnS 4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  9. Nanoclustering as a dominant feature of plasma membrane organization

    NARCIS (Netherlands)

    Garcia-Parajo, M.F.; Cambi, A.; Torreno-Pina, J.A.; Thompson, N.; Jacobson, K.

    2014-01-01

    Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at

  10. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  11. Localization of hyaluronan with a hyaluronan-specific hyaluronic acid binding protein in the placenta in pre-eclampsia.

    Science.gov (United States)

    Matejevic, D; Neudeck, H; Graf, R; Müller, T; Dietl, J

    2001-01-01

    Hyaluronan (HA), a high molecular weight polysaccharide, is a major component of connective tissue and is thus present in the extracellular matrix of most tissues. Increased serum concentrations have been reported in association with pre-eclampsia and liver malfunction, amongst other disorders. We have performed histochemical investigations with a HA-specific hyaluronic acid binding protein in placentas from uncomplicated pregnancies and from patients with pre-eclampsia. Staining for HA was found in the stroma and blood vessel walls of stem villi in all the placentas investigated. The syncytiotrophoblast and cytotrophoblast cells usually remained unstained. In addition, reactivity for HA was found within and on the surface of intervillous and perivillous fibrinoid deposits. Since fibrinoid deposits are increased in pre-eclampsia, our findings suggest that the increased HA serum concentrations in cases of pre-eclampsia could result from the stroma of the infarcted villi and from the fibrinoid deposits. HA may reach the maternal blood through fibrinoid gaps. Copyright 2001 S. Karger AG, Basel

  12. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    Science.gov (United States)

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  13. Peculiar features of heat capacity for Cu and Ni nanoclusters

    International Nuclear Information System (INIS)

    Gafner, S. L.; Redel, L. V.; Gafner, Yu. Ya.; Samsonov, V. M.

    2011-01-01

    The heat capacity of copper and nickel clusters (from 2 to 6 nm in diameter) was investigated in the temperature range 200–800 K using molecular dynamics method and a modified tight-binding potential. The simulation results demonstrate a very good agreement with the available experimental data at T = 200 K and a fairy good agreement at higher temperatures. A number of regular trends are revealed in computer experiments which agree with the corresponding theoretical predictions. A conclusion is made that in the case of single free clusters the heat capacity may exceed the capacity of the corresponding bulk material. It is found that at 200 K, the copper nanocluster (D = 6 nm) heat capacity is higher by 10% and for nickel cluster by 13%. The difference diminishes with increasing the nanoparticles size proportionally to the relative number of surface atoms. A conclusion is made that very high values of the nanostructure heat capacity observed in laboratory experiments should not be attributed to free clusters, i.e., the effect in question is caused by other reasons.

  14. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    Science.gov (United States)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  15. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-01-01

    by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal

  16. Carbon surface diffusion and SiC nanocluster self-ordering

    International Nuclear Information System (INIS)

    Pezoldt, J.; Trushin, Yu.V.; Kharlamov, V.S.; Schmidt, A.A.; Cimalla, V.; Ambacher, O.

    2006-01-01

    The process of the spatial ordering of SiC nanoclusters on the step edges on Si surfaces was studied by means of multi-scale computer simulation. The evolution of cluster arrays on an ideal flat surface and surfaces with terraces of various widths was performed by kinetic Monte Carlo (KMC) simulations based on quantitative studies of potential energy surfaces (PES) by molecular dynamics (MD). PES analysis revealed that certain types of steps act as strong trapping centres for both Si and C adatoms stimulating clusters nucleation. Spatial ordering of the SiC nanoclusters at the terrace edges can be achieved if the parameters of the growth process (substrate temperature, carbon flux) and substrate (steps direction and terrace widths) are adjusted to the surface morphology. Temperature ranges for growth regimes with and without formation of cluster chains were determined. Cluster size distributions and the dependence of optimal terrace width for self ordering on the deposition parameters were obtained

  17. The expanding universe of thiolated gold nanoclusters and beyond.

    Science.gov (United States)

    Jiang, De-en

    2013-08-21

    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  18. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    Science.gov (United States)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  19. Nanoclusters a bridge across disciplines

    CERN Document Server

    Jena, Purusottam

    2010-01-01

    This comprehensive book on Nanoclusters comprises sixteen authoritative chapters written by leading researchers in the field. It provides insight into topics that are currently at the cutting edge of cluster science, with the main focus on metal and metal compound systems that are of particular interest in materials science, and also on aspects related to biology and medicine. While there are numerous books on clusters, the focus on clusters as a bridge across disciplines sets this book apart from others. Delivers cutting edge coverage of cluster science Covers a broad range of topics in

  20. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  1. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    Full Text Available Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis, we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological

  2. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Science.gov (United States)

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  3. EFFECTS OF HYALURONAN ON THREE-DIMENSIONAL MICROARCHITECTURE OF SUBCHONDRAL BONE TISSUES IN GUINEA PIG PRIMARY OSTEOARTHROSIS

    DEFF Research Database (Denmark)

    Ding, Ming

    Introduction: It is not known whether hyaluronan (HA) has any effect on the underlying subchondral bone tissues. This study was to investigate the effects of high molecular weight HA (1.5x106 Daltons) intra-articular injection on subchondral bone tissues. Methods: Fifty-six male guinea pigs (6...

  4. Rapid fluorescence assay for Sudan dyes using polyethyleneimine-coated copper nanoclusters

    International Nuclear Information System (INIS)

    Ling, Yu; Li, Jia Xing; Li, Nian Bing; Luo, Hong Qun; Qu, Fei

    2014-01-01

    We report that the intensity of the blue fluorescence of copper nanoclusters coated with polyethyleneimine (PEI) is strongly reduced in the presence of the food dyestuffs Sudan I-IV. This finding was exploited in a label-free fluorescence assay for these Sudan dyes both in ethanol and aqueous solutions. The PEI-capped nanoclusters have an average diameter of 1.8 nm and are displaying, under 355 nm excitation, a blue emission at 480 nm that matches the absorption bands of the Sudan dyes. The clusters are stable in solution for at least 1 month. Under optimum conditions, this assay can be applied to the quantification of the dyes Sudan I, II, III, and IV, respectively, in the 0.1−30, 0.1–30, 0.1–25, and 0.1–25 μM concentration ranges, and the detection limits (3σ/slope) are 65, 70, 45, and 50 nM, respectively. The capability of reducing the fluorescence of the PEI-capped copper nanoclusters is directly related to the number of the functional groups in that Sudan III and IV give lower detection limits. This analytical scheme exhibits a remarkably high selectivity for the Sudan dyes over potentially interfering substances. The method was successfully applied to determine Sudan I, II, III, and IV in hot chilli powder. (author)

  5. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Kooy, Floor K; Ma, Muyuan; Beeftink, Hendrik H; Eggink, Gerrit; Tramper, Johannes; Boeriu, Carmen G

    2009-01-15

    Hyaluronan (HA) is a polysaccharide with high-potential medical applications, depending on the chain length and the chain length distribution. Special interest goes to homogeneous HA oligosaccharides, which can be enzymatically produced using Pasteurella multocida hyaluronan synthase (PmHAS). We have developed a sensitive, simple, and fast method, based on fluorophore-assisted carbohydrate electrophoresis (FACE), for characterization and quantification of polymerization products. A chromatographic pure fluorescent template was synthesized from HA tetrasaccharide (HA4) and 2-aminobenzoic acid. HA4-fluor and HA4 were used as template for PmHAS-mediated polymerization of nucleotide sugars. All products, fluorescent and nonfluorescent, were analyzed with gel electrophoresis and quantified using lane densitometry. Comparison of HA4- and HA4-fluor-derived polymers showed that the fluorophore did not negatively influence the PmHAS-mediated polymerization. Only even-numbered oligosaccharide products were observed using HA4-fluor or HA4 as template. The fluorophore intensity was linearly related to its concentration, and the limit of detection was determined to be 7.4pmol per product band. With this assay, we can now differentiate oligosaccharides of size range DP2 (degree of polymerization 2) to approximately DP400, monitor the progress of polymerization reactions, and measure subtle differences in polymerization rate. Quantifying polymerization products enables us to study the influence of experimental conditions on HA synthesis.

  6. Building machine learning force fields for nanoclusters

    Science.gov (United States)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  7. Polyoxotungstate nanoclusters supported on silica as an efficient solid-phase microextraction fiber of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Abolghasemi, Mir Mahdi; Yousefi, Vahid; Rafiee, Ezzat

    2014-01-01

    A highly porous silica-supported tungstophosphoric acid (PW) nanocluster was prepared for use in solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The PWs represent a class of discrete transition metal-oxide nanoclusters and their structures resemble discrete fragments of metal-oxide structures of definite size and shape. Transition metal-oxide nanoclusters display large structural diversity, and their monodisperse sizes can be tuned from several Ångstroms up to 10 nm. The highly porous silica-supported tungstophosphoric acid nanocluster material is found to be capable of efficiently extracting PAHs from aqueous sample solutions. The nanomaterial was immobilized on a stainless steel wire for fabrication of the SPME fiber. Following thermal desorption, the PAHs were quantified by GC-MS. Analytical merits include limits of detection that range from 0.02 to 0.1 pg mL −1 and a dynamic range as wide as from 0.001 to 100 ng mL −1 . Under optimum conditions, the repeatability for one fiber (n = 3), expressed as the relative standard deviation, is between 4.3 % and 8.6 %. The method is simple, rapid, and inexpensive. The thermal stability of the fiber and the high relative recovery make this method superior to conventional methods of extraction. (author)

  8. Fluorescent silver nanoclusters capped by polyethyleneimine with different molecular weights: Universal synthesis and application as a temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Fei, E-mail: qufei3323@163.com [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); Li, Qingjin [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); You, Jinmao, E-mail: jmyou6304@163.com [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001 (China)

    2016-09-15

    In this paper, we developed a universal, applicable and simple synthetic method of Ag nanoclusters capped by polyethyleneimine (PEI) with different molecular weights (AgNC-PEIs), including Mw 600, 1300, 1800, 2000, 10,000, 25,000, 70,000, and 750,000. Using formaldehyde as the sole reducing agent, silver nanoclusters could be successfully prepared by using these templates. Subsequently, several characterization techniques were employed to investigate the properties of AgNC-PEIs, and the results suggested that these AgNC-PEIs had similar sizes, structures, and optical features. However, besides the common characteristics, different temperature sensitivities were found for these nanoclusters, in which AgNC-PEI 25000 was proper to be applied as a temperature sensor. With increasing temperature, the fluorescence quenched dramatically, and this change could be readily observed by naked eyes under UV light. Injection of these temperature sensitive nanoclusters into a glass tube, a simple thermometer could be fabricated easily, thus AgNC-PEI 25000 would be a promising candidate for temperature sensing as a visible indicator.

  9. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Au nano-clusters and nanoparticles (NPs have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001 by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  10. Enhanced electrochemical water oxidation: the impact of nanoclusters and nanocavities

    NARCIS (Netherlands)

    Zhang, X.; Cao, C.; Bieberle, A.

    2017-01-01

    The structures of transition metal surfaces and metal oxides are commonly believed to have a significant effect on the catalytic reactions. Density functional theory calculations are therefore used in this study to investigate the oxygen evolution reaction (OER) over nanostructured, i.e. nanocluster

  11. Viscoelastic Properties of Hyaluronan in Physiological Conditions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Mary K. Cowman

    2015-08-01

    Full Text Available Hyaluronan (HA is a high molecular weight glycosaminoglycan of the extracellular matrix (ECM, which is particularly abundant in soft connective tissues. Solutions of HA can be highly viscous with non-Newtonian flow properties. These properties affect the movement of HA-containing fluid layers within and underlying the deep fascia. Changes in the concentration, molecular weight, or even covalent modification of HA in inflammatory conditions, as well as changes in binding interactions with other macromolecules, can have dramatic effects on the sliding movement of fascia. The high molecular weight and the semi-flexible chain of HA are key factors leading to the high viscosity of dilute solutions, and real HA solutions show additional nonideality and greatly increased viscosity due to mutual macromolecular crowding. The shear rate dependence of the viscosity, and the viscoelasticity of HA solutions, depend on the relaxation time of the molecule, which in turn depends on the HA concentration and molecular weight. Temperature can also have an effect on these properties. High viscosity can additionally affect the lubricating function of HA solutions. Immobility can increase the concentration of HA, increase the viscosity, and reduce lubrication and gliding of the layers of connective tissue and muscle. Over time, these changes can alter both muscle structure and function. Inflammation can further increase the viscosity of HA-containing fluids if the HA is modified via covalent attachment of heavy chains derived from Inter-α-Inhibitor. Hyaluronidase hydrolyzes HA, thus reducing its molecular weight, lowering the viscosity of the extracellular matrix fluid and making outflow easier. It can also disrupt any aggregates or gel-like structures that result from HA being modified. Hyaluronidase is used medically primarily as a dispersion agent, but may also be useful in conditions where altered viscosity of the fascia is desired, such as in the treatment of

