WorldWideScience

Sample records for hyaluronan oligosaccharide treatment

  1. Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available The extracellular matrix polysaccharide hyaluronan (HA plays a key role in both fibrotic and regenerative tissue repair. Accumulation of high molecular weight HA is typical of regenerative repair, which is associated with minimal inflammation and fibrosis, while fragmentation of HA is typical of postnatal wounds, which heal in the presence of inflammation and transient fibrosis. It is generally considered that HA oligosaccharides and fragments of a wide size range support these processes of adult, fibrotic wound repair yet the consequences of sized HA fragments/oligosaccharides to each repair stage is not well characterized. Here, we compared the effects of native HA, HA oligosaccharide mixtures and individual sizes (4-10 mer oligosaccharides, 5 and, 40 kDa of HA oligosaccharides and fragments, on fibroblast migration in scratch wound assays and on excisional skin wound repair in vivo. We confirm that 4-10 mer mixtures significantly stimulated scratch wound repair and further report that only the 6 and 8 mer oligosaccharides in this mixture are responsible for this effect. The HA 6 mer promoted wound closure, accumulation of wound M1 and M2 macrophages and the M2 cytokine TGFβ1, but did not increase myofibroblast differentiation. The effect of 6 mer HA on wound closure required both RHAMM and CD44 expression. In contrast, The 40 kDa HA fragment inhibited wound closure, increased the number of wound macrophages but had no effect on TGFβ1 accumulation or subsequent fibrosis. These results show that specific sizes of HA polymer have unique effects on postnatal wound repair. The ability of 6 mer HA to promote wound closure and inflammation resolution without increased myofibroblast differentiation suggests that this HA oligosaccharide could be useful for treatment of delayed or inefficient wound repair where minimal fibrosis is advantageous.

  2. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Dual pH/redox responsive and CD44 receptor targeting hybrid nano-chrysalis based on new oligosaccharides of hyaluronan conjugates.

    Science.gov (United States)

    Chen, Daquan; Dong, Xue; Qi, Mengjiao; Song, Xiaoyan; Sun, Jingfang

    2017-02-10

    A smart hybrid microenvironment-mediated dual pH/redox-responsive polymeric nanoparticles combined with inorganic calcium phosphate (CaP) was fabricated, which we term as armored nano-chrysalis inspired by butterfly pupa. The nano-chrysalis has an inner core composed of specially designed oligosaccharides of hyaluronan (oHA) targeting CD44 receptor. The inner core has two functions, i.e., the dual pH/redox responsive polymeric conjugate and the fluorescent curcumin-prodrug function. The prepared nano-chrysalis possessed a smaller size (102.5±4.6nm) than the unarmored nano-chrysalis (122.5±6.6nm). Interestingly, while the nano-chrysalis were stable under pH 7.4, when incubated under the tumor acidic conditions (pH 6.5) the outer CaP armor would dissolve in a pH-dependent, sustained manner. Moreover, nano-chrysalis was demonstrated to present the most effective antitumor efficacy than other formulations. This study provides a promising smart nano-carrier platform to enhance the stability, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hyaluronan, CD44, and Emmprin Regulate Lactate Efflux and Membrane Localization of Monocarboxylate Transporters in Human Breast Carcinoma Cells

    Science.gov (United States)

    Slomiany, Mark G.; Grass, G. Daniel; Robertson, Angela D.; Yang, Xiao Y.; Maria, Bernard L.; Beeson, Craig; Toole, Bryan P.

    2013-01-01

    Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin)is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells. PMID:19176383

  5. Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility-mass spectrometry of hyaluronan-derived oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Hermanová, M.; Iordache, A.-M.; Slováková, K.; Havlíček, Vladimír; Pelantová, Helena; Lemr, Karel

    2015-01-01

    Roč. 50, č. 6 (2015), s. 854-863 ISSN 1076-5174 R&D Projects: GA ČR(CZ) GAP206/12/1150 Institutional support: RVO:61388971 Keywords : tyramine-based hyaluronan derivatives * isomer discrimination * ion mobility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.541, year: 2015

  6. Inhibitory effect of chondroitin sulfate oligosaccharides on bovine testicular hyaluronidase.

    Science.gov (United States)

    Kakizaki, Ikuko; Koizumi, Hideyo; Chen, Fengchao; Endo, Masahiko

    2015-05-05

    Hyaluronan and chondroitin sulfates are prominent components of the extracellular matrices of animal tissues; however, their functions in relation to their oligosaccharide structures have not yet been fully elucidated. The oligosaccharides of hyaluronan and chondroitin sulfate were prepared and used to investigate their effects on the hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase when hyaluronan was used as a substrate. Hydrolysis and transglycosylation activities were assessed in independent reaction systems by analyzing the products by HPLC. The hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase were dose-dependently inhibited by chondroitin sulfate oligosaccharides, but not by hyaluronan or chondroitin oligosaccharides. A kinetic analysis of the hydrolysis reaction using hyaluronan octasaccharide revealed that the inhibition mode by chondroitin sulfate oligosaccharides was competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hyaluronan Biosynthesis in Prostate Cancer

    National Research Council Canada - National Science Library

    McCarthy, James B

    2006-01-01

    Despite advances in the diagnosis and treatment of prostate cancer in the last several years metastasis represents the major cause of frustration and failure in the successful treatment of prostate cancer patients. Hyaluronan (HA...

  8. Hyaluronan and Stone Disease

    Science.gov (United States)

    Asselman, Marino

    2008-09-01

    Kidney stones cannot be formed as long as crystals are passed in the urine. However, when crystals are retained it becomes possible for them to aggregate and form a stone. Crystals are expected to be formed not earlier than the distal tubules and collecting ducts. Studies both in vitro and in vivo demonstrate that calcium oxalate monohydrate crystals do not adhere to intact distal epithelium, but only when the epithelium is proliferating or regenerating, so that it possesses dedifferentiated cells expressing hyaluronan, osteopontin (OPN) and their mutual receptor CD44 at the apical cell membrane. The polysaccharide hyaluronan is an excellent crystal binding molecule because of its negative ionic charge. We hypothesized that the risk for crystal retention in the human kidney would be increased when tubular cells express hyaluronan at their apical cell membrane. Two different patient categories in which nephrocalcinosis frequently occurs were studied to test this hypothesis (preterm neonates and kidney transplant patients). Hyaluronan (and OPN) expression at the luminal membrane of tubular cells indeed was observed, which preceded subsequent retention of crystals in the distal tubules. Tubular nephrocalcinosis has been reported to be associated with decline of renal function and thus further studies to extend our knowledge of the mechanisms of retention and accumulation of crystals in the kidney are warranted. Ultimately, this may allow the design of new strategies for the prevention and treatment of both nephrocalcinosis and nephrolithiasis in patients.

  9. Hyaluronan in human malignancies

    International Nuclear Information System (INIS)

    Sironen, R.K.; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Kosma, V-M.

    2011-01-01

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  10. Hyaluronan in human malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Sironen, R.K. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Tammi, M.; Tammi, R. [Institute of Biomedicine, Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Auvinen, P.K. [Department of Oncology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Anttila, M. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Gynecology and Obstetrics, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Kosma, V-M., E-mail: Veli-Matti.Kosma@uef.fi [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  11. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis

    NARCIS (Netherlands)

    Kooy, F.K.; Muyuan Ma,; Beeftink, H.H.; Eggink, G.; Tramper, J.; Boeriu, C.G.

    2009-01-01

    Hyaluronan (HA) is a polysaccharide with high-potential medical applications, depending on the chain length and the chain length distribution. Special interest goes to homogeneous HA oligosaccharides, which can be enzymatically produced using Pasteurella multocida hyaluronan synthase (PmHAS). We

  12. Gait patterns after intraarticular treatment of patients with osteoarthritis of the Knee - Hyaluronan versus triamcinolone: a prospective, randomized, doubleblind, monocentric study

    Directory of Open Access Journals (Sweden)

    Skwara A

    2009-04-01

    Full Text Available Abstract Objective Evaluation of gait performance and muscle activity patterns as well as clinical efficacy and safety after single intraarticular injection with hyaluronan compared with triamcinolone in patients with knee osteoarthritis. Materials and Methods This trial evaluated the influence of a single injection of hyaluronan or triamcinolone on gait pattern and muscle activity. For clinical evaluation a visual analogue scale for pain, Lequesne index, and Knee Society Score were used. Quality of life was assessed with the SF-36. Results The complete analysis was performed in 50 of 60 patients. 26 patients were treated with triamcinolone and 24 with hyaluronan. Hyaluronan treatment led to significant improvement of range of motion at hip and knee. Significant improvement could be either demonstrated for the pain scale, Lequesne and Knee Society score in both groups. Quality of life showed greater improvement in the triamcinolone group. Conclusion Single application of high-viscosity hyaluronan shows superior range of motion and pain reduction as well as improvement in clinical results. Even if there was a lack of significant differences compared to triamcinolone, this therapy classified as safe and effective in the short follow up.

  13. Local delivery of hyaluronan as an adjunct to scaling and root planing in the treatment of chronic periodontitis.

    Science.gov (United States)

    Johannsen, Annsofi; Tellefsen, Monica; Wikesjö, Ulf; Johannsen, Gunnar

    2009-09-01

    The aim of the present study was to evaluate the adjunctive effect of the local application of a hyaluronan gel to scaling and root planing in the treatment of chronic periodontitis. Twelve patients with chronic periodontitis were recruited to participate in a study with a split-mouth design and provided informed consent. Plaque formation and bleeding on probing were evaluated pretreatment (baseline) and at 1, 4, and 12 weeks post-treatment. Probing depths and attachment levels were evaluated at baseline and at 12 weeks. The patients received full-mouth scaling and root planing. A hyaluronan gel was administered subgingivally in the test sites at baseline and after 1 week. Significant differences between test and control were evaluated using the paired t test, repeated-measures analysis of variance (Wilks lambda), and a non-parametric Wilcoxon signed-rank test. A significant reduction in bleeding on probing scores and probing depths was observed in both groups at 12 weeks (P scaling and root planing may have a beneficial effect on periodontal health in patients with chronic periodontitis.

  14. Production methods for hyaluronan

    NARCIS (Netherlands)

    Boeriu, C.G.; Springer, J.; Kooy, F.K.; Broek, van den L.A.M.; Eggink, G.

    2013-01-01

    Hyaluronan is a polysaccharide with multiple functions in the human body being involved in creating flexible and protective layers in tissues and in many signalling pathways during embryonic development, wound healing, inflammation, and cancer. Hyaluronan is an important component of active

  15. Alginate oligosaccharides

    DEFF Research Database (Denmark)

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo

    2014-01-01

    the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators......Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100....... This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry....

  16. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model.

    Science.gov (United States)

    Castillo-Courtade, L; Han, S; Lee, S; Mian, F M; Buck, R; Forsythe, P

    2015-09-01

    The prebiotic nature of human milk oligosaccharides (HMOs) and increasing evidence of direct immunomodulatory effects of these sugars suggest that they may have some therapeutic potential in allergy. Here, we assess the effect of two HMOs, 2'-fucosyllactose and 6'-sialyllactose, on symptomatology and immune responses in an ovalbumin-sensitized mouse model of food allergy. The effects of oral treatment with 2'-fucosyllactose and 6'-sialyllactose on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in sensitized mice were investigated. Mast cell functions in response to oral HMO treatment were also measured in the passive cutaneous anaphylaxis model, and direct effects on IgE-mediated degranulation of mast cells were assessed. Daily oral treatment with 2'-fucosyllactose or 6'-sialyllactose attenuated food allergy symptoms including diarrhea and hypothermia. Treatment with HMOs also suppressed antigen-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. These effects were associated with increases in the CD4(+) CD25(+) IL-10(+) cell populations in the Peyer's patches and mesenteric lymph nodes, while 6'-sialyllactose also induced increased IL-10 and decreased TNF production in antigen-stimulated splenocytes. Both 2'-fucosyllactose and 6'-sialyllactose reduced the passive cutaneous anaphylaxis response, but only 6'-sialyllactose directly inhibited mast cell degranulation in vitro, at high concentrations. Our results suggest that 2'-fucosyllactose and 6'-sialyllactose reduce the symptoms of food allergy through induction of IL-10(+) T regulatory cells and indirect stabilization of mast cells. Thus, human milk oligosaccharides may have therapeutic potential in allergic disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  18. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  19. Hyaluronan Oligosaccharides for the Promotion of Remyelination (Revised)

    Science.gov (United States)

    2012-10-01

    would be both safe and efficacious as a therapy or co- therapy to promote remyelination. REFERENCES Botzki  A,  Rigden  DJ,  Braun...with reduced brightness and contrast, demonstrating the morphology within lesions. Arrows in C and D indicate regions of persistent lyso- lecithin ... therapies for the promotion of remyelination. Acknowledgment This work was supported by NIH (NINDS) grants NS056234 (L.S.S.), NS054044, and NS045737-06S1

  20. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  1. Immunologic roles of hyaluronan.

    Science.gov (United States)

    Mummert, Mark E

    2005-01-01

    Hyaluronan (HA), a large glycosaminoglycan composed of D-N-acetylglucosamine and D-glucuronic acid, is expressed in virtually all tissues and has long been considered to serve as a structural component or filling material in the tissue interstitium (Filler Theory). This idea was revised with the discovery of HA-binding proteins that introduced the concept that HA may also serve as an adhesive substrate for cellular trafficking (Adhesion Theory). Most recently, it has been shown that HA fragments can deliver maturational signals to dendritic cells (DCs) and high molecular weight HA polymers can deliver costimulatory signals to T-cells (Signaling Theory). Thus, HA may represent an important component of the immune system. Recently, we have evaluated the impact of HA on Langerhans cell (LC) maturation and migration using a novel peptide inhibitor of HA function, termed Pep-1 (GAHWQFNALTVR). As skin-specific members of the DC family, LCs are crucial for the initiation of cutaneous immune responses. Local injections of Pep-1 prevented hapten-induced LC migration from the epidermis, providing the first experimental evidence that HA facilitates their emigration. Moreover, Pep-1 also significantly inhibited the hapten-induced maturation of LCs in vivo as assessed by cell morphology, costimulatory molecule expression, and their ability to induce proliferation of allogeneic T-cells. HA therefore has dual functionality to facilitate LC migration and maturation, the two critical events for the initiation of adaptive immune responses. Finally, we have observed that DC-dependent, antigen-specific T-cell proliferation and cytokine secretion is blocked by Pep-1. These results have revealed a previously unrecognized role for HA in antigen presentation. Thus, far from an inert structural biopolymer, HA represents a multifunctional carbohydrate mediator of immune processes.

  2. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Kooy, Floor K; Ma, Muyuan; Beeftink, Hendrik H; Eggink, Gerrit; Tramper, Johannes; Boeriu, Carmen G

    2009-01-15

    Hyaluronan (HA) is a polysaccharide with high-potential medical applications, depending on the chain length and the chain length distribution. Special interest goes to homogeneous HA oligosaccharides, which can be enzymatically produced using Pasteurella multocida hyaluronan synthase (PmHAS). We have developed a sensitive, simple, and fast method, based on fluorophore-assisted carbohydrate electrophoresis (FACE), for characterization and quantification of polymerization products. A chromatographic pure fluorescent template was synthesized from HA tetrasaccharide (HA4) and 2-aminobenzoic acid. HA4-fluor and HA4 were used as template for PmHAS-mediated polymerization of nucleotide sugars. All products, fluorescent and nonfluorescent, were analyzed with gel electrophoresis and quantified using lane densitometry. Comparison of HA4- and HA4-fluor-derived polymers showed that the fluorophore did not negatively influence the PmHAS-mediated polymerization. Only even-numbered oligosaccharide products were observed using HA4-fluor or HA4 as template. The fluorophore intensity was linearly related to its concentration, and the limit of detection was determined to be 7.4pmol per product band. With this assay, we can now differentiate oligosaccharides of size range DP2 (degree of polymerization 2) to approximately DP400, monitor the progress of polymerization reactions, and measure subtle differences in polymerization rate. Quantifying polymerization products enables us to study the influence of experimental conditions on HA synthesis.

  3. Enzymatic production of hyaluronan oligo- and polysaccharides

    NARCIS (Netherlands)

    Kooy, F.K.

    2010-01-01

    Hyaluronan oligo- and polysaccharides are abundant in the human body. Depending on the chain length, hyaluronan is an important structural component or is involved in influencing cell responses during embryonic development, healing processes, inflammation and cancer. Due to these diverse roles of

  4. Effect of depletion of interstitial hyaluronan on hydraulic conductance in rabbit knee synovium

    Science.gov (United States)

    Coleman, P J; Scott, D; Abiona, A; Ashhurst, D E; Mason, R M; Levick, J R

    1998-01-01

    The hydraulic resistance of the synovial lining to fluid outflow from a joint cavity () is important for the retention of intra-articular lubricant. The resistance has been attributed in part to extracellular glycosaminoglycans, including hyaluronan and chondroitin sulphates. Increased permeability in joints infused with testicular hyaluronidase, which digests both chondroitin sulphates and hyaluronan, supports this view. In this study the importance of interstitial hyaluronan per se was assessed using leech and Streptomyces hyaluronidases, which degrade only hyaluronan. Ringer solution was infused into the knee joint cavity of anaesthetized rabbits for 30 min, with or without hyaluronidase, after which intra-articular pressure (Pj) was raised and the relation between pressure and outflow determined. Treatment with Streptomyces, leech or testicular hyaluronidases increased the fluid escape rates by similar factors, namely 4- to 6-fold. After Streptomyces hyaluronidase treatment the slope d/dPj, which at low pressures represents synovial hydraulic conductance, increased from a control of 0.90 ± 0.20 μl min−1 cmH2O−1 (mean ± s.e.m., n = 6) to 4.52 ± 0.70 μl min−1 cmH2O−1. The slope d/dPj increased to a similar level after testicular hyaluronidase, namely to 4.14 ± 1.06 μl min−1 cmH2O−1 (control, 0.54 ± 0.24 μl min−1 cmH2O−1). Streptomyces and leech hyaluronidases were as effective as testicular hyaluronidase (no statistically significant differences) despite differences in substrate specificity. It was shown using histochemical and immunohistochemical techniques that hyaluronan was removed from the synovium by leech, Streptomyces and testicular hyaluronidases. The binding of antibodies 2-B-6 and 3-B-3 showed that the core proteins of the chondroitin sulphate proteoglycans remained intact after treatment with hyaluronidases, and the binding of 5-D-4 showed that keratan sulphate was unaffected. An azocasein digestion assay confirmed that the

  5. Hyaluronan: from biomimetic to industrial business strategy.

    Science.gov (United States)

    Murano, Erminio; Perin, Danilo; Khan, Riaz; Bergamin, Massimo

    2011-04-01

    Hyaluronan (hyaluronic acid) is a naturally occurring polysaccharide of a linear repeating disaccharide unit consisting of beta-(1-->4)-linked D-glucopyranuronic acid and beta-(1-->3)-linked 2-acetamido-2-deoxy-D-glucopyranose, which is present in extracellular matrices, the synovial fluid of joints, and scaffolding that comprises cartilage. In its mechanism of synthesis, its size, and its physico-chemical properties, hyaluronan is unique amongst other glycosaminoglycans. The network-forming, viscoelastic and its charge characteristics are important to many biochemical properties of living tissues. It is an important pericellular and cell surface constituent; its interaction with other macromolecules such as proteins, participates in regulating cell behavior during numerous morphogenic, restorative, and pathological processes in the body. The knowledge of HA in diseases such as various forms of cancers, arthritis and osteoporosis has led to new impetus in research and development in the preparation of biomaterials for surgical implants and drug conjugates for targeted delivery. A concise and focused review on hyaluronan is timely. This review will cover the following important aspects of hyaluronan: (i) biological functions and synthesis in nature; (ii) current industrial production and potential biosynthetic processes of hyaluronan; (iii) chemical modifications of hyaluronan leading to products of commercial significance; and (iv) and the global market position and manufacturers of hyaluronan.

  6. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    International Nuclear Information System (INIS)

    Nishida, Yoshihiro; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-01-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion

  7. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer.

    Science.gov (United States)

    Skandalis, Spyros S; Gialeli, Chrisostomi; Theocharis, Achilleas D; Karamanos, Nikos K

    2014-01-01

    Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants. © 2014 Elsevier Inc. All rights reserved.

  9. Hyaluronan Protects Bovine Articular Chondrocytes against Cell Death Induced by Bupivacaine under Supraphysiologic Temperatures

    Science.gov (United States)

    Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2013-01-01

    Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to

  10. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-α-dependent pathway in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-01-01

    Highlights: ► Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. ► Adiponectin also increases the phosphorylation of AMPK. ► A pharmacological activator of AMPK increases mRNA levels of PPARα and HAS2. ► Adiponectin-induced HAS2 mRNA expression is blocked by a PPARα antagonist. ► Adiponectin promotes hyaluronan synthesis via an AMPK/PPARα-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1β-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-α (PPARα), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPARα antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPARα-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  11. Hyaluronan polymeric micelles for topical drug delivery

    Czech Academy of Sciences Publication Activity Database

    Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angelesa, G.; Marek Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, Dominika; Velebný, V.

    2017-01-01

    Roč. 156, JAN 20 (2017), s. 86-96 ISSN 0144-8617 Institutional support: RVO:61388971 Keywords : Skin penetration * Polymeric micelle * Hyaluronan Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.811, year: 2016

  12. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  13. Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    2000-01-01

    We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.

  14. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    Science.gov (United States)

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Oligosaccharides in Food and Agriculture

    Science.gov (United States)

    Collins, Michelle E.; Rastall, Robert A.

    Oligosaccharides are an integral part of the daily diet for humans and animals. They are primarily used for their nutritional properties, however they are currently receiving much attention due to their physiological effect on the microflora of the gastrointestinal tract. Galacto-oligosaccharides and the fructan-type oligosaccharides, namely FOS and inulin are well established as beneficial to the host and are classified as prebiotic based on data from clinical studies. These compounds dominate this sector of the market, although there are oligosaccharides emerging which have produced very interesting in vitro results in terms of prebiotic status and human trials are required to strengthen the claim. Such compounds include pectic oligosaccharides, gluco-oligosaccharides, gentio-oligosaccharides, kojio-oligosaccharides, and alternan oligosaccharides. The raw materials for production of these prebiotic compounds are derived from natural sources such as plants but also from by products of the food processing industry. In addition to being prebiotic these compounds can be incorporated into foodstuffs due to the physiochemical properties they possess.

  16. Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy

    Science.gov (United States)

    Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui

    2017-09-01

    A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.

  17. An Update on Oligosaccharides and Their Esters from Traditional Chinese Medicines: Chemical Structures and Biological Activities

    OpenAIRE

    Chen, Xiang-Yang; Wang, Ru-Feng; Liu, Bin

    2015-01-01

    A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebr...

  18. Factors that influence serum hyaluronan levels in hemodialysis patients.

    Science.gov (United States)

    de Medina, M; Ashby, M; Diego, J; Pennell, J P; Hill, M; Schiff, E R; Perez, G O

    1999-01-01

    Serum hyaluronan levels are increased in dialysis patients. We evaluated several factors that influence serum hyaluronan levels in 184 patients on chronic hemodialysis (duration 2.3 +/- 2.3 [SD] years). The levels were higher than normal in the whole group and in a subgroup of 133 patients without chronic infection, liver disease, or rheumatoid arthritis (215 +/- 19 and 205 +/- 22 microg/L, respectively). There was a tendency for the levels to be higher in a subgroup of patients with hepatitis c virus (HCV) infection. There was no correlation between hyaluronan levels, alanine aminotransferase (ALT), and duration or dose of dialysis. A weak but highly significant negative correlation between serum albumin levels and serum hyaluronan and ferritin levels was seen. The data suggest that chronic inflammation may explain, at least in part, the increased hyaluronan levels found in chronic dialysis patients.

  19. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    Science.gov (United States)

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  20. Hyaluronan in vaginal secretions: association with recurrent vulvovaginal candidiasis.

    Science.gov (United States)

    Lev-Sagie, Ahinoam; Nyirjesy, Paul; Tarangelo, Nicholas; Bongiovanni, Ann Marie; Bayer, Cynthia; Linhares, Iara M; Giraldo, Paulo C; Ledger, William J; Witkin, Steven S

    2009-08-01

    We evaluated whether vaginal concentrations of hyaluronan were altered in women with recurrent vulvovaginal candidiasis (RVVC). Lavage samples from 17 women with acute RVVC, 27 women who were receiving a maintenance antifungal regimen, and 24 control women were tested for hyaluronan and interleukin (IL)-6, IL-12, and IL-23 by enzyme-linked immunosorbent assay. Median vaginal hyaluronan concentrations were 33.8 ng/mL (range, 21.6-66.3 ng/mL) in women with acute RVVC, 15.0 ng/mL (range, 11.2-50.6 ng/mL) in women who were receiving maintenance therapy, and 4.2 ng/mL (range, 3.6-12.0 ng/mL) in control subjects (P vaginal hyaluronan concentration was 27.4 ng/mL (range, 15.4-37.7 ng/mL) when Candida was detected by microscopy and 9.5 ng/mL (range, 7.7-14.6 ng/mL) in microscopy-negative cases (P = .0354). Elevated hyaluronan levels were associated with itching plus burning (40.7 ng/mL) or itching plus discharge (42.1 ng/mL), as opposed to itching only (6.2 ng/mL; P = .0152). Hyaluronan and IL-6 levels were correlated (P = .0009). Hyaluronan release is a component of the host response to a candidal infection and may contribute to symptoms.

  1. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    Science.gov (United States)

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  2. Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer.

    Science.gov (United States)

    Pályi-Krekk, Zsuzsanna; Barok, Márk; Isola, Jorma; Tammi, Markku; Szöllosi, János; Nagy, Peter

    2007-11-01

    Although trastuzumab, a recombinant humanised anti-ErbB2 antibody, is widely used in the treatment of breast cancer, neither its mechanism of action, nor the factors leading to resistance are fully understood. We have previously shown that antibody-dependent cellular cytotoxicity is pivotal in the in vivo effect of trastuzumab against JIMT-1, a cell line showing in vitro resistance to the antibody, and suggested that masking of the trastuzumab-binding epitope by MUC-4, a cell surface mucin, took place. Here, we further explored the role of masking of ErbB2 in connection with CD44 expression and synthesis of its ligand, hyaluronan. We show that high expression of CD44 observed in JIMT-1 cells correlates with ErbB2 downregulation in vivo, while siRNA-mediated inhibition of CD44 expression leads to decreased rate of trastuzumab internalisation and low cell proliferation in vitro. An inhibitor of hyaluronan synthesis, 4-methylumbelliferon (4-MU) significantly reduced the hyaluronan level of JIMT-1 cells both in vivo and in vitro leading to enhanced binding of trastuzumab to ErbB2 and increased ErbB2 down-regulation. Furthermore, the inhibitory effect of trastuzumab on the growth of JIMT-1 xenografts was significantly increased by 4-MU treatment. Our results point to the importance of the CD44-hyaluronan pathway in the escape of tumour cells from receptor-oriented therapy.