  12. Platinum nano-cluster thin film formed on glassy carbon and the application for methanol oxidation

    International Nuclear Information System (INIS)

    Chang, Gang; Oyama, Munetaka; Hirao, Kazuyuki

    2007-01-01

    As an interesting platinum nanostructured material, a Pt nano-cluster film (PtNCF) attached on glassy carbon (GC) is reported. Through the reduction of PtCl 4 2- by ascorbic acid in the presence of GC substrate, a Pt thin continuous film composed of small nano-clusters which had a further agglomerated nanostructure of small grains could be attached on the GC surface. It was found that the electrocatalytic ability of PtNCF for the methanol oxidation was apparently higher than those of the Pt nano-clusters dispersedly attached on GC or indium in oxides. In addition, the electrocatalytic performance of PtNCF per Pt amount was superior to that of Pt black on GC. These results indicate that, in spite of the continuous nanostructures, nano-grains of PtNCF worked effectively for the catalytic electrolysis. The present PtNCF can be regarded as an interesting thin film material, which can be easily prepared by one-step chemical reduction

  13. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  14. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    Science.gov (United States)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  15. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  16. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    Science.gov (United States)

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  17. Modification of erbium photoluminescence decay rate due to ITO layers on thin films of SiO{sub 2}:Er doped with Si-nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wojdak, M., E-mail: m.wojdak@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Jayatilleka, H. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada M5S 3G4 (Canada); Shah, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Kenyon, A.J., E-mail: t.kenyon@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Gourbilleau, F.; Rizk, R. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), ENSICAEN, CNRS, CEA/IRAMIS, Université de Caen, 14050 CAEN cedex (France)

    2013-04-15

    During the fabrication of MOS light emitting devices, the thin film of active material is usually characterized by photoluminescence measurements before electrical contacts are deposited. However, the presence of a conductive contact layer can alter the luminescent properties of the active material. The local optical density of states changes due to the proximity of luminescent species to the interface with the conductive medium (the top electrode), and this modifies the radiative rate of luminescent centers within the active layer. In this paper we report enhancement of the observed erbium photoluminescence rate after deposition of indium tin oxide contacts on thin films of SiO{sub 2}:Er containing silicon nanoclusters, and relate this to Purcell enhancement of the erbium radiative rate. -- Highlights: ► We studied photoluminescence of Er in SiO{sub 2} thin films doped with Si nanoclusters. ► Presence of ITO layer on the top enhances photoluminescence decay rate of Er. ► The effect depends on the thickness of active film. ► Radiative rate change in proximity of ITO layer was calculated theoretically. ► The calculation results are compared with the experiment and discussed.

  18. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  19. In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging.

    Science.gov (United States)

    Li, Duo; Qiao, Zhenzhen; Yu, Yanru; Tang, Jinlu; He, Xiaoxiao; Shi, Hui; Ye, Xiaosheng; Lei, Yanli; Wang, Kemin

    2018-01-25

    A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.

  20. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    Science.gov (United States)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  1. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  2. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    Science.gov (United States)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  3. Bound magnetic polaron in Zn-rich cobalt-doped ZnSe nanowires

    Science.gov (United States)

    Hou, Lipeng; Pan, Longfei; Liang, Bianbian; Liu, Yuting; Zhang, Li; Bukhtiar, Arfan; Shi, Lijie; Liu, Ruibin; Zou, Bingsuo

    2018-02-01

    The micro-luminescence spectra of the diluted magnetic semiconductor (DMS) can reflect the spin-exciton interaction and related relaxation process. Here the micro-photoluminescence (micro-PL) spectra and PL lifetime measurements have been done on an individual ferromagnetic (FM)-coupled cobalt (Co) doped zinc selenide (ZnSe) nanowire. There occurs a double-peak profile in its near bandedge emission spectrum: the first peak is from free exciton (FX) and the second comes from magnetic polaron (MP). In their temperature dependent PL spectra, the MP emission peak demonstrates obviously temperature-independent behavior, in contrast to the behaviors of FX and reported exciton MP in nanobelt. It is found that in this Co(II) doped ZnSe nanowires, this MP’s temperature-independent emission is related to the coupling between exciton and a FM nanocluster (↑↑↓). The nanocluster is likely due to the interaction of Se vacancies of the wide bandgap semiconductors with the antiferromagnetic (AFM) arrangement transition metal (TM) ions in these Se-deficient Co doped ZnSe nanowires. These results reflect that the AFM coupling TM ions pair can give rise to FM behavior with the involvement of positive charge defect, also indicating that the micro-luminescence detection can be used to study the magnetic coupling in DMS.

  4. Pinning of size-selected gold and nickel nanoclusters on graphite

    NARCIS (Netherlands)

    Di Vece, M.|info:eu-repo/dai/nl/248753355; Paloma, S.; Palmer, R.E.

    2005-01-01

    Size-selected gold and nickel nanoclusters are of interest from an electronic, catalytic, and biological point of view. These applications require the deposition of the clusters on a surface, and a key challenge is to retain the cluster size. Here controlled energy impact is used to immobilize the

  5. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO{sub 2}/SiO{sub 2}:Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Güner, S., E-mail: sguner@fatih.edu.tr [Department of Physics, Fatih University, 34500 Büyükçekmece, İstanbul (Turkey); Budak, S. [Department of Electrical Engineering and Computer Science, Alabama A and M University, Huntsville, AL 35810 (United States); Gibson, B. [Department of Physics, UAH, Huntsville, AL 35899 (United States); Ila, D. [Department of Chemistry and Physics, Fayetteville St. University, Fayetteville, NC 28301 (United States)

    2014-08-15

    Highlights: • Fabrication of films through the Reactive Electron Beam deposition technique. • Perfect and reproducible Ag nanoclustered host matrix. • Potential technological applicability in thermoelectric devices. - Abstract: We have deposited five periodic SiO{sub 2}/SiO{sub 2} + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO{sub 2}:Ag layers were 2.7–5 nm and SiO{sub 2} buffer layers were 1–15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO{sub 2} were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO{sub 2} was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 10{sup 14} and 1 × 10{sup 16} ions/cm{sup 2} values. Optical absorption spectra were recorded in the range of 200–900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  6. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry.

    Science.gov (United States)

    Demange, Elise; Kassim, Yusra; Petit, Cyrille; Buquet, Catherine; Dulong, Virginie; Cerf, Didier Le; Buchonnet, Gérard; Vannier, Jean-Pierre

    2013-11-01

    Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A model for the ethylene and acetylene adsorption on the surface of Cu{sub n}(n = 10–15) nanoclusters: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Farmanzadeh, Davood, E-mail: d.farmanzad@umz.ac.ir; Abdollahi, Tahereh

    2016-11-01

    Highlights: • The most stable structures of Cu{sub n} (n = 10–15) were structures with C{sub S} symmetry. • It is expected that even clusters are better electron donors than the odd clusters. • Acetylene and ethylene adsorb molecularly on the Cu nanoclusters surface. • Acetylene never orient toward di-σ mode for Cu−Cu bond in odd copper nanoclusters. • For di- σ-Cu{sub n}C{sub 2}H{sub 4}, no stable structure is identified. - Abstract: In this work, we report the results of density functional theory calculations of ethylene and acetylene adsorption on the most stable Cu{sub n} (n = 10–15) nanoclusters, in two π and di- σ adsorption modes. Both the hydrocarbons molecularly adsorbed on the surface. Our results show that the quality of interaction of ethylene and acetylene with odd copper nanoclusters (n = 11, 13, 15) is different from what is found on even copper nanoclusters (n = 10, 12, 14). One of the interesting features of this adsorption is that acetylene never orient toward di-σ mode for Cu−Cu bond in odd copper nanoclusters. Also, for di- σ-Cu{sub n}C{sub 2}H{sub 4}, no stable structure is identified. The highest interaction and deformation energies are seen for the adsorption of acetylene and ethylene on Cu{sub 11} in π-mode.

  8. First-principles study of MoS2 and MoSe2 nanoclusters in the framework of evolutionary algorithm and density functional theory

    Science.gov (United States)

    Hashemi, Zohreh; Rafiezadeh, Shohreh; Hafizi, Roohollah; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2018-04-01

    Evolutionary algorithm is combined with full-potential ab initio calculations to investigate conformational space of (MoS2)n and (MoSe2)n (n = 1-10) nanoclusters and to identify the lowest energy structural isomers of these systems. It is argued that within both BLYP and PBE functionals, these nanoclusters favor sandwiched planar configurations, similar to their ideal planar sheets. The second order difference in total energy (Δ2 E) of the lowest energy isomers is computed to estimate the abundance of the clusters at different sizes and to determine the magic sizes of (MoS2)n and (MoSe2)n nanoclusters. In order to investigate the electronic properties of nanoclusters, their energy gap is calculated by several methods, including hybrid functionals (B3LYP and PBE0), GW approach, and Δ scf method. At the end, the vibrational modes of the lowest lying isomers are calculated by using the force constants method and the IR active modes of the systems are identified. The vibrational spectra are used to calculate the Helmholtz free energy of the systems and then to investigate abundance of the nanoclusters at finite temperatures.

  9. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    Science.gov (United States)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  10. Levitation force on a permanent magnet over a superconducting plane: Modified critical-state model

    International Nuclear Information System (INIS)

    Yang, Z.J.

    1997-01-01

    The authors consider a model system of a permanent magnet above a semi-infinite superconductor. They introduce a modified critical-state model, and carry out derivations of the levitation force acting on the magnet. A key feature of the modification allows the current density to be less than the critical value. The theoretical results show an exponential relationship between the force and the distance. Analytical expressions are developed for permanent magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindrical magnet. In the latter case, the exponential relationship has been observed in numerous experiments but without previous interpretation

  11. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    Science.gov (United States)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  12. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO2–Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-01-01

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO 2 ) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO 2 –Pt) nanowire–nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO 2 sensors. The GaN/TiO 2 NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO 2 sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO 2 –Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol −1 (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol −1 (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential

  13. Bottom-up strategies for the assembling of magnetic systems using nanoclusters

    Science.gov (United States)

    Dupuis, V.; Hillion, A.; Robert, A.; Loiselet, O.; Khadra, G.; Capiod, P.; Albin, C.; Boisron, O.; Le Roy, D.; Bardotti, L.; Tournus, F.; Tamion, A.

    2018-05-01

    In the frame of the 20th Anniversary of the Journal of Nanoparticle Research (JNR), our aim is to start from the historical context 20 years ago and to give some recent results and perspectives concerning nanomagnets prepared from clusters preformed in the gas phase using the low-energy cluster beam deposition (LECBD) technique. In this paper, we focus our attention on the typical case of Co clusters embedded in various matrices to study interface magnetic anisotropy and magnetic interactions as a function of volume concentrations, and on still current and perspectives through two examples of binary metallic 3d-5d TM (namely CoPt and FeAu) cluster assemblies to illustrate size-related and nanoalloy phenomena on magnetic properties in well-defined mass-selected clusters. The structural and magnetic properties of these cluster assemblies were investigated using various experimental techniques that include high-resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) magnetometry, and synchrotron techniques such as extended X-ray absorption fine structure (EXAFS) and X-ray magnetic circular dichroism (XMCD). Depending on the chemical nature of both NPs and matrix, we observe different magnetic responses compared to their bulk counterparts. In particular, we show how finite size effects (size reduction) enhance their magnetic moment and how specific relaxation in nanoalloys can impact their magnetic anisotropy.

  14. Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  15. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2...

  16. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    Science.gov (United States)

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available Introduction. An increasing number of studies are utilizing different magnetic resonance (MR methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI, modified Dixon method (also called fat fraction MRI (FFMRI, and magnetic resonance spectroscopy (MRS. Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI. Bone marrow adipose tissue (BMAT of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  18. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.; Bootharaju, Megalamane Siddaramappa; Sinatra, Lutfan; Basset, Jean-Marie; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol

  19. Can Plasma Hyaluronan and Hyaluronidase Be Used As Markers of the Endothelial Glycocalyx State in Patients with Kidney Disease?

    NARCIS (Netherlands)

    Vlahu, Carmen A.; Krediet, Raymond T.

    2015-01-01

    Hyaluronan (HA) is widely spread in the body and is an important component of the extracellular matrix, including the endothelial glycocalyx (EG). Essential for its vasculoprotective function, HA is involved in vascular permeability and many other processes. In patients with kidney disease, plasma

  20. A cuboctahedral platinum (Pt79) nanocluster enclosed by well defined facets favours di-sigma adsorption and improves the reaction kinetics for methanol fuel cells.

    Science.gov (United States)

    Mahata, Arup; Choudhuri, Indrani; Pathak, Biswarup

    2015-08-28

    The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.

  1. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    Science.gov (United States)

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Electronic and magnetic properties of modified silicene/graphene hybrid: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Suman; Jana, Debnarayan, E-mail: cujanad@yahoo.com

    2016-11-01

    Among other two-dimensional (2D) novel materials, graphene and silicene both have drawn intense research interest among the researchers because they possess some unique intriguing properties which can change the scenario of the current electronic industry. In this work we have studied the electronic and the magnetic properties of a new kind of materials which is the hybrid of these two materials. Density functional theory (DFT) has been employed to calculate the relevant electronic and magnetic properties of this hybrid material. The pristine structure is modified by substitutional doping or by creating vacancy (Y-X, where one Y atom (Si or C) has been replaced by one X atom (B, N, Al, P or void)). The calculations have revealed that void systems are unstable while Si-B and Si-N are most stable ones. It has been noticed that some of these doped structures are magnetic in nature having induced mid-gap states in the system. In particular, Si-void structure is unstable yet it possess the highest magnetic moment of the order of 4 μ{sub B} (μ{sub B} being the Bohr magneton). The estimated band gaps of modified silicene/graphene hybrid from spin polarized partial density of states (PDOS) vary between 1.43–2.38 eV and 1.58–2.50 eV for spin-up and spin-down channel respectively. The implication of midgap states has been critically analysed in the light of magnetic nature. This study may be useful to build hybrid spintronic devices with controllable gap for spin up and spin down states. - Graphical abstract: We have studied the electronic and magnetic properties of silicene/graphene hybrid by employing density functional theory (DFT). - Highlights: • Electronic and magnetic properties of two dimensional graphene/silicene hybrid have been explored. • There is no magnetism in the system for a single carbon atom vacancy. • A net magnetic moment of 4.0 Bohr magneton is observed for a single silicon atom vacancy. • Unpaired electrons introduce mid-gap states which

  3. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  4. Ab initio study of structural, electronic, optical, and vibrational properties of Zn{sub x}S{sub y} (x + y = 2 to 5) nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. S.; Pandey, D. K., E-mail: pdhiraj2000@gmail.com; Agrawal, S.; Agrawal, B. K. [Allahabad University, Department of Physics (India)

    2010-03-15

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn{sub x}S{sub y} (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS{sub 2}, ZnS{sub 3}, and ZnS{sub 4} nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  5. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  6. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression

    Directory of Open Access Journals (Sweden)

    James B. McCarthy

    2018-05-01

    Full Text Available This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA. Cancer-associated fibroblasts (CAFs are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT. The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs also form heterotypic clusters with circulating tumor cells (CTC, which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.

  7. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    Science.gov (United States)

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  8. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  9. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  10. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  11. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in

  12. Ultra-sensitive determination of epinephrine based on TiO{sub 2}-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianbo, E-mail: chm_lijianbo@yeah.net; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Luo, Chuannan, E-mail: chm_lijianbo@yeah.net

    2016-07-01

    A highly efficient and sensitive electrochemical sensor for EP based on reduced graphene and multi-walled carbon nanotube hybrid nanocomposites loaded TiO{sub 2}-Au nano-clusters modified glassy carbon electrode was developed. The surface nature and morphology of the nanocomposite film and the electrochemical properties of the sensor were characterized by Raman spectra, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectra (EDX), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. Carbon nanomaterials were widely used in sensing due to its large electroactive surface area, fast electron transport and strong adsorption capacity. Meanwhile, TiO{sub 2}-Au nano-clusters could accelerate the electron transfer, increase reactive site and extend electrochemical response window. The nanocomposite film could greatly enhance the response sensitivity and decrease the overpotential. The resulting sensor showed an excellent electrocatalytic activity toward EP. Under the optimum conditions (i.e. pH 6.0, 0.1 M PBS, preconcentration for 110 s), Differential pulse voltammetry was employed to detect ultra-trace amounts of EP. The result of a wide linear range of 1.0–300 nM and limited of detection 0.34 nM (S/N = 3) were obtained. The constructed sensor exhibited excellent accuracy and precision, the relative standard deviation (RSD) was less than 5%. The nanocomposite film sensor was successfully used to accurately detect the content of EP in practical samples, and the recoveries for the standards added are 97%–105%. - Highlights: • The three dimensional composite materials rGO/CNTs were successful synthesized. • High conductivity and catalytic activity of TiO{sub 2}-Au nanoclusters were synthesized. • The sensor displays a wide linear range, low detection limit and good stability.

  13. Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

    International Nuclear Information System (INIS)

    Lee, Takhee; Liu Jia; Chen, N.-P.; Andres, R.P.; Janes, D.B.; Reifenberger, R.

    2000-01-01

    We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface

  14. Solventless acid-free synthesis of mesostructured titania: Nanovessels for metal complexes and metal nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Dag, Oe.; Celik, Oe.; Ozin, G.A. [Department of Chemistry, Bilkent University, 06533 Ankara (Turkey); Soten, I.; Polarz, S.; Coombs, N. [Materials Chemistry Research Group, Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2003-01-01

    A new and highly reproducible method to obtain mesostructured titania materials is introduced in this contribution. The mesostructured titania is obtained by employing self-assembled structures of non-ionic alkyl-poly(ethylene oxide) surfactants as templates. The materials are produced without additional solvents such as alcohols, or even water. Only the titanium(IV) ethoxide and the surfactant (C{sub 12}EO{sub 10}) are needed. Water, in the form of that attached to the surfactant and from the atmosphere, induces growth of titania nanoclusters in the synthesis sol. It is indicated that these nanoclusters interact with the surfactant EO-head groups to form a new titanotropic amphiphile. The new amphiphiles self-assemble into titanium nanocluster-surfactant hybrid lyotropic phases, which are transformed to the final mesostructured materials by further condensation of the titania network. The titania materials can be obtained also with noble-metal particles immobilized in the mesostructured framework. It is seen that when different metal salts are used as the metal precursors, different interactions with the titania walls are found. The materials are characterized by X-ray diffraction (XRD), polarization optical microscopy (POM), transmission electron microscopy (TEM), UV-vis spectroscopy, and micro-Raman analysis. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. An Investigation of Electronic Structure and Aromaticity in Medium-Sized Nanoclusters of Gold-Doped Germanium

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Li

    2012-01-01

    Full Text Available The electronic property and aromaticity of endohedrally doped and clusters are investigated using the density-functional theory (DFT within the hybrid B3LYP method. The calculated results reveal that the two clusters have high thermodynamic stability reflected by reaction energy. At the same time, it could be hoped that their high stability may arise from the closed-shell spherical aromaticity with eight -electrons satisfying the counting rule with . A popular nucleus-independent chemical shifts (NICSs calculation on basis of magnetic shieldings is also performed to confirm the aromaticity of the three-dimensional nanoclusters with largely negative NICS values. In addition, the electronic features and chemical bonding of the two clusters are analyzed with the help of the density of states (DOS and electron localization function (ELF, and the majority of Ge–Ge bonds on the cage show more covalent characters.

  16. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution

    International Nuclear Information System (INIS)

    Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-01-01

    Graphical abstract: An innovative and simple strategy for synthesizing high-fluorescent Cu nanoclusters stabilized with L-cysteine has been successfully established in aqueous solution. Significantly, the Cu nanoclusters were employed for sensitive and selective detections of Hg 2+ , coding and fluorescent staining, suggesting their potential toward various applications. - Highlights: • A novel, one-step strategy for synthesizing water-soluble CuNCs was established. • A simple, selective, and cost-effective assay for Hg 2+ was developed. • CuNCs may broaden ways for fluorescent staining and coding. - Abstract: Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg 2+ on the basis of the interactions between Hg 2+ and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg 2+ in a linear range of 1.0 × 10 −7 mol L −1 × 10 −3 mol L −1 , with a detection limit of 2.4 × 10 −8 mol L −1 at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications

  17. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling

    Directory of Open Access Journals (Sweden)

    Anna Oszmiana

    2016-05-01

    Full Text Available Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR, KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling.

  18. Composite Alginate-Hyaluronan Sponges for the Delivery of Tranexamic Acid in Postextractive Alveolar Wounds.

    Science.gov (United States)

    Catanzano, Ovidio; D'Esposito, Vittoria; Formisano, Pietro; Boateng, Joshua S; Quaglia, Fabiana

    2018-02-01

    The management of wounds in patients on anticoagulant therapy who require oral surgical procedures is problematic and often results in a nonsatisfactory healing process. Here, we report a method to prepare an advanced dressing able to avoid uncontrolled bleeding by occluding the postextractive alveolar wounds, and simultaneously, capable of a fast release of tranexamic acid (TA). Composite alginate/hyaluronan (ALG/HA) sponge dressings loaded with TA were prepared by a straightforward internal gelation method followed by a freeze-drying step. Both blank and drug-loaded sponges were soft, flexible, and elegant in appearance and nonbrittle in nature. Scanning electron microscopy analysis confirmed the porous nature of these dressings. The integration of HA influenced the microstructure, reducing the porosity, modifying the water uptake kinetic, and increasing the resistance to compression. TA release from ALG/HA sponges showed a controlled release up to 3 h, and it was faster in the presence of HA. Finally, an in vitro clotting test performed on human whole blood confirmed that the TA-loaded sponges significantly reduce the blood clotting index by 30% compared with ALG/HA 20 sponges. These results suggest that, if placed in a socket cavity, these dressings could give a relevant help to the blood hemostasis after dental extractions, especially in patients with coagulation disorders. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles

    International Nuclear Information System (INIS)

    Xu, Na; Li, Hong-Wei; Wu, Yuqing

    2017-01-01

    A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV–vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV–vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25–300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body. - Highlights: • This paper provides the first hydrothermal synthesis of platinum nanoclusters. • The prepared polyethylenimine-protected platinum nanoclusters possess high quantum yield of 28%. • A new method to detect trace amount of metronidazole in urine is proposed.

  20. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Na [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022 (China); Li, Hong-Wei, E-mail: lihongwei@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China); Wu, Yuqing, E-mail: yqwu@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-03-15

    A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV–vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV–vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25–300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body. - Highlights: • This paper provides the first hydrothermal synthesis of platinum nanoclusters. • The prepared polyethylenimine-protected platinum nanoclusters possess high quantum yield of 28%. • A new method to detect trace amount of metronidazole in urine is proposed.

  1. Hyaluronan Immobilized Polyurethane as a Blood Contacting Material

    Directory of Open Access Journals (Sweden)

    Feirong Gong

    2010-01-01

    Full Text Available Hyaluronan (hyaluronic acid, HA was immobilized onto the surface of amino-functionalized polyurethane films with the goal of obtaining a novel kind of biomaterial which had the potential in blood-contacting applications. The amino-functionalized polyurethane was prepared by synthesized acidic polyurethane whose pendant carboxyl groups were treated with an excess amount of 1,3-diaminopropane in the presence of N,N-carbonyldiimidazole (CDI. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, Raman spectroscopy (RS, scanning electron microscopy (SEM, and water contact angle measurement were used to confirm the surface changes at each step of treatment, both in morphologies and chemical compositions. APTT and PT results showed that HA immobilization could prolong the blood coagulation time, thus HA-immobilized polyurethane (PU-HA exhibited improved blood compatibility. Cytotoxicity analysis showed that the PU-HA films synthesized in this study were cytocompatible and could support human vein endothelial cells (HUVECs adhesion and proliferation.

  2. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    International Nuclear Information System (INIS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-01-01

    Graft through strategy was utilized to coat magnetic Fe 3 O 4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host–guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  3. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  4. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chia-Hsin [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China); Lien, Hsing-Lung, E-mail: lien.sam@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Chung, Jung-Shing [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Yeh, Hund-Der [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China)

    2017-01-15

    Highlights: • A reusable magnetic nano-adsorbent is prepared for precious metal adsorption. • The nano-adsorbent (MNP-G3) is synthesized by magnetic nanoparticles and dendrimer. • Higher valent ions show higher adsorption capacity by MNP-G3 suggesting complexation involved. • The pseudo second-order model best describe the adsorption kinetics. • MNP-G3 modified by EDTA significantly improve its adsorption ability for Ag(I). - Abstract: Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  5. Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume

    International Nuclear Information System (INIS)

    Gamaly, E. G.; Madsen, N. R.; Rode, A. V.; Golberg, D.

    2009-01-01

    Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2x10 -2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example.

  6. Local delivery of hyaluronan as an adjunct to scaling and root planing in the treatment of chronic periodontitis.

    Science.gov (United States)

    Johannsen, Annsofi; Tellefsen, Monica; Wikesjö, Ulf; Johannsen, Gunnar

    2009-09-01

    The aim of the present study was to evaluate the adjunctive effect of the local application of a hyaluronan gel to scaling and root planing in the treatment of chronic periodontitis. Twelve patients with chronic periodontitis were recruited to participate in a study with a split-mouth design and provided informed consent. Plaque formation and bleeding on probing were evaluated pretreatment (baseline) and at 1, 4, and 12 weeks post-treatment. Probing depths and attachment levels were evaluated at baseline and at 12 weeks. The patients received full-mouth scaling and root planing. A hyaluronan gel was administered subgingivally in the test sites at baseline and after 1 week. Significant differences between test and control were evaluated using the paired t test, repeated-measures analysis of variance (Wilks lambda), and a non-parametric Wilcoxon signed-rank test. A significant reduction in bleeding on probing scores and probing depths was observed in both groups at 12 weeks (P scaling and root planing may have a beneficial effect on periodontal health in patients with chronic periodontitis.