  3. Importance of hyaluronan biosynthesis and degradation in cell differentiation and tumor formation

    Directory of Open Access Journals (Sweden)

    Heldin P.

    2003-01-01

    Full Text Available Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

  4. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    consisting of non-homogeneous phospholipid bilayer with hyaluronan/DPPC aggregates on top. The presence of these aggregates generates a long-range repulsive surface force as two such surfaces are brought together. However, the aggregates are easily deformed, partly rearranged into multilayer structures......Phospholipids and hyaluronan have been implied to fulfil important roles in synovial joint lubrication. Since both components are present in synovial fluid, self-assembly structures formed by them should also be present. We demonstrate by small angle X-ray scattering that hyaluronan associates...... with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...

  5. Structure elucidation of a novel oligosaccharide (Medalose) from camel milk

    Science.gov (United States)

    Gangwar, Lata; Singh, Rinku; Deepak, Desh

    2018-02-01

    Free oligosaccharides are the third most abundant solid component in milk after lactose and lipids. The study of milk oligosaccharides indicate that nutrients are not only benefits the infant's gut but also perform a number of other functions which include stimulation of growth, receptor analogues to inhibit binding of pathogens and substances that promote postnatal brain development. Surveys reveal that camel milk oligosaccharides possess varied biological activities that help in the treatment of diabetes, asthma, anaemia, piles and also a food supplement to milking mothers. In this research, camel milk was selected for its oligosaccharide contents, which was then processed by Kobata and Ginsburg method followed by the HPLC and CC techniques. Structure elucidation of isolated compound was done by the chemical degradation, chemical transformation and comparison of chemical shift of NMR data of natural and acetylated oligosaccharide structure reporter group theory, the 1H, 13C NMR, 2D-NMR (COSY, TOCSY and HSQC) techniques, and mass spectrometry. The structure was elucidated as under: MEDALOSE

  6. Hyaluronan-lecithin foils and their properties

    International Nuclear Information System (INIS)

    BiaIopiotrowicz, Tomasz; Janczuk, BronisIaw; Fiedorowicz, Maciej; Khachatryan, Gohar; Tomasik, Piotr; Bakos, Dusan

    2006-01-01

    Thin, elastic foils of good resistance to the air exposure, patented as wound healing aids, were prepared by evaporation of a blend of lecithin (L) and sodium hyaluronan (H) taken under varying proportions. The contact angle for water, glycerol, formamide, ethylene glycol and diiodomethane, was determined for these foils. The contact angle was correlated against the H:L foil composition. For all liquids but formamide the highest contact angle was noted for the H:L = 2:1 (g g -1 ) ratio. The contact angles provided estimation of the work of adhesion. At the same L:H ratio the work of adhesion was the lowest. It was suggested that lecithin cross-linked hyaluronan. Since the work of adhesion of the studied liquids was similar to that of diiodomethane, it could be concluded that almost all functional groups on the foil surface were completely blocked. Perhaps, at H:L = 2:1 (g g -1 ) a stoichiometric complex of hyaluronic acid with lecithin was formed, and polar functional groups from both reagents were involved. Foils seem to be electrostatic complexes of H with L. Foils with the H:L equal to 2:1 exhibited specific properties confirmed by the IR reflectance spectra of the foils. The thermogravimetry (TG/DTG) also revealed unique thermal behaviour confirming other specific properties of the foil of this composition. For the same ratio a thorough inspection of the scanning electron micrographs (SEM) revealed few irregularly distributed perforations of 1-2 μm in diameter seen as black points, which can be recognized as pores. Properties of the foils determined in the contact angle measurements are nicely backed by the results from thermogravimetric and scanning electron microscopic studies

  7. Intra-articular hyaluronan is without clinical effect in knee osteoarthritis: a multicentre, randomised, placebo-controlled, double-blind study of 337 patients followed for 1 year

    DEFF Research Database (Denmark)

    Jørgensen, Anette; Stengaard-Pedersen, Kristian; Simonsen, Ole

    2010-01-01

    OBJECTIVE: To examine the long-term efficacy and safety of five intra-articular injections with hyaluronan in knee osteoarthritis. METHODS: A multicentre, randomised, placebo-controlled double-blind study of 337 patients fulfilling the American College of Rheumatology (ACR) criteria for knee...... osteoarthritis (clinical and laboratory) and with a Lequesne algofunctional index score (LFI) of 10 or greater. Patients received a hyaluronan product (sodium hyaluronate; Hyalgan) (n=167) or saline (n=170) intra-articularly weekly for 5 weeks and were followed up to 1 year. Time to recurrence was the primary...... the ACR criteria for osteoarthritis of the knee with moderate to severe disease activity (LFI > or = 10), five intra-articular injections of hyaluronan did not improve pain, function, paracetamol consumption or other efficacy parameters 3, 6, 9 and 12 months after the treatment....

  8. Altered expression of versican and hyaluronan in melanocytic tumors of dogs.

    Science.gov (United States)

    Docampo, María-José; Rabanal, Rosa M; Miquel-Serra, Laia; Hernández, Daniel; Domenzain, Clelia; Bassols, Anna

    2007-12-01

    To analyze the expression of versican and hyaluronan in melanocytomas and malignant melanomas of dogs, to correlate their expression with expression of the hyaluronan receptor CD44, and to identify enzymes responsible for the synthesis and degradation of hyaluronan in canine dermal fibroblasts and canine melanoma cell lines. 35 biopsy specimens from melanocytic tumors of dogs, canine primary dermal fibroblasts, and 3 canine melanoma cell lines. Versican, hyaluronan, and CD44 were detected in tumor samples by use of histochemical or immunohistochemical methods. Expression of hyaluronan-metabolizing enzymes was analyzed with a reverse transcriptase-PCR assay. Versican was found only in some hair follicles and around some blood vessels in normal canine skin, whereas hyaluronan was primarily found within the dermis. Hyaluronan was found in connective tissue of the oral mucosa. Versican and, to a lesser extent, hyaluronan were significantly overexpressed in malignant melanomas, compared with expression in melanocytomas. No significant difference was found between malignant tumors from oral or cutaneous origin. The expression of both molecules was correlated, but hyaluronan had a more extensive distribution than versican. Versican and hyaluronan were mainly associated with tumor stroma. Canine fibroblasts and melanoma cell lines expressed hyaluronan synthase 2 and 3 (but not 1) and hyaluronidase 1 and 2. Versican may be useful as a diagnostic marker for melanocytic tumors in dogs. Knowledge of the enzymes involved in hyaluronan metabolism could reveal new potential therapeutic targets.

  9. Hyaluronan Immobilized Polyurethane as a Blood Contacting Material

    Directory of Open Access Journals (Sweden)

    Feirong Gong

    2010-01-01

    Full Text Available Hyaluronan (hyaluronic acid, HA was immobilized onto the surface of amino-functionalized polyurethane films with the goal of obtaining a novel kind of biomaterial which had the potential in blood-contacting applications. The amino-functionalized polyurethane was prepared by synthesized acidic polyurethane whose pendant carboxyl groups were treated with an excess amount of 1,3-diaminopropane in the presence of N,N-carbonyldiimidazole (CDI. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, Raman spectroscopy (RS, scanning electron microscopy (SEM, and water contact angle measurement were used to confirm the surface changes at each step of treatment, both in morphologies and chemical compositions. APTT and PT results showed that HA immobilization could prolong the blood coagulation time, thus HA-immobilized polyurethane (PU-HA exhibited improved blood compatibility. Cytotoxicity analysis showed that the PU-HA films synthesized in this study were cytocompatible and could support human vein endothelial cells (HUVECs adhesion and proliferation.

  10. Modulation of hyaluronan synthase activity in cellular membrane fractions.

    Science.gov (United States)

    Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto

    2009-10-30

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.

  11. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    Full Text Available Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis, we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological

  12. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Science.gov (United States)

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  13. Provisional matrix: A role for versican and hyaluronan.

    Science.gov (United States)

    Wight, Thomas N

    2017-07-01

    Hyaluronan and versican are extracellular matrix (ECM) components that are enriched in the provisional matrices that form during the early stages of development and disease. These two molecules interact to create pericellular "coats" and "open space" that facilitate cell sorting, proliferation, migration, and survival. Such complexes also impact the recruitment of leukocytes during development and in the early stages of disease. Once thought to be inert components of the ECM that help hold cells together, it is now quite clear that they play important roles in controlling cell phenotype, shaping tissue response to injury and maintaining tissue homeostasis. Conversion of hyaluronan-/versican-enriched provisional matrix to collagen-rich matrix is a "hallmark" of tissue fibrosis. Targeting the hyaluronan and versican content of provisional matrices in a variety of diseases including, cardiovascular disease and cancer, is becoming an attractive strategy for intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hyaluronidase and hyaluronan in insect venom allergy.

    Science.gov (United States)

    King, Te Piao; Wittkowski, Knut M

    2011-01-01

    Insect venoms contain an allergen hyaluronidase that catalyzes the hydrolysis of hyaluronan (HA), a polymer of disaccharide GlcUA-GlcNAc in skin. HAs depending on their size have variable function in inflammation and immunity. This paper reports on whether hyaluronidase, HA polymers and oligomers can promote antibody response in mice. HA oligomers (8- to 50-mer; 3-20 kDa) were obtained by bee venom hyaluronidase digestion of HA polymers (750- to 5,000-mer; 300-2,000 kDa). Antibody responses in mice were compared following 3 biweekly subcutaneous injection of ovalbumin (OVA) with or without test adjuvant. OVA-specific IgG1 levels were approximately 2 times higher in BALB/c and C3H/HeJ mice receiving OVA and HA oligomer or polymer than those treated with OVA alone, and no increase in total IgE level was observed. In C57Bl/6 mice, observed increases in IgG1 and IgE were 3.5- and 1.7-fold, respectively, for the oligomer and 16- and 5-fold (p Insect venoms also have cytolytic peptides and phospholipases with inflammatory roles. These activities found in mice may contribute to venom allergenicity in susceptible people. Copyright © 2011 S. Karger AG, Basel.

  15. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    International Nuclear Information System (INIS)

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-01-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  16. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: anne.kultti@uku.fi [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Pasonen-Seppaenen, Sanna [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Jauhiainen, Marjo [Department of Pharmaceutical Chemistry, University of Kuopio, FIN-70211 Kuopio (Finland); Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I. [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland)

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  17. In Vitro Fermentation of Porcine Milk Oligosaccharides and Galacto-oligosaccharides Using Piglet Fecal Inoculum

    NARCIS (Netherlands)

    Difilippo, Elisabetta; Pan, Feipeng; Logtenberg, Madelon; Willems, Rianne; Braber, Saskia; Fink-Gremmels, Johanna; Schols, Henk A.; Gruppen, Harry

    2016-01-01

    In this study, the in vitro fermentation by piglet fecal inoculum of galacto-oligosaccharides (GOS) and porcine milk oligosaccharides (PMOs) was investigated to identify possible preferences for individual oligosaccharide structures by piglet microbiota. First, acidic PMOs and GOS with degrees of

  18. In Vitro Fermentation of Porcine Milk Oligosaccharides and Galacto-oligosaccharides Using Piglet Fecal Inoculum

    NARCIS (Netherlands)

    Difilippo, Elisabetta; Pan, Feipeng; Logtenberg, Madelon; Willems, Rianne H A M; Braber, Saskia; Fink-Gremmels, Johanna; Schols, Henk A; Gruppen, Harry

    In this study, the in vitro fermentation by piglet fecal inoculum of galacto-oligosaccharides (GOS) and porcine milk oligosaccharides (PMOs) was investigated to identify possible preferences for individual oligosaccharide structures by piglet microbiota. First, acidic PMOs and GOS with degrees of

  19. Removal rate of ( sup 3 H)hyaluronan injected subcutaneously in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.K.; Laurent, U.B.; Fraser, J.R.; Laurent, T.C. (Univ. of Bergen (Norway))

    1990-08-01

    Hyaluronan is an important constituent of the extracellular matrix in skin, and recent studies suggest that there is a pool of easily removable (free) hyaluronan drained by lymph. The removal rate of free hyaluronan in skin was measured from the elimination of ({sup 3}H)hyaluronan, injected subcutaneously in 13 rabbits. The removal of radioactivity was determined from appearance of {sup 3}H in plasma. During the first 24 h after injection, 10-87% of the tracer entered blood, less in injectates with high concentrations of hyaluronan. The removal was monoexponential with a half-life of 0.5-1 day when concentration of hyaluronan was 5 mg/ml or less. When hyaluronan concentration was 10 mg/ml or higher, the removal was slow for about 24 h and then became similar to that in experiments with low hyaluronan concentration. Free hyaluronan at physiological concentrations is thus turned over with the same rate as serum albumin, supporting the concept that hyaluronan is removed essentially by lymph flow to be degraded in lymph nodes and liver.

  20. Removal rate of [3H]hyaluronan injected subcutaneously in rabbits

    International Nuclear Information System (INIS)

    Reed, R.K.; Laurent, U.B.; Fraser, J.R.; Laurent, T.C.

    1990-01-01

    Hyaluronan is an important constituent of the extracellular matrix in skin, and recent studies suggest that there is a pool of easily removable (free) hyaluronan drained by lymph. The removal rate of free hyaluronan in skin was measured from the elimination of [ 3 H]hyaluronan, injected subcutaneously in 13 rabbits. The removal of radioactivity was determined from appearance of 3 H in plasma. During the first 24 h after injection, 10-87% of the tracer entered blood, less in injectates with high concentrations of hyaluronan. The removal was monoexponential with a half-life of 0.5-1 day when concentration of hyaluronan was 5 mg/ml or less. When hyaluronan concentration was 10 mg/ml or higher, the removal was slow for about 24 h and then became similar to that in experiments with low hyaluronan concentration. Free hyaluronan at physiological concentrations is thus turned over with the same rate as serum albumin, supporting the concept that hyaluronan is removed essentially by lymph flow to be degraded in lymph nodes and liver

  1. Nanostructure of hyaluronan acyl-derivatives in the solid state

    Czech Academy of Sciences Publication Activity Database

    Chmelař, J.; Bělský, P.; Mrázek, J.; Švadlák, D.; Hermannová, M.; Šlouf, Miroslav; Krakovský, I.; Šmejkalová, D.; Velebný, V.

    2018-01-01

    Roč. 195, 1 September (2018), s. 468-475 ISSN 0144-8617 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 Keywords : hyaluronan * hydrophobization * nanostructure Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.811, year: 2016

  2. Atomistic fingerprint of hyaluronan-CD44 binding

    DEFF Research Database (Denmark)

    Vuorio, Joni; Vattulainen, Ilpo; Martinez-Seara, Hector

    2017-01-01

    that hyaluronan can bind CD44 with three topographically different binding modes that in unison define an interaction fingerprint, thus providing a plausible explanation for the disagreement between the earlier studies. Our results confirm that the known crystallographic mode is the strongest of the three binding...

  3. Hyaluronan minimizes effects of UV irradiation on human keratinocytes

    Czech Academy of Sciences Publication Activity Database

    Hašová, M.; Crhák, Tomáš; Šafaříková, Barbora; Dvořáková, J.; Muthný, T.; Velebný, V.; Kubala, Lukáš

    2011-01-01

    Roč. 303, č. 4 (2011), s. 277-284 ISSN 0340-3696 R&D Projects: GA ČR(CZ) GA305/08/1704 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hyaluronan * keratinocyte * ultraviolet light Subject RIV: BO - Biophysics Impact factor: 2.279, year: 2011

  4. The effect of different molecular weight hyaluronan on macrophage physiology

    Czech Academy of Sciences Publication Activity Database

    Krejčová, Daniela; Pekarová, Michaela; Šafránková, B.; Kubala, Lukáš

    2009-01-01

    Roč. 30, č. 1 (2009), s. 106-111 ISSN 0172-780X R&D Projects: GA ČR(CZ) GA305/08/1704 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : inflammation * phagocytes * hyaluronan Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  5. Comparison of Effects of Oligosaccharides on Physicochemical ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of different oligosaccharides on the physicochemical properties of corn starch. Methods: The blue value and retrogradation of corn starch were evaluated following the addition of different oligosaccharides and compared with control. Pasting properties, melting enthalpy and melting ...

  6. A Novel Eliminase from a Marine Bacterium That Degrades Hyaluronan and Chondroitin Sulfate*

    Science.gov (United States)

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-01-01

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. PMID:25122756

  7. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry.

    Science.gov (United States)

    Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M

    2017-02-10

    The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease.

    Science.gov (United States)

    Lamas, Adelaida; Marshburn, Jamie; Stober, Vandy P; Donaldson, Scott H; Garantziotis, Stavros

    2016-10-03

    Cystic fibrosis (CF) is a chronic inflammatory disease that is affecting thousands of patients worldwide. Adjuvant anti-inflammatory treatment is an important component of cystic fibrosis treatment, and has shown promise in preserving lung function and prolonging life expectancy. Inhaled high molecular weight hyaluronan (HMW-HA) is reported to improve tolerability of hypertonic saline and thus increase compliance, and has been approved in some European countries for use as an adjunct to hypertonic saline treatment in cystic fibrosis. However, there are theoretical concerns that HMW-HA breakdown products may be pro-inflammatory. In this clinical pilot study we show that sputum cytokines in CF patients receiving HMW-HA are not increased, and therefore HMW-HA does not appear to adversely affect inflammatory status in CF airways.

  9. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer

    International Nuclear Information System (INIS)

    Ricciardelli, Carmela; Ween, Miranda P; Lokman, Noor A; Tan, Izza A; Pyragius, Carmen E; Oehler, Martin K

    2013-01-01

    Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC

  10. Modulation of hyaluronan synthase activity in cellular membrane fractions

    OpenAIRE

    Vigetti, Davide; Genasetti, A; Karousou, Evgenia; Viola, Manuela; Clerici, M; Bartolini, B; Moretto, Paola; DE LUCA, Giancarlo; Hascall, Vc; Passi, Alberto

    2009-01-01

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in euk...

  11. Comparison of Effects of Oligosaccharides on Physicochemical ...

    African Journals Online (AJOL)

    viscosity of corn starch (from 3180 cP to 3687 cP) but decreased that of corn starch ... Conclusion: The finding that oligosaccharides modify the physicochemical ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index ...

  12. Comparison of Milk Oligosaccharides Pattern in Colostrum of Different Horse Breeds

    NARCIS (Netherlands)

    Difilippo, E.; Willems, H.A.M.; Vendrig, J.C.; Fink-Gremmels, J.; Gruppen, H.; Schols, H.A.

    2015-01-01

    Colostrum oligosaccharides are known to exhibit prebiotic and immunomodulatory properties. Oligosaccharide composition is species-specific, and equine colostrum has been reported to contain unique oligosaccharides. Therefore, equine oligosaccharides (EMOS) from colostrum from different horse breeds

  13. Expression of Hyaluronan Synthases (HAS1–3) and Hyaluronidases (HYAL1–2) in Serous Ovarian Carcinomas: Inverse Correlation between HYAL1 and Hyaluronan Content

    International Nuclear Information System (INIS)

    Nykopp, Timo K; Anttila, Maarit; Rilla, Kirsi; Sironen, Reijo; Tammi, Markku I; Tammi, Raija H; Hämäläinen, Kirsi; Heikkinen, Anna-Mari; Komulainen, Marja; Kosma, Veli-Matti

    2009-01-01

    Hyaluronan, a tumor promoting extracellular matrix polysaccharide, is elevated in malignant epithelial ovarian tumors, and associates with an unfavorable prognosis. To explore possible contributors to the accumulation of hyaluronan, we examined the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), correlated with hyaluronidase enzyme activity hyaluronan content and HAS1–3 immunoreactivity. Normal ovaries (n = 5) and 34 serous epithelial ovarian tumors, divided into 4 groups: malignant grades 1+2 (n = 10); malignant grade 3 (n = 10); borderline (n = 4) and benign epithelial tumors (n = 10), were analyzed for mRNA by real-time RT-PCR and compared to hyaluronidase activity, hyaluronan staining, and HAS1–3 immunoreactivity in tissue sections of the same specimens. The levels of HAS2 and HAS3 mRNA (HAS1 was low or absent), were not consistently increased in the carcinomas, and were not significantly correlated with HAS protein or hyaluronan accumulation in individual samples. Instead, the median of HYAL1 mRNA level was 69% lower in grade 3 serous ovarian cancers compared to normal ovaries (P = 0.01). The expression of HYAL1, but not HYAL2, significantly correlated with the enzymatic activity of tissue hyaluronidases (r = 0.5; P = 0.006). An inverse correlation was noted between HYAL1 mRNA and the intensity of hyaluronan staining of the corresponding tissue sections (r = -0.4; P = 0.025). The results indicate that in serous epithelial ovarian malignancies HAS expression is not consistently elevated but HYAL1 expression is significantly reduced and correlates with the accumulation of hyaluronan. (233 words)

  14. Gastrointestinal-active oligosaccharides from human milk and functional foods

    NARCIS (Netherlands)

    Albrecht, S.A.

    2011-01-01

    Keywords: human milk oligosaccharides (HMOs), galacto-oligosaccharides (GOS), konjac glucomannan (KGM), breast milk, baby feces, gastrointestinal metabolization, blood-group specific conjugates, CE-LIF-MSn

    Oligosaccharides, as present in human milk or supplemented to food, are

  15. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate.

    Science.gov (United States)

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-10-03

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    Science.gov (United States)

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone.

  17. A mast cell secretagogue, compound 48/80, prevents the accumulation of hyaluronan in lung tissue injured by ionizing irradiation

    International Nuclear Information System (INIS)

    Nilsson, K.; Bjermer, L.; Hellstroem, S.H.; Henriksson, R.; Haellgren, R.

    1990-01-01

    Irradiation with a single dose of 30 Grey on the basal regions of the lungs of Sprague-Dawley rats induced a peribronchial and alveolar inflammation. Infiltration of mast cells in the edematous alveolar interstitial tissue and also in the peribronchial tissue were characteristic features of the lesion. The appearance of mast cells was already seen 4 wk after irradiation and by weeks 6 to 8 there was a heavy infiltration. The staining properties suggested that they were connective tissue-type mast cells. The infiltration of mast cells was paralleled by an accumulation of hyaluronan (hyaluronic acid) in the alveolar interstitial tissue 6 and 8 wk after irradiation. The recovery of hyaluronan (HA) during bronchoalveolar lavage (BAL) of the lungs also increased at this time. Treatment with a mast cell secretagogue, compound 48/80, induced a distinct reduction of granulated mast cells in the alveolar tissue. Regular treatment with compound 48/80 from the time of irradiation considerably reduced the HA recovery during BAL and the HA accumulation in the interstitial tissue but did not affect the interstitial infiltration of mononuclear cells and polymorphonuclear leukocytes. By contrast, an accumulation of HA in the alveolar interstitial space was induced when compound 48/80 was given not until mast cell infiltration of the lung had started. The effects of compound 48/80 indicate that the connective tissue response after lung irradiation is dependent on whether or not mast cell degranulation is induced before or after the mast cell infiltration of the alveolar tissue

  18. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan.

    Science.gov (United States)

    Wendling, Rian J; Christensen, Amanda M; Quast, Arthur D; Atzet, Sarah K; Mann, Brenda K

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30-40% modification. This was followed by an increase in viscosity around 45-50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions.

  19. Enzymatic production of human milk oligosaccharides

    DEFF Research Database (Denmark)

    Holck, Jesper; Jers, Carsten; Michalak, Malwina

    2014-01-01

    Human milk oligosaccharides (HMOs) are a group of complex glycans that are abundant in human breastmilk. Breastfeeding infants is linked to several beneficial effects like promotion of bifidogenic growth,anti‐adhesive effects by blocking pathogens, and sialylated HMOs are moreover involved...... in infant brain development. Only trace amounts of these oligosaccharides are present in bovine milk‐based infantformula. In order to produce genuine HMOs, this project explores a sustainable way to develop anenzymatic process capable of converting certain kinds of food materials into the desired products....

  20. Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo‐oligosaccharides

    DEFF Research Database (Denmark)

    Momeni, Majid Haddad; Ubhayasekera, Wimal; Sandgren, Mats

    2015-01-01

    of such enzymes is susceptible to inhibition by compounds liberated by physico‐chemical pre‐treatment if the biomass is kept unwashed. Xylan and xylo‐oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family 7. To elucidate the mechanism behind...

  1. Non-digestible oligosaccharides modulate intestinal immune activation and suppress cow's milk allergic symptoms

    NARCIS (Netherlands)

    Kerperien, J; Jeurink, P V; Wehkamp, T; van der Veer, A; van de Kant, H J G; Hofman, G A; van Esch, E C A M; Garssen, J; Willemsen, L E M; Knippels, L M J

    2014-01-01

    BACKGROUND: Cow's milk allergy is a common food allergy in childhood and no effective preventive or curative treatment is available. This study aimed at comparing single short-chain galacto- (scGOS), long-chain fructo- (lcFOS) or pectin-derived acidic oligosaccharides (pAOS) and/or mixtures of

  2. Sialylated galacto-oligosaccharides and 2'-fucosyllactose reduce necrotising enterocolitis in neonatal rats

    NARCIS (Netherlands)

    Autran, Chloe A.; Schoterman, Margriet H.C.; Jantscher-Krenn, Evelyn; Kamerling, Johannis P.; Bode, Lars

    2016-01-01

    Necrotising enterocolitis (NEC) is one of the most frequent and fatal intestinal disorders in preterm infants and has very limited treatment options. Breast-fed infants are at a 6-10-fold lower NEC risk than formula-fed infants, and we have previously shown that human milk oligosaccharides (HMO)

  3. Pain relief and improved physical function in knee osteoarthritis patients receiving ongoing hylan G-F 20, a high-molecular-weight hyaluronan, versus other treatment options: data from a large real-world longitudinal cohort in Canada

    Directory of Open Access Journals (Sweden)

    Petrella RJ

    2015-10-01

    .Keywords: osteoarthritis, high-molecular-weight hyaluronic acid, intra-articular, 6-minute walk test, repeat treatment, pain relief

  4. The Anomalies of Hyaluronan Structures in Presence of Surface Active Phospholipids—Molecular Mass Dependence

    Directory of Open Access Journals (Sweden)

    Piotr Bełdowski

    2018-03-01

    Full Text Available Interactions between hyaluronan (A- and phospholipids play a key role in many systems in the human body. One example is the articular cartilage system, where the synergistic effect of such interactions supports nanoscale lubrication. A molecular dynamics simulation has been performed to understand the process of formation of hydrogen bonds inside the hyaluronan network, both in the presence and absence of phospholipids. Additionally, the effect of the molecular mass of (A- was analyzed. The main finding of this work is a robust demonstration of the optimal parameters (H-bond energy, molecular mass influencing the facilitated lubrication mechanism of the articular cartilage system. Simulation results show that the presence of phospholipids has the greatest influence on hyaluronan at low molecular mass. We also show the specific sites of H-bonding between chains. Simulation results can help to understand how hyaluronan and phospholipids interact at several levels of articular cartilage system functioning.