  7. Angle-sensitive and fast photovoltage of silver nanocluster embeded ZnO thin films induced by 1.064-μm pulsed laser

    International Nuclear Information System (INIS)

    Song-Qing, Zhao; Li-Min, Yang; Wen-Wei, Liu; Kun, Zhao; Yue-Liang, Zhou; Qing-Li, Zhou

    2010-01-01

    Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from −90° to 90°, its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached ∼2 ns with an open-circuit photovoltage of ∼2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...... and electrochemical ammonia production via the associative mechanism is possible at potentials as low as -0.45 V to -0.7 V. © 2014 Howalt and Vegge........ In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  9. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    Science.gov (United States)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  10. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Sharma, Jaswinder [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  11. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  12. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  13. Oral hyaluronan relieves wrinkles: a double-blinded, placebo-controlled study over a 12-week period

    OpenAIRE

    Oe, Mariko; Sakai, Seigo; Yoshida, Hideto; Okado, Nao; Kaneda, Haruna; Masuda, Yasunobu; Urushibata, Osamu

    2017-01-01

    Mariko Oe,1 Seigo Sakai,1 Hideto Yoshida,1 Nao Okado,1 Haruna Kaneda,1 Yasunobu Masuda,1 Osamu Urushibata2 1R&D Division, Kewpie Corporation, Sengawa-cho, Chofu-shi, 2Department of Dermatology, Toho University Ohashi Medical Center, Ohashi, Meguro-ku, Tokyo, Japan Background: Hyaluronan (HA) has critical moisturizing property and high water retention capacity especially for human skin. This study aimed to evaluate the effect of oral intake of HA. Methods: The mean molecular weight (MW...

  14. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Science.gov (United States)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  15. Hyaluronan in the neonatal period. An experimental and clinical study in asphyxia and infection

    OpenAIRE

    Østerholt, Helene C. Dale

    2014-01-01

    List of papers. Paper II is removed from the thesis due to publisher restrictions. I. Østerholt HCD, Dannevig I, Wyckoff MH, Liao J, Akgul Y, Ramgopal M, Milja, DS, Cheong N, Longoria C, Mahendroo M, Nakstad B, Saugstad OD and Savani RC Antioxidant protects against increases in low molecular weight hyaluronan and inflammation in asphyxiated newborn pigs resuscitated with 100% oxygen. PLoS One 2012;7(6):e38839 doi:10.1371/journal.pone.0038839 © 2012 Østerholt et al. This is an open-access ...

  16. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoming, E-mail: ming4444@swu.edu.cn; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-10-17

    Graphical abstract: An innovative and simple strategy for synthesizing high-fluorescent Cu nanoclusters stabilized with L-cysteine has been successfully established in aqueous solution. Significantly, the Cu nanoclusters were employed for sensitive and selective detections of Hg{sup 2+}, coding and fluorescent staining, suggesting their potential toward various applications. - Highlights: • A novel, one-step strategy for synthesizing water-soluble CuNCs was established. • A simple, selective, and cost-effective assay for Hg{sup 2+} was developed. • CuNCs may broaden ways for fluorescent staining and coding. - Abstract: Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg{sup 2+} on the basis of the interactions between Hg{sup 2+} and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg{sup 2+} in a linear range of 1.0 × 10{sup −7} mol L{sup −1} × 10{sup −3} mol L{sup −1}, with a detection limit of 2.4 × 10{sup −8} mol L{sup −1} at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications.

  17. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  18. Wireless electrochemical preparation of gradient nanoclusters consisting of copper(II), stearic acid and montmorillonite on a copper wire for headspace in-tube microextraction of chlorobenzenes.

    Science.gov (United States)

    Enteshari Najafabadi, Marzieh; Bagheri, Habib

    2017-12-26

    This work introduces a new gradient fiber coating for microextraction of chlorobenzenes. Nanoclusters of organoclay-Cu(II) on a copper wire were fabricated by wireless electrofunctionalization. The resultant gradient coatings are more robust, and thermally and mechanically stable. Wireless electrofunctionalization was carried out in a bipolar cell under a constant deposition potential and using an ethanolic electrolyte solution containing stearic acid and montmorillonite. Stearic acid acts as an inexpensive and green coating while montmorillonite acts as a modifier to impart thermal stability. The gradient morphology of the nanoclusters was investigated by scanning electron microscopy, thermogravimetric analysis and energy dispersive X-ray spectroscopy. The coated wire was placed in a hollow needle and used for headspace in-tube microextraction (HS-ITME) of chlorobenzenes (CBs). Effects of various parameters affecting synthesis and extraction were optimized. Following extraction, the needles were directly inserted into the GC injector, and the CBs (chlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3,4-tetrachlorobenzene) were quantified by GC-MS. The limits of detection under optimized conditions range from 0.5 to 10 ng.L -1 . The intra- and inter-day relative standard deviations (RSDs) (for n = 10, 5 respectively) using a single fiber are 6-10 and 10-15%, respectively. The fiber-to-fiber RSDs (for n = 3) is between 17 and 24%. The method was successfully applied to the extraction of CBs from real water samples, and relative recoveries are between 91 and 110%. Graphical abstract A gradient coating of organoclay-Cu nanoclusters was fabricated on a copper wire by wireless electrofunctionalization. The oxidation of copper takes place at the anodic pole (red) while dissolved oxygen in ethanol solution is reduced at the cathodic pole (blue).

  19. Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Rao, Mulpuri V

    2011-01-01

    Nanowire-nanocluster hybrid chemical sensors were realized by functionalizing gallium nitride (GaN) nanowires (NWs) with titanium dioxide (TiO 2 ) nanoclusters for selectively sensing benzene and other related aromatic compounds. Hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 nanoclusters using RF magnetron sputtering. The sensor fabrication process employed standard microfabrication techniques. X-ray diffraction and high-resolution analytical transmission electron microscopy using energy-dispersive x-ray and electron energy-loss spectroscopies confirmed the presence of the anatase phase in TiO 2 clusters after post-deposition anneal at 700 deg. C. A change of current was observed for these hybrid sensors when exposed to the vapors of aromatic compounds (benzene, toluene, ethylbenzene, xylene and chlorobenzene mixed with air) under UV excitation, while they had no response to non-aromatic organic compounds such as methanol, ethanol, isopropanol, chloroform, acetone and 1,3-hexadiene. The sensitivity range for the noted aromatic compounds except chlorobenzene were from 1% down to 50 parts per billion (ppb) at room temperature. By combining the enhanced catalytic properties of the TiO 2 nanoclusters with the sensitive transduction capability of the nanowires, an ultra-sensitive and selective chemical sensing architecture is demonstrated. We have proposed a mechanism that could qualitatively explain the observed sensing behavior.

  20. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  1. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  2. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Namvar F

    2016-07-01

    Full Text Available Farideh Namvar,1,2 Susan Azizi,3 Heshu Sulaiman Rahman,4–6 Rosfarizan Mohamad,1,3 Abdullah Rasedee,4 Mozhgan Soltani,2 Raha Abdul Rahim71Institute of Tropical Forestry and Forest Products (INTROP, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran; 3Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, 4Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 5Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, 6Department of Laboratory Medical Sciences, Komar University of Science and Technology, Sulaimani City, Kurdistan Region, Northern Iraq; 7Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Abstract: The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1, ovarian adenocarcinoma (CaOV-3, colonic adenocarcinoma (COLO205, and acute promyelocytic leukemia (HL-60 cells

  3. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  4. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro, Miguel

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure...... and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled...

  5. Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease.

    Science.gov (United States)

    Lamas, Adelaida; Marshburn, Jamie; Stober, Vandy P; Donaldson, Scott H; Garantziotis, Stavros

    2016-10-03

    Cystic fibrosis (CF) is a chronic inflammatory disease that is affecting thousands of patients worldwide. Adjuvant anti-inflammatory treatment is an important component of cystic fibrosis treatment, and has shown promise in preserving lung function and prolonging life expectancy. Inhaled high molecular weight hyaluronan (HMW-HA) is reported to improve tolerability of hypertonic saline and thus increase compliance, and has been approved in some European countries for use as an adjunct to hypertonic saline treatment in cystic fibrosis. However, there are theoretical concerns that HMW-HA breakdown products may be pro-inflammatory. In this clinical pilot study we show that sputum cytokines in CF patients receiving HMW-HA are not increased, and therefore HMW-HA does not appear to adversely affect inflammatory status in CF airways.

  6. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    Science.gov (United States)

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. THE PREPARATION OF MAGNETICALLY MODIFIED SYNTHETETIC AND NATURAL ZEOLITES AND COMPARISON OF THEIR SOME PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Zafer DİKMEN

    2013-06-01

    Full Text Available In this study, magnetically modified zeolites (MMZ has been produced and their adsorption, ion-exchange and magnetic properties have been studied. In this study, natural zeolite mineral, clinoptilolite, which belongs to Gördes (Manisa regions and synthetic 13X zeolite, which has been produced by Sigma-Aldrich firm have been used. In order to modify the surface of these minerals, magnetite sample which belongs to Divriği (Sivas region has been used. The engagement of magnetite particles on zeolite particles has been studied. For this reason, measuring, visualization and analysis techniques as DTA-TG, XRD, XRF, SEM and EDX have been used. As a result of these procedures, it has been observed that magnetite particles get engaged on the surface of zeolite particles and magnetite contribu-tion on MMZ has changed adsorption, ion-exchange and magnetic properties.In order to determine how magnetite contribution affects adsorption, ion exchange and magnetic properties of MMZ, weightily magnetite contribution ratio (zeolite/magnetite has been applied in three different forms (1/1, 1/2, 1/3.As a result of nitrogen adsorption of MMZ, it has been observed that as the weightily magnetite contribution ratio goes up, specific surface area goes down and average pore diameter rises. It has been identified that total cation exchange capacity rises as the weightily magnetite contribution ratio goes up. It has been observed that pure zeolites, which have no magnetic properties, as a result of magnetically modification process, they have got magnetically character, and they change their magnetic properties positively as the weightily magnetite contribution goes up. It has been determined that as a result of magnetic measurements; the optimum value of applied outer magnetic field is 0.5T.

  8. The Relationship between Nanocluster Precipitation and Thermal Conductivity in Si/Ge Amorphous Multilayer Films: Effects of Cu Addition

    Directory of Open Access Journals (Sweden)

    Ahmad Ehsan Mohd Tamidi

    2016-01-01

    Full Text Available We have used a molecular dynamics technique to simulate the relationship between nanocluster precipitation and thermal conductivity in Si/Ge amorphous multilayer films, with and without Cu addition. In the study, the Green-Kubo equation was used to calculate thermal conductivity in these materials. Five specimens were prepared: Si/Ge layers, Si/(Ge + Cu layers, (Si + Cu/(Ge + Cu layers, Si/Cu/Ge/Cu layers, and Si/Cu/Ge layers. The number of precipitated nanoclusters in these specimens, which is defined as the number of four-coordinate atoms, was counted along the lateral direction of the specimens. The observed results of precipitate formation were considered in relation to the thermal conductivity results. Enhancement of precipitation of nanoclusters by Cu addition, that is, densification of four-coordinate atoms, can prevent the increment of thermal conductivity. Cu dopant increases the thermal conductivity of these materials. Combining these two points, we concluded that Si/Cu/Ge is the best structure to improve the conversion efficiency of the Si/Ge amorphous multilayer films.

  9. Immunologic roles of hyaluronan.

    Science.gov (United States)

    Mummert, Mark E

    2005-01-01

    Hyaluronan (HA), a large glycosaminoglycan composed of D-N-acetylglucosamine and D-glucuronic acid, is expressed in virtually all tissues and has long been considered to serve as a structural component or filling material in the tissue interstitium (Filler Theory). This idea was revised with the discovery of HA-binding proteins that introduced the concept that HA may also serve as an adhesive substrate for cellular trafficking (Adhesion Theory). Most recently, it has been shown that HA fragments can deliver maturational signals to dendritic cells (DCs) and high molecular weight HA polymers can deliver costimulatory signals to T-cells (Signaling Theory). Thus, HA may represent an important component of the immune system. Recently, we have evaluated the impact of HA on Langerhans cell (LC) maturation and migration using a novel peptide inhibitor of HA function, termed Pep-1 (GAHWQFNALTVR). As skin-specific members of the DC family, LCs are crucial for the initiation of cutaneous immune responses. Local injections of Pep-1 prevented hapten-induced LC migration from the epidermis, providing the first experimental evidence that HA facilitates their emigration. Moreover, Pep-1 also significantly inhibited the hapten-induced maturation of LCs in vivo as assessed by cell morphology, costimulatory molecule expression, and their ability to induce proliferation of allogeneic T-cells. HA therefore has dual functionality to facilitate LC migration and maturation, the two critical events for the initiation of adaptive immune responses. Finally, we have observed that DC-dependent, antigen-specific T-cell proliferation and cytokine secretion is blocked by Pep-1. These results have revealed a previously unrecognized role for HA in antigen presentation. Thus, far from an inert structural biopolymer, HA represents a multifunctional carbohydrate mediator of immune processes.