  5. Influence of serum albumin on intracellular delivery of drug-loaded hyaluronan polymeric micelles

    Czech Academy of Sciences Publication Activity Database

    Nešporová, K.; Sogorková, J.; Smejkalova, D.; Kulhánek, J.; Huerta-Angeles, G.; Kubala, Lukáš; Velebný, V.

    2016-01-01

    Roč. 511, č. 1 (2016), s. 638-647 ISSN 0378-5173 Institutional support: RVO:68081707 Keywords : Polymeric micelle * Hyaluronan * Fatty acid Subject RIV: BO - Biophysics Impact factor: 3.649, year: 2016

  6. Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma.

    Science.gov (United States)

    Delpech, B; Maingonnat, C; Girard, N; Chauzy, C; Maunoury, R; Olivier, A; Tayot, J; Creissard, P

    1993-01-01

    Hyaluronan (HA) and the hyaluronan-binding glycoprotein hyaluronectin (HN) were measured in 23 gliomas and 8 meningiomas and their location was revisited in 35 tumours. A clear-cut difference was found in the HN/HA ratio values of glioblastomas (below 0.5) and that of astrocytomas (above 0.5 P edification of the extracellular matrix. In meningiomas only the stroma would be responsible for HA and HN production.

  7. Oligosaccharides isolated from Agave vera cruz

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Dorland, L.; Kamerling, J.P.; Satyanarayana, M.N.

    1977-01-01

    The structures of naturally occurring and enzymically synthesized oligosaccharides, consisting of fructose and glucose residues and having d.p. 3–8, in the stem of Agave vera cruz have been investigated by using methylation analysis, mass spectrometry, and p.m.r. spectroscopy. The naturally

  8. Characterization of sugar beet pulp derived oligosaccharides

    NARCIS (Netherlands)

    Leijdekkers, M.

    2015-01-01

    Abstract

    This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp.

    Hydrophilic interaction chromatography with on-line evaporative

  9. Approaches to chemical synthesis of pectic oligosaccharides

    DEFF Research Database (Denmark)

    Nepogodiev, Sergei A.; Field, Robert A.; Damager, Iben

    2011-01-01

    , high degrees of branching of oligosaccharide chains of target molecules and the nature of many monosaccharide components of pectin, which are often acidic and sometimes rare branched-chain sugars. Preparation of carbohydrate building blocks, including de novo syntheses of unusual sugars, protecting...

  10. Prebiotic branched galacto-oligosaccharides (gos)

    NARCIS (Netherlands)

    Lammerts van Bueren-Brandt, Alica; Dijkhuizen, Lubbert

    2018-01-01

    The invention relates to galacto-oligosaccharide (GOS) compositions and the use thereof. Provided is the use of a GOS composition comprising branched and linear GOS species having a degree of polymerization (DP) of 3, wherein the branched DP3 GOS species are present in excess of linear DP3 GOS

  11. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  12. The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation.

    Science.gov (United States)

    Trommer, Hagen; Wartewig, Siegfried; Böttcher, Rolf; Pöppl, Andreas; Hoentsch, Joachim; Ozegowski, Jörg H; Neubert, Reinhard H H

    2003-03-26

    The effects of hyaluronan and its degradation products on irradiation-induced lipid peroxidation were investigated. Liposomal skin lipid models with increasing complexity were used. Hyaluronan and its fragments were able to reduce the amount of lipid peroxidation secondary products quantified by the thiobarbituric acid (TBA) assay. The qualitative changes were studied by mass spectrometry. To elucidate the nature of free radical involvement electron paramagnetic resonance (EPR) studies were carried out. The influence of hyaluronan and its fragments on the concentration of hydroxyl radicals generated by the Fenton system was examined using the spin trapping technique. Moreover, the mucopolysaccharide's ability to react with stable radicals was checked. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) showed no concentration changes of the stable radical caused by hyaluronan. Hyaluronan was found to exhibit prooxidative effects in the Fenton assay in a concentration dependent manner. A transition metal chelation was proposed as a mechanism of this behavior. Considering human skin and its constant exposure to UV light and oxygen and an increased pool of iron in irradiated skin the administration of hyaluronan or its fragments in cosmetic formulations or sunscreens could be helpful for the protection of the human skin. Copyright 2003 Elsevier Science B.V.

  13. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-03-02

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  14. Controlling adsorption of albumin with hyaluronan on silica surfaces and sulfonated latex particles.

    Science.gov (United States)

    Berts, Ida; Fragneto, Giovanna; Porcar, Lionel; Hellsing, Maja S; Rennie, Adrian R

    2017-10-15

    Polysaccharides are known to modify binding of proteins at interfaces and this paper describes studies of these interactions and how they are modified by pH. Specifically, the adsorption of human serum albumin on to polystyrene latex and to silica is described, focusing on how this is affected by hyaluronan. Experiments were designed to test how such binding might be modified under relevant physiological conditions. Changes in adsorption of albumin alone and the co-adsorption of albumin and hyaluronan are driven by electrostatic interactions. Multilayer binding is found to be regulated by the pH of the solution and the molecular mass and concentration of hyaluronan. Highest adsorption was observed at pH below 4.8 and for low molecular mass hyaluronan (≤150kDa) at concentrations above 2mgml -1 . On silica with grafted hyaluronan, albumin absorption is reversed by changes in solvent pH due to their strong electrostatic attraction. Albumin physisorbed on silica surfaces is also rinsed away with dilute hyaluronan solution at pH 4.8. The results demonstrate that the protein adsorption can be controlled both by changes of pH and by interaction with other biological macromolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Nykopp, Timo K; Rilla, Kirsi; Tammi, Markku I; Tammi, Raija H; Sironen, Reijo; Hämäläinen, Kirsi; Kosma, Veli-Matti; Heinonen, Seppo; Anttila, Maarit

    2010-01-01

    Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), and correlated them with hyaluronan content and HAS1-3 immunoreactivity. A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10), post-menopausal proliferative endometrium (n = 5), complex atypical hyperplasia (n = 4), grade 1 (n = 8) and grade 2 + 3 (n = 8) endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry. The mRNA levels of HAS1-3 were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, HAS3 mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003). The median of HYAL1 mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006), and post-menopausal endometrium (p = 0.002), respectively. HYAL2 mRNA was also reduced in cancer (p = 0.02) and correlated with HYAL1 (r = 0.8, p = 0.0001). There was an inverse correlation between HYAL1 mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001). The results indicated that HYAL1 and HYAL2 were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for HASs were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan

  16. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    Science.gov (United States)

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  17. Hyaluronan synthase mediates dye translocation across liposomal membranes

    Directory of Open Access Journals (Sweden)

    Medina Andria P

    2012-01-01

    Full Text Available Abstract Background Hyaluronan (HA is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS, which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS to liposomes preloaded with the fluorophore Cascade Blue (CB. Results CB translocation (efflux was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL. An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL and that, in contrast, tetramyristoyl cardiolipin (TM-CL is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006. Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL. Conclusions The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.

  18. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Namvar F

    2016-07-01

    were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50 value via the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was 10.8±0.3 µg/mL, 15.4±1.2 µg/mL, 12.1±0.9 µg/mL, and 6.25±0.5 µg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5 cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. Keywords: green synthesis, hyaluronan, zinc oxide nanocomposite, anticancer activity

  19. Mannan-oligosaccharide and organic acids for weaned piglets

    Directory of Open Access Journals (Sweden)

    Marcia de Souza Vieira

    2017-08-01

    Full Text Available This study aimed to evaluate the effect of acetic, propionic, and formic (50% organic acids and mannan-oligosaccharide (50% on growth performance, digestibility, and faecal score in challenged weaned piglets. Twenty male piglets (5.57 ± 0.32 kg of BW; 21-24 days of age were housed individually in metabolic cages for 28 days in an acclimatised room. The treatments were composed of the inclusion (0.1%; n = 10 or not (n = 10 of additive in the diet. The experimental design was completely randomised with two treatments, 10 replicates, and one piglet per replicate. The nutritional matrix was supplemented with 10% of barley and 35.9 to 34.0% of soybean meal in the pre-starter diet (3-14 days post-weaning and the starter diet (15-28 days post-weaning, respectively, to cause an intestinal challenge. Diets did not include any antimicrobial or growth promoters. Weekly, the animal and the leftover diet were weighed to evaluate growth performance. Digestibility was evaluated through total faeces and urine collection. Piglets fed diets with additive had 8.7% greater weight gain (P < 0.05 compared to those piglets in the control treatment in the starter phase. For other growth performance responses there was no treatment effect. Similarly, the inclusion of additive in the piglet diets did not affect the faecal score or the energy and nutrient digestibility. In the starter phase and throughout the experimental period, piglets fed diets with additive had 18.37% and 15.07% greater nitrogen (N intake and 19.53% and 16.05% greater N retention, respectively, compared to piglets in the control treatment (P < 0.05. In conclusion, the addition of additive composed by organic acids and mannan-oligosaccharide does not improve energy and nutrient digestibility but increases the N retention and weight gain in weaned piglets in the starting phase.

  20. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.

    Science.gov (United States)

    Zhu, Linyi; Seror, Jasmine; Day, Anthony J; Kampf, Nir; Klein, Jacob

    2017-09-01

    have attracted considerable attention for decades, and several models have been proposed to elucidate it, however, the mechanism of this ultralow friction is still not clear. In this paper we explore the recent suggestion that its efficient lubrication arises from boundary layers of hyaluronan-lipid complexes at its surface, in particular exploring a range of different phosphatidylcholines (PCs) mimicking the wide range of PCs in synovial joints. The present study suggests a synergistic lubricating behavior of the different lipids in living joints, and potential treatment directions using such biomaterial complexes for widespread cartilage-friction-related diseases such as osteoarthritis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Synthesis of plant cell wall oligosaccharides

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    Plant cell walls are structurally complex and contain a large number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins...... for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from the group and provide examples from studies of their interactions with proteins....... such as enzymes, cell surface lectins, and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used...

  2. Towards the Synthesis of Carrageenan Oligosaccharides

    DEFF Research Database (Denmark)

    Kinnaert, Christine

    plants. Only very few reports are dealing with algae. However, land plants have algae ancestors and getting a better knowledge of algae cell walls could help understand the evolution of plant cell walls. Furthermore, some components specific to algae cell walls are very valuable in the industry. Indeed......, the polysaccharides present in the plant cell wall vary depending on the plant species and change during the developmental stage of the plant. This makes it very challenging to address the function of individual components in living cells as well as study the physical properties of each particular molecule....... Alternatively, structurally defined oligosaccharides can be used as models for the more complex polysaccharide components. This would enable to investigate a range of properties such as cell wall biosynthesis and protein-carbohydrate interactions, but also the physical properties of the pure oligosaccharides...

  3. THE INFLUENCE OF MANNAN OLIGOSACCHARIDES ADDED POLEN ON BRED AREAS

    OpenAIRE

    OLIMPIA COLIBAR; D. POPOVICI; E. CRAINICEANU; GABRIELA KORODI; P. ONITA

    2009-01-01

    Probiotics and prebiotics (oligosaccharides and acidifying agents) appeared in the place of the old antibiotics. Mannan -oligosaccharides from Saccharomyces cerevisiae (beer-yeast) are used with success in the nutrition of pigs, chickens and rabbits. The beer-yeast is used also in the bee family’s foraging with a major success. The bee-bred which is the protein source for the honey bees contains also many species of yeast. Our experiment of adding mannan -oligosaccharides in the energetic and...

  4. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  5. Oligosaccharides in feces of breast- and formula-fed babies.

    Science.gov (United States)

    Albrecht, Simone; Schols, Henk A; van Zoeren, Diny; van Lingen, Richard A; Groot Jebbink, Liesbeth J M; van den Heuvel, Ellen G H M; Voragen, Alphons G J; Gruppen, Harry

    2011-10-18

    So far, little is known on the fate of oligosaccharides in the colon of breast- and formula-fed babies. Using capillary electrophoresis with laser induced fluorescence detector coupled to a mass spectrometer (CE-LIF-MS(n)), we studied the fecal oligosaccharide profiles of 27 two-month-old breast-, formula- and mixed-fed preterm babies. The interpretation of the complex oligosaccharide profiles was facilitated by beforehand clustering the CE-LIF data points by agglomerative hierarchical clustering (AHC). In the feces of breast-fed babies, characteristic human milk oligosaccharide (HMO) profiles, showing genetic fingerprints known for human milk of secretors and non-secretors, were recognized. Alternatively, advanced degradation and bioconversion of HMOs, resulting in an accumulation of acidic HMOs or HMO bioconversion products was observed. Independent of the prebiotic supplementation of the formula with galactooligosaccharides (GOS) at the level used, similar oligosaccharide profiles of low peak abundance were obtained for formula-fed babies. Feeding influences the presence of diet-related oligosaccharides in baby feces and gastrointestinal adaptation plays an important role herein. Four fecal oligosaccharides, characterized as HexNAc-Hex-Hex, Hex-[Fuc]-HexNAc-Hex, HexNAc-[Fuc]-Hex-Hex and HexNAc-[Fuc]-Hex-HexNAc-Hex-Hex, highlighted an active gastrointestinal metabolization of the feeding-related oligosaccharides. Their presence was linked to the gastrointestinal mucus layer and the blood-group determinant oligosaccharides therein, which are characteristic for the host's genotype. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Milk Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells.

    Science.gov (United States)

    Laucirica, Daniel R; Triantis, Vassilis; Schoemaker, Ruud; Estes, Mary K; Ramani, Sasirekha

    2017-09-01

    Background: Oligosaccharides in milk act as soluble decoy receptors and prevent pathogen adhesion to the infant gut. Milk oligosaccharides reduce infectivity of a porcine rotavirus strain; however, the effects on human rotaviruses are less well understood. Objective: In this study, we determined the effect of specific and abundant milk oligosaccharides on the infectivity of 2 globally dominant human rotavirus strains. Methods: Four milk oligosaccharides-2'-fucosyllactose (2'FL), 3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), and galacto-oligosaccharides-were tested for their effects on the infectivity of human rotaviruses G1P[8] and G2P[4] through fluorescent focus assays on African green monkey kidney epithelial cells (MA104 cells). Oligosaccharides were added at different time points in the infectivity assays. Infections in the absence of oligosaccharides served as controls. Results: When compared with infections in the absence of glycans, all oligosaccharides substantially reduced the infectivity of both human rotavirus strains in vitro; however, virus strain-specific differences in effects were observed. Compared with control infections, the maximum reduction in G1P[8] infectivity was seen with 2'FL when added after the onset of infection (62% reduction, P rotaviruses in MA104 cells, primarily through an effect on the virus. Although breastfed infants are directly protected, the addition of specific oligosaccharides to infant formula may confer these benefits to formula-fed infants. © 2017 American Society for Nutrition.

  7. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  8. Formulation and Evaluation of Organogels Containing Hyaluronan Microparticles for Topical Delivery of Caffeine.

    Science.gov (United States)

    Simsolo, Erol Eli; Eroğlu, İpek; Tanrıverdi, Sakine Tuncay; Özer, Özgen

    2018-04-01

    Cellulite is a dermal disorder including the extracellular matrix, the lymphatic and microcirculatory systems and the adipose tissue. Caffeine is used as the active moiety depending its preventive effect on localization of fat in the cellular structure. Hyaluronic acid (hyaluronan-HA) is a natural constituent of skin that generates formation and poliferation of new cells having a remarkable moisturizing ability. The aim of this study is to formulate HA microparticles loaded with caffeine via spray-drying method. Resulting microparticle formulations (33.97 ± 0.3 μm, span < 2, 88.56 ± 0.42% encapsulation efficiency) were distributed in lecithin organogels to maintain the proper viscosity for topical application. Following the characterization and cell culture studies, in vitro drug release and ex vivo permeation studies were performed. The accumulated amount of caffeine was twice higher than the aqueous solution for the microparticle-loaded organogels at 24 h (8262,673 μg/cm 2 versus 4676,691 μg/cm 2 ). It was related to the sustained behaviour of caffeine release from the microparticles. As a result, lecithin organogel containing HA-encapsulated microparticles could be considered as suitable candidate formulations for efficient topical drug delivery system of caffeine. In addition to that, synergistic effect of this combination appears as a promising approach for long-acting treatment of cellulite.

  9. Anticancer Effects of Sinulariolide-Conjugated Hyaluronan Nanoparticles on Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Kuan Yin Hsiao

    2016-03-01

    Full Text Available Lung cancer is one of the most clinically challenging malignant diseases worldwide. Sinulariolide (SNL, extracted from the farmed coral species Sinularia flexibilis, has been used for suppressing malignant cells. For developing anticancer therapeutic agents, we aimed to find an alternative for non-small cell lung cancer treatment by using SNL as the target drug. We investigated the SNL bioactivity on A549 lung cancer cells by conjugating SNL with hyaluronan nanoparticles to form HA/SNL aggregates by using a high-voltage electrostatic field system. SNL was toxic on A549 cells with an IC50 of 75 µg/mL. The anticancer effects of HA/SNL aggregates were assessed through cell viability assay, apoptosis assays, cell cycle analyses, and western blotting. The size of HA/SNL aggregates was approximately 33–77 nm in diameter with a thin continuous layer after aggregating numerous HA nanoparticles. Flow cytometric analysis revealed that the HA/SNL aggregate-induced apoptosis was more effective at a lower SNL dose of 25 µg/mL than pure SNL. Western blotting indicated that caspases-3, -8, and -9 and Bcl-xL and Bax played crucial roles in the apoptotic signal transduction pathway. In summary, HA/SNL aggregates exerted stronger anticancer effects on A549 cells than did pure SNL via mitochondria-related pathways.

  10. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: cytological studies.

    Science.gov (United States)

    Rakkhumkaew, Numfon; Shibatani, Shigeo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2013-04-01

    Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Copyright © 2012 Wiley Periodicals, Inc.

  11. Cervical hyaluronan biology in pregnancy, parturition and preterm birth.

    Science.gov (United States)

    Mahendroo, Mala

    2018-03-03

    Cervical hyaluronan (HA) synthesis is robustly induced in late pregnancy in numerous species including women and mice. Recent evidence highlights the diverse and dynamic functions of HA in cervical biology that stem from its expression in the cervical stroma, epithelia and immune cells, changes in HA molecular weight and cell specific expression of HA binding partners. Mice deficient in HA in the lower reproductive tract confirm a structural role of HA to increase spacing and disorganization of fibrillar collagen, though this function is not critical for pregnancy and parturition. In addition, cervical HA depletion via targeted deletion of HA synthase genes, disrupts cell signaling required for the differentiation of epithelia and their mucosal and junctional barrier, resulting in increased susceptibility to ascending infection-mediated preterm birth. Finally the generation of HA disaccharides by bacterial hyaluronidases as made by Group B streptococcus can ligate toll like receptors TLR2/4 thus preventing appropriate inflammatory responses as needed to fight ascending infection and preterm birth. This review summarizes our current understanding of HA's novel and unique roles in cervical remodeling in the process of birth. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  12. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  13. IL-10 Induction from Implants Delivering Pancreatic Islets and Hyaluronan

    Directory of Open Access Journals (Sweden)

    Paul L. Bollyky

    2013-01-01

    Full Text Available Local induction of pro-tolerogenic cytokines, such as IL-10, is an appealing strategy to help facilitate transplantation of islets and other tissues. Here, we describe a pair of implantable devices that capitalize on our recent finding that hyaluronan (HA promotes IL-10 production by activated T cells. The first device is an injectable hydrogel made of crosslinked HA and heparan sulfate loaded with anti-CD3/anti-CD28 antibodies and IL-2. T cells embedded within this hydrogel prior to polymerization go on to produce IL-10 in vivo. The second device is a bioengineered implant consisting of a polyvinyl alcohol sponge scaffold, supportive collagen hydrogel, and alginate spheres mediating sustained release of HA in fluid form. Pancreatic islets that expressed ovalbumin (OVA antigen were implanted within this device for 14 days into immunodeficient mice that received OVA-specific DO.11.10 T cells and a subsequent immunization with OVA peptide. Splenocytes harvested from these mice produced IL-10 upon re-challenge with OVA or anti-CD3 antibodies. Both of these devices represent model systems that will be used, in future studies, to further evaluate IL-10 induction by HA, with the objective of improving the survival and function of transplanted islets in the setting of autoimmune (type 1 diabetes.

  14. Regulation of Hyaluronan Synthesis in Vascular Diseases and Diabetes

    Directory of Open Access Journals (Sweden)

    Paola Moretto

    2015-01-01

    Full Text Available Cell microenvironment has a critical role determining cell fate and modulating cell responses to injuries. Hyaluronan (HA is a ubiquitous extracellular matrix glycosaminoglycan that can be considered a signaling molecule. In fact, interacting with several cell surface receptors can deeply shape cell behavior. In vascular biology, HA triggers smooth muscle cells (SMCs dedifferentiation which contributes to vessel wall thickening. Furthermore, HA is able to modulate inflammation by altering the adhesive properties of endothelial cells. In hyperglycemic conditions, HA accumulates in vessels and can contribute to the diabetic complications at micro- and macrovasculature. Due to the pivotal role in favoring atherogenesis and neointima formation after injuries, HA could be a new target for cardiovascular pathologies. This review will focus on the recent findings regarding the regulation of HA synthesis in human vascular SMCs. In particular, the effects of the intracellular HA substrates availability, adenosine monophosphate-activated protein kinase (AMPK, and protein O-GlcNAcylation on the main HA synthetic enzyme (i.e., HAS2 will be discussed.

  15. Synthesis of galacto-oligosaccharides with ß-galactosidases

    NARCIS (Netherlands)

    Warmerdam, A.

    2013-01-01

    Galacto-oligosaccharides (GOS) are generally enzymatically synthesized with β-galactosidases. GOS are of interest because of their prebiotic effects on human health. They are mainly applied in infant nutrition, because of their resemblance to human milk oligosaccharides, but they are also

  16. Oligosaccharides in feces of breast- and formula-fed babies

    NARCIS (Netherlands)

    Albrecht, S.A.; Schols, H.A.; Zoeren, van D.; Lingen, van R.A.; Groot Jebbink, L.J.M.; Heuvel, van den E.G.H.M.; Voragen, A.G.J.; Gruppen, H.

    2011-01-01

    So far, little is known on the fate of oligosaccharides in the colon of breast- and formula-fed babies. Using capillary electrophoresis with laser induced fluorescence detector coupled to a mass spectrometer (CE–LIF–MSn), we studied the fecal oligosaccharide profiles of 27 two-month-old breast-,

  17. Oligosaccharides in goat milk: structure, health effects and isolation

    NARCIS (Netherlands)

    Kiskini, A.; Difilippo, E.

    2013-01-01

    Oligosaccharides have been widely recognized for their prebiotic and anti-infective properties. Among the different types of mammalian milk, the one of humans is the richest source of naturally derived oligosaccharides. However, their use as a basis for functional foods is hampered, due to their

  18. Inhibitory effect of chitosan oligosaccharide on human hepatoma ...

    African Journals Online (AJOL)

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. Materials and Methods: MTT assay was applied to detect cell ...

  19. Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.

    Science.gov (United States)

    Lee, Hee Jung; Seo, Seong Rak; Yoon, Moon Soo; Song, Ji-Ye; Lee, Eun Young; Lee, Sang Eun

    2016-02-01

    Skin aging results in physiological alterations in keratinocyte activities and epidermal function, as well as dermal changes. Yet, the cellular and molecular mechanisms that cause epidermal dysfunction during skin aging are not well understood. Recently, the role of epidermal hyaluronan (HA) as an active regulator of dynamic cellular processes is getting attention and alterations in HA metabolism are thought to be important in age-related epidermal dysfunction. Microneedle fractional radiofrequency (RF) has shown effects for improving cutaneous aging. However, little is known about the effects of fractional RF on the epidermal HA and epidermal function. We investigated the effect of microneedle fractional RF on the expression of epidermal HA in young and aged mice epidermis. We performed fractional RF on the dorsal skin of 30 8-week-old (young) hairless mice and 15 47-week-old (aged) C57BL/6J mice. Skin samples were collected on day 1, 3, and 7. HA content was measured by ELISA. Gene expressions of CD 44, HABP4, and HAS3 were measured using real time RT-PCR. Immunohistochemistry for detection of HA, CD44, PCNA, and filaggrin were performed. HA content and the mRNA levels of HABP4, CD44, and HAS3 were upregulated in the epidermis of both young and aged mice after microneedle fractional RF treatment. The expression was increased from day 1 after treatment and increased expression persisted on day 7. Fractional RF treatment significantly increased PCNA and filaggrin expression only in the aged mice skin. Microneedle fractional RF increased epidermal HA and CD44 expression in both young and aged mice and reversed age-related epidermal dysfunction especially in aged mice, suggesting a new mechanism involved in the skin rejuvenation effect of microneedle fractional RF. © 2015 Wiley Periodicals, Inc.

  20. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  1. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    International Nuclear Information System (INIS)

    Ying Liu

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  2. Separation of anionic oligosaccharides by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1986-01-01

    The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since the latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (α2,3 vs α2,6) and/or location of α2,3- and α2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties

  3. Localization of hyaluronan with a hyaluronan-specific hyaluronic acid binding protein in the placenta in pre-eclampsia.

    Science.gov (United States)

    Matejevic, D; Neudeck, H; Graf, R; Müller, T; Dietl, J

    2001-01-01

    Hyaluronan (HA), a high molecular weight polysaccharide, is a major component of connective tissue and is thus present in the extracellular matrix of most tissues. Increased serum concentrations have been reported in association with pre-eclampsia and liver malfunction, amongst other disorders. We have performed histochemical investigations with a HA-specific hyaluronic acid binding protein in placentas from uncomplicated pregnancies and from patients with pre-eclampsia. Staining for HA was found in the stroma and blood vessel walls of stem villi in all the placentas investigated. The syncytiotrophoblast and cytotrophoblast cells usually remained unstained. In addition, reactivity for HA was found within and on the surface of intervillous and perivillous fibrinoid deposits. Since fibrinoid deposits are increased in pre-eclampsia, our findings suggest that the increased HA serum concentrations in cases of pre-eclampsia could result from the stroma of the infarcted villi and from the fibrinoid deposits. HA may reach the maternal blood through fibrinoid gaps. Copyright 2001 S. Karger AG, Basel

  4. Response on Pneumococcal Vaccine in Preterm Infants After Neutral and Acidic Oligosaccharides Supplementation

    NARCIS (Netherlands)

    van den Berg, Jolice P; Westerbeek, Elisabeth A M; van der Klis, Fiona R M; Sanders, Elisabeth A M; Berbers, Guy A M; van Elburg, Ruurd M

    BACKGROUND: Supplementation of oligosaccharides in premature infants was shown to influence the immune system. We determined the effect of combined short-chain galacto-oligosaccharides (scGOS), long-chain fructo-oligosaccharides (lcFOS) and pectin-derived acidic oligosaccharides (pAOS) on antibody

  5. Response on Pneumococcal Vaccine in Preterm Infants After Neutral and Acidic Oligosaccharides Supplementation

    NARCIS (Netherlands)

    van den Berg, Jolice P.; Westerbeek, Elisabeth A. M.; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.; van Elburg, Ruurd M.

    2015-01-01

    Supplementation of oligosaccharides in premature infants was shown to influence the immune system. We determined the effect of combined short-chain galacto-oligosaccharides (scGOS), long-chain fructo-oligosaccharides (lcFOS) and pectin-derived acidic oligosaccharides (pAOS) on antibody

  6. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis.

    Science.gov (United States)

    Lall, Rahul K; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Gong, Yuansheng; Lucey, John A; Mukhtar, Hasan

    2016-09-01

    We and others have shown previously that fisetin, a plant flavonoid, has therapeutic potential against many cancer types. Here, we examined the probable mechanism of its action in prostate cancer (PCa) using a global metabolomics approach. HPLC-ESI-MS analysis of tumor xenografts from fisetin-treated animals identified several metabolic targets with hyaluronan (HA) as the most affected. Efficacy of fisetin on HA was then evaluated in vitro and also in vivo in the transgenic TRAMP mouse model of PCa. Size exclusion chromatography-multiangle laser light scattering (SEC-MALS) was performed to analyze the molar mass (Mw) distribution of HA. Fisetin treatment downregulated intracellular and secreted HA levels both in vitro and in vivo Fisetin inhibited HA synthesis and degradation enzymes, which led to cessation of HA synthesis and also repressed the degradation of the available high-molecular-mass (HMM)-HA. SEC-MALS analysis of intact HA fragment size revealed that cells and animals have more abundance of HMM-HA and less of low-molecular-mass (LMM)-HA upon fisetin treatment. Elevated HA levels have been shown to be associated with disease progression in certain cancer types. Biological responses triggered by HA mainly depend on the HA polymer length where HMM-HA represses mitogenic signaling and has anti-inflammatory properties whereas LMM-HA promotes proliferation and inflammation. Similarly, Mw analysis of secreted HA fragment size revealed less HMM-HA is secreted that allowed more HMM-HA to be retained within the cells and tissues. Our findings establish that fisetin is an effective, non-toxic, potent HA synthesis inhibitor, which increases abundance of antiangiogenic HMM-HA and could be used for the management of PCa. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Yang R

    2016-12-01

    Full Text Available Rui-Meng Yang,1,* Chao-Ping Fu,2,* Jin-Zhi Fang,1 Xiang-Dong Xu,1 Xin-Hua Wei,1 Wen-Jie Tang,1 Xin-Qing Jiang,1 Li-Ming Zhang2 1Department of Radiology, Guangzhou First People’s Hospital, Guangzhou Medical University, 2School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, China *These authors contributed equally to this work Abstract: Theranostic nanoparticles with both imaging and therapeutic abilities are highly promising in successful diagnosis and treatment of the most devastating cancers. In this study, the dual-modal imaging and photothermal effect of hyaluronan (HA-modified superparamagnetic iron oxide nanoparticles (HA-SPIONs, which was developed in a previous study, were investigated for CD44 HA receptor-overexpressing breast cancer in both in vitro and in vivo experiments. Heat is found to be rapidly generated by near-infrared laser range irradiation of HA-SPIONs. When incubated with CD44 HA receptor-overexpressing MDA-MB-231 cells in vitro, HA-SPIONs exhibited significant specific cellular uptake and specific accumulation confirmed by Prussian blue staining. The in vitro and in vivo results of magnetic resonance imaging and photothermal ablation demonstrated that HA-SPIONs exhibited significant negative contrast enhancement on T2-weighted magnetic resonance imaging and photothermal effect targeted CD44 HA receptor-overexpressing breast cancer. All these results indicated that HA-SPIONs have great potential for effective diagnosis and treatment of cancer. Keywords: iron oxide nanoparticles, surface functionalization, bioactive glycosaminoglycan, magnetic resonance imaging, cellular uptake, breast carcinoma

  8. Inhibition of hyaluronan synthesis reduces versican and fibronectin levels in trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Kate E Keller

    Full Text Available Hyaluronan (HA is a major component of the extracellular matrix (ECM and is synthesized by three HA synthases (HAS. Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU, or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.

  9. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    Science.gov (United States)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human

  10. Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Woodman, Jessica L; Suh, Min Sung; Zhang, Jianxing; Kondaveeti, Yuvabharath; Burgess, Diane J; White, Bruce A; Prestwich, Glenn D; Kuhn, Liisa T

    2015-01-01

    Carboxymethyl hyaluronic acid (CMHA) is a semisynthetic derivative of HA that is recognized by HA binding proteins but contains an additional carboxylic acid on some of the 6-hydroxyl groups of the N-acetyl glucosamine sugar units. These studies tested the ability of CMHA to stabilize the formation of calcium phosphate nanoparticles and evaluated their potential to target therapy resistant, CD44(+)/CD24(-/low) human breast cancer cells (BT-474EMT). CMHA stabilized particles (nCaP(CMHA)) were loaded with the chemotherapy drug cis-diamminedichloroplatinum(II) (CDDP) to form nCaP(CMHA)CDDP. nCaP(CMHA)CDDP was determined to be poorly crystalline hydroxyapatite, 200 nm in diameter with a -43 mV zeta potential. nCaP(CMHA)CDDP exhibited a two-day burst release of CDDP that tapered resulting in 86% release by 7 days. Surface plasmon resonance showed that nCaP(CMHA)CDDP binds to CD44, but less effectively than CMHA or hyaluronan. nCaP(CMHA-AF488) was taken up by CD44(+)/CD24(-) BT-474EMT breast cancer cells within 18 hours. nCaP(CMHA)CDDP was as cytotoxic as free CDDP against the BT-474EMT cells. Subcutaneous BT-474EMT tumors were more reproducibly inhibited by a near tumor dose of 2.8 mg/kg CDDP than a 7 mg/kg dose nCaP(CMHA)CDDP. This was likely due to a lack of distribution of nCaP(CMHA)CDDP throughout the dense tumor tissue that limited drug diffusion.

  11. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  12. Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate

    Energy Technology Data Exchange (ETDEWEB)

    Banzato, Alessandra; Rondina, Maria [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Melendez-Alafort, Laura; Zangoni, Elena; Nadali, Anna [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Renier, Davide [Fidia Farmaceutici, Abano Terme (Italy); Moschini, Giuliano [Department of Physics, University of Padua, Padova (Italy); Mazzi, Ulderico [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Zanovello, Paola [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy); Rosato, Antonio [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy)], E-mail: antonio.rosato@unipd.it

    2009-07-15

    Introduction: Gamma-ray detectors represent sensitive and noninvasive instruments to evaluate in vivo the metabolic trapping of radiopharmaceuticals. This study aimed to assess the imaging biodistribution of a [{sup 99m}Tc]-radiolabelled new prototype bioconjugate composed of paclitaxel linked to hyaluronan (ONCOFID-P). Methods: A small gamma camera providing high-resolution images was employed. Imaging of biodistribution following intravenous, intraperitoneal, intravesical and oral administration was carried out for a 2-h period in anesthetized mice receiving [{sup 99m}Tc]ONCOFID-P. At the end of the observation time, radioactivity in organs was directly measured. As a control, groups of mice were treated with free [{sup 3}H]paclitaxel given according to the same administration routes, and organ biodistribution of the drug was assessed after 2 h. Results: Intravenous inoculation of [{sup 99m}Tc]ONCOFID-P was followed by a rapid and strong liver uptake. In fact, almost 80% of the imaging signal was detected in this organ 10 min after injection and such value remained constant thereafter, thus indicating that the bioconjugate given through the intravenous route could be well suited to targeting primary or metastatic liver neoplasias. Imaging of the bladder, abdomen and gastrointestinal tract after local administration disclosed that the radiolabelled compound remained confined to the cavities, suggesting a potential regional application for transitional bladder cell carcinomas, ovarian cancers and gastric tumors, respectively. Free [{sup 3}H]paclitaxel biodistribution profoundly differed from that of [{sup 99m}Tc]ONCOFID-P. Conclusions: Conjugation of drugs with polymers results in new chemical entities characterized by a modified biodistribution pattern. Therefore, preclinical studies based on imaging analysis of such new compounds can suggest novel therapeutic applications.

  13. Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell red wines.

    Science.gov (United States)

    Apolinar-Valiente, Rafael; Romero-Cascales, Inmaculada; Williams, Pascale; Gómez-Plaza, Encarna; López-Roca, José María; Ros-García, José María; Doco, Thierry

    2015-07-15

    Wine oligosaccharides were recently characterized and their concentrations, their composition and their roles on different wines remain to be determined. The concentration and composition of oligosaccharides in Cabernet Sauvignon, Syrah and Monastrell wines was studied. Oligosaccharide fractions were isolated by high resolution size-exclusion chromatography. The neutral and acidic sugar composition was determined by gas chromatography. The MS spectra of the oligosaccharides were performed on an AccuTOF mass spectrometer. Molar-mass distributions were determined by coupling size exclusion chromatography with a multi-angle light scattering device (MALLS) and a differential refractive index detector. Results showed significant differences in the oligosaccharidic fraction from Cabernet Sauvignon, Syrah and Monastrell wines. This study shows the influence that the grape variety seems have on the quantity, composition and structure of oligosaccharides in the finished wine. To our knowledge, this is the first report to research the oligosaccharides composition of Cabernet Sauvignon, Syrah and Monastrell wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Force Spectroscopy of Hyaluronan by AFM; From H-bonded Networks Towards Single Chain Behavior

    NARCIS (Netherlands)

    Giannotti, M.I.; Rinaudo, Marguerite; Vancso, Gyula J.

    2007-01-01

    The conformational behavior of hyaluronan (HA) polysaccharide chains in aqueous NaCl solution was characterized directly at the single-molecule level. This comunication reports on one of the first single-chain atomic force microscopy (AFM) experiments performed at variable temperatures,

  15. Effects of ventilation on hyaluronan and protein concentration in pleural liquid of anesthetized and conscious rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1998-01-01

    The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.

  16. Synthesis of a hexasaccharide partial sequence of hyaluronan for click chemistry and more

    Directory of Open Access Journals (Sweden)

    Marina Bantzi

    2015-04-01

    Full Text Available In the present work, the synthesis of a hexasaccharide partial sequence of hyaluronan equipped with a terminal azido moiety is reported. This hexasaccharide can be used for the attachment on surfaces by means of click chemistry and after suitable deprotection for biophysical studies.

  17. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering.

    Science.gov (United States)

    La Gatta, Annalisa; Ricci, Giulia; Stellavato, Antonietta; Cammarota, Marcella; Filosa, Rosanna; Papa, Agata; D'Agostino, Antonella; Portaccio, Marianna; Delfino, Ines; De Rosa, Mario; Schiraldi, Chiara

    2017-10-01

    In the field of cartilage engineering, continuing efforts have focused on fabricating scaffolds that favor maintenance of the chondrocytic phenotype and matrix formation, in addition to providing a permeable, hydrated, microporous structure and mechanical support. The potential of hyaluronan-based hydrogels has been well established, but the ideal matrix remains to be developed. This study describes the development of hyaluronan sponges-based scaffolds obtained by lysine methyl-ester crosslinking. The reaction conditions are optimized with minimal chemical modifications to obtain materials that closely resemble elements in physiological cellular environments. Three hydrogels with different amounts of crosslinkers were produced that show morphological, water-uptake, mechanical, and stability properties comparable or superior to those of currently available hyaluronan-scaffolds, but with significantly fewer hyaluronan modifications. Primary human chondrocytes cultured with the most promising hydrogel were viable and maintained lineage identity for 3 weeks. They also secreted cartilage-specific matrix proteins. These scaffolds represent promising candidates for cartilage engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li

    2007-01-01

    Hyaluronan (HA) plays a predominant role in tissue morphogenesis, cell migration, proliferation, and cell differentiation. The aims of the present study were to investigate whether (i) prolonged presence of high concentration (4.0 mg/mL) 800 KDa HA and (ii) pretreatment with HA can modify osteoge...

  19. Increased Levels of Type I and III Collagen and Hyaluronan in Scleroderma Skin

    DEFF Research Database (Denmark)

    Søndergaard, Klaus; Heickendorff, Lene; L, Risteli

    1997-01-01

    The aminoterminal propeptide of type III procollagen (PIIINP) and the carboxyterminal propeptide of type I procollagen (PICP) and hyaluronan (HA) were measured in plasma and suction blister fluid from 13 systemic sclerosis patients and 11 healthy volunteers. Suction blisters and skin biopsies were...

  20. Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study.

    Science.gov (United States)

    Lane, Jonathan A; Mariño, Karina; Naughton, Julie; Kavanaugh, Devon; Clyne, Marguerite; Carrington, Stephen D; Hickey, Rita M

    2012-07-02

    Campylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host. Heavily colonized chickens often fail to display intestinal disease, and no cellular attachment or invasion has been demonstrated in-vivo. Recently, researchers have shown that the reason for the attenuation of C. jejuni virulence may be attributed to the presence of chicken intestinal mucus and more specifically chicken mucin. Since mucins are heavily glycosylated molecules this observation would suggest that glycan-based compounds may act as anti-infectives against C. jejuni. Considering this, we have investigated naturally sourced foods for potential anti-infective glycans. Bovine colostrum rich in neutral and acidic oligosaccharides has been identified as a potential source of anti-infective glycans. In this study, we tested oligosaccharides isolated and purified from the colostrum of Holstein Friesian cows for anti-infective activity against a highly invasive strain of C. jejuni. During our initial studies we structurally defined 37 bovine colostrum oligosaccharides (BCO) by HILIC-HPLC coupled with exoglycosidase digests and off-line mass spectroscopy, and demonstrated the ability of C. jejuni to bind to some of these structures, in-vitro. We also examined the effect of BCO on C. jejuni adhesion to, invasion of and translocation of HT-29 cells. BCO dramatically reduced the cellular invasion and translocation of C. jejuni, in a concentration dependent manner. Periodate treatment of the BCO prior to inhibition studies resulted in a loss of the anti-infective activity of the glycans suggesting a direct oligosaccharide-bacterial interaction. This was confirmed when the BCO completely prevented C. jejuni binding to chicken intestinal mucin, in-vitro. This study builds a strong case for the inclusion of oligosaccharides sourced from cow's milk in functional foods. However, it is only through further

  1. Systematic review of the concentrations of oligosaccharides in human milk.

    Science.gov (United States)

    Thurl, Stephan; Munzert, Manfred; Boehm, Günther; Matthews, Catherine; Stahl, Bernd

    2017-11-01

    Oligosaccharides are the third largest solid component in human milk. These diverse compounds are thought to have numerous beneficial functions in infants, including protection against infectious diseases. The structures of more than 100 oligosaccharides in human milk have been elucidated so far. The aim of this review was to identify the main factors that affect the concentrations of oligosaccharides in human milk and to determine whether it is possible to calculate representative and reliable mean concentrations. A comprehensive literature search on oligosaccharide concentrations in human milk was performed in 6 electronic databases: BIOSIS, Current Contents Search, Embase, Lancet Titles, MEDLINE and PubMed. The initial search resulted in 1363 hits. After the elimination of duplicates, the literature was screened. The application of strict inclusion criteria resulted in 21 articles selected. Oligosaccharide concentrations, both mean values and single values, reported in the literature were sorted by gestational age, secretor status of mothers, and defined lactation periods. Mean concentrations, including confidence limits, of 33 neutral and acidic oligosaccharides reported could be calculated. Concentrations of oligosaccharides in human milk show variations that are dependent on both the secretor type of the mother and the lactation period as examined by analyses of variance. In addition, large interlaboratory variations in the data were observed. Worldwide interlaboratory quantitative analyses of identical milk samples would be required to identify the most reliable methods of determining concentrations of oligosaccharides in human milk. The data presented here contribute to the current knowledge about the composition and quantities of oligosaccharides in human milk and may foster greater understanding of the biological functions of these compounds. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  2. Stability of prebiotic, laminaran oligosaccharide under food processing conditions

    Science.gov (United States)

    Chamidah, A.

    2018-04-01

    Prebiotic stability tests on laminaran oligosaccharide under food processing conditions were urgently performed to determine the ability of prebiotics deal with processing. Laminaran, oligosaccharide is produced from enzymatic hydrolysis. To further apply this prebiotic, it is necessary to test its performance on food processing. Single prebiotic or in combination with probiotic can improve human digestive health. The effectiveness evaluation of prebiotic should be taken into account in regards its chemical and functional stabilities. This study aims to investigate the stability of laminaran, oligosaccharide under food processing condition.

  3. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  4. Viscoelastic Properties of Hyaluronan in Physiological Conditions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Mary K. Cowman

    2015-08-01

    Full Text Available Hyaluronan (HA is a high molecular weight glycosaminoglycan of the extracellular matrix (ECM, which is particularly abundant in soft connective tissues. Solutions of HA can be highly viscous with non-Newtonian flow properties. These properties affect the movement of HA-containing fluid layers within and underlying the deep fascia. Changes in the concentration, molecular weight, or even covalent modification of HA in inflammatory conditions, as well as changes in binding interactions with other macromolecules, can have dramatic effects on the sliding movement of fascia. The high molecular weight and the semi-flexible chain of HA are key factors leading to the high viscosity of dilute solutions, and real HA solutions show additional nonideality and greatly increased viscosity due to mutual macromolecular crowding. The shear rate dependence of the viscosity, and the viscoelasticity of HA solutions, depend on the relaxation time of the molecule, which in turn depends on the HA concentration and molecular weight. Temperature can also have an effect on these properties. High viscosity can additionally affect the lubricating function of HA solutions. Immobility can increase the concentration of HA, increase the viscosity, and reduce lubrication and gliding of the layers of connective tissue and muscle. Over time, these changes can alter both muscle structure and function. Inflammation can further increase the viscosity of HA-containing fluids if the HA is modified via covalent attachment of heavy chains derived from Inter-α-Inhibitor. Hyaluronidase hydrolyzes HA, thus reducing its molecular weight, lowering the viscosity of the extracellular matrix fluid and making outflow easier. It can also disrupt any aggregates or gel-like structures that result from HA being modified. Hyaluronidase is used medically primarily as a dispersion agent, but may also be useful in conditions where altered viscosity of the fascia is desired, such as in the treatment of

  5. Breaching the Castle Walls: Hyaluronan-Depletion as a Therapeutic Approach to Cancer Therapy

    Directory of Open Access Journals (Sweden)

    H Michael eShepard

    2015-08-01

    Full Text Available Hyaluronan (HA has many functions in the extracellular milieu of normal and diseased tissues. Disease-associated HA accumulation has been shown to predict a worsened prognosis in cancer patients, with tumors having a high extracellular HA content (HA-high being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is derived from the specialized biomechanical and molecular properties of the HA-based assembly of HA binding proteins and the growth-promoting factors that accumulate in it. Biophysical characteristics of an HA-high tumor microenvironment include high tumor interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia. Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the HA-high extracellular network. HA-CD44 association on the tumor cell surface enhances receptor tyrosine kinase activity to drive tumor progression and treatment resistance. Together, malignant cells in this HA-high matrix may evolve dependency on it for growth. This yields the hypothesis that depleting HA in HA-high tumors may be associated with a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20 (PEGPH20 has been deployed as a potential cancer therapeutic in HA-high tumors. PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor. Finally, HA depletion results in reduced signaling via CD44/RHAMM. Taken together, HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that include targeting both biophysical and molecular signaling pathways. Ongoing clinical trials are examining the potential of PEGPH20 in combination with partner therapeutics in several

  6. Effect of fructo-oligosaccharide and isomalto-oligosaccharide addition on baking quality of frozen dough.

    Science.gov (United States)

    Park, Eun Young; Jang, Sung-Bum; Lim, Seung-Taik

    2016-12-15

    The baking quality of frozen doughs containing different levels of fructo-oligosaccharides (FO) or isomalto-oligosaccharides (IMO) (3-9%, w/w flour), and stored for 0-8weeks at -18°C, was examined. The addition of FO or IMO increased the proof volume of the dough and the loaf volume of bread prepared from frozen dough. A 6% addition of FO or IMO was optimum, giving the highest proof volume and bread loaf volume, but a higher concentration than 6% induced low baking quality including lower proof volume and bread loaf volume. The bread crumb was moister and softer after the addition of FO or IMO before, and even after, frozen storage. Darker crumb colour was observed in the bread after the addition of FO or IMO. The oligosaccharides added to the frozen dough were effective in improving the quality of bread made from frozen dough, except for resulting in a darker bread crumb. Copyright © 2016. Published by Elsevier Ltd.

  7. Tertiary structure in N-linked oligosaccharides.

    Science.gov (United States)

    Homans, S W; Dwek, R A; Rademacher, T W

    1987-10-06

    Distance constraints derived from two-dimensional nuclear Overhauser effect measurements have been used to define the orientation of the Man alpha 1-3Man beta linkage in seven different N-linked oligosaccharides, all containing the common pentasaccharide core Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc. Conformational invariance of the Man alpha 1-3Man beta linkage was found for those structures bearing substitutions on the Man alpha 1-3Man beta antenna. However, the presence of either a GlcNAc residue in the beta 1-4 linkage to Man beta ("bisecting GlcNAc") or a xylose residue in the beta 1-2 linkage to Man beta of the trimannosyl core was found to generate conformational transitions that were similar. These transitions were accompanied by characteristic chemical shift perturbations of proton resonances in the vicinity of the Man alpha 1-3Man beta linkage. Molecular orbital energy calculations suggest that the conformational transition between the unsubstituted and substituted cores arises from energetic constraints in the vicinity of the Man alpha 1-3Man beta linkage, rather than specific long-range interactions. These data taken together with our previous results on the Man alpha 1-6Man beta linkage [Homans, S. W., Dwek R. A., Boyd, J., Mahmoudian, M., Richards, W. G., & Rademacher, T. W. (1986) Biochemistry 25, 6342] allow us to discuss the consequences of the modulation of oligosaccharide solution conformations.

  8. Influence of β-galacto-oligosaccharide on growth performance and ...

    African Journals Online (AJOL)

    Malik Gee

    2017-08-07

    Aug 7, 2017 ... reduced acidic goblet cells (AGCs) in the ileum of the HSCT group compared with ... oligosaccharides that enrich the innate microbial ecosystem of the host. ..... parenchyma of lymphoid organs during heat stress might have ...

  9. Electron Detachment Dissociation (EDD) of Fluorescently Labeled Sialylated Oligosaccharides

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2012-01-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared to IRMPD. Neutral losses and satellite ions such as C – 2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared to 2-AA labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. PMID:22120881

  10. Effect of Some Oligosaccharides on Functional Properties of Wheat ...

    African Journals Online (AJOL)

    The peak viscosity of wheat starch with oligosaccharides increased from 3238 ± 8 to 3822 ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African .... Measurement of water activity (Aw) during.

  11. Human milk oligosaccharides inhibit growth of group B Streptococcus

    NARCIS (Netherlands)

    Lin, Ann E; Autran, Chloe A; Szyszka, Alexandra; Escajadillo, Tamara; Huang, Mia; Godula, Kamil; Prudden, Anthony R; Boons, Geert-Jan; Lewis, Amanda L; Doran, Kelly S; Nizet, Victor; Bode, Lars

    2017-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of invasive bacterial infections in newborns, typically acquired vertically during childbirth secondary to maternal vaginal colonization. Human milk oligosaccharides (HMOs) have important nutritional and biological activities

  12. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice.

    Science.gov (United States)

    Gavina, Manuela; Luciani, Alessandro; Villella, Valeria R; Esposito, Speranza; Ferrari, Eleonora; Bressani, Ilaria; Casale, Alida; Bruscia, Emanuela M; Maiuri, Luigi; Raia, Valeria

    2013-08-01

    Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF. F508del homozygous mice (Cftr(F508del) ) and transgenic mice overexpressing the ENaC channel β-subunit (Scnn1b-Tg) were treated with nebulized HA (0.5 mg/mouse/day for 7 days). Tumor necrosis factor-alpha (TNFα), macrophage inflammatory protein-2 (MIP-2), myeloperoxidase (MPO) levels, and macrophage infiltration were assessed on lung tissues. IB3-1 and CFBE41o-epithelial cell lines were cultured with HA (24 hr, 100 µg/ml) and Reactive Oxygen Species (ROS), Tissue Transglutaminase (TG2) SUMOylation and Peroxisome Proliferator Activated Receptor gamma (PPARγ) and phospho-p42/p44 levels were measured by dichlorodihydrofluorescein assay, or fluorescence resonance energy transfer (FRET) microscopy or immunoblots. Nebulized HA reduced TNFα expression (P < 0.005); TNFα, MIP-2, and MPO protein levels (P < 0.05); MPO activity (P < 0.05); and CD68+ cells counts (P < 0.005) in lung tissues of Cftr(F508del) and Scnn1b-Tg mice, compared with saline-treated mice. HA reduced ROS, TG2 SUMOylation, TG2 activity, phospho-p42-44, and increased PPARγ protein in both IB3-1 and CFBE41o cells (P < 0.05). Nebulized HA is effective in controlling inflammation in vivo in mice CF airways and in vitro in human airway epithelial cells. We provide the proof of concept for the use of inhaled HA as a potential anti-inflammatory drug in CF therapy. Copyright © 2012 Wiley Periodicals, Inc.

  13. Hybrid Complexes of High and Low Molecular Weight Hyaluronans Highly Enhance HASCs Differentiation: Implication for Facial Bioremodelling

    Directory of Open Access Journals (Sweden)

    Antonietta Stellavato

    2017-11-01

    Full Text Available Background/Aims: Adipose-derived Stem Cells (ASCs are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation. Methods: Comparative analyses using high (H and low (L molecular weight hyaluronans (HA, hyaluronan hybrid cooperative complexes (HCCs, and high and medium cross-linked hyaluronan based dermal fillers were performed. Human ASCs were characterized by flow cytometry using CD90, CD34, CD105, CD29, CD31, CD45 and CD14 markers. Then, cells were treated for 7, 14 and 21 days with hyaluronans. Adipogenic differentiation was evaluated using Oil red-O staining and expression of leptin, PPAR-γ, LPL and adiponectin using qRT-PCR. Adiponectin was analyzed by immunofluorescence, PPAR-γ and adiponectin were analyzed using western blotting. ELISA assays for adiponectin and leptin were performed. Results: HCCs highly affected ASCs differentiation by up-regulating adipogenic genes and related proteins, that were also secreted in the culture medium. H-HA and L-HA induced a lower level of ASCs differentiation. Conclusion: HCCs-based formulations clearly enhance adipogenic differentiation and proliferation, when compared with linear HA and cross-linked hyaluronans. Injection of HCCs in subdermal fat compartment may recruit and differentiate stem cells in adipocytes, and considerably improving fat tissue renewal.