  10. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration

    OpenAIRE

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2010-01-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity – properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administra...

  11. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    Science.gov (United States)

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  13. Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters

    International Nuclear Information System (INIS)

    Mattei, G.; De Marchi, G.; Maurizio, C.; Mazzoldi, P.; Sada, C.; Bello, V.; Battaglin, G.

    2003-01-01

    A selective dealloying in bimetallic nanoclusters prepared by ion implantation has been found upon thermal annealing in oxidizing atmosphere or irradiation with light ions. In the first process, the incoming oxygen interacts preferentially with copper promoting Cu 2 O formation, therefore extracting copper from the alloy. In the second process the irradiation with Ne ions promotes a preferential extraction of Au from the alloy, resulting in the formation of Au-enriched 'satellite' nanoparticles around the original Au x Cu 1-x cluster

  14. Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility-mass spectrometry of hyaluronan-derived oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Hermanová, M.; Iordache, A.-M.; Slováková, K.; Havlíček, Vladimír; Pelantová, Helena; Lemr, Karel

    2015-01-01

    Roč. 50, č. 6 (2015), s. 854-863 ISSN 1076-5174 R&D Projects: GA ČR(CZ) GAP206/12/1150 Institutional support: RVO:61388971 Keywords : tyramine-based hyaluronan derivatives * isomer discrimination * ion mobility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.541, year: 2015

  15. First-principles investigation of strain effects on the energy gaps in silicon nanoclusters

    International Nuclear Information System (INIS)

    Peng, X-H; Alizadeh, A; Bhate, N; Varanasi, K K; Kumar, S K; Nayak, S K

    2007-01-01

    First-principles density functional calculations were performed to study strain effects on the energy gaps in silicon nanoclusters with diameter ranging from 0.6 to 2 nm. Hydrostatic and non-hydrostatic strains have been found to affect the energy gaps differently. For the same strain energy density, non-hydrostatic strain leads to a significantly larger change in the energy gap of silicon clusters compared to that of the hydrostatic strain case. In contrast, hydrostatic and non-hydrostatic strain effects on the energy gaps of bulk Si or larger size Si quantum dots are comparable. Non-hydrostatic strains break the tetrahedral bonding symmetry in silicon, resulting in significant variation in the energy gaps due to the splitting of the degenerate orbitals in the clusters. Our results suggest that the combination of energy gaps and strains permits the engineering of photoluminescence in silicon nanoclusters and offers the possibility of designing novel optical devices and chemical sensors

  16. Site of Er ions in silica layers codoped with Si nanoclusters and Er

    International Nuclear Information System (INIS)

    Pellegrino, P.; Garrido, B.; Arbiol, J.; Garcia, C.; Lebour, Y.; Morante, J.R.

    2006-01-01

    Silica layers implanted with Si and Er ions to various doses and annealed at 950 deg. C have been investigated by means of energy-filtered transmission electron microscopy (EFTEM) and high annular angle dark field (HAADF). EFTEM analysis reveals Si nanoclusters (Si-nc) with an average size around 3 nm for high Si content (15 at. %) whereas no clusters can be imaged for the lowest Si excess (5 at. %). Raman scattering supports that amorphous Si precipitates are present in all the samples. Moreover, the filtered images show that Er ions appear preferentially located outside the Si-nc. HAADF analysis confirms that the Er atoms form agglomerations of 5-10 nm size when the Er concentration exceeds 1x10 20 cm -3 . This observation correlates well with the reduction of the Er population excitable by Si nanoclusters, in the best case corresponding to 10% of the total. A suitable tuning of the annealing drastically reduces this deleterious effect

  17. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  18. Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO{sub 2} porous film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Yanyan; Gong, Zezhou; Tao, Jiajia [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo [School of Electronic & Information Engineering, Hefei Normal University, Hefei, 230601 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Jiang, Xishun [School of Physics & Material Science, Anhui University, Hefei 230601 (China); School of Mechanical & Electronic Engineering, Chuzhou University, Chuzhou, 239000 (China); He, Gang; Wang, Peihong; Meng, Fanming [School of Physics & Material Science, Anhui University, Hefei 230601 (China)

    2015-11-15

    A novel translucent TiO{sub 2} porous film was prepared through etched method. The CdS, PbS and CdS/PbS nanoclusters were imbedded on TiO{sub 2} porous film by successive ionic layer adsorption and reaction method. Microstructure, morphology, optical and photoelectron-chemical properties of the as-synthesized thin films were investigated systematically. XRD and morphology analysis showed that PbS or CdS nanoclusters have been attached to the TiO{sub 2} porous films. It was found that the energy band gap of TiO{sub 2} porous film decreased from 3.46 to 3.2 eV after sensitized with nanoclusters. The photocurrent density of ITO/TiO{sub 2} photoelectrode increased from 0.017 to 0.28 mA/cm{sup 2} after co-sensitized with CdS and PbS nanoclusters. Besides, the photoelectrode sensitized with two sorts of nanoclusters showed evident higher photocurrent density than which sensitized just one sort of nanoclusters. The photocurrent density of ITO/TiO{sub 2}/PbS and TO/TiO{sub 2}/CdS photoelectrode was 0.11 mA/cm{sup 2} and 0.22 mA/cm{sup 2} respectively. 0.28 mA/cm{sup 2} can be obtained by ITO/TiO{sub 2}/CdS/PbS photoelectrode. The results showed that the optical and photoelectrochemistry properties and phtotcatalysis performance of TiO{sub 2} porous film were greatly improved by co-sensitized with CdS and PbS nanoclusters. - Graphical abstract: When CdS and PbS were brought in the cascade structure, such a Fermi level alignment causes upward and downward shifts of the band edges for PbS and CdS, respectively. Therefore the resulting band edges for the ITO/TiO{sub 2}/CdS/PbS devices are inferred to have a stepwise structure. The elevated conduction band edge of PbS provides a higher driving force for the injection of photogenerated electrons from PbS to CdS as well as the injection of excited holes from CdS to PbS. Such a structure offers efficient separation and transport of the excited electrons and holes. - Highlights: • Ti films were obtained from direct current

  19. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Wei, Su-Huai; Tour, James M.

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.

  20. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer

    International Nuclear Information System (INIS)

    Ricciardelli, Carmela; Ween, Miranda P; Lokman, Noor A; Tan, Izza A; Pyragius, Carmen E; Oehler, Martin K

    2013-01-01

    Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC

  1. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  2. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity.

    Science.gov (United States)

    Oohashi, Toshitaka; Edamatsu, Midori; Bekku, Yoko; Carulli, Daniela

    2015-12-01

    The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    International Nuclear Information System (INIS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-01-01

    M-type barium hexaferrite (BaFe_1_2O_1_9) and cobalt doped barium hexaferrite (BaFe_1_1CoO_1_9) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  5. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    Science.gov (United States)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human

  6. Faceted titania nanocrystals doped with indium oxide nanoclusters as a superior candidate for sacrificial hydrogen evolution without any noble-metal cocatalyst under solar irradiation.

    Science.gov (United States)

    Amoli, Vipin; Sibi, Malayil Gopalan; Banerjee, Biplab; Anand, Mohit; Maurya, Abhayankar; Farooqui, Saleem Akhtar; Bhaumik, Asim; Sinha, Anil Kumar

    2015-01-14

    Development of unique nanoheterostructures consisting of indium oxide nanoclusters like species doped on the TiO2 nanocrystals surfaces with {101} and {001} exposed facets, resulted in unprecedented sacrificial hydrogen production (5.3 mmol h(-1) g(-1)) from water using methanol as a sacrificial agent, under visible light LED source and AM 1.5G solar simulator (10.3 mmol h(-1) g(-1)), which is the highest H2 production rate ever reported for titania based photocatalysts, without using any noble metal cocatalyst. X-ray photoelectron spectroscopy (XPS) analysis of the nanostructures reveals the presence of Ti-O-In and In-O-In like species on the surface of nanostructures. Electron energy-loss spectroscopy (EELS) elemental mapping and EDX spectroscopy techniques combined with transmission electron microscope evidenced the existence of nanoheterostructures. XPS, EELS, EDX, and HAADF-STEM tools collectively suggest the presence of indium oxide nanoclusters like species on the surface of TiO2 nanostructures. These indium oxide nanocluster doped TiO2 (In2O3/T{001}) single crystals with {101} and {001} exposed facets exhibited 1.3 times higher visible light photocatalytic H2 production than indium oxide nanocluster doped TiO2 nanocrystals with only {101}facets (In2O3/T{101}) exposed. The remarkable photocatalytic activity of the obtained nanoheterostructures is attributed to the combined synergetic effect of indium oxide nanoclusters interacting with the titania surface, enhanced visible light response, high crystallinity, and unique structural features.

  7. Intra-articular hyaluronan is without clinical effect in knee osteoarthritis: a multicentre, randomised, placebo-controlled, double-blind study of 337 patients followed for 1 year

    DEFF Research Database (Denmark)

    Jørgensen, Anette; Stengaard-Pedersen, Kristian; Simonsen, Lars Ole

    2010-01-01

    Objective To examine the long-term efficacy and safety of five intra-articular injections with hyaluronan in knee osteoarthritis. Methods A multicentre, randomised, placebo-controlled double-blind study of 337 patients fulfilling the American College of Rheumatology (ACR) criteria for knee...... osteoarthritis (clinical and laboratory) and with a Lequesne algofunctional index score (LFI) of 10 or greater. Patients received a hyaluronan product (sodium hyaluronate; Hyalgan) (n= 167) or saline (n= 170) intra-articularly weekly for 5 weeks and were followed up to 1 year. Time to recurrence was the primary...... efficacy parameter. LFI, pain on walking 50 m based on visual analogue scale (VAS pain 50 m), paracetamol consumption, patients' global assessment, Nottingham health profile, joint effusion and number of responders were secondary efficacy parameters. The efficacy parameters were analysed by intention...

  8. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    Science.gov (United States)

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  9. Interaction between rare-earth ions and amorphous silicon nanoclusters produced at low processing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, A. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada)]. E-mail: ameldrum@ualberta.ca; Hryciw, A. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); MacDonald, A.N. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); Blois, C. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); Clement, T. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4 (Canada); De Corby, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4 (Canada); Wang, J. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China); Li Quan [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2006-12-15

    Temperatures of 1000 deg. C and higher are a significant problem for the incorporation of erbium-doped silicon nanocrystal devices into standard silicon technology, and make the fabrication of contacts and reflectors in light emitting devices difficult. In the present work, we use energy-filtered TEM imaging techniques to show the formation of size-controlled amorphous silicon nanoclusters in SiO films annealed between 400 and 500 deg. C. The PL properties of such films are characteristic of amorphous silicon, and the spectrum can be controlled via a statistical size effect-as opposed to quantum confinement-that has previously been proposed for porous amorphous silicon. Finally, we show that amorphous nanoclusters sensitize the luminescence from the rare-earth ions Er, Nd, Yb, and Tm with excitation cross-sections similar in magnitude to erbium-doped silicon nanocrystal composites, and with a similar nonresonant energy transfer mechanism.

  10. A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label

    International Nuclear Information System (INIS)

    Zang, Shuai; Liu, Yingju; Lin, Mouhong; Kang, Jianli; Sun, Yuanming; Lei, Hongtao

    2013-01-01

    Graphical abstract: Schematic representation of the OFL electrochemical immunosensor using Au nanoclusters/PPy/GCE as the substrate and multi-HRP-GNR-Ab2 bioconjugates as the label. Highlights: ► Gold nanorod was used to load HRP and Ab 2 to form multi-HRP-GNR-Ab 2 . ► A sensitive immunosensor for ofloxacin was constructed using the homemade antibody. ► A dual signal amplified strategy was based on the PPy-Au and multi-HRP-GNR-Ab 2 . -- Abstract: In this work, an electrochemical immunosensor, basing on a dual signal amplified strategy by employing a biocompatible polypyrrole film-Au nanocluster matrix as a sensor platform and multi-enzyme-antibody functionalized gold nanorod as an electrochemical detection label, is established for sensitive detection of ofloxacin (OFL). Firstly, polypyrrole film and Au nanoclusters were progressively fabricated onto the surface of a glassy carbon electrode via electropolymerization and electrochemical deposition, respectively. Such PPy-Au nanocomposite modified electrode was used to immobilize OFL-OVA, blocked with the blocking reagent, and then associated with the corresponding antibody. Secondly, gold nanorod (GNR) was synthesized to load horseradish peroxidase (HRP) and horseradish peroxidase-secondary antibody (HRP-Ab 2 ), and the resulting nanostructure (multi-HRP-GNR-Ab 2 ) was applied as the detection label. The fabrication process of the ordered multilayer structure and immunosensor were characterized by scanning electron microscopy (SEM) and electrochemical measurements, respectively. Finally, based on a competitive immunoassay, i.e., the association ability with the corresponding antibody between the captured antigen and free OFL in the solution, the fabricated immunosensor exhibited a sensitive response to OFL in the range from 0.08 to 410 ng/mL with a detection limit of 0.03 ng/mL. The current immunosensor exhibited good sensitivity, selectivity and long-term stability. This amplification strategy shows excellent

  11. Hyaluronidase and hyaluronan in insect venom allergy.

    Science.gov (United States)

    King, Te Piao; Wittkowski, Knut M

    2011-01-01

    Insect venoms contain an allergen hyaluronidase that catalyzes the hydrolysis of hyaluronan (HA), a polymer of disaccharide GlcUA-GlcNAc in skin. HAs depending on their size have variable function in inflammation and immunity. This paper reports on whether hyaluronidase, HA polymers and oligomers can promote antibody response in mice. HA oligomers (8- to 50-mer; 3-20 kDa) were obtained by bee venom hyaluronidase digestion of HA polymers (750- to 5,000-mer; 300-2,000 kDa). Antibody responses in mice were compared following 3 biweekly subcutaneous injection of ovalbumin (OVA) with or without test adjuvant. OVA-specific IgG1 levels were approximately 2 times higher in BALB/c and C3H/HeJ mice receiving OVA and HA oligomer or polymer than those treated with OVA alone, and no increase in total IgE level was observed. In C57Bl/6 mice, observed increases in IgG1 and IgE were 3.5- and 1.7-fold, respectively, for the oligomer and 16- and 5-fold (p Insect venoms also have cytolytic peptides and phospholipases with inflammatory roles. These activities found in mice may contribute to venom allergenicity in susceptible people. Copyright © 2011 S. Karger AG, Basel.