  14. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    Directory of Open Access Journals (Sweden)

    Kerryn Mason

    2014-12-01

    Full Text Available Heparan sulfate (HS catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA, which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues.

  15. LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan.

    Science.gov (United States)

    Falconi, Dominic; Aubin, Jane E

    2007-08-01

    LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures

  16. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Clagett-Dame, M.; McKelvy, J.F. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-10-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-(125I)iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide.

  17. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    International Nuclear Information System (INIS)

    Clagett-Dame, M.; McKelvy, J.F.

    1989-01-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide

  18. Enzymatic production of pectic oligosaccharides from onion skins.

    Science.gov (United States)

    Babbar, Neha; Baldassarre, Stefania; Maesen, Miranda; Prandi, Barbara; Dejonghe, Winnie; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Onion skins are evaluated as a new raw material for the enzymatic production of pectic oligosaccharides (POS) with a targeted degree of polymerization (DP). The process is based on a two-stage process consisting of a chelator-based crude pectin extraction followed by a controlled enzymatic hydrolysis. Treatment of the extracted crude onion skin's pectin with various enzymes (EPG-M2, Viscozyme and Pectinase) shows that EPG-M2 is the most appropriate enzyme for tailored POS production. The experiments reveal that the highest amount of DP2 and DP3 is obtained at a time scale of 75-90min with an EPG-M2 concentration of 26IU/mL. At these conditions the production amounts 2.5-3.0% (w/w) d.m for DP2 and 5.5-5.6% (w/w) d.m for DP3 respectively. In contrast, maximum DP4 production of 5.2-5.5% (w/w) d.m. is obtained with 5.2IU/mL at a time scale of 15-30min. Detailed LC-MS analysis reveals the presence of more methylated oligomers compared to acetylated forms in the digests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva

    2018-01-01

    Roč. 19, č. 1 (2018), č. článku 283. E-ISSN 1422-0067 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : extracellular matrix * hyaluronan * inter-alpha-trypsin inhibitor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 3.226, year: 2016

  20. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  1. The functional biology of human milk oligosaccharides.

    Science.gov (United States)

    Bode, Lars

    2015-11-01

    Human milk oligosaccharides (HMOs) are a group of complex sugars that are highly abundant in human milk, but currently not present in infant formula. More than a hundred different HMOs have been identified so far. The amount and composition of HMOs are highly variable between women, and each structurally defined HMO might have a distinct functionality. HMOs are not digested by the infant and serve as metabolic substrates for select microbes, contributing to shape the infant gut microbiome. HMOs act as soluble decoy receptors that block the attachment of viral, bacterial or protozoan parasite pathogens to epithelial cell surface sugars, which may help prevent infectious diseases in the gut and also the respiratory and urinary tracts. HMOs are also antimicrobials that act as bacteriostatic or bacteriocidal agents. In addition, HMOs alter host epithelial and immune cell responses with potential benefits for the neonate. The article reviews current knowledge as well as future challenges and opportunities related to the functional biology of HMOs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Sevoflurane mitigates shedding of hyaluronan from the coronary endothelium, also during ischemia/reperfusion: an ex vivo animal study

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-04-01

    Full Text Available Congcong Chen,1,3 Daniel Chappell,2,3 Thorsten Annecke,2,3 Peter Conzen,2 Matthias Jacob,2,3 Ulrich Welsch,4 Bernhard Zwissler,2 Bernhard F Becker3 1Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China; 2Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany; 3Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany; 4Institute of Anatomy, Ludwig-Maximilians-University, Munich, Germany Abstract: Glycosaminoglycan hyaluronan (HA, a major constituent of the endothelial glycocalyx, helps to maintain vascular integrity. Preconditioning the heart with volatile anesthetic agents protects against ischemia/reperfusion injury. We investigated a possible protective effect of sevoflurane on the glycocalyx, especially on HA. The effect of pre-ischemic treatment with sevoflurane (15 minutes at 2% vol/vol gas on shedding of HA was evaluated in 28 isolated, beating guinea pig hearts, subjected to warm ischemia (20 minutes at 37°C followed by reperfusion (40 minutes, half with and half without preconditioning by sevoflurane. HA concentration was measured in the coronary effluent. Over the last 20 minutes of reperfusion hydroxyethyl starch (1 g% was continuously infused and the epicardial transudate collected over the last 5 minutes for measuring the colloid extravasation. Additional hearts were fixed by perfusion after the end of reperfusion for immunohistology and electron microscopy. Sevoflurane did not significantly affect post-ischemic oxidative stress, but strongly inhibited shedding of HA during the whole period, surprisingly even prior to ischemia. Immunohistology demonstrated that heparan sulfates and SDC1 of the glycocalyx were also preserved by sevoflurane. Electron microscopy revealed shedding of glycocalyx caused by ischemia and a mostly intact glycocalyx in hearts exposed to sevoflurane. Coronary vascular permeability of the

  3. Maillard reactions and increased enzyme inactivation during oligosaccharide synthesis by a hyperthermophilic glycosidase

    NARCIS (Netherlands)

    Bruins, M.E.; Hellemond, van E.W.; Janssen, A.E.M.; Boom, R.M.

    2003-01-01

    The thermostable Pyrococcus furiosus beta-glycosidase was used for oligosaccharide production from lactose in a kinetically controlled reaction. Our experiments showed that higher temperatures are beneficial for the absolute as well as relative oligosaccharide yield. However, at reaction

  4. In vitro fermentability of sugar beet pulp derived oligosaccharides using human and pig fecal inocula

    NARCIS (Netherlands)

    Leijdekkers, A.G.M.; Aguirre, M.; Venema, K.; Bosch, G.; Gruppen, H.; Schols, H.A.

    2014-01-01

    The in vitro fermentation characteristics of different classes of sugar beet pectic oligosaccharides (SBPOS) were studied using human and pig fecal inocula. The SBPOS consisted mainly of partially acetylated rhamnogalacturonan oligosaccharides and partially methyl-esterified/acetylated

  5. In Vitro fermentability of sugar beet pulp derived oligosaccharides using human and pig fecal inocula

    NARCIS (Netherlands)

    Leijdekkers, A.G.M.; Aguirre, M.; Venema, K.; Bosch, G.; Gruppen, H.; Schols, H.A.

    2014-01-01

    The in vitro fermentation characteristics of different classes of sugar beet pectic oligosaccharides (SBPOS) were studied using human and pig fecal inocula. The SBPOS consisted mainly of partially acetylated rhamnogalacturonan-oligosaccharides and partially methyl esterified/acetylated

  6. Inulin Potential for Enzymatic Obtaining of Prebiotic Oligosaccharides.

    Science.gov (United States)

    Flores, Adriana C; Morlett, Jesús A; Rodríguez, Raúl

    2016-08-17

    Oligosaccharides have been marketed since the 80s as low-calorie agents and recently have gained interest in the pharmaceutical and food industry as functional sweeteners and prebiotic enriching population of Bifidobacteria. Currently, they have an approximated value of $200 per kg and recently, inulin has been proposed as a feedstock for production of oligosaccharides through selective hydrolysis by action of endoinulinase. High optimum temperature (60°C) and thermostability are two important criteria that determine suitability of this enzyme for industrial applications as well as enzyme cost, a major limiting factor. Significant reduction in cost can be achieved by employing low-value and abundant inulin-rich plants as Jerusalem artichoke, dahlia, yacon, garlic, and onion, among others. In general, the early harvested tubers of these plants contain a greater amount of highly polymerized sugar fractions, which offer more industrial value than late-harvested tubers or those after storage. Also, development of recombinant microorganisms could be useful to reduce the cost of enzyme technology for large-scale production of oligosaccharides. In the case of fungal inulinases, several studies of cloning and modification have been made to achieve greater efficiency. The present paper reviews inulin from vegetable sources as feedstock for oligosaccharides production through the action of inulinases, the impact of polymerization degree of inulin and its availability, and some strategies to increase oligosaccharide production.

  7. In vitro effect of dietary protein level and nondigestible oligosaccharides on feline fecal microbiota.

    Science.gov (United States)

    Pinna, C; Stefanelli, C; Biagi, G

    2014-12-01

    The aim of the present study was to evaluate in vitro the effect of some prebiotic substances and 2 dietary protein levels on the composition and activity of feline fecal microbiota. Two in vitro studies were conducted. First, 6 nondigestible oligosaccharides were studied; treatments were control diet (CTRL), gluconic acid (GA), carrot fiber (CF), fructooligosaccharides (FOS), galactooligosaccharides (GOS), lactitol (LAC), and pectins from citrus fruit (PEC). Substrates were added to feline fecal cultures at 2 g/L for 24 h incubation. Compared with the CTRL, ammonia had been reduced (Pmicrobiota and that high dietary protein levels in a cat's diet can have negative effects on the animal intestinal environment.

  8. The use of the 2-aminobenzoic acid tag for oligosaccharide gel electrophoresis.

    Science.gov (United States)

    Huang, Z; Prickett, T; Potts, M; Helm, R F

    2000-08-18

    Gel electrophoresis of fluorophore labeled saccharides provides a rapid and reliable method to screen enzymatic and/or chemical treatments of polysaccharides and glycoconjugates, as well as a sensitive and efficient microscale method to separate and purify oligosaccharides for further analysis. A simple and inexpensive method of derivatization and analysis using 2-aminobenzoic acid (anthranilic acid, AA) is described and applied to the extracellular polysaccharide released by the desiccation tolerant cyanobacterium Nostoc commune DRH-1. The results of these analyses suggest a possible protective functionality of two pendent groups, as well as a potential relationship between these groups and the desiccation tolerance of the organism.

  9. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Radiation-induced increase in hyaluronan and fibronectin in bronchoalveolar lavage fluid from breast cancer patients is suppressed by smoking

    International Nuclear Information System (INIS)

    Bjermer, L.; Nilsson, K.; Haellgren, R.; Franzen, L.; Henriksson, R.; Sandstroem, T.; Saernstrand, B.

    1992-01-01

    Bronchoalveolar lavage (BAL) fluid was analysed from 21 patients with breast cancer, stage T 1 N 0 M 0 , who had undergone tumour resection and postoperative local irradiation (accumulated dose 56 Gy). The lavage was performed two months after radiotherapy, in the anterior part of the lingula (left side) or of the right middle lobe (right side), depending on which side had been exposed to radiation. The patients had significantly increased concentrations of fibronectin (FN) (p<0.001), hyaluronan (HA) (p<0.01) and albumin (p<0.05) in BAL fluid compared with the healthy controls (n=19). However, when the patients were separated, according to smoking history, it was obvious that the inflammatory reaction occurred entirely in the nonsmoking patient group (n=10), whilst no difference could be found between the smoking patients (n=11) and the controls. In the nonsmoking patient group, there was a sevenfold increase in BAL concentrations of FN and a threefold increase in HA. Moreover, four patients had detectable levels of procollagen III peptide in BAL, all were nonsmokers. The smoking habits of the controls had no influence on the BAL measurements. These findings indicate that smoking interferes with the radiation-induced early inflammatory connective tissue reaction of the lung. Finally, the results justify further investigation of interaction of smoking with cancer treatment, both from the view of therapy effectiveness and reduction of adverse effects. (au)

  11. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells

    International Nuclear Information System (INIS)

    Chen, P.-Y.; Huang, Lynn L.H.; Hsieh, H.-J.

    2007-01-01

    For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs

  12. THE INFLUENCE OF MANNAN OLIGOSACCHARIDES ADDED POLEN ON BRED AREAS

    Directory of Open Access Journals (Sweden)

    OLIMPIA COLIBAR

    2009-05-01

    Full Text Available Probiotics and prebiotics (oligosaccharides and acidifying agents appeared in the place of the old antibiotics. Mannan -oligosaccharides from Saccharomyces cerevisiae (beer-yeast are used with success in the nutrition of pigs, chickens and rabbits. The beer-yeast is used also in the bee family’s foraging with a major success. The bee-bred which is the protein source for the honey bees contains also many species of yeast. Our experiment of adding mannan -oligosaccharides in the energetic and protein feed and of using the artificial bee-bread in the place of pollen shows that those methods didn’t lead an increased performance of the frozen pollen, honey energetic and protein feed.

  13. Immunohistochemical analysis of EGFR and hyaluronan in tongue cancer and the development of regional recurrence in patients initially diagnosed N0.

    Science.gov (United States)

    Lindell Jonsson, Eva; Nylander, Karin; Hallén, Lars; Laurell, Göran

    2017-08-01

    To investigate whether the extent of expression of hyaluronan (HA) and epidermal growth factor receptor (EGFR) in squamous cell carcinoma of the mobile tongue can predict the risk of cervical metastasis and survival. Retrospective histopathologic study. Surgical specimens from 64 patients who had undergone surgery for squamous cell carcinoma of the mobile tongue were assessed using immunohistochemistry to investigate the expression of HA and EGFR in the primary tumours, and the data were then correlated to cervical metastasis and survival. There was a significant correlation between the intensity of HA staining and patient survival (p .024), and a weak correlation between the staining proportion of EGFR and the risk for regional recurrence (AUC 66). This study indicates that immunoscoring using HA could be used to provide prognostic tools for tongue cancer, and that it might be of interest to study the prognostic properties of EGFR further concerning the risk for regional recurrence after the primary treatment.

  14. Virtual and solution conformations of oligosaccharides

    International Nuclear Information System (INIS)

    Cumming, D.A.; Carver, J.P.

    1987-01-01

    The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1 H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1 H NMR determined conformations are virtual in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the solution conformation is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T 1 )'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis the authors conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T 1 ) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions

  15. Production of prebiotic oligosaccharides by novel enzymatic catalysis

    DEFF Research Database (Denmark)

    Nordvang, Rune Thorbjørn; Jers, Carsten

    A group of prebiotic oligosaccharides known as human milk oligo-saccharides (HMOs) are currently receiving a lot of attention due to the prospect of their addition to infant formula. Whereas prebiotics in general are used as mediators for modulating the gut microbiome in human individuals, HMOs...... play an important role in development of this organ, where it contributes to the selective growth stimulation of the beneficial microorganism Bifidobacterium infantis. The effects of HMOs are not only prebiotic and a range of beneficial effects have been postulated, with varying amounts of scientific...

  16. The effect of neutral and acidic oligosaccharides on stool viscosity, stool frequency and stool pH in preterm infants

    NARCIS (Netherlands)

    Westerbeek, E. A. M.; Hensgens, R. L.; Mihatsch, W. A.; Boehm, G.; Lafeber, H. N.; van Elburg, R. M.

    2011-01-01

    To determine the effect of neutral oligosaccharides [small-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides (scGOS/lcFOS)] in combination with acidic oligosaccharides (pAOS) on stool viscosity, stool frequency and stool pH in preterm infants. In this explorative RCT, preterm infants

  17. Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers

    NARCIS (Netherlands)

    Schaafsma, G.; Meuling, W.J.A.; Dokkum, W. van; Bouley, C.

    1998-01-01

    Objective: To investigate in adult male volunteers the effect of a new fermented milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids. Design: Randomized placebo-controlled double-blind two-way cross over trial with two treatment periods of

  18. Polyguluronate sulfate and its oligosaccharides but not heparin promotes FGF19/FGFR1c signaling

    Science.gov (United States)

    Lan, Ying; Zeng, Xuan; Guo, Zhihua; Zeng, Pengjiao; Hao, Cui; Zhao, Xia; Yu, Guangli; Zhang, Lijuan

    2017-06-01

    Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular FGF19 receptor consists of FGF receptor (FGFR) and glycosaminoglycan complexed with either α Klotho or β Klotho. Interestingly, in mice with diet-induced diabetes, a single injection of FGF1 is enough to restore blood sugar levels to a healthy range. FGF1 binds heparin with high affinity whereas FGF19 does not, indicating that polysaccharides other than heparin might enhance FGF19/FGFR signaling. Using a FGFs/FGFR1c signaling-dependent BaF3 cell proliferation assay, we discovered that polyguluronate sulfate (PGS) and its oligosaccharides, PGS12 and PGS25, but not polyguluronate (PG), a natural marine polysaccharide, enhanced FGF19/FGFR1c signaling better than that of heparin based on 3H-thymidine incorporation. Interestingly, PGS6, PGS8, PGS10, PGS12, PGS25, and PGS, but not PG, had comparable FGF1/FGFR1c signal-stimulating activity compared to that of heparin. These results indicated that PGS and its oligosaccharides were excellent FGF1/FGFR1c and FGF19/FGFR1c signaling enhancers at cellular level. Since the inexpensive PGS and PGS oligosaccharides can be absorbed through oral route, these seaweed-derived compounds merit further investigation as novel agents for the treatment of type 2 diabetes through enhancing FGF1/FGFR1c and FGF19/FGFR1c signaling in future.

  19. Effect of oligosaccharides on the growth of Lactobacillus delbrueckii subsp. bulgaricus strains isolated from dairy products.

    Science.gov (United States)

    Ignatova, Tseteslava; Iliev, Ilia; Kirilov, Nikolai; Vassileva, Tonka; Dalgalarrondo, Michèle; Haertlé, Thomas; Chobert, Jean-Marc; Ivanova, Iskra

    2009-10-28

    Eighteen lactic acid bacteria (LAB) strains isolated from dairy products, all identified as Lactobacillus delbrueckii subsp. bulgaricus, were tested for their ability to grow on three different oligosaccharides: fructo-oligosaccharides (FOS), gluco-oligosaccharides (GOS) and galacto-oligosaccharides (GalOS). The growth of LAB on different oligosaccharides was very different. Study of the antimicrobial activities of these LAB indicated that the system of uptake of unusual sugars influenced in a specific way the production of antimicrobial substances (bacteriocins) specific against gram-negative bacteria. The added oligosaccharides induced LAB to form end-products of a typical mixed acid fermentation. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastro-intestinal tract.

  20. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  1. Solid state crystallisation of oligosaccharide ester derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Elaine Ann

    2002-07-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-({beta}-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and {beta} = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores

  2. Solid state crystallisation of oligosaccharide ester derivatives

    International Nuclear Information System (INIS)

    Wright, Elaine Ann

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(β-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 1 2 1 2 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and β = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores which allows diffusion of

  3. Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases

    DEFF Research Database (Denmark)

    Tolborg, Jakob Fjord; Petersen, Lars; Jensen, Knud Jørgen

    2002-01-01

    and the prospect of automatability. Here, we report the first application of glycosynthases to solid-phase oligosaccharide synthesis by use of the 51 kDa serine and glycine mutants of Agrobacterium sp. beta-glucosidase, Abg E358S and E358G. Acceptors were linked to PEGA resin through a backbone amide linker (BAL...

  4. Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Poyin Chen

    2017-12-01

    Full Text Available Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO pretreatment of colonic epithelial cells (Caco-2 led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses.

  5. Inulin, a flexible oligosaccharide. II : Review of its pharmaceutical applications

    NARCIS (Netherlands)

    Mensink, Maarten A; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J

    2015-01-01

    Inulin is a flexible oligosaccharide which has been used primarily in food for decades. Recently new applications in the pharmaceutical arena were described. In a previous review (Mensink et al. (2015). Carbohydrate Polymers, 130, 405) we described the physicochemical characteristics of inulin,

  6. Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides.

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2011-12-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Xylo-oligosaccharides inhibit pathogen adhesion to enterocytes in vitro

    DEFF Research Database (Denmark)

    Ebersbach, Tine; Andersen, Jens Bo; Bergström, Anders

    2012-01-01

    We previously reported that the non-digestible carbohydrates inulin and apple pectin promoted Listeria monocytogenes infection in guinea pigs, whereas xylo- and galacto-oligosaccharides (XOS and GOS), prevented infection by this pathogen. In the present study, mechanisms that could explain...

  8. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Science.gov (United States)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  10. Hyaluronan in the neonatal period. An experimental and clinical study in asphyxia and infection

    OpenAIRE

    Østerholt, Helene C. Dale

    2014-01-01

    List of papers. Paper II is removed from the thesis due to publisher restrictions. I. Østerholt HCD, Dannevig I, Wyckoff MH, Liao J, Akgul Y, Ramgopal M, Milja, DS, Cheong N, Longoria C, Mahendroo M, Nakstad B, Saugstad OD and Savani RC Antioxidant protects against increases in low molecular weight hyaluronan and inflammation in asphyxiated newborn pigs resuscitated with 100% oxygen. PLoS One 2012;7(6):e38839 doi:10.1371/journal.pone.0038839 © 2012 Østerholt et al. This is an open-access ...

  11. Galactomannans from Brazilian seeds: characterization of the oligosaccharides produced by mild acid hydrolysis.

    Science.gov (United States)

    Ganter, J L; Heyraud, A; Petkowicz, C L; Rinaudo, M; Reicher, F

    1995-02-01

    Galactomannans with Man:Gal ratios ranging from 1.1:1 to 3:1, obtained from the seeds of Mimosa scabrella, Stryphnodendron barbatiman, Schizolobium parahybum and Schizolobium amazonicum, were submitted to mild acid hydrolysis. The products were fractionated by gel permeation chromatography on BioGel P2 yielding fractions with degrees of polymerization (DP) of 1 to 6. Those with DP 2 to 6 from each species were analysed by ion-exchange high-performance liquid chromatography and characterized by 13C- and 1H-nuclear magnetic resonance (NMR) spectroscopy. The distribution of the oligosaccharides of each degree of polymerization was very similar for the products from S. parahybum and S. amazonicum, indicating the same D-galactosyl distribution on the D-mannan backbone, in agreement with the 13C-NMR splitting in the C4 region of the D-mannosyl units in the original polymers. The hydrolytic conditions adopted allowed characterization of compounds that are not generally produced by enzymatic treatments. The results show that the structures of the oligosaccharides, even if there is a preferential hydrolysis of Gal-Man linkages, reflect the composition of the parent polymer.

  12. Can Plasma Hyaluronan and Hyaluronidase Be Used As Markers of the Endothelial Glycocalyx State in Patients with Kidney Disease?

    NARCIS (Netherlands)

    Vlahu, Carmen A.; Krediet, Raymond T.

    2015-01-01

    Hyaluronan (HA) is widely spread in the body and is an important component of the extracellular matrix, including the endothelial glycocalyx (EG). Essential for its vasculoprotective function, HA is involved in vascular permeability and many other processes. In patients with kidney disease, plasma

  13. A hyaluronan-based nerve guide : in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat

    NARCIS (Netherlands)

    Jansen, K; van Wachem, PB; Nicolai, JPA; de Leij, LFMH; van Luyn, MJA; van der Werf, J.F.A.

    We investigated possible cytotoxic effects, biocompatibility, and degradation of a hyaluronan-based conduit for peripheral nerve repair. We subjected the conduits to an in vitro fibroblast cytotoxicity test and concluded that the conduits were not cytotoxic. Subsequently, we implanted the conduits

  14. EFFECTS OF HYALURONAN ON THREE-DIMENSIONAL MICROARCHITECTURE OF SUBCHONDRAL BONE TISSUES IN GUINEA PIG PRIMARY OSTEOARTHROSIS

    DEFF Research Database (Denmark)

    Ding, Ming

    Introduction: It is not known whether hyaluronan (HA) has any effect on the underlying subchondral bone tissues. This study was to investigate the effects of high molecular weight HA (1.5x106 Daltons) intra-articular injection on subchondral bone tissues. Methods: Fifty-six male guinea pigs (6...

  15. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry.

    Science.gov (United States)

    Demange, Elise; Kassim, Yusra; Petit, Cyrille; Buquet, Catherine; Dulong, Virginie; Cerf, Didier Le; Buchonnet, Gérard; Vannier, Jean-Pierre

    2013-11-01

    Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    Science.gov (United States)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  17. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  18. The effect of different doses of hyaluronan on sperm morphology, motility, vitality and fertilization capability in mouse

    Directory of Open Access Journals (Sweden)

    S. Sayadi

    2006-07-01

    Full Text Available Background: Hyaluronan has an important role on the permeability and motility of sperm and the interaction of gametes and these can play a considerable role on the fertility rate. Therefore, in this study, we assessed the effect of different doses of hyaluronan on the morphology, motility, vitality and fertility rate of mice. Methods: We used 40 mice (6-8 week in this study which twenty of them were male and the rest were female. The sperm of each male mouse were divided into four groups. The group 1 (control: They were maintained in RPMI media without any hyaluronan supplementation for 2 hour. Hyaluronan with the doses of 750, 1000 and 1250 µg/ml were added into RPMI media in groups 2, 3 and 4, respectively. After 2 hour. incubation, the numbers of sperms were assessed, using haemocytometer. Also, their morphology with papanicolaeu staining and their vitality with Eosin B dye were assessed. As well as sperms motility measured under inverted microscope by observation and fertility rate evaluated after routine IVF by counting two-cell stage embryos. Results: Our results demonstrated that, the dose of 750 µ g/ml has the greatest effect on the motility, vitality and fertility rate of sperms. The effect of dose of 1000 µ g/ml also was positive on them. On the other hand, none of these doses had any effect on sperm morphology. Conclusion: Hyaluronan may have an influence on motility, vitality and fertility rate of sperms and the dose of 750µ g/ml had a significant effect on these factors.

  19. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com; Guo, Zhengze, E-mail: zhzeguo@163.com; Li, Dehua, E-mail: lidehuafmmu@163.com

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.

  20. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  1. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP.

    Directory of Open Access Journals (Sweden)

    Zhuowei Li

    Full Text Available Ozone exposure is associated with exacerbation of reactive airways disease. We have previously reported that the damage-associated molecular pattern, hyaluronan, is required for the complete biological response to ambient ozone and that hyaluronan fragments signal through toll-like receptor 4 (TLR4. In this study, we further investigated the role of TLR4 adaptors in ozone-induced airway hyperresponsiveness (AHR and the direct response to hyaluronan fragments (HA. Using a murine model of AHR, C57BL/6J, TLR4-/-, MyD88-/-, and TIRAP-/- mice were characterized for AHR after exposure to either ozone (1 ppm × 3 h or HA fragments. Animals were characterized for AHR with methacholine challenge, cellular inflammation, lung injury, and production of pro-inflammatory cytokines. Ozone-exposed C57BL/6J mice developed cellular inflammation, lung injury, pro-inflammatory cytokines, and AHR, while mice deficient in TLR4, MyD88 or TIRAP demonstrated both reduced AHR and reduced levels of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, IL-6 and KC. The level of hyaluronan was increased after inhalation of ozone in each strain of mice. Direct challenge of mice to hyaluronan resulted in AHR in C57BL/6J mice, but not in TLR4-/-, MyD88-/-, or TIRAP-/- mice. HA-induced cytokine production in wild-type mice was significantly reduced in TLR4-/-, MyD88-/-, or TIRAP-/- mice. In conclusion, our findings support that ozone-induced airway hyperresponsiveness is dependent on the HA-TLR4-MyD88-TIRAP signaling pathway.

  2. Overexpression of a homogeneous oligosaccharide with {sup 13}C labeling by genetically engineered yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yukiko; Yamamoto, Sayoko [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan); Chiba, Yasunori; Jigami, Yoshifumi [National Institute of Advanced Industrial Science and Technology, Research Center for Medical Glycoscience (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan)

    2011-08-15

    This report describes a novel method for overexpression of {sup 13}C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly {sup 13}C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man{sub 8}GlcNAc{sub 2} oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, {sup 13}C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific {sup 13}C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The {sup 13}C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  3. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications.

    Science.gov (United States)

    Mensink, Maarten A; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J

    2015-12-10

    Inulin is a flexible oligosaccharide which has been used primarily in food for decades. Recently new applications in the pharmaceutical arena were described. In a previous review (Mensink et al. (2015). Carbohydrate Polymers, 130, 405) we described the physicochemical characteristics of inulin, characteristics which make inulin a highly versatile substance. Here, we review its pharmaceutical applications. Applications of inulin that are addressed are stabilization of proteins, modified drug delivery (dissolution rate enhancement and drug targeting), and lastly physiological and disease-modifying effects of inulin. Further uses of inulin include colon specific drug administration and stabilizing and adjuvating vaccine formulations. Overall, the uses of inulin in the pharmaceutical area are very diverse and research is still continuing, particularly with chemically modified inulins. It is therefore likely that even more applications will be found for this flexible oligosaccharide. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Synthesis of Oligosaccharide Fragments of the Pectic Polysaccharide Rhamnogalacturonan I

    DEFF Research Database (Denmark)

    Zakharova, Alexandra

    in products such as jams, yoghurts and jellies. Rhamnogalacturonan I is one of the structural classes of pectic polysaccharides, along with homogalacturonan and rhamnogalacturonan II. The chemical structure of rhamnogalacturonan I is complex having a backbone consisting of alternating -linked L......-rhamnose and D-galacturonic acid units with numerous branches of arabinans, galactans or arabinogalactans positioned at C-4 of the rhamnose residues. The structural complexity of pectin together with the wide range of its practical applications and a desire to understand its structure and functions in details...... have inspired many researches to pursuit chemical syntheses of pectic oligosaccharides. Herein, the strategies for chemical synthesis of linear and branched oligosaccharide fragments of rhamnogalacturonan I are presented.The first successful synthesis of a fully unprotected linear hexasaccharide...

  5. Synthesis of S-linked cello-oligosaccharides

    DEFF Research Database (Denmark)

    Nami, Faranak

    , structurally well-defined oligosaccharides made via chemical synthesis can be used as models for the more complex polysaccharides in the investigation of properties such as polysaccharide biosynthesis, degradation and protein-carbohydrate interactions. For this purpose, non-natural substrate analogues forming...... irreversible binding to the enzyme can be employed. Thio-oligosaccharides represent the largest class of specific non-natural inhibitors for glycanases. In this thesis the chemical synthesis of some thio-glucans is presented. The formation of thio-linkages using a classical and non-classical method...... is investigated. Two strategies, relying on either a linear or a convergent strategy, have been employed in the synthesis towards two target molecules. Furthermore, the activity of a glycosyltransferase responsible for the elongation of a pectic polysaccharide has been investigated and partially characterized....

  6. Isomalto oligosaccharide sulfate inhibits tumor growth and metastasis of hepatocellular carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Tang Zhao-You

    2011-04-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC usually has a dismal prognosis because of its limited response to current pharmacotherapy and high metastatic rate. Sulfated oligosaccharide has been confirmed as having potent antitumor activities against solid tumors. Here, we explored the preclinical effects and molecular mechanisms of isomalto oligosaccharide sulfate (IMOS, another novel sulfated oligosaccharide, in HCC cell lines and a xenograft model. Methods The effects of IMOS on HCC proliferation, apoptosis, adhesion, migration, and invasiveness in vitro were assessed by cell counting, flow cytometry, adhesion, wound healing, and transwell assays, respectively. The roles of IMOS on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. Total and phosphorylated protein levels of AKT, ERK, and JNK as well as total levels of c-MET were detected by Western blotting. IMOS-regulated genes were screened by quantitative reverse-transcription PCR (qRT-PCR array in HCCLM3-red fluorescent protein (RFP xenograft tissues and then confirmed by qRT-PCR in HepG2 and Hep3B cells. Results IMOS markedly inhibited cell proliferation and induced cell apoptosis of HCCLM3, HepG2, and Bel-7402 cells and also significantly suppressed cell adhesion, migration, and invasion of HCCLM3 in vitro. At doses of 60 and 90 mg/kg/d, IMOS displayed robust inhibitory effects on HCC growth and metastasis without obvious side effects in vivo. The levels of pERK, tERK, and pJNK as well as c-MET were significantly down-regulated after treatment with 16 mg/mL IMOS. No obvious changes were found in the levels of pAkt, tAkt, and tJNK. Ten differentially expressed genes were screened from HCCLM3-RFP xenograft tissues after treatment with IMOS at a dose of 90 mg/kg/d. Similar gene expression profiles were confirmed in HepG2 and Hep3B cells after treatment with 16 mg/mL IMOS. Conclusions IMOS is a potential anti-HCC candidate through

  7. Milk oligosaccharides over time of lactation from different dog breeds.

    Directory of Open Access Journals (Sweden)

    Shirin Macias Rostami

    Full Text Available The partnership of humans and dogs goes back to over 10'000 years, yet relatively little is known about a dog's first extra-uterine nutrition particularly when it comes to milk oligosaccharides. We set out to identify and quantify milk oligosaccharides over the course of lactation from different dog breeds (Labrador retriever, Schnauzer and 3 Alaskan husky crossbreeds. To this end, 2 different chromatographic methods with fluorescence and mass spectrometry detection were developed and one was validated for quantification. Besides lactose and lactose-sulphate, we identified 2 different trisaccharides composed of 3 hexose units, 3'sialyllactose (3'SL, 6'sialyllactose (6'SL, 2'fucosyllactose (2'FL, and a tetrasaccharide composed of 2 hexoses, an N-acetylhexosamine and a deoxyhexose. 3'SL was present at the highest levels in milk of all dog breeds starting at around 7.5 g/L and dropping to about 1.5 g/L in the first 10 days of lactation. 6'SL was about 10 times less abundant and 2'FL and the tetrasaccharide had rather varying levels in the milk of the different breeds with the tetrasaccharide only detectable in the Alaskan husky crossbreeds. The longitudinal and quantitative data of milk oligosaccharides from different dog breeds are an important basis to further our understanding on their specific biological roles and also on the specific nutritional requirements of lactating puppies.

  8. Milk oligosaccharides over time of lactation from different dog breeds.

    Science.gov (United States)

    Macias Rostami, Shirin; Bénet, Thierry; Spears, Julie; Reynolds, Arleigh; Satyaraj, Ebenezer; Sprenger, Norbert; Austin, Sean

    2014-01-01

    The partnership of humans and dogs goes back to over 10'000 years, yet relatively little is known about a dog's first extra-uterine nutrition particularly when it comes to milk oligosaccharides. We set out to identify and quantify milk oligosaccharides over the course of lactation from different dog breeds (Labrador retriever, Schnauzer and 3 Alaskan husky crossbreeds). To this end, 2 different chromatographic methods with fluorescence and mass spectrometry detection were developed and one was validated for quantification. Besides lactose and lactose-sulphate, we identified 2 different trisaccharides composed of 3 hexose units, 3'sialyllactose (3'SL), 6'sialyllactose (6'SL), 2'fucosyllactose (2'FL), and a tetrasaccharide composed of 2 hexoses, an N-acetylhexosamine and a deoxyhexose. 3'SL was present at the highest levels in milk of all dog breeds starting at around 7.5 g/L and dropping to about 1.5 g/L in the first 10 days of lactation. 6'SL was about 10 times less abundant and 2'FL and the tetrasaccharide had rather varying levels in the milk of the different breeds with the tetrasaccharide only detectable in the Alaskan husky crossbreeds. The longitudinal and quantitative data of milk oligosaccharides from different dog breeds are an important basis to further our understanding on their specific biological roles and also on the specific nutritional requirements of lactating puppies.

  9. Proteomics analysis of Bacillus licheniformis in response to oligosaccharides elicitors.

    Science.gov (United States)

    Reffatti, Patricia Fernanda; Roy, Ipsita; Odell, Mark; Keshavarz, Tajalli

    2014-01-01

    The role of oligosaccharides as biotic elicitors has been recognised in the enhanced production of antibiotics from fungal and bacterial cultures. The yield of bacitracin A in cultures of Bacillus licheniformis was increased after supplementation with oligoguluronate (OG), and mannan oligosaccharides (MO) and its mechanism at transcription level been established already. However, the elicitation mechanism at post transcriptional level has not been reported so far. In this paper we investigate changes in proteomics of B. licheniformis in presence of the oligosaccharide elicitors OG and MO. Differentially expressed proteins were examined using 2D-PAGE stained with colloidal Coomassie and were further identified by LC-MS/MS. We identified 19 differentially expressed proteins including those involved in carbon metabolism, energy generation, amino acid biosynthesis, oxidative and general stress response. The novel findings of this work, together with previous reports, contribute to the unravelling of the overall mechanism of elicitation in B. licheniformis cultures and reliability of the use of these elicitors for potential industrial application. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion

    International Nuclear Information System (INIS)

    McDougall, G.J.; Fry, S.C.

    1990-01-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose 4 ·xylose 3 (XG7) core. The substituted oligosaccharides XG8 (glucose 4 ·xylose 3 ·galactose) and XG9n (glucose 4 ·xylose 3 ·galactose 2 ) were more effective than XG7 itself and XG9 (glucose 4 ·xylose 3 ·galactose·fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10 -4 molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of [ 3 H]xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products)

  11. Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Tymczyszyn, E Elizabeth; Gerbino, Esteban; Illanes, Andrés; Gómez-Zavaglia, Andrea

    2011-04-01

    In this work, the protective capacity of galacto-oligosaccharides in the preservation of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was evaluated. Lactobacillus bulgaricus was freeze-dried or dried over silica gel in the presence of three commercial products containing galacto-oligosaccharides. The freeze-dried samples were stored at 5 and 25°C for different periods of time. After desiccation, freeze-drying or storage, samples were rehydrated and bacterial plate counts were determined. According to the results obtained, all galacto-oligosaccharides assays demonstrated to be highly efficient in the preservation of L. bulgaricus. The higher content of galacto-oligosaccharides in the commercial products was correlated with their higher protective capacity. Galacto-oligosaccharides are widely known by their prebiotic properties. However, their role as protective molecules have not been reported nor properly explored up to now. In this work the protective capacity of galacto-oligosaccharides in the preservation of L. bulgaricus, a strain particularly sensitive to any preservation process, was demonstrated. The novel role of galacto-oligosaccharides as protective molecules opens up several perspectives in regard to their applications. The supplementation of probiotics with galacto-oligosaccharides allows the production of self-protected synbiotic products, galacto-oligosaccharides exerting both a prebiotic and protecting effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear α-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (α2,3 versus α2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity

  13. Modeling of hyaluronan clearance with application to estimation of lymph flow

    International Nuclear Information System (INIS)

    Rössler, Andreas; Goswami, Nandu; Fink, Martin; Batzel, Jerry J

    2011-01-01

    One of the important factors in blood pressure regulation is the maintenance of the level of blood volume, which depends on several factors including the rate of lymph flow. Lymph flow can be measured directly using cannulation of lymphatic vessels, which is not clinically feasible, or indirectly by the tracer appearance rate, which is the rate at which macromolecules appear into the blood from the peritoneal cavity. However, indirect lymph flow measurements do not always provide consistent results. Through its contribution to osmotic pressure and resistance to flow, the macromolecule hyaluronan takes part in the regulation of tissue hydration and the maintenance of water and protein homeostasis. It arrives in blood plasma through lymph flow. Lymphatic hyaluronic acid (HA, hyaluronan) concentration is several times higher than that in plasma, suggesting that the lymphatic route may account for the majority of HA found in plasma. Furthermore, circulating levels of HA reflect the dynamic state between delivery to—and removal from—the bloodstream. To develop an accurate estimation of the fluid volume distribution and dynamics, the rate of lymph flow needs to be taken into account and hyaluronan could be used as a marker in estimating this flow. To examine the HA distribution and system fluid dynamics, a six-compartment model, which could reflect both the steady-state relationships and qualitative characteristics of the dynamics, was developed. This was then applied to estimate fluid shifts from the interstitial space via the lymphatic system to the plasma during different physiological stresses (orthostatic stress and the stress of ultrafiltration during dialysis). Sensitivity analysis shows that during ultrafiltration, lymph flow is a key parameter influencing the total HA level, thus suggesting that the model may find applications in addressing the problem of estimating lymph flow. Since the fluid balance between interstitium and plasma is maintained by lymph

  14. Chemical characterization of milk oligosaccharides of the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Urashima, Tadasu; Taufik, Epi; Fukuda, Rino; Nakamura, Tadashi; Fukuda, Kenji; Saito, Tadao; Messer, Michael

    2013-11-01

    Previous structural characterizations of marsupial milk oligosaccharides had been performed in only two macropod species, the tammar wallaby and the red kangaroo. To clarify the homology and heterogeneity of milk oligosaccharides among marsupial species, which could provide information on their evolution, the oligosaccharides of the koala milk carbohydrate fraction were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of milk of the koala, a non-macropod marsupial, and characterized by (1)H-nuclear magnetic resonance spectroscopy. The structures of the neutral saccharides were found to be Gal(β1-4)Glc (lactose), Gal(β1-3)Gal(β1-4)Glc (3'-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3',3″-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I) and Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl lacto-N-novopentaose I), while those of the acidic saccharides were Neu5Ac(α2-3)Gal(β1-4)Glc (3'-SL), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Gal (sialyl 3'-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), and Neu5Ac(α2-3)Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl sialyl lacto-N-novopentaose a). The neutral oligosaccharides, other than fucosyl lacto-N-novopentaose I, a novel hexasaccharide, had been found in milk of the tammar wallaby, a macropod marsupial, while the acidic oligosaccharides, other than fucosyl sialyl lacto-N-novopentaose a had been identified in milk carbohydrate of the red kangaroo. The presence of fucosyl oligosaccharides is a significant feature of koala milk, in which it differs from milk of the tammar wallaby and the red kangaroo.

  15. Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties.

    Science.gov (United States)

    Kamoun, Elbadawy A; Fahmy, Alaa; Taha, Tarek H; El-Fakharany, Esmail M; Makram, Mohamed; Soliman, Hesham M A; Shehata, Hassan

    2018-01-01

    Interpenetrating hydrogel membranes consisting of pH-sensitive hyaluronan (HA) and thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAM) were synthesized using redox polymerization, followed by N,N-methylenebisacrylamide (BIS) and epichlorohydrin (EPI) were added as chemical crosslinkers. The interaction between membrane compositions has been characterized by FTIR spectroscopy and discussed intensively. The result indicates that HA incorporation in membranes increase the gel fraction, swelling uptake, and the flexibility/elasticity of crosslinked membranes, however it reduced oppositely the mechanical elongation of membranes. PNIPAAm-HA hydrogels responded to both temperature and pH changes and the stimuli-responsiveness was reversible. However, in vitro bioevaluation results revealed that the released ampicillin during the burst release time was sharply influenced and increased with increasing HA contents in membranes; afterwards it became sustainable. Whereas, high HA contents in hydrogels unexpectedly impacted negatively on the cells viability, owing to the viscosity of cell culture media changed. A big resistance was observed against microbial growth of Staphylococcus aureus, Salmonella typhi, and Candida albicans in case of pure PNIPAAm hydrogel membranes without HA or ampicillin. However, HA incorporation or the loaded ampicillin in membranes showed unexpected easily microbial growth. The fast release performance with dual pH-thermo-sensitive hydrogels were suggested as promising materials for quick drug carrier in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hyaluronan and Hyaluronan-Binding Proteins Accumulate in Both Human Type 1 Diabetic Islets and Lymphoid Tissues and Associate With Inflammatory Cells in Insulitis

    Science.gov (United States)

    Bogdani, Marika; Johnson, Pamela Y.; Potter-Perigo, Susan; Nagy, Nadine; Day, Anthony J.; Bollyky, Paul L.

    2014-01-01

    Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that is present in pancreatic islets, but little is known about its involvement in the development of human type 1 diabetes (T1D). We have evaluated whether pancreatic islets and lymphoid tissues of T1D and nondiabetic organ donors differ in the amount and distribution of HA and HA-binding proteins (hyaladherins), such as inter-α-inhibitor (IαI), versican, and tumor necrosis factor–stimulated gene-6 (TSG-6). HA was dramatically increased both within the islet and outside the islet endocrine cells, juxtaposed to islet microvessels in T1D. In addition, HA was prominent surrounding immune cells in areas of insulitis. IαI and versican were present in HA-rich areas of islets, and both molecules accumulated in diabetic islets and regions exhibiting insulitis. TSG-6 was observed within the islet endocrine cells and in inflammatory infiltrates. These patterns were only observed in tissues from younger donors with disease duration of <10 years. Furthermore, HA and IαI amassed in follicular germinal centers and in T-cell areas in lymph nodes and spleens in T1D patients compared with control subjects. Our observations highlight potential roles for HA and hyaladherins in the pathogenesis of diabetes. PMID:24677718

  17. Structural analysis of acidic oligosaccharides derived from the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (lohmann) kamptner

    NARCIS (Netherlands)

    Fichtinger-Schepman, A.M.J.; Kamerling, J.P.; Versluis, C.; Vliegenthart, J.F.G.

    1980-01-01

    A series of acidic oligosaccharides was obtained by graded, acid hydrolysis of the methylated, acidic polysaccharide associated with the coccoliths of the alga Emiliania huxleyi (Lohmann) Kamptner. After fractionation by ion-exchange chromatography, the structures of the oligosaccharides were

  18. Targeted Delivery of Hyaluronan-Immobilized Magnetic Ceramic Nanocrystals.

    Science.gov (United States)

    Wu, Hsi-Chin; Wang, Tzu-Wei; Hsieh, Shun-Yu; Sun, Jui-Sheng; Kang, Pei-Leun

    2016-01-01

    Effective cancer therapy relies on delivering the therapeutic agent precisely to the target site to improve the treatment outcome and to minimize side effects. Although surgery, chemotherapy, and radiotherapy are the standard methods commonly used in clinics, hyperthermia has been developed as a new and promising strategy for cancer therapy. In this study, magnetic bioceramic hydroxyapatite (mHAP) nanocrystals have been developed as heat mediator for intracellular hyperthermia. Hyaluronic acid (HA) modified mHAP nanocrystals are synthesized by a wet chemical precipitation process to achieve active targeting. The results demonstrate that the HA targeting moiety conjugated by a poly(ethylene glycol) (PEG) spacer arm is successfully immobilized on the surface of mHAP. The HA-modified mHAP possesses relatively good biocompatibility, an adequate biodegradation rate and superparamagnetic properties. The HA-modified mHAP could be localized and internalized into HA receptor-overexpressed malignant cells (e.g., MDA-MB-231 cell) and used as the heat generating agent for intracellular hyperthermia. The results from this study indicate that biocompatible HA-modified mHAP shows promise as a novel heat mediator and a specific targeting nanoagent for intracellular hyperthermia cancer therapy.

  19. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    Science.gov (United States)

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...... processes. In the case of glycosaminoglycan-derived amidyl radicals, evidence has been obtained in studies with model glycosides that these radicals undergo rapid intramolecular abstraction reactions to give carbon-centered radicals at C-2 on the N-acetyl glycosamine rings (via a 1,2-hydrogen atom shift......) and at C-4 on the neighboring uronic acid residues (via 1,5-hydrogen atom shifts). The C-4 carbon-centered radicals, and analogous species derived from model glycosides, undergo pH-independent beta-scission reactions that result in glycosidic bond cleavage. With N-acetyl glucosamine C-1 alkyl glycosides...

  1. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Science.gov (United States)

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  2. Study on gamma radiation-induced synthesis of gold nanoparticles stabilized by hyaluronan

    International Nuclear Information System (INIS)

    Dang Van Phu; Bui Duy Du

    2013-01-01

    Gold nanoparticles (AuNPs) with diameter from 4 to 10 nm were synthesized by γ-irradiation in hyaluronan (HA) solution without usage of any OH radical scavenger. The size distribution of AuNPs were determined by TEM images. The λ max (517-525 nm) of colloidal AuNPs solutions as prepared was measured by UV-Vis spectroscopy. The influence factor on the size of AuNPs particularly the concentration of Au 3+ , HA and dose rate were investigated. The colloidal solution of AuNPs/HA as synthesized was stable more than 6 months stored under ambient condition. AuNPs with the size less than 10 nm narrow size distribution stabilized by HA which is biocompatible polysaccharide can potentially be applied in biomedicine and cosmetic. (author)

  3. Study on gamma radiation-induced synthesis of gold nanoparticles stabilized by hyaluronan

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Ngoc Duy; Nguyen Tue Anh; Nguyen Quoc Hien

    2011-01-01

    Gold nanoparticles (AuNPs) with diameter from 4 to 10 nm were synthesized in hyaluronan (HA) solution without usage of any reductant and *OH radical scavenger by gamma irradiation reduction. The size and size distribution of AuNPs were determined by TEM images. The λ max (517 - 525 nm) of colloidal AuNPs solutions as prepared were measured by UV-Vis spectroscopy. The influence factors on the size of AuNPs particularly the concentration of Au 3+ , HA and dose rate were investigated. The stability of AuNPs/HA as synthesized was more than 6 months in storage under atmospheric condition. AuNPs with the size less than 10 nm and narrow size distribution stabilized by HA which is biocompatible natural polysaccharide so that AuNPs/HA can potentially be applied in biomedicine and cosmetic. (author)

  4. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  5. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  6. Effect of hyaluronan on periodontitis: A clinical and histological study

    Directory of Open Access Journals (Sweden)

    Gauri Gontiya

    2012-01-01

    Full Text Available Background: Conventional, non-surgical periodontal therapy consists of supra- and subgingival tooth debridement. However, it is a technically demanding procedure and is not always efficient at eradicating all periodontal pathogens and in reducing inflammation. Therefore, local subgingival application of other chemotherapeutic agents may be used as an adjunct to non-surgical therapy. The aim of this study was to investigate the clinical and histological outcomes of local subgingival application of 0.2% hyaluronic acid gel (GENGIGEL® as an adjunct to scaling and root planing (SRP in chronic periodontitis patients. Materials and Methods: One hundred and twenty sites were chosen from 26 patients with chronic periodontitis (criteria being periodontal pockets ≥5mm. Experimental sites additionally received HA gel subgingivally at baseline, 1 st , 2 nd , and 3 rd week. Clinical parameters were re-assessed at 4 th , 6 th , and 12 th week. At 4 th week recall, a gingival biopsy was obtained from test and control site for histologic examination. Results: Intra-group analysis of all the clinical parameters at all sites from baseline to 4 th , 6 th , and 12 th week showed statistically significant changes. Experimental sites showed statistically significant improvement in Gingival index and Bleeding index at 6 th and 12 th week when compared with control sites. However, no statistically significant differences were observed in the PPD and RAL between control and experimental sites at 4 th , 6 th , and 12 th week time interval. No statistically significant association was found between the histological grading of the sites that received HA treatment. Conclusion: Subgingival placement of 0.2% HA gel along with SRP provided a significant improvement in gingival parameters. However, no additional benefit was found in periodontal parameters. Histologically, experimental sites showed reduced inflammatory infiltrate, but it was not statistically significant.

  7. Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilder, Richard B.; Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M.

    2010-01-01

    Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 ± 3mm (mean ± SD) and 10 ± 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 ± 13cGy with Hylaform vs. 106 ± 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

  8. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression

    Directory of Open Access Journals (Sweden)

    James B. McCarthy

    2018-05-01

    Full Text Available This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA. Cancer-associated fibroblasts (CAFs are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT. The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs also form heterotypic clusters with circulating tumor cells (CTC, which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.

  9. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat.

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-07-18

    The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.

  10. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species. PMID:23783513

  11. Kinetic Characterization of Galacto-Oligosaccharide (GOS) Synthesis by Three Commercially Important b-Galactosidases

    NARCIS (Netherlands)

    Warmerdam, A.; Zisopoulos, F.K.; Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    Many b-galactosidases show large differences in galacto-oligosaccharide (GOS) production and lactose hydrolysis. In this study, a kinetic model is developed in which the effect of lactose, glucose, galactose, and oligosaccharides on the oNPG converting activity of various b-galactosidases is

  12. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; Winter, Remko T.; Damsma, Gerke E.; Janssen, Dick B.; Fraaije, Marco W.

    2008-01-01

    ChitO (chito-oligosaccharide oxidase) from Fusarium graminearum catalyses the regioselective oxidation of N-acetylated oligosaccharides. The enzyme harbours an FAD cofactor that is covalently attached to His(94) and Cys(154). The functional role of this unusual bi-covalent flavin-protein linkage was

  13. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans

    NARCIS (Netherlands)

    Tannock, G.W.; Munro, K.; Bibiloni, R.; Simon, M.A.; Hargreaves, P.; Gopal, P.; Harmsen, H.J.M.; Welling, Gjalt

    Human subjects consumed biscuits containing either galacto-oligosaccharides or fructo-oligosaccharides in a double-blinded, crossover study. The impact of supplementing the diet with three biscuits per day on the fecal microbiota was evaluated by selective culture of particular bacterial groups,

  14. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase

    DEFF Research Database (Denmark)

    Holck, Jesper; Larsen, Dorte Møller; Michalak, Malwina

    2014-01-01

    Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3′-sialyl-GOS, including doubly sialylated GOS products, and 3...

  15. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  16. Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream.

    Science.gov (United States)

    Balthazar, C F; Silva, H L A; Vieira, A H; Neto, R P C; Cappato, L P; Coimbra, P T; Moraes, J; Andrade, M M; Calado, V M A; Granato, D; Freitas, M Q; Tavares, M I B; Raices, R S L; Silva, M C; Cruz, A G

    2017-01-01

    The objective of this study was to assess the effects of different prebiotic dietary oligosaccharides (inulin, fructo-oligosaccharide, galacto-oligossacaride, short-chain fructo-oligosaccharide, resistant starch, corn dietary oligosaccharide and polydextrose) in non-fat sheep milk ice cream processing through physical parameters, water mobility and thermal analysis. Overall, the fat replacement by dietary prebiotic oligosaccharides significantly decreased the melting time, melting temperature and the fraction and relaxation time for fat and bound water (T 22 ) while increased the white intensity and glass transition temperature. The replacement of sheep milk fat by prebiotics in sheep milk ice cream constitutes an interesting option to enhance nutritional aspects and develop a functional food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Oral hyaluronan relieves wrinkles: a double-blinded, placebo-controlled study over a 12-week period

    OpenAIRE

    Oe, Mariko; Sakai, Seigo; Yoshida, Hideto; Okado, Nao; Kaneda, Haruna; Masuda, Yasunobu; Urushibata, Osamu

    2017-01-01

    Mariko Oe,1 Seigo Sakai,1 Hideto Yoshida,1 Nao Okado,1 Haruna Kaneda,1 Yasunobu Masuda,1 Osamu Urushibata2 1R&D Division, Kewpie Corporation, Sengawa-cho, Chofu-shi, 2Department of Dermatology, Toho University Ohashi Medical Center, Ohashi, Meguro-ku, Tokyo, Japan Background: Hyaluronan (HA) has critical moisturizing property and high water retention capacity especially for human skin. This study aimed to evaluate the effect of oral intake of HA. Methods: The mean molecular weight (MW...