  12. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  13. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  14. Study on gamma radiation-induced synthesis of gold nanoparticles stabilized by hyaluronan

    International Nuclear Information System (INIS)

    Dang Van Phu; Bui Duy Du

    2013-01-01

    Gold nanoparticles (AuNPs) with diameter from 4 to 10 nm were synthesized by γ-irradiation in hyaluronan (HA) solution without usage of any OH radical scavenger. The size distribution of AuNPs were determined by TEM images. The λ max (517-525 nm) of colloidal AuNPs solutions as prepared was measured by UV-Vis spectroscopy. The influence factor on the size of AuNPs particularly the concentration of Au 3+ , HA and dose rate were investigated. The colloidal solution of AuNPs/HA as synthesized was stable more than 6 months stored under ambient condition. AuNPs with the size less than 10 nm narrow size distribution stabilized by HA which is biocompatible polysaccharide can potentially be applied in biomedicine and cosmetic. (author)

  15. Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL-PEG-PCL for controlled delivery of 5FU.

    Science.gov (United States)

    Asadi, Nahideh; Annabi, Nasim; Mostafavi, Ebrahim; Anzabi, Maryam; Khalilov, Rovshan; Saghfi, Siamak; Mehrizadeh, Masoud; Akbarzadeh, Abolfazl

    2018-02-22

    Magnetic nanoparticles have properties that cause to apply them in cancer therapy and vehicles for the delivery of drugs such as 5FU, especially when they are modified with biocompatible copolymers. The aim of this study is to modify superparamagnetic iron oxide nanoparticles (SPIONPs) with PCL-PEG-PCL copolymers and then utilization of these nanoparticles for encapsulation of anticancer drug 5FU. The ring-opening polymerization (ROP) was used for the synthesis of PCL-PEG-PCL copolymer by ε-caprolactone (PCL) and polyethylene glycol (PEG2000). We used the double emulsion method (water/oil/water) to prepare 5FU-encapsulated Fe 3 O 4 magnetic nanoparticles modified with PCL-PEG-PCL copolymer. Chemical structure and magnetic properties of 5FU-loaded magnetic-polymer nanoparticles were investigated systematically by employing FT-IR, XRD, VSM and SEM techniques. In vitro release profile of 5FU-loaded NPs was also determined. The results showed that the encapsulation efficiency value for nanoparticles were 90%. Moreover, the release of 5FU is significantly higher at pH 5.8 compared to pH 7.4. Therefore, these nanoparticles have sustained release and can apply for cancer therapy.

  16. Multilayered nanoclusters of platinum and gold: insights on electrodeposition pathways, electrocatalysis, surface and bulk compositional properties

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2013-06-01

    Full Text Available Electrochemical, surface and bulk compositional properties of multilayered nanoclusters of Pt and Au, electrochemically deposited on glassy carbon under conditions involving sequential surface–limited redox–replacement reactions (performed at open...

  17. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  18. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Lin Xiangqin [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: xqlin@ustc.edu.cn

    2007-07-23

    A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 x 10{sup -7} to 2.1 x 10{sup -5} M and 5.0 x 10{sup -8} to 2.8 x 10{sup -5} M with a detection limit of 3.0 x 10{sup -8} and 1.2 x 10{sup -8} M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.

  19. Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels.

    Science.gov (United States)

    Gurski, Lisa A; Xu, Xian; Labrada, Lyana N; Nguyen, Ngoc T; Xiao, Longxi; van Golen, Kenneth L; Jia, Xinqiao; Farach-Carson, Mary C

    2012-01-01

    To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, "invadopodia", consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of

  20. Solvent Effect on Redox Properties of Hexanethiolate Monolayer-Protected Gold Nanoclusters

    OpenAIRE

    Su, B; Zhang, M; Shao, Y; Girault, HH

    2006-01-01

    The capacitance of monolayer-protected gold nanoclusters (MPCs), CMPC, in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to CMPC and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparin...

  1. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat.

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-07-18

    The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.

  2. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species. PMID:23783513

  3. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  4. Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Singh, Nirpendra; Schwingenschlö gl, Udo

    2015-01-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density

  5. A modified Stern-Gerlach experiment using a quantum two-state magnetic field

    Science.gov (United States)

    Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.

    2018-06-01

    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.

  6. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment

    Czech Academy of Sciences Publication Activity Database

    Novotná, L.; Emmerová, T.; Horák, Daniel; Kučerová, Z.; Tichá, M.

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 8032-8040 ISSN 0021-9673 R&D Projects: GA AV ČR(CZ) KAN401220801; GA ČR GA203/09/0857; GA ČR GAP503/10/0664 Institutional research plan: CEZ:AV0Z40500505 Keywords : IMAC phosphopeptide separation * IDA-modified magnetic microspheres * Porcine pepsin A Subject RIV: EE - Microbiology, Virology Impact factor: 4.194, year: 2010

  7. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    Science.gov (United States)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  8. Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilder, Richard B.; Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M.

    2010-01-01

    Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 ± 3mm (mean ± SD) and 10 ± 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 ± 13cGy with Hylaform vs. 106 ± 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

  9. Hydrogen interactions with ZrCo nanoclusters: a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Bhattacharya, Saswata; Majumder, C.

    2014-01-01

    Tritium is one of the fuels going to be used in fusion reactor program. But, this radioactive isotope should be stored safely. ZrCo intermetallic has been chosen as a tritium storage material in ITER program. It is important to study how hydrogen interacts with ZrCo in its different dimensions. In this study we have investigated the hydrogen interaction with the Zr m Co n (m+n = 2, 4 and 6) nanoclusters using the state-of-the-art first principles method

  10. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    KAUST Repository

    Pablo-Pedro, Ricardo

    2017-08-17

    High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we performed DFT calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n-type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the zigzag and armchair directions may permit the design of novel n-type electronic materials and spinctronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  11. Regulation of Hyaluronan Synthesis in Vascular Diseases and Diabetes

    Directory of Open Access Journals (Sweden)

    Paola Moretto

    2015-01-01

    Full Text Available Cell microenvironment has a critical role determining cell fate and modulating cell responses to injuries. Hyaluronan (HA is a ubiquitous extracellular matrix glycosaminoglycan that can be considered a signaling molecule. In fact, interacting with several cell surface receptors can deeply shape cell behavior. In vascular biology, HA triggers smooth muscle cells (SMCs dedifferentiation which contributes to vessel wall thickening. Furthermore, HA is able to modulate inflammation by altering the adhesive properties of endothelial cells. In hyperglycemic conditions, HA accumulates in vessels and can contribute to the diabetic complications at micro- and macrovasculature. Due to the pivotal role in favoring atherogenesis and neointima formation after injuries, HA could be a new target for cardiovascular pathologies. This review will focus on the recent findings regarding the regulation of HA synthesis in human vascular SMCs. In particular, the effects of the intracellular HA substrates availability, adenosine monophosphate-activated protein kinase (AMPK, and protein O-GlcNAcylation on the main HA synthetic enzyme (i.e., HAS2 will be discussed.

  12. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction

    International Nuclear Information System (INIS)

    Fernández-Ujados, Mónica; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-01-01

    A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH 4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g. stored at pH 3–12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications. (paper)

  13. Characterization and Application of DNA-templated Silver Nanoclusters and Polarized Spectroscopy of Self-Assembled Nanostructures

    DEFF Research Database (Denmark)

    Carro-Temboury, Miguel R.

    In this thesis two different systems are investigated envisioning their potential applications: DNA-templated silver nanoclusters (DNA-AgNCs) and ionic self-assembled (ISA) nanostructures based on azo-dyes. Mainly Visible-NIR spectroscopy was used to probe electronic transitions with absorbance a...

  14. Definition of the size of nanoclusters of silver and palladium in carbon fiber

    International Nuclear Information System (INIS)

    Volobuev, V.S.; Bashmakov, I.A.; Lukashevich, S.M.; Tolkacheva, E.A.; Tikhonova, T.F.; Lukashevich, M.G.; Kaputskij, F.N.

    2008-01-01

    Size of palladium and silver nanoclusters is carbon matrix prepared by heart treatment of metal-polymer precursor has been determined by means of XR diffractions study. It was shown that the cluster size increases with increasing annealing temperature from 700 to 900 degree Celsius by factor two. No structuring of carbon matrix was observed under clusters forming. (authors)

  15. A Model for Analyzing a Five-Phase Fractional-Slot Permanent Magnet Tubular Linear Motor with Modified Winding Function Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-01-01

    Full Text Available This paper presents a model for analyzing a five-phase fractional-slot permanent magnet tubular linear motor (FSPMTLM with the modified winding function approach (MWFA. MWFA is a fast modeling method and it gives deep insight into the calculations of the following parameters: air-gap magnetic field, inductances, flux linkages, and detent force, which are essential in modeling the motor. First, using a magnetic circuit model, the air-gap magnetic density is computed from stator magnetomotive force (MMF, flux barrier, and mover geometry. Second, the inductances, flux linkages, and detent force are analytically calculated using modified winding function and the air-gap magnetic density. Finally, a model has been established with the five-phase Park transformation and simulated. The calculations of detent force reveal that the end-effect force is the main component of the detent force. This is also proven by finite element analysis on the motor. The accuracy of the model is validated by comparing with the results obtained using semianalytical method (SAM and measurements to analyze the motor’s transient characteristics. In addition, the proposed method requires less computation time.

  16. Structural and magnetic properties of Tb implanted ZnO single crystals

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Muecklich, A.; Eichhorn, F.; Helm, M.; Skorupa, W.; Fassbender, J.

    2008-01-01

    ZnO single crystals have been implanted with Tb ions. For an atomic concentration of 1.5%, annealing at 823 K leads to an increase of the saturation magnetization per implanted Tb ion up to 1.8 μ B at room temperature. Structural investigations revealed no secondary phase formation, but the out-diffusion of Tb. No significant evidence is found for Tb substituting Zn sites either in the as-implanted or annealed samples. However, indications for the existence of a small amount of Tb nanoclusters however have been found using magnetization versus temperature measurements. The ferromagnetic properties disappear completely upon annealing at 1023 K. This behavior is related to the formation of oxide complexes or nanoparticles

  17. Electrical transport properties in Co nanocluster-assembled granular film

    Science.gov (United States)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  18. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst.

    Science.gov (United States)

    Wu, Chien-Chen; Chen, Dong-Hwang

    2012-06-19

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles.

  20. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst

    Science.gov (United States)

    2012-01-01

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles. PMID:22713480

  1. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Seisno, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO{sub 2} nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO{sub 2} templates were fully coated with magnetite nanoparticles. Dissolution of the SiO{sub 2} core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe{sub 3}O{sub 4} grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO{sub 2} templates contributed to the adsorption of the Fe ion precursor and/or Fe{sub 3}O{sub 4} seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere. - Highlights: • A procedure to synthesize hollow magnetic nanospheres with Au inside was reported. • The Au nanoparticles inside the hollow showed high Au-S binding affinity. • The nanospheres are expected to be suitable as a new magnetic carrier for DDS.

  2. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    International Nuclear Information System (INIS)

    Zamanpour, Mehdi; Bennett, Steven P.; Majidi, Leily; Chen, Yajie; Harris, Vincent G.

    2015-01-01

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co 2 C and Co 3 C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co x C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties

  3. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Zamanpour, Mehdi; Bennett, Steven P. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Majidi, Leily [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Chen, Yajie [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-03-15

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  4. Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent.

    Science.gov (United States)

    Chen, Xu-Wei; Mao, Quan-Xing; Liu, Jia-Wei; Wang, Jian-Hua

    2012-10-15

    Hemoglobin (Hb) modified magnetic nanocomposites are prepared by immobilization of Hb onto the surface of amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanoparticles via covalent bonding with glutaraldehyde as cross-linker. The obtained nanocomposites are characterized with FT-IR, SEM, XRD and surface charge analysis. A direct solid-phase extraction procedure for the isolation/separation of plasmid DNA using this nanocomposite as a novel adsorbent is thus developed. Some important experimental parameters governing the sorption efficiency, i.e., the pH of sample solution and the ionic strength, are investigated. The Hb modified magnetic nanocomposites provide a sorption capacity of 27.86 mg g(-1) for DNA. By using 2.0mg of the nanocomposites as sorption medium and a suitable acidity of pH 6.1, a sorption efficiency of 93% is achieved for 25 μg mL(-1) of DNA in 1.0 mL of sample solution. Afterwards, the absorbed DNA could be readily recovered by using 1.0 mL of Tris-HCl buffer (pH 8.9, 0.01 mol L(-1)), giving rise to a recovery of ca. 68.3%. The present solid-phased extraction protocol is applied for the isolation of plasmid DNA from Escherichia coli culture, resulting in comparable yield and purity of plasmid DNA with respect to those obtained by using commercial kits. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    Science.gov (United States)

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  6. Modified magnetic anisotropy at LaCoO3/La0.7Sr0.3MnO3 interfaces

    Directory of Open Access Journals (Sweden)

    M. Cabero

    2017-09-01

    Full Text Available Controlling magnetic anisotropy is an important objective towards engineering novel magnetic device concepts in oxide electronics. In thin film manganites, magnetic anisotropy is weak and it is primarily determined by the substrate, through induced structural distortions resulting from epitaxial mismatch strain. On the other hand, in cobaltites, with a stronger spin orbit interaction, magnetic anisotropy is typically much stronger. In this paper, we show that interfacing La0.7Sr0.3MnO3 (LSMO with an ultrathin LaCoO3 (LCO layer drastically modifies the magnetic anisotropy of the manganite, making it independent of the substrate and closer to the magnetic isotropy characterizing its rhombohedral structure. Ferromagnetic resonance measurements evidence a tendency of manganite magnetic moments to point out-of-plane suggesting non collinear magnetic interactions at the interface. These results may be of interest for the design of oxide interfaces with tailored magnetic structures for new oxide devices.

  7. The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe–9%Cr ODS steel to 3 dpa at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, M.J., E-mail: matthewswenson1@u.boisestate.edu; Wharry, J.P.

    2015-12-15

    A model Fe–9%Cr oxide dispersion strengthened (ODS) steel was irradiated with protons or neutrons to a dose of 3 displacements per atom (dpa) at a temperature of 500 °C, enabling a direct comparison of ion to neutron irradiation effects at otherwise fixed irradiation conditions. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography including cluster analysis. Both proton and neutron irradiations produced a comparable void and dislocation loop microstructure. However, the irradiation response of the Ti–Y–O oxide nanoclusters varied. Oxides remained stable under proton irradiation, but exhibited dissolution and an increase in Y:Ti composition ratio under neutron irradiation. Both proton and neutron irradiation also induced varying extents of Si, Ni, and Mn clustering at existing oxide nanoclusters. Protons are able to reproduce the void and loop microstructure of neutron irradiation carried out to the same dose and temperature. However, since nanocluster evolution is controlled by both diffusion and ballistic impacts, protons are rendered unable to reproduce the nanocluster evolution of neutron irradiation at the same dose and temperature. - Highlights: • Fe–9% Cr ODS was irradiated with protons and neutrons to 3 dpa at 500 °C. • Dislocation loop size and density were similar upon proton and neutron irradiation. • Oxide nanocluster size and density decreased more with neutron irradiation. • Oxide Y:Ti ratio increased from 0.54 to 0.97 upon neutron irradiation. • Irradiation induced enrichment of Si, Mn, and Ni at oxide locations.

  8. Thermodynamics, kinetics, and catalytic effect of dehydrogenation from MgH2 stepped surfaces and nanocluster: a DFT study

    Science.gov (United States)

    Reich, Jason; Wang, Linlin; Johnson, Duane

    2013-03-01

    We detail the results of a Density Functional Theory (DFT) based study of hydrogen desorption, including thermodynamics and kinetics with(out) catalytic dopants, on stepped (110) rutile and nanocluster MgH2. We investigate competing configurations (optimal surface and nanoparticle configurations) using simulated annealing with additional converged results at 0 K, necessary for finding the low-energy, doped MgH2 nanostructures. Thermodynamics of hydrogen desorption from unique dopant sites will be shown, as well as activation energies using the Nudged Elastic Band algorithm. To compare to experiment, both stepped structures and nanoclusters are required to understanding and predict the effects of ball milling. We demonstrate how these model systems relate to the intermediary sized structures typically seen in ball milling experiments.

  9. Melting of Cu nanoclusters by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying

    2003-04-14

    We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to T{sub m,N}=T{sub m,Bulk}-{alpha}N{sup -1/3}, dropping from T{sub m,Bulk}=1360 K to T{sub m,456}=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.

  10. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature.

    Science.gov (United States)

    Xu, Yibing; Zhang, Qiang; Lv, Longfei; Han, Wenqian; Wu, Guanhong; Yang, Dong; Dong, Angang

    2017-11-16

    Discretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr 3 clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters. Unlike conventional CsPbBr 3 nanocrystals, the as-synthesized CsPbBr 3 nanoclusters spontaneously self-assemble into a hexagonally packed columnar mesophase in solution, which can be further converted to single-crystalline CsPbBr 3 quantum nanoribbons with bright deep-blue emission at room temperature. Such a conversion of CsPbBr 3 nanoclusters to nanoribbons is found to be driven by a ligand-destabilization-induced crystallization and mesophase transition process. Our study will facilitate the investigation of perovskite nanoclusters and offer new possibilities in the low-temperature synthesis of anisotropic perovskite nanostructures.

  11. Altered expression of hyaluronan, HAS1-2, and HYAL1-2 in oral lichen planus.

    Science.gov (United States)

    Siponen, Maria; Kullaa, Arja; Nieminen, Pentti; Salo, Tuula; Pasonen-Seppänen, Sanna

    2015-07-01

    Oral lichen planus (OLP) is an immune-mediated mucosal disease of unclear etiology and of unresolved pathogenesis. Hyaluronan (HA) is an extracellular matrix glycosaminoglycan involved in inflammation and tumor progression. However, its presence in OLP has not been reported. We therefore aimed to study the immunohistochemical expression of HA, its receptor CD44, hyaluronan synthases (HAS1-3), and hyaluronidases (HYAL1-2) in OLP. The presence of HA, CD44, HAS1-3, and HYAL1-2 was studied by immunohistochemical methods in 55 OLP and 23 control oral mucosal specimens (CTR). The localization, intensity, and differences of the epithelial expression between OLP and CTRs were analyzed. HA and CD44 were found on cell membranes in the epithelial basal and intermediate layers in CTR and OLP specimens. The HA staining intensity was stronger in the basal layer of the epithelium in OLP than in CTRs (P < 0.001). HAS1 (P = 0.001) and HAS2 (P < 0.001) showed stronger staining in the basal and weaker staining in the superficial (P < 0.001) epithelial layers in OLP than in CTRs. The immunostaining of HAS3 was low in both OLP and CTRs. Positive HYAL1 and HYAL2 staining were mainly found in the basal and intermediate epithelial layers, and their intensities were significantly increased in OLP, except HYAL 2 in the intermediate epithelial layer. HA, HAS1-2, and HYAL1-2 have altered expression in OLP compared to CTRs and may therefore have a role in OLP pathogenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. First-principles study of the electronic transport properties in (GaAs)n (n=2–4) nanocluster-based molecular junctions

    International Nuclear Information System (INIS)

    Zhang, Daoli; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui

    2012-01-01

    In this program the geometric structures and electronic transport properties of a series of (GaAs) n (n=2,3,4) clusters are comparatively studied using non-equilibrium Green's function (NEGF) combined with density functional theory (DFT). It is find that all the GaAs nanocluster-based molecular junctions show metallic behavior at low biases ([−2 V,2 V]) while negative differential resistance (NDR) appears at a certain high bias range. Our calculation shows that the current of (GaAs) 3 nanocluster-based molecular junction is almost the smallest at any bias. The mechanisms of the current–voltage characteristics of all the three molecular junctions are proposed.

  13. Determination of Rhodium(III) Ions by Flame Atomic Absorption Spectrometry after Preconcentration with Modified Magnetic Activated Carbon

    OpenAIRE

    Maryam Fayazi; Masoud Ghanei-Motlagh; Mohammad Ali Taher; Raziyeh Fayazi

    2016-01-01

    A new method for analysis of trace amount of Rh(III) ions by magnetic activated carbon modified with 2,3,5,6-tetra(2-pyridyl)pyrazine (MAC/TPPZ) as the magnetic sorbent has been proposed. The proposed adsorbent was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity and low time-consuming. The experimental parameters affecting the extraction/preconcentration and determination of the analyte were systematically examined. In order to invest...

  14. Heterogeneous Photodecolorization of Methyl Green Catalyzed by Fe(II-o-Phenanthroline/Zeolite Y Nanocluster

    Directory of Open Access Journals (Sweden)

    Alireza Nezamzadeh-Ejhieh

    2011-01-01

    Full Text Available The potential of Fe(II-orthophenatrolin, as doped with synthetic zeolite Y nanocluster (Na-Y via complexation process, after wet impregnation of parent zeolite with FeSO4 aqueous solution, was studied as a photocatalyst in decolorization of Methyl Green (MG under UV irradiation. The characterization of the synthesized zeolite nanocluster and the prepared catalyst was studied using X-ray powder diffraction (XRD, infrared spectroscopy (FT-IR, thermal analysis, and SEM methods. The dye photodecolorization process was studied considering the influence of experimental parameters and it was observed that photoreactivity of the photocatalyst was varied with catalyst amount, initial dye concentration, pH of dye solution, temperature, and the presence of KBrO3. The optimal experimental parameters were obtained as follows: catalyst amount: 1 gL−1, dye concentration: 40 ppm, pH: 9, and active component value: 100 mg Fe(II-orthophenatrolin per g catalyst. The reusability of the intended catalyst was also investigated. The degradation process obeyed first-order kinetics.

  15. Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state

    International Nuclear Information System (INIS)

    Degoli, Elena; Bisi, O.; Ossicini, Stefano; Cantele, G.; Ninno, D.; Luppi, Eleonora; Magri, Rita

    2004-01-01

    Electronic and structural properties of small hydrogenated silicon nanoclusters as a function of dimension are calculated from ab initio technique. The effects induced by the creation of an electron-hole pair are discussed in detail, showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure after an electronic excitation of the cluster is analyzed together with the role of the symmetry constraint during the relaxation. We point out how the overall effect is that of significantly changing the electronic spectrum if no symmetry constraint is imposed to the system. Such distortion can account for the Stokes shift and provides a possible structural model to be linked to the four-level scheme invoked in the literature to explain recent results for the optical gain in silicon nanoclusters. Finally, formation energies for clusters with increasing dimension are calculated and their relative stability discussed

  16. Probing phosphate ion via the europium(III)-modulated fluorescence of gold nanoclusters

    International Nuclear Information System (INIS)

    Ding, Shou-Nian; Li, Chun-Mei; Gao, Bu-Hong; Kargbo, Osman; Zhou, Chan; Chen, Xi; Wan, Neng

    2014-01-01

    Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN) 6 3− , SO 4 2− , S 2 O 8 2− , Cl − , HS − , Br − , AcO − , NO 2 − , SCN − , ClO 4 − , HCO 3 − , NO 3 − , Cd 2+ , Ba 2+ , Zn 2+ , Mg 2+ , and glutamate do not interfere, but ascorbate and Fe 3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP. (author)

  17. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters.

    Science.gov (United States)

    Lai, Lanmei; Zhao, Chunqiu; Su, Meina; Li, Xiaoqi; Liu, Xiaoli; Jiang, Hui; Amatore, Christian; Wang, Xuemei

    2016-07-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.

  18. Design and mechanistic study of a novel gold nanocluster-based drug delivery system.

    Science.gov (United States)

    Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou

    2018-05-22

    Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.

  19. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...... processes. In the case of glycosaminoglycan-derived amidyl radicals, evidence has been obtained in studies with model glycosides that these radicals undergo rapid intramolecular abstraction reactions to give carbon-centered radicals at C-2 on the N-acetyl glycosamine rings (via a 1,2-hydrogen atom shift......) and at C-4 on the neighboring uronic acid residues (via 1,5-hydrogen atom shifts). The C-4 carbon-centered radicals, and analogous species derived from model glycosides, undergo pH-independent beta-scission reactions that result in glycosidic bond cleavage. With N-acetyl glucosamine C-1 alkyl glycosides...