  18. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  19. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    Science.gov (United States)

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  20. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Seong Uk Son

    2017-12-01

    Full Text Available We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA and dodecylamine (Do by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A: 82.7 ± 4.7%, HA–Do (B: 87.1 ± 3.9% and HA–Do (C: 81.4 ± 4.5%. Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A: 118.0 ± 2.2 nm, nanohydrogel (B: 121.9 ± 11.4 nm, and nanohydrogel (C: 142.2 ± 3.8 nm. The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.

  1. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB[ 3 H] 4 . The 3 H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species

  3. Oligosaccharides and glycolipids addition in charged lamellar phases

    International Nuclear Information System (INIS)

    Ricoul, F.

    1997-01-01

    The aim of this work is to study the addition of oligosaccharides and glycolipids in lamellar phases of the cationic surfactant DDAB (di-dodecyl-dimethyl-ammonium bromide). Two steps have been followed: the determination of phases prisms and the thermodynamic interpretation in terms of molecular interactions. In order to characterize these systems, two new experimental small angle scattering methods have been perfected: 1) a neutron scattering contrast variation method which allows to study the adsorption of aqueous solution in bilayers and 2) a capillary concentration gradient method to establish directly and quantitatively the phases diagrams of ternary systems by X rays scattering. It has been pointed out that the oligosaccharides induce a depletion attractive force on the lamellar-lamellar equilibrium of the DDAB when they are excluded of the most concentrated phase. For the two studied glycolipids: 2-O lauroyl-saccharose and N-lauroyl N-nonyl lactitol, the ternary phase diagrams water-DDAB-glycolipid have been established in terms of temperature. Critical points at ambient temperature have been given. The osmotic pressure in concentrated lamellar phases has been measured. It has been shown that glycolipids increase the hydration repulsion at short distance and that the electrostatic repulsion is outstanding and unchanged at high distance if there is at less 1 mole percent of ionic surfactant. In a dilute solution, glycolipids decrease the maximum swelling of lamellar phases, with a competition between the lamellar phase and the micellae dilute phase for water. (O.M.)

  4. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry.

    Science.gov (United States)

    Mano, Mario Cezar Rodrigues; Neri-Numa, Iramaia Angélica; da Silva, Juliana Bueno; Paulino, Bruno Nicolau; Pessoa, Marina Gabriel; Pastore, Gláucia Maria

    2018-01-01

    Oligosaccharides are polymers with two to ten monosaccharide residues which have sweetener functions and sensory characteristics, in addition to exerting physiological effects on human health. The ones called nondigestible exhibit a prebiotic behavior being fermented by colonic microflora or stimulating the growth of beneficial bacteria, playing roles in the immune system, protecting against cancer, and preventing cardiovascular and metabolic issues. The global prebiotics market is expected to grow around 12.7% in the next 8 years, so manufacturers are developing new alternatives to obtain sustainable and efficient processes for application on a large scale. Most studied examples of biotechnological processes involve the development of new strategies for fructooligosaccharide, galactooligosaccharide, xylooligosaccharide, and mannanooligosaccharide synthesis. Among these, the use of whole cells in fermentation, synthesis of microbial enzymes (β-fructofuranosidases, β-galactosidases, xylanases, and β-mannanases), and enzymatic process development (permeabilization, immobilization, gene expression) can be highlighted, especially if the production costs are reduced by the use of agro-industrial residues or by-products such as molasses, milk whey, cotton stalks, corncobs, wheat straw, poplar wood, sugarcane bagasse, and copra meal. This review comprises recent studies to demonstrate the potential for biotechnological production of oligosaccharides, and also aspects that need more investigation for future applications in a large scale.

  5. SIGNIFICANCE OF GALACTINOL AND RAFFINOSE FAMILY OLIGOSACCHARIDE SYNTHESIS IN PLANTS

    Directory of Open Access Journals (Sweden)

    Sonali eSengupta

    2015-08-01

    Full Text Available Abiotic stress induces differential expression of genes responsible for the synthesis of Raffinose series of Oligosaccharides (RFOs in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of Galactinol synthase (GolS; EC 2.4.1.123, a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose and Ajugose are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g. RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrate in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debateand their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

  6. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    Science.gov (United States)

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  7. MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples

    Directory of Open Access Journals (Sweden)

    Marko Jovanović

    2014-04-01

    Full Text Available Human milk oligosaccharides (HMO represent the bioactive components of human milk, influencing the infant’s gastrointestinal microflora and immune system. Structurally, they represent a highly complex class of analyte, where the main core oligosaccharide structures are built from galactose and N-acetylglucosamine, linked by 1-3 or 1-4 glycosidic linkages and potentially modified with fucose and sialic acid residues. The core structures can be linear or branched. Additional structural complexity in samples can be induced by endogenous exoglycosidase activity or chemical procedures during the sample preparation. Here, we show that using matrix-assisted laser desorption/ionization (MALDI quadrupole-time-of-flight (Q-TOF collision-induced dissociation (CID as a fast screening method, diagnostic structural information about single oligosaccharide components present in a complex mixture can be obtained. According to sequencing data on 14 out of 22 parent ions detected in a single high molecular weight oligosaccharide chromatographic fraction, 20 different oligosaccharide structure types, corresponding to over 30 isomeric oligosaccharide structures and over 100 possible HMO isomers when biosynthetic linkage variations were taken into account, were postulated. For MS/MS data analysis, we used the de novo sequencing approach using diagnostic ion analysis on reduced oligosaccharides by following known biosynthetic rules. Using this approach, de novo characterization has been achieved also for the structures, which could not have been predicted.

  8. [In vitro anti-angiogenic action of lambda-carrageenan oligosaccharides].

    Science.gov (United States)

    Chen, Hai-Min; Yan, Xiao-Jun; Wang, Feng; Lin, Jing; Xu, Wei-Feng

    2007-06-01

    This study was designed to evaluate the inhibition effect of lambda-carrageenan oligosaccharides on neovascularization in vitro by chick chorioallantoic membrane (CAM) model and human umbilical vein endothelial cell ( HUVEC). lambda-Carrageenan oligosaccharides caused a dose-dependent decrease of the vascular density of CAM, and adversely affected capillary plexus formation. At a high concentration of 1 mg x mL(-1), this compound inhibited the endothelial cell proliferation, while low concentration of lambda-carrageenan oligosaccharides ( 95%). Different cytotoxic sensitivity of lambda-carrageenan oligosaccharides in three kinds of cells was observed, of which HUVEC is the most sensitive to this oligosaccharides. The inhibitory action of lambda-carrageenan oligosaccharides on the endothelial cell invasion and migration was also observed at relatively low concentration (150 - 300 microg x mL(-1)) through down-regulation of intracellular matrix metalloproteinases-2 (MMP-2) expression on endothelial cells. Current observations demonstrated that lambda-carrageenan oligosaccharides are potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration and proliferation.

  9. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: insight into the role of structure and size : Structure-activity relationships of non-digestible oligosaccharides.

    Science.gov (United States)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H A M; Difilippo, Elisabetta; Schols, Henk A; Schoterman, Margriet H C; Garssen, Johan; Braber, Saskia

    2017-08-01

    The direct effects of galacto-oligosaccharides (GOS), including Vivinal ® GOS syrup (VGOS) and purified Vivinal ® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To investigate structure-activity relationships, the effects of individual DP fractions of VGOS were evaluated. Moreover, the obtained results with GOS were compared with Caco-2 monolayers incubated with fructo-oligosaccharides (FOS) and inulin. Caco-2 monolayers were pretreated (24 h) with or without specific oligosaccharides or DP fractions of VGOS (DP2 to DP6) before being exposed for 12 or 24 h to the fungal toxin deoxynivalenol (DON). Transepithelial electrical resistance and lucifer yellow permeability were measured to investigate barrier integrity. A calcium switch assay was used to study the reassembly of tight junction proteins. Release of CXCL8, a typical marker for inflammation, was quantified by ELISA. In comparison with PGOS, FOS and inulin, VGOS showed the most pronounced protective effect on the DON-induced impairment of the monolayer integrity, acceleration of the tight junction reassembly and the subsequent CXCL8 release. DP2 and DP3 in concentrations occurring in VGOS prevented the DON-induced epithelial barrier disruption, which could be related to their high prevalence in VGOS. However, no effects of the separate DP GOS fractions were observed on CXCL8 release. This comparative study demonstrates the direct, microbiota-independent effects of oligosaccharides on the intestinal barrier function and shows the differences between individual galacto- and fructo-oligosaccharides. This microbiota-independent effect of oligosaccharides depends on the oligosaccharide structure, DP length and concentration.

  10. Oligosaccharides and glycolipids addition in charged lamellar phases; Addition d`oligosaccharides et de glycolipides dans des phases lamellaires chargees

    Energy Technology Data Exchange (ETDEWEB)

    Ricoul, F

    1997-09-26

    The aim of this work is to study the addition of oligosaccharides and glycolipids in lamellar phases of the cationic surfactant DDAB (di-dodecyl-dimethyl-ammonium bromide). Two steps have been followed: the determination of phases prisms and the thermodynamic interpretation in terms of molecular interactions. In order to characterize these systems, two new experimental small angle scattering methods have been perfected: 1) a neutron scattering contrast variation method which allows to study the adsorption of aqueous solution in bilayers and 2) a capillary concentration gradient method to establish directly and quantitatively the phases diagrams of ternary systems by X rays scattering. It has been pointed out that the oligosaccharides induce a depletion attractive force on the lamellar-lamellar equilibrium of the DDAB when they are excluded of the most concentrated phase. For the two studied glycolipids: 2-O lauroyl-saccharose and N-lauroyl N-nonyl lactitol, the ternary phase diagrams water-DDAB-glycolipid have been established in terms of temperature. Critical points at ambient temperature have been given. The osmotic pressure in concentrated lamellar phases has been measured. It has been shown that glycolipids increase the hydration repulsion at short distance and that the electrostatic repulsion is outstanding and unchanged at high distance if there is at less 1 mole percent of ionic surfactant. In a dilute solution, glycolipids decrease the maximum swelling of lamellar phases, with a competition between the lamellar phase and the micellae dilute phase for water. (O.M.). 165 refs.

  11. Detection of chitinase activity by 2-aminobenzoic acid labeling of chito-oligosaccharides.

    Science.gov (United States)

    Ghauharali-van der Vlugt, Karen; Bussink, Anton P; Groener, Johanna E M; Boot, Rolf G; Aerts, Johannes M F G

    2009-01-01

    Chitinases are hydrolases capable of hydrolyzing the abundant natural polysaccharide chitin. Next to artificial fluorescent substrates, more physiological chito-oligomers are commonly used in chitinase assays. Analysis of chito-oligosaccharides products is generally accomplished by UV detection. However, the relatively poor sensitivity poses a serious limitation. Here we report on a novel, much more sensitive assay for the detection of chito-oligosaccharide reaction products released by chitinases, based on fluorescent detection, following chemical labeling by 2-aminobenzoic acid. Comparison with existing UV-based assays, shows that the novel assay offers the same advantages yet allows detection of chito-oligosaccharides in the low picomolar range.

  12. Toxicological aspects of injectable gold-hyaluronan combination as a treatment for neuroinflammation

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Locht, Linda J; Tran, Thao P

    2014-01-01

    Secondary inflammatory reactions to stroke or trauma contribute to irreplaceable loss of brain tissue of the affected patients. Likewise, neuroinflammatory processes are the main pathophysiological feature in Multiple Sclerosis (MS), a common neurodegenerative disease among young adults....... In the search for safe and efficient ways to reduce inflammation within nervous tissue older immunosuppressive remedies have been re-investigated. The anti-inflammatory properties of gold salts are well known but result in uncontrollable systemic spread of gold ions, generating side effects...... such as nephrotoxicity, limiting their use. Recent studies have circumvented this obstacle by introducing metallic gold implants as a localized source of immune-modulating gold ions and suspension in hyaluronic acid (HA) enables injection of small amounts of gold in the natural spaces of the brain. By injecting >25 μm...

  13. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis.

    Science.gov (United States)

    Viola, Manuela; Brüggemann, Kathrin; Karousou, Evgenia; Caon, Ilaria; Caravà, Elena; Vigetti, Davide; Greve, Burkhard; Stock, Christian; De Luca, Giancarlo; Passi, Alberto; Götte, Martin

    2017-06-01

    Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.

  14. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  15. Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use.

    Science.gov (United States)

    Anisha, B S; Sankar, Deepthi; Mohandas, Annapoorna; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work chitosan-hyaluronan composite sponge incorporated with chondroitin sulfate nanoparticle (nCS) was developed. The fabrication of hydrogel was based on simple ionic cross-linking using EDC, followed by lyophilization to obtain the composite sponge. nCS suspension was characterized using DLS and SEM and showed a size range of 100-150 nm. The composite sponges were characterized using SEM, FT-IR and TG-DTA. Porosity, swelling, biodegradation, blood clotting and platelet activation of the prepared sponges were also evaluated. Nanocomposites showed a porosity of 67% and showed enhanced swelling and blood clotting ability. Cytocompatibility and cell adhesion studies of the sponges were done using human dermal fibroblast (HDF) cells and the nanocomposite sponges showed more than 90% viability. Nanocomposite sponges also showed enhanced proliferation of HDF cells within two days of study. These results indicated that this nanocomposite sponges would be a potential candidate for wound dressing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Composite Alginate-Hyaluronan Sponges for the Delivery of Tranexamic Acid in Postextractive Alveolar Wounds.

    Science.gov (United States)

    Catanzano, Ovidio; D'Esposito, Vittoria; Formisano, Pietro; Boateng, Joshua S; Quaglia, Fabiana

    2018-02-01

    The management of wounds in patients on anticoagulant therapy who require oral surgical procedures is problematic and often results in a nonsatisfactory healing process. Here, we report a method to prepare an advanced dressing able to avoid uncontrolled bleeding by occluding the postextractive alveolar wounds, and simultaneously, capable of a fast release of tranexamic acid (TA). Composite alginate/hyaluronan (ALG/HA) sponge dressings loaded with TA were prepared by a straightforward internal gelation method followed by a freeze-drying step. Both blank and drug-loaded sponges were soft, flexible, and elegant in appearance and nonbrittle in nature. Scanning electron microscopy analysis confirmed the porous nature of these dressings. The integration of HA influenced the microstructure, reducing the porosity, modifying the water uptake kinetic, and increasing the resistance to compression. TA release from ALG/HA sponges showed a controlled release up to 3 h, and it was faster in the presence of HA. Finally, an in vitro clotting test performed on human whole blood confirmed that the TA-loaded sponges significantly reduce the blood clotting index by 30% compared with ALG/HA 20 sponges. These results suggest that, if placed in a socket cavity, these dressings could give a relevant help to the blood hemostasis after dental extractions, especially in patients with coagulation disorders. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    Science.gov (United States)

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  18. Serum inter-alpha-trypsin inhibitor and matrix hyaluronan promote angiogenesis in fibrotic lung injury.

    Science.gov (United States)

    Garantziotis, Stavros; Zudaire, Enrique; Trempus, Carol S; Hollingsworth, John W; Jiang, Dianhua; Lancaster, Lisa H; Richardson, Elizabeth; Zhuo, Lisheng; Cuttitta, Frank; Brown, Kevin K; Noble, Paul W; Kimata, Koji; Schwartz, David A

    2008-11-01

    The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-alpha-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627).

  19. Serum Inter–α-Trypsin Inhibitor and Matrix Hyaluronan Promote Angiogenesis in Fibrotic Lung Injury

    Science.gov (United States)

    Garantziotis, Stavros; Zudaire, Enrique; Trempus, Carol S.; Hollingsworth, John W.; Jiang, Dianhua; Lancaster, Lisa H.; Richardson, Elizabeth; Zhuo, Lisheng; Cuttitta, Frank; Brown, Kevin K.; Noble, Paul W.; Kimata, Koji; Schwartz, David A.

    2008-01-01

    Rationale: The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-α-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. Objectives: To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. Methods: An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. Measurements and Main Results: IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. Conclusions: Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627). PMID:18703791

  20. Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martina.pospisilova@contipro.com; Mrazek, Jiri; Matuska, Vit; Kettou, Sofiane; Dusikova, Monika; Svozil, Vit; Nesporova, Kristina; Huerta-Angeles, Gloria; Vagnerova, Hana; Velebny, Vladimir [Contipro Biotech (Czech Republic)

    2015-09-15

    Hyaluronan (HA) represents an interesting polymer for nanoparticle coating due to its biocompatibility and enhanced cell interaction via CD44 receptor. Here, we describe incorporation of oleate-capped β–NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} nanoparticles (UCNP-OA) into amphiphilic HA by microemulsion method. Resulting structures have a spherical, micelle-like appearance with a hydrodynamic diameter of 180 nm. UCNP-OA-loaded HA micelles show a good stability in PBS buffer and cell culture media. The intensity of green emission of UCNP-OA-loaded HA micelles in water is about five times higher than that of ligand-free UCNP, indicating that amphiphilic HA effectively protects UCNP luminescence from quenching by water molecules. We found that UCNP-OA-loaded HA micelles in concentrations up to 50 μg mL{sup −1} increase cell viability of normal human dermal fibroblasts (NHDF), while viability of human breast adenocarcinoma cells MDA–MB–231 is reduced at these concentrations. The utility of UCNP-OA-loaded HA micelles as a bio-imaging probe was demonstrated in vitro by successful labelling of NHDF and MDA–MB–231 cells overexpressing the CD44 receptor.

  1. Hyaluronan/Tween 80-assisted synthesis of silver nanoparticles for biological application

    Science.gov (United States)

    Li, Hui-Jun; Zhang, An-Qi; Sui, Li; Qian, Dong-Jin; Chen, Meng

    2015-02-01

    Water-soluble and well-stabilized silver nanoparticles (NPs) of small size have been synthesized using hyaluronan (HA) and Tween 80 as reducing and stabilizing agents. The effect of reaction conditions on the formation process of silver NPs was studied, and an aggregative growth mechanism of the silver NPs dominated in HA/Tween 80 system at pH 12 has been proposed. The obtained Ag NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Moreover, the stability of the HA-Tween 80-silver NPs in normal saline was also studied, and a flexible blend membrane containing chitosan, gelatin, and the HA-Tween 80-silver NPs was prepared for further biological applications. Due to the high specific surface area and improved stability of silver NPs, the chitosan-gelatin-silver membrane has shown high antibacterial activity for strains of Escherichia coli. The cell viability tests indicate that the polymer membrane is non-cytotoxic to HepG2 cells, which might be attributed to its good biocompatibility.

  2. Hyaluronan/Tween 80-assisted synthesis of silver nanoparticles for biological application

    International Nuclear Information System (INIS)

    Li, Hui-Jun; Zhang, An-Qi; Sui, Li; Qian, Dong-Jin; Chen, Meng

    2015-01-01

    Water-soluble and well-stabilized silver nanoparticles (NPs) of small size have been synthesized using hyaluronan (HA) and Tween 80 as reducing and stabilizing agents. The effect of reaction conditions on the formation process of silver NPs was studied, and an aggregative growth mechanism of the silver NPs dominated in HA/Tween 80 system at pH 12 has been proposed. The obtained Ag NPs were characterized by UV–Vis spectroscopy, transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Moreover, the stability of the HA–Tween 80-silver NPs in normal saline was also studied, and a flexible blend membrane containing chitosan, gelatin, and the HA–Tween 80-silver NPs was prepared for further biological applications. Due to the high specific surface area and improved stability of silver NPs, the chitosan–gelatin-silver membrane has shown high antibacterial activity for strains of Escherichia coli. The cell viability tests indicate that the polymer membrane is non-cytotoxic to HepG2 cells, which might be attributed to its good biocompatibility

  3. Hyaluronan - a functional and structural sweet spot in the tissue microenvironment

    Directory of Open Access Journals (Sweden)

    James eMonslow

    2015-05-01

    Full Text Available Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue response to injury, inflammatory disease, fibrosis and cancer. Alterations in architecture, physical properties and matrix composition result in changes in biomechanical and biochemical cellular signaling. The dynamics of pericellular and extracellular matrices, including matrix protein, proteoglycan and glycosaminoglycan modification are continually emerging as essential regulatory mechanisms underlying cellular and tissue function. Nevertheless, the impact of matrix organization on inflammation and immunity in particular, and the consequent effects on tissue healing and disease outcome are arguably under-studied aspects of adaptive stress responses. Herein, we review how the predominant glycosaminoglycan hyaluronan (HA contributes to the structure and function of the tissue microenvironment. Specifically, we examine the evidence of HA degradation and the generation of biologically-active smaller HA fragments in pathological settings in vivo. We discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling influence inflammatory cell recruitment and differentiation, resident cell activation, as well as tumor growth, survival and metastasis. Finally, we discuss how HA fragmentation impacts restoration of normal tissue function and pathological outcomes in disease.

  4. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    Science.gov (United States)

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fabrication of Hyaluronan-Poly(vinylphosphonic acid-Chitosan Hydrogel for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Dang Hoang Phuc

    2016-01-01

    Full Text Available A new hydrogel made of hyaluronan, poly(vinylphosphonic acid, and chitosan (HA/PVPA/CS hydrogel was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally, in vivo study was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity against E. coli. Finally, in vivo study indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.

  6. Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin

    International Nuclear Information System (INIS)

    Bono, Petri; Cordero, Etchell; Johnson, Kristen; Borowsky, Mark; Ramesh, Vijaya; Jacks, Tyler; Hynes, Richard O.

    2005-01-01

    Layilin is a widely expressed integral membrane hyaluronan receptor, originally identified as a binding partner of talin located in membrane ruffles. We have identified merlin, the neurofibromatosis type 2 tumor suppressor protein and radixin, as other interactors with the carboxy-terminal domain of layilin. We show that the carboxy-terminal domain of layilin is capable of binding to the amino-terminal domain of radixin. An interdomain interaction between the amino- and the carboxy-terminal domains of radixin inhibits its ability to bind to layilin. In the presence of acidic phospholipids, the interdomain interaction of radixin is inhibited and layilin can bind to full-length radixin. In contrast, layilin binds both full-length and amino-terminal merlin-GST fusion proteins without a requirement for phospholipids. Furthermore, layilin antibody can immunoprecipitate merlin, confirming association in vivo between these two proteins, which also display similar subcellular localizations in ruffling membranes. No interaction was observed between layilin and ezrin or layilin and moesin. These findings expand the known binding partners of layilin to include other members of the talin/band 4.1/ERM (ezrin, radixin, and moesin) family of cytoskeletal-membrane linker molecules. This in turn suggests that layilin may mediate signals from extracellular matrix to the cell cytoskeleton via interaction with different intracellular binding partners and thereby be involved in the modulation of cortical structures in the cell

  7. Structure analysis and laxative effects of oligosaccharides isolated from bananas.

    Science.gov (United States)

    Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming

    2012-10-01

    Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine.

  8. NMR structural studies of oligosaccharides and other natural products

    DEFF Research Database (Denmark)

    Kjærulff, Louise

    produce secondary metabolites for signaling and competing against other organisms, and these molecules are important in drug discovery due to their inherent biological activities. From a marine Photobacterium (P. halotolerans) we isolated the solonamides and the ngercheumicins, two families of cyclic...... through the nJCH correlation, this experiment has exciting applications for configurational assignment of e.g. carbohydrates and for residual dipolar couplings. Identification of known molecules and discovery of novel molecules are other important applications of NMR spectroscopy. Bacteria and fungi....... fijiensis, was also investigated for production of novel secondary metabolites, and a new pyranonigrin (E) was isolated and structure elucidated by NMR spectroscopy along with JBIR-74 and decumbenone A, two known metabolites previously isolated from Aspergillus and Penicillium species. Oligosaccharides...

  9. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate

    Science.gov (United States)

    Smilowitz, Jennifer T.; Lebrilla, Carlito B.; Mills, David A.; German, J. Bruce; Freeman, Samara L.

    2015-01-01

    In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate. PMID:24850388

  10. Human milk oligosaccharides: Every baby needs a sugar mama

    Science.gov (United States)

    Bode, Lars

    2012-01-01

    Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic “bifidus factor” that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just “food for bugs”. An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother–infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research. PMID:22513036

  11. Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions.

    Directory of Open Access Journals (Sweden)

    John Bienenstock

    Full Text Available Human milk oligosaccharides (HMO are being studied by different groups exploring a broad range of potential beneficial effects to the breastfed infant. Many of these effects have been attributed to a growth promotion effect on certain gut organisms such as bifidobacteria. Additionally, evidence indicates that HMO are able to directly promote positive changes in gut epithelium and immune responses under certain conditions. This study utilizes a standardized ex vivo murine colon preparation to examine the effects of sialylated, fucosylated and other HMO on gut motor contractions. Only the fucosylated molecules, 2'FL and 3'FL, decreased contractility in a concentration dependent fashion. On the basis of IC50 determinations 3'FL was greater than 2 times more effective than 2'FL. The HMO 3'SL and 6'SL, lacto-N-neotetraose (LNnT, and galactooligosaccharides (GOS elicited no effects. Lactose was used as a negative control. Fucosylation seems to underlie this functional regulation of gut contractility by oligosaccharides, and L-fucose, while it was also capable of reducing contractility, was substantially less effective than 3'FL and 2'FL. These results suggest that specific HMO are unlikely to be having these effects via bifidogenesis, but though direct action on neuronally dependent gut migrating motor complexes is likely and fucosylation is important in providing this function, we cannot conclusively shown that this is not indirectly mediated. Furthermore they support the possibility that fucosylated sugars and fucose might be useful as therapeutic or preventative adjuncts in disorders of gut motility, and possibly also have beneficial central nervous system effects.

  12. Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: A systematic review.

    Science.gov (United States)

    Fernandes, Ricardo; do Rosario, Vinicius A; Mocellin, Michel C; Kuntz, Marilyn G F; Trindade, Erasmo B S M

    2017-10-01

    Studies in humans with overweight or obesity have reported that some prebiotics and synbiotics have beneficial effects on metabolic endotoxaemia and immune function. However, to date, no systematic review of controlled clinical trials assessed this topic. The aim of this study was to evaluate the effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adults with overweight or obesity. A systematic review of the literature was performed until November 6, 2015 in four electronic databases and reference lists of all included articles and relevant reviews in the field, without using any filter. Ten trials (six prebiotic and four synbiotic trials) representing 534 overweight/obese adults were included. All trials evaluated C-reactive protein or high-sensitivity C-reactive protein, four trials evaluated cytokines (two prebiotic and two synbiotic trials) and five trials evaluated endotoxin (four prebiotic and one synbiotic trials). Six trials (two with galacto-oligosaccharide, one with inulin and three with different synbiotics) showed a reduction on high-sensitivity C-reactive protein. Four trials (one with oligofructose-enriched inulin, one with inulin and two with different synbiotics) showed a reduction on interleukin-6 and/or tumor necrosis factor. Four trials (one with galacto-oligosaccharide, one with oligofructose-enriched inulin, one with inulin and one with synbiotic) showed a reduction on endotoxin. Some prebiotics and synbiotics may have immunomodulatory action, however, more randomized controlled trials are needed to support the clinical use of inulin-type fructans, galacto-oligosaccharides or related synbiotics for the treatment of metabolic endotoxaemia or low-grade inflammation in overweight/obese people. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Chemically synthesized 58-mer LysM domain binds lipochitin oligosaccharide

    DEFF Research Database (Denmark)

    Sørensen, Kasper Kildegaard; Simonsen, Jens Bæk; Maolanon, Nicolai Nareth

    2014-01-01

    Recognition of carbohydrates by proteins is a ubiquitous biochemical process. In legume-rhizobium symbiosis, lipochitin oligosaccharides, also referred to as nodulation (nod) factors, function as primary rhizobial signal molecules to trigger root nodule development. Perception of these signal mol...

  14. Immunomodulatory effects of dietary non-digestible oligosaccharides in T cell-mediated autoimmune arthritis

    NARCIS (Netherlands)

    Rogier, R.; Ederveen, T.; Hartog, A.; Walgreen, B.; Van Den Bersselaar, L.; Helsen, M.; Vos, P.; Garssen, J.; Willemsen, L.; Van Den Berg, W.; Koenders, M.; Abdollahi-Roodsaz, S.

    2015-01-01

    Background: Accumulating evidence indicates the relevance of intestinal microbiota in shaping the immune response and supports its contribution to the development of autoimmune diseases. Prebiotic non-digestible oligosaccharides are known to selectively support growth of commensal Bifidobacteria and

  15. Oligosaccharide synthesis by the hyperthermostable b-glucosidase from Pyrococcus furiosus: kinetics and modelling

    NARCIS (Netherlands)

    Bruins, M.E.; Strubel, M.; Lieshout, van J.F.T.; Janssen, A.E.M.; Boom, R.M.

    2003-01-01

    Oligosaccharides can be synthesised from monosaccharides or disaccharides, using glycosidases as a catalyst. To investigate the potential of this synthesis with beta-glycosidase from Pyrococcus furiosus we determined kinetic parameters for substrate conversion and product formation from cellobiose,

  16. A promptly approach from monosaccharides of biomass to oligosaccharides via sharp-quenching thermo conversion (SQTC).

    Science.gov (United States)

    Liu, Xiao; Wei, Weiqi; Wu, Shubin; Lei, Ming; Liu, Ying

    2018-06-01

    In this study, a novel and facile approach of conversion monosaccharides (glucose and xylose) to oligosaccharides (Cello-oligosaccharides and Xylo-oligosaccharides) was demonstrated. The approach did not introduce any chemical reagent and the preparation process could be environmentally friendly. Identification and quantification by ion chromatography (IC) and high performance liquid chromatography (HPLC) showed that the yields of COS and XOS reached to 44.62% (38 s) and 47.09% (30 s) respectively at 500 °C reaction temperature coupled with sharp-quenching method. Structural characterization indicated that such oligosaccharides showed a degree of polymerization (DP) with 2-6, and the units mainly linked by β-(1 → 4)-glycosidic bond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Intestinal infections and prebiotics: the roles of oligosaccharides in promoting health

    Science.gov (United States)

    Prebiotic oligosaccharides exert activity against pathogens partly by stimulating the growth and/or activity of commensal bacteria that provide health benefits (lower pH, bacteriocin production, immune system modulation, competitive exclusion). This review describes alternative mechanisms of action...

  18. Detection of chitinase activity by 2-aminobenzoic acid labeling of chito-oligosaccharides

    NARCIS (Netherlands)

    Ghauharali-van der Vlugt, Karen; Bussink, Anton P.; Groener, Johanna E. M.; Boot, Rolf G.; Aerts, Johannes M. F. G.

    2009-01-01

    Chitinases are hydrolases capable of hydrolyzing the abundant natural polysaccharide chitin. Next to artificial fluorescent substrates, more physiological chito-oligomers are commonly used in chitinase assays. Analysis of chito-oligosaccharides products is generally accomplished by UV detection.

  19. Efficient routing of glucocerebrosidase to lysosomes requires complex oligosaccharide chain formation

    NARCIS (Netherlands)

    Aerts, J. M.; Brul, S.; Donker-Koopman, W. E.; van Weely, S.; Murray, G. J.; Barranger, J. A.; Tager, J. M.; Schram, A. W.

    1986-01-01

    The biosynthesis and intracellular transport of the membrane-associated lysosomal enzyme glucocerebrosidase was studied in the monoblast cell line U937. Addition to the cultures of the oligosaccharide trimming inhibitors swainsonine or deoxymannojirimycin led to an increased intracellular activity

  20. Protecting intestinal epithelial integrity by galacto-oligosaccharides: Keeping it tight

    OpenAIRE

    Akbari, P.

    2016-01-01

    The intestinal barrier serves as a first line of host defense against potentially harmful stressors from the environment ingested with food, and is primarily formed by epithelial cells connected by tight junctions. Oligosaccharides have been identified as components in milk, particularly in colostrum, that support the development of intestinal microbiota in the early phase of life and contribute to the maturation of the immune system in infants. Currently, galacto-oligosaccharides (GOS) are u...

  1. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher

    2013-01-01

    , raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities...... of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose...

  2. A snapshot into the metabolism of isomalto-oligosaccharides in probiotic bacteria

    DEFF Research Database (Denmark)

    Abou Hachem, Maher; Møller, Marie Sofie; Andersen, Joakim Mark

    2013-01-01

    In vitro and in vivo studies have demonstrated the prebiotic potential of isomalto-oligosaccharides (IMO), comprising α-(1,6)-gluco-oligosaccharides and panose, which selectively stimulate the growth of probiotic bifidobacteria and lactobacilli. The protein machinery conferring the utilization...... of IMO by probiotics, however, remains vaguely described. We have used genomic, transcriptomic, enzymatic, and biophysical analyses to explore IMO utilization routes in probiotic lactobacilli and bifidobacteria as represented by Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bl...

  3. Structural characterization of novel L-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans.

    Science.gov (United States)

    Hantus, S; Pauly, M; Darvill, A G; Albersheim, P; York, W S

    1997-10-28

    Jojoba seed xyloglucan was shown to be a convenient source of biologically active xyloglucan oligosaccharides that contain both L- and D-galactosyl residues [E. Zablackis et al., Science, 272 (1996) 1808-1810]. Oligosaccharides were isolated by liquid chromatography of the mixture of oligosaccharides generated by treating jojoba seed xyloglucan with a beta-(1-->4)-endoglucanase. The purified oligosaccharides were reduced with NaBH4, converting them to oligoglycosyl alditol derivatives that were structurally characterized by a combination of mass spectrometry and 2-dimensional NMR spectroscopy. This analysis established that jojoba xyloglucan oligosaccharides contain the novel side-chain [alpha-L-Gal p-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-], which is structurally homologous to the fucose-containing side-chain [alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-] found in other biologically active xyloglucan oligosaccharides.

  4. Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling.

    Science.gov (United States)

    Neville, David C A; Coquard, Virginie; Priestman, David A; te Vruchte, Danielle J M; Sillence, Daniel J; Dwek, Raymond A; Platt, Frances M; Butters, Terry D

    2004-08-15

    Interest in cellular glycosphingolipid (GSL) function has necessitated the development of a rapid and sensitive method to both analyze and characterize the full complement of structures present in various cells and tissues. An optimized method to characterize oligosaccharides released from glycosphingolipids following ceramide glycanase digestion has been developed. The procedure uses the fluorescent compound anthranilic acid (2-aminobenzoic acid; 2-AA) to label oligosaccharides prior to analysis using normal-phase high-performance liquid chromatography. The labeling procedure is rapid, selective, and easy to perform and is based on the published method of Anumula and Dhume [Glycobiology 8 (1998) 685], originally used to analyze N-linked oligosaccharides. It is less time consuming than a previously published 2-aminobenzamide labeling method [Anal. Biochem. 298 (2001) 207] for analyzing GSL-derived oligosaccharides, as the fluorescent labeling is performed on the enzyme reaction mixture. The purification of 2-AA-labeled products has been improved to ensure recovery of oligosaccharides containing one to four monosaccharide units, which was not previously possible using the Anumula and Dhume post-derivatization purification procedure. This new approach may also be used to analyze both N- and O-linked oligosaccharides.

  5. Chitosan oligosaccharide-Ca complex accelerates the depuration of cadmium from Chlamys ferrari

    Science.gov (United States)

    Huang, Guoqing; Sun, Jipeng; Wang, Dongfeng; Xu, Ying; Xu, Wei

    2012-06-01

    This study investigated the effect of a chitosan oligosaccharide-Ca complex (COS-Ca) on the depuration of cadmium (Cd) from Chlamys ferrari. After exposure to 0.5 mg L-1 CdCl2 for 3 or 7 d, the scallops were treated by COS-Ca prior to determination of Cd, calcium (Ca) and zinc (Zn) contents, Cd distribution in organs, malondialdehyde (MDA) content and antioxidant variables. Results showed that COS-Ca reduced Cd content in the viscera of the scallops, with highest Cd depuration rate (47%) observed on day 3. The COS-Ca concentration substantially affected Cd depuration, and the exposure to 8.75 mg L-1 COS-Ca led to significantly higher Cd depuration rate compared with those of lower COS-Ca concentrations (1.75, 3.5, 5.25, and 7.00 mg L-1). Distribution analysis of Cd in scallop organs indicated that COS-Ca significantly reduced Cd content in the kidney throughout the 5-d experiment, as well as in the gill during the early stage of Cd depuration. In addition, COS-Ca treatment decreased glutathione peroxidase (GSH-Px) activity and MDA content while increasing superoxide dismutase (SOD) and catalase (CAT) activities on different days. Our work suggested COS-Ca complex treatment as an effective method for acceleration of Cd depuration from Cd-contaminated bivalves.

  6. Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus.

    Science.gov (United States)

    Fei, Bei-bei; Ling, Li; Hua, Chen; Ren, Shu-yan

    2014-09-01

    The effects of soybean oligosaccharides (SBOS) on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus (GDM) were investigated. Ninety-seven pregnant women with GDM were randomly divided into two groups, the control group (51 cases) and the SBOS group (46 cases). Before the group separation, the blood sugar level in patients was maintained stable by regular diet and insulin treatment. The control group was continued with the insulin treatment, while the SBOS group was treated with the combination of insulin and SBOS. Results showed that SBOS were able to reduce oxidative stress and alleviate insulin resistance in pregnant women with GDM, which indicates that SBOS may play an important role in the control of GDM complications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Peritoneal Adhesion and Angiogenesis in Ovarian Carcinoma Are Inversely Regulated by Hyaluronan: The Role of Gonadotropins

    Directory of Open Access Journals (Sweden)

    Yael Chagit Tzuman

    2010-01-01

    Full Text Available Ovarian carcinoma is the leading cause of death among gynecologic cancers. Although transformation of the outer ovarian epithelium was linked with ovulation, the disease is significantly more prevalent and severe in postmenopausal women. We postulated that menopause could augment ovarian cancer progression through the effects of gonadotropins on multifocal seeding to the mesothelial layer lining the peritoneum. This seeding is mediated by integrins as well as by CD44 interaction with hyaluronan (HA. Here, we report the effect of gonadotropins on HA synthesis and degradation and on peritoneal adhesion. A significant concentration- and time-dependent induction in expression levels of HA synthases (HASs and hyaluronidases (Hyals was observed in vitro on stimulation of human epithelial ovarian carcinoma cells by gonadotropins. Hormonal regulation of HA-mediated adhesion was manifested in vivo as well, by fluorescence microscopy of stained MLS multicellular tumor spheroids. The number of spheroids adhered to the mesothelium of ovariectomized CD-1 nude mice 9.5 hours after intraperitoneal insertion was significantly higher than in nonovariectomized mice. Inhibition of HA synthesis by 6-diazo-5-oxo-1-norleucine (DON both in spheroids and ovariectomized mice significantly reduced the number of adhered spheroids. Thus, the change in the hormonal environment during menopause assists in HA-dependent adherence of ovarian cancer spheroids onto the peritoneum. However, HA is antiangiogenic and it can significantly suppress tumor progression. Accordingly, angiogenesis of the adhered spheroids was significantly elevated in DON-treated tumors. These results can explain the selective pressure that can lead to simultaneously increased tumor expression of both HASs and Hyals.

  8. Mucoadhesive Polymer Hyaluronan as Biodegradable Cationic/Zwitterionic-Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2015-01-01

    Full Text Available Mucoadhesive polymers in pharmaceutical formulations release drugs in mucosal areas. They interact and fix to mucus via molecular interpenetration, etc., which increase drug bioavailability. Polymers physicochemical properties affect formulation mucoadhesion, rheological behaviour and drug absorption. Hyaluronan (HA is selected as a mucoadhesive and biodegradable polymer. Geometric, topological and fractal analyses are carried out with program TOPO. Reference calculations are performed with algorithm GEPOL. Procedure TOPO underestimates molecular volume by 0.7%. Error results 5% in surface area and derived topological indices. Solvent-accessible surface is undercalculated by 3%: from hexamer HA to HA·3Ca and hydrate, the hydrophobic term rises by 42% and decays by 26%, and hydrophilic part drops by 14% and rises by 58% in agreement with the number of H-bonds. Accessibility rises by 9% and decays by 8%. Fractal dimension is underevaluated by 1% and for HA it results 1.566; on going to HA·3Ca and hydrate it rises by 2% and 1%. External-atoms dimension increases by 11%: for HA it results 1.725. When going to HA·3Ca and hydrate, it augments by 4% and 0.3%. On going from HA to HA·3Ca and hydrate, nonburied minus molecular dimension enlarges by 20% and decays by 9%. The hydrate globularity is lower than for water, Ca2+ and averages of O-atoms in HA. Ca2+ rugosity is smaller than for hydrate, averages of O-atoms in HA and water. Ca2+ and water accessibilities are greater than for hydrate. As cations exchange in HA·3Ca requires Ca2+ alteration, rises of drug zwitterionic character and acidic pH increase absorption.

  9. Changes in condylar coefficient of friction after osteochondral graft transplantation and modulation with hyaluronan.

    Science.gov (United States)

    Lane, John; Healey, Robert; Amiel, David

    2009-12-01

    To better understand the changes in the cartilage coefficient of friction (COF) after an osteochondral repair, an assessment of dynamic loads has been developed using a goat knee model. The application of hyaluronan (HA) was also assessed for its lubricative properties and the resulting COF of the knee after osteochondral repair. A total of 18 caprine knees were dissected and mounted into an Instron load frame (Instron, Norwood, MA) for testing. The COF was measured in 10 knees relative to the normal, unaltered joint and then calibrated to account for friction of the system. These experimental knees were tested in 5 modes: normal; empty 4.5-mm defect; and osteochondral repairs that were elevated, flush, or depressed relative to the cartilage surface. Saline solution lavage kept the knees moist during testing. The effect of HA was evaluated after mechanical testing. Eight knees were used to study the effect of lavage on the joints because of the significant increase in the COF that it produced. Whereas all modes increased the COF from normal levels, the most significant changes occurred when there was proud placement. Increases of 4 times the normal friction levels were measured. Increases in the COF were also associated with saline solution lavage (0.006 to 0.046). There was a significant reduction in friction after HA injection, which reduced the COF to near-normal levels. There is a significant increase in the COF associated with saline solution lavage and an osteochondral plug being left proud, which can be temporarily reduced with a lubricative material such as HA. Dramatic increases in the COF can potentially damage chondrocytes when the patient begins articulating the joint after surgery. Such injuries may affect the ability of the cartilage to heal fully. Reducing the elevated COF with lubricating materials, such as HA, is recommended based on the results of this study.

  10. Regulation of proximal tubular epithelial cell CD44-mediated binding and internalisation of hyaluronan.

    Science.gov (United States)

    Jones, Stuart George; Ito, Takafumi; Phillips, Aled Owain

    2003-09-01

    Increased expression of the connective tissue polysaccharide hyaluronan (HA) in the renal corticointerstitium is associated with progressive renal fibrosis. Numerous studies have demonstrated involvement proximal tubular epithelial cells in the fibrotic process and in the current study we have characterised their expression of the HA receptor, CD44, and examined changes in CD44 expression and function in response to either IL-1beta or glucose. Characterisation of CD44 splice variant expression was carried out in primary cultures of human proximal tubular cells (PTC) and HK2 cells. Binding and internalisation HA was examined by addition of exogenous of fluorescein-HA (fl-HA), and expression of CD44 examined by immunoblot analysis and flow cytometry. Alteration in "functional" CD44 was determined by immunoprecipitation of CD44 following stimulation in the presence of fl-HA. PTC, both primary culture and the PTC cell line, HK2, express at least 5 CD44 splice variants, the expression of which are not altered by addition of either IL-1beta or 25mM D-glucose. Addition of either stimulus increased cell surface binding and internalisation of fl-HA and increased expression of functionally active CD44. Increased binding and internalisation of fl-HA, was blocked by anti-CD44 antibody, and by the inhibition of O-glycosylation. The data demonstrate that stimuli inducing PTC HA synthesis also regulate PTC-HA interactions. Furthermore increased HA binding and internalisation is the result of post-translational modification of CD44 by O-glycosylation, rather than by alteration in expression of CD44 at the cell surface, or by alternate use of CD44 splice variants.

  11. The influence of hyaluronan on the structure of a DPPC-bilayer under high pressures.

    Science.gov (United States)

    Zander, Thomas; Wieland, D C Florian; Raj, Akanksha; Wang, Min; Nowak, Benedikt; Krywka, Christina; Dėdinaitė, Andra; Claesson, Per Martin; Garamus, Vasil M; Schreyer, Andreas; Willumeit-Römer, Regine

    2016-06-01

    The superior lubrication properties of synovial joints have inspired many studies aiming at uncovering the molecular mechanisms which give rise to low friction and wear. However, the mechanisms are not fully understood yet, and, in particular, it has not been elucidated how the biolubricants present at the interface of cartilage respond to high pressures, which arise during high loads of joints. In this study we utilize a simple model system composed of two biomolecules that have been implied as being important for joint lubrication. It consists of a solid supported dipalmitoylphosphatidylcholin (DPPC) bilayer, which was formed via vesicles fusion on a flat Si wafer, and the anionic polysaccharide hyaluronan (HA). We first characterized the structure of the HA layer that adsorbed to the DPPC bilayers at ambient pressure and different temperatures using X-ray reflectivity (XRR) measurements. Next, XRR was utilized to evaluate the response of the system to high hydrostatic pressures, up to 2kbar (200MPa), at three different temperatures. By means of fluorescence microscopy images the distribution of DPPC and HA on the surface was visualized. Our data suggest that HA adsorbs to the headgroup region that is oriented towards the water side of the supported bilayer. Phase transitions of the bilayer in response to temperature and pressure changes were also observed in presence and absence of HA. Our results reveal a higher stability against high hydrostatic pressures for DPPC/HA composite layers compared to that of the DPPC bilayer in absence of HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Nehrer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.nehrer@meduniwien.ac.at; Domayer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Schatz, K. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bindreiter, U. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kotz, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Repair of articular cartilage represents a significant clinical problem and although various new techniques - including the use of autologous chondrocytes - have been developed within the last century the clinical efficacy of these procedures is still discussed controversially. Although autologous chondrocyte transplantation (ACT) has been widely used with success, it has several inherent limitations, including its invasive nature and problems related to the use of the periosteal flap. To overcome these problems autologous chondrocytes transplantation combined with the use of biodegradable scaffolds has received wide attention. Among these, a hyaluronan-based scaffold has been found useful for inducing hyaline cartilage regeneration. In the present study, we have investigated the mid-term efficacy and safety of Hyalograft[reg] C grafts in a group of 36 patients undergoing surgery for chronic cartilage lesions of the knee. Clinical Outcome was assessed prospectively before and at 12, 24, and 36 months after surgery. No major adverse events have been reported during the 3-year follow-up. Significant improvements of the evaluated scores were observed (P < 0.02) at 1 year and a continued increase of clinical performance was evident at 2 and 3 years follow-up. Patients under 30 years of age with single lesions showed statistically significant improvements at all follow-up visits compared to those over 30 with multiple defects (P < 0.01). Hyalograft[reg] C compares favorably with classic ACT and is particularly indicated in younger patients with single lesions. The graft can be implanted through a miniarthrotomy and needs no additional fixation with sutures except optional fibrin gluing at the defect borders. These results suggest that Hyalograft[reg] C is a valid alternative to ACT.

  13. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS using chemogenomics

    Directory of Open Access Journals (Sweden)

    Jaime Maria DLA

    2012-06-01

    Full Text Available Abstract Background Chitosan oligosaccharide (COS, a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP, homozygous deletion (HOP, and multicopy suppression (MSP profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms, membrane functions (e.g. signalling, transport and targeting, membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane

  14. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Nilsonne, Gustav; Arslan, Sertaç; Csürös, Karola; Hillerdal, Gunnar; Yildirim, Huseyin; Metintas, Muzaffer; Dobra, Katalin; Hjerpe, Anders

    2013-01-01

    Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39), N-ERC/mesothelin (4.81, 3.19-7.93), CERC/mesothelin (3.58, 2.43-5.59) and syndecan-1 (1.34, 1.03-1.77). A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00) in the model generation dataset and 0.83 (0.74-0.91) in the validation dataset, respectively. A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.

  15. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  16. The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity.

    Science.gov (United States)

    Oohashi, Toshitaka; Edamatsu, Midori; Bekku, Yoko; Carulli, Daniela

    2015-12-01

    The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Shukla S

    2015-07-01

    Full Text Available Sudeep Shukla,1 Vikas Arora,2 Alka Jadaun,3 Jitender Kumar,1 Nishant Singh,1 Vinod Kumar Jain1 1School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India; 2Department of Chemistry, Indian Institute of Technology, New Delhi, Delhi, India; 3School of Biotechnology, Jawaharlal Nehru University, New Delhi, Delhi, India Abstract: Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral–fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM. Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles. Keywords: amebiasis, water treatment, nanotechnology

  18. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages.

    Science.gov (United States)

    Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan

    2014-11-01

    The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    Science.gov (United States)

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of soybean oligosaccharides on intestinal microbial communities and immune modulation in mice

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2017-01-01

    Full Text Available Background: Soybean oligosaccharides (SBOSs are potential prebiotics that may be used to improve immune function. Here, we investigated the effects of intragastric administration of SBOSs in mice to determine the effects on autochthonous intestinal microbial communities and immunological parameters. Results E: After 22-day administration, 4.0 g kg body weight (BW−1 SBOSs significantly enhanced the proliferation of bifidobacteria and lactic acid bacteria (LAB as compared to the control. This dose of SBOSs also significantly increased numbers of enterococci and decreased numbers of Clostridium perfringens. Treatment with 4.0 g kg BW−1 SBOSs also significantly increased the percentage of T-lymphocytes and lymphocyte proliferation as compared to the control, suggesting that SBOSs promoted cellular immunity in mice. Additionally, 4.0 g kg BW−1 SBOSs induced significant differences in hemolysin production, natural killer (NK cell activity, phagocytic activity, cytokine production, and immunoglobulin levels compared to the control. Conclusion: Our data demonstrated that intragastric administration of SBOSs at a dose of 4.0 g kg BW−1 improved the numbers of beneficial intestinal microbes and enhanced immunological function of mice. Therefore, these data supported that SBOSs may have applications as a prebiotic to improve immune responses in humans. Further studies are warranted.

  1. The human milk oligosaccharides are not affected by pasteurization and freeze-drying.

    Science.gov (United States)

    Hahn, Won-Ho; Kim, Jaehan; Song, Seunghyun; Park, Suyeon; Kang, Nam Mi

    2017-11-06

    Human milk oligosaccharides (HMOs) are known as important factors in neurologic and immunologic development of neonates. Moreover, freeze-drying seems to be a promising storage method to improve the processes of human milk banks. However, the effects of pasteurization and freeze-drying on HMOs were not evaluated yet. The purpose of this study is to analyze and compare the HMOs profiles of human milk collected before and after the pasteurization and freeze-drying. Totally nine fresh human milk samples were collected from three healthy mothers at the first, second, and third week after delivery. The samples were treated with Holder pasteurization and freeze-drying. HMOs profiles were analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry and compared between samples collected before and after the treatments. Human milk samples showed significantly different HMO patterns between mothers. However, HMOs were not affected by lactation periods within 3 weeks after delivery (r 2  = 0.972-0.999, p pasteurization and freeze-drying were found not to affect HMO patterns in a correlation analysis (r 2  = 0.989-0.999, p pasteurization and freeze-drying of donor milks. We hope that introducing freeze-drying to the human milk banks would be encouraged by the present study. However, the storage length without composition changes of HMOs after freeze-drying needs to be evaluated in the further studies.

  2. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria

    DEFF Research Database (Denmark)

    Abou Hachem, Maher; Andersen, Joakim Mark; Barrangou, Rodolphe

    2013-01-01

    In recent years, a plethora of studies have demonstrated the paramount physiological importance of the gut microbiota on various aspects of human health and development. Particular focus has been set on probiotic members of this community, the best studied of which are assigned into the Lactobaci......In recent years, a plethora of studies have demonstrated the paramount physiological importance of the gut microbiota on various aspects of human health and development. Particular focus has been set on probiotic members of this community, the best studied of which are assigned...... into the Lactobacillus and Bifidobacterium genera. Effects such as pathogen exclusion, alleviation of inflammation and allergies, colon cancer, and other bowel disorders are attributed to the activity of probiotic bacteria, which selectively ferment prebiotics comprising mainly non-digestible oligosaccharides. Thus......, glycan metabolism is an important attribute of probiotic action and a factor influencing the composition of the gut microbiota. In the quest to understand the molecular mechanism of this selectivity for certain glycans, we have explored the routes of uptake and utilization of a variety...

  3. Fermentation of Arabinoxylan-Oligosaccharides, Oligofructose and their Monomeric Sugars by Hindgut Bacteria from Siberian Sturgeon and African Catfish in Batch Culture in vitro

    NARCIS (Netherlands)

    Geraylou, Z.; Rurangwa, E.; Wiele, van der T.; Courtin, C.M.; Delcour, J