  20. Study on gamma radiation-induced synthesis of gold nanoparticles stabilized by hyaluronan

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Ngoc Duy; Nguyen Tue Anh; Nguyen Quoc Hien

    2011-01-01

    Gold nanoparticles (AuNPs) with diameter from 4 to 10 nm were synthesized in hyaluronan (HA) solution without usage of any reductant and *OH radical scavenger by gamma irradiation reduction. The size and size distribution of AuNPs were determined by TEM images. The λ max (517 - 525 nm) of colloidal AuNPs solutions as prepared were measured by UV-Vis spectroscopy. The influence factors on the size of AuNPs particularly the concentration of Au 3+ , HA and dose rate were investigated. The stability of AuNPs/HA as synthesized was more than 6 months in storage under atmospheric condition. AuNPs with the size less than 10 nm and narrow size distribution stabilized by HA which is biocompatible natural polysaccharide so that AuNPs/HA can potentially be applied in biomedicine and cosmetic. (author)

  1. Application of zein-modified magnetite nanoparticles in dispersive magnetic micro-solid-phase extraction of synthetic food dyes in foodstuffs.

    Science.gov (United States)

    Jangju, Azam; Farhadi, Khalil; Hatami, Mehdi; Amani, Samireh; Esma-Ali, Farzan; Moshkabadi, Aisan; Hajilari, Fatemeh

    2017-03-01

    A simple method for the simultaneous and trace analysis of four synthetic food azo dyes including carmoisine, ponceau 4R, sunset yellow, and allura red from some foodstuff samples was developed by combining dispersive μ-solid-phase extraction and high-performance liquid chromatography with diode array detection. Zein-modified magnetic Fe 3 O 4 nanoparticles were prepared and used for μ-solid-phase extraction of trace amounts of mentioned food dyes. The prepared modified magnetic nanoparticles were characterized by scanning electron microscopy and FTIR spectroscopy. The factors affecting the extraction of the target analytes such as pH, amount of sorbent, extraction time, type and volume of the desorption eluent, and desorption time were investigated. Under the optimized conditions, the method provided good repeatability with relative standard deviations lower than 5.8% (n = 9). Limit of detection values ranged between 0.3 and 0.9 ng/mL with relatively high enrichment factors (224-441). Comparing the obtained results indicated that Fe 3 O 4 nanoparticles modified by zein biopolymer show better analytical application than bare magnetic nanoparticles. The proposed method was also applied for the determination of target synthetic food dyes in foodstuff samples such as carbonated beverage, snack, and candy samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    Science.gov (United States)

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  3. Cervical hyaluronan biology in pregnancy, parturition and preterm birth.

    Science.gov (United States)

    Mahendroo, Mala

    2018-03-03

    Cervical hyaluronan (HA) synthesis is robustly induced in late pregnancy in numerous species including women and mice. Recent evidence highlights the diverse and dynamic functions of HA in cervical biology that stem from its expression in the cervical stroma, epithelia and immune cells, changes in HA molecular weight and cell specific expression of HA binding partners. Mice deficient in HA in the lower reproductive tract confirm a structural role of HA to increase spacing and disorganization of fibrillar collagen, though this function is not critical for pregnancy and parturition. In addition, cervical HA depletion via targeted deletion of HA synthase genes, disrupts cell signaling required for the differentiation of epithelia and their mucosal and junctional barrier, resulting in increased susceptibility to ascending infection-mediated preterm birth. Finally the generation of HA disaccharides by bacterial hyaluronidases as made by Group B streptococcus can ligate toll like receptors TLR2/4 thus preventing appropriate inflammatory responses as needed to fight ascending infection and preterm birth. This review summarizes our current understanding of HA's novel and unique roles in cervical remodeling in the process of birth. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  4. Nanomorphology of Polymer Frameworks and Their Role as Templates for Generating Size-Controlled Metal Nanoclusters

    Czech Academy of Sciences Publication Activity Database

    Artuso, F.; D'Archivio, A. A.; Lora, S.; Jeřábek, Karel; Králik, E.; Corain, B.

    2003-01-01

    Roč. 9, č. 21 (2003), s. 5292-5296 ISSN 0947-6539 Grant - others:GA-(IT) 2001038991; VEGA(SK) 1/9142/02 Institutional research plan: CEZ:AV0Z4072921 Keywords : nanoclusters * nano-structures * gel-type resin s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.353, year: 2003

  5. Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use.

    Science.gov (United States)

    Anisha, B S; Sankar, Deepthi; Mohandas, Annapoorna; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work chitosan-hyaluronan composite sponge incorporated with chondroitin sulfate nanoparticle (nCS) was developed. The fabrication of hydrogel was based on simple ionic cross-linking using EDC, followed by lyophilization to obtain the composite sponge. nCS suspension was characterized using DLS and SEM and showed a size range of 100-150 nm. The composite sponges were characterized using SEM, FT-IR and TG-DTA. Porosity, swelling, biodegradation, blood clotting and platelet activation of the prepared sponges were also evaluated. Nanocomposites showed a porosity of 67% and showed enhanced swelling and blood clotting ability. Cytocompatibility and cell adhesion studies of the sponges were done using human dermal fibroblast (HDF) cells and the nanocomposite sponges showed more than 90% viability. Nanocomposite sponges also showed enhanced proliferation of HDF cells within two days of study. These results indicated that this nanocomposite sponges would be a potential candidate for wound dressing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Ran [Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Jang, Jun-Won [Pohang Institute of Metal Industry Advancement, 56 Jigok-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-834 (Korea, Republic of); Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2016-11-05

    Highlights: • Carboxymethyl chitosan was attached to magnetic-cored dendrimer as terminal groups. • High sorptive capacity of carboxymethyl chitosan is added to dendritic structure. • This new adsorbent can be easily separated from water with magnetic force. • It could be reused as an adsorbent more than five-times with simple pH adjustment. - Abstract: Carboxymethyl chitosan-modified magnetic-cored dendrimers (CCMDs) were successfully synthesized in a three step method. The synthesized samples were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetry analysis, zeta potential analyzer, X-ray photoelectron spectroscopy, surface area analysis, and Fourier transform infrared spectroscopy. The CCMD exhibited selective adsorption for anionic and cationic compounds at specific pH conditions. With the substitution of amino groups of MD with carboxymethyl chitosan moieties, the adsorption sites for cationic compounds were greatly increased. Since the adsorption onto CCMD was mainly electrostatic interaction, the adsorption of MB and MO was significantly affected by the pHs. The optimal adsorption pH values were 3 and 11 for MO and MB. The maximal adsorption of MO and MB on the CCMD at pH values of 3 and 11 were 20.85 mg g{sup −1} and 96.31 mg g{sup −1}, respectively. Reuse of the CCMD as an adsorbent was experimentally tested through adsorption and desorption with simple pH control. More than 99% and 91% of the initial adsorption of MB and MO on the CCMD was maintained with five consecutive recycling.

  7. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  8. Modifying locally the safety profile to improve the confinement of magnetic field lines in tokamak plasmas

    International Nuclear Information System (INIS)

    Constantinescu, D.; Firpo, M.-C.

    2012-01-01

    Using Hamiltonian models for the magnetic field lines, we propose a methodology to improve their confinement through the creation of transport barriers. A local modification of the safety profile creating a low-shear zone is shown to be sufficient to locally enhance drastically the regularity of the magnetic field lines without requesting a reversed shear. The optimal benefits of low-shear are obtained when the value q 0 of the safety profile in the low-shear zone is sufficiently far from the main resonance values m/n with low m and n, in the case of large enough values of those (m, n) mode amplitudes. A practical implementation in tokamak plasmas should involve electron cyclotron current drive to locally modify the magnetic shear. (paper)

  9. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    Science.gov (United States)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  10. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  11. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He - Ar plasma containing nanoclusters of uranium compounds

    Science.gov (United States)

    Kosarev, V. A.; Kuznetsova, E. E.

    2014-02-01

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.

  12. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    Science.gov (United States)

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone.

  13. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    Science.gov (United States)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  14. Magnetically modified microalgae and their applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Procházková, G.; Pospíšková, K.; Brányik, T.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 931-941 ISSN 0738-8551 R&D Projects: GA ČR GA13-13709S; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : oleaginous chlorella sp * fresh-water microalgae * magnetophoretic separation * high-gradient * harvesting microalgae * alexandrium-fundyense * polymer binder * algal blooms * cells * removal * Harvesting algal cells * magnetic labeling * magnetic modification * magnetic separation * microalgae Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.542, year: 2016

  15. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    Science.gov (United States)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  16. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NARCIS (Netherlands)

    van Huis, M.A.; van Veen, A.; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; de Hosson, J.T.M.

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10(16) Cd ions cm(-2) and 210 keV, 1 x 10(16) Se ions cm(-2) in single crystals of MgO(001) and subsequent thermal annealing at a temperature of 1300 K, The structural properties and the orientation relationship between

  17. Seed-mediated direct growth of CdSe nanoclusters on substrates

    International Nuclear Information System (INIS)

    Pan Shangke; Ebrahim, Shaker; Soliman, Moataz; Qiao Qiquan

    2013-01-01

    Different shapes of CdSe nanostructures were obtained by hydrothermal method with varied Se sources and buffer layers. Hexagonal nanoparticles of CdSe with Wurtzite structure were synthesized from Se powder resource, while CdSe nanoclusters with Wurtzite structure were grown from Na 2 SeO 3 aqueous solution resources at 165 °C using cetyltrimethylammonium bromide as surfactant. Using ZnO nanoparticles as a seed layer, CdSe nanostructures only partially covered the indium tin oxide (ITO) substrates. With ZnO/CdSe quantum dots composite seed layer, CdSe nanostructures fully covered the ITO substrates.

  18. Preparation of Magnetic Sorbent with Surface Modified by C18for Removal of Selected Organic Pollutants from Aqueous Samples

    Science.gov (United States)

    Kuráň, Pavel; Pilnaj, Dominik; Ciencialová, Lucie; Pšenička, Martin

    2017-12-01

    Magnetic sorbents have great potential in environmental applications due to their simple synthesis and separation in magnetic field, usability in heterogeneous systems and low toxicity. Possible syntheses, surface modifications and characteristics were described by Li et al 2013. This type of solid-phase extraction is being successfully used in various fields as health care, microbiology, biotechnologies or sample preconcentration in analytical chemistry. In this preliminary study we report on the preparation and application of magnetically separable sorbent with surface modified by C18 alkyl chain for purification of water contaminated by environmentally hazardous organic compounds. Magnetic cores were co-precipitated from Fe2+ and Fe3+ chlorides in alkalic aqueous solution. Surface of synthetized Fe3O4 was modified with SiO2 by tetraethylorthosilicate to assure physico-chemical stability. Furthermore, Fe3O4/SiO2 complex has been treated by C18 functional group, which provides good affinity towards hydrophobic substances in water. Efficiency of sorption under various conditions has been examined on benzene, toluene, ethylbenzene and xylenes (BTEX), compounds found in petroleum products which contaminate air, soil and groundwater near of store tanks. Sorption kinetics was followed by gas chromatography with mass spectrometry. The preliminary sorption kinetics data and efficiency of BTEX removal point at the possible application of prepared magnetic sorbent for BTEX removal, especially for ethylbenzene and xylenes.

  19. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.

    Science.gov (United States)

    Zhu, Linyi; Seror, Jasmine; Day, Anthony J; Kampf, Nir; Klein, Jacob

    2017-09-01

    The boundary layers coating articular cartilage in synovial joints constitute unique biomaterials, providing lubricity at levels unmatched by any human-made materials. The underlying molecular mechanism of this lubricity, essential to joint function, is not well understood. Here we study the interactions between surfaces bearing attached hyaluronan (hyaluronic acid, or HA) to which different phosphatidylcholine (PC) lipids had been added, in the form of small unilamellar vesicles (SUVs or liposomes), using a surface force balance, to shed light on possible cartilage boundary lubrication by such complexes. Surface-attached HA was complexed with different PC lipids (hydrogenated soy PC (HSPC), 1,2-dimyristoyl-sn-glycero-3-PC (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-PC (POPC)), followed by rinsing. Atomic force microscopy (AFM) and cryo-scanning electron microscopy (Cryo-SEM) were used to image the HA-PC surface complexes following addition of the SUVs. HA-HSPC complexes provide very efficient lubrication, with friction coefficients as low as μ∼0.001 at physiological pressures P≈150atm, while HA-DMPC and HA-POPC complexes are efficient only at low P (up to 10-20atm). The friction reduction in all cases is attributed to hydration lubrication by highly-hydrated phosphocholine groups exposed by the PC-HA complexes. The greater robustness at high P of the HSPC (C 16(15%) ,C 18(85%) ) complexes relative to the DMPC ((C 14 ) 2 ) or POPC (C 16 , C 18:1 ) complexes is attributed to the stronger van der Waals attraction between the HSPC acyl tails, relative to the shorter or un-saturated tails of the other two lipids. Our results shed light on possible lubrication mechanisms at the articular cartilage surface in joints. Can designed biomaterials emulate the unique lubrication ability of articular cartilage, and thus provide potential alleviation to friction-related joint diseases? This is the motivation behind the present study. The principles of cartilage lubrication

  20. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    Science.gov (United States)

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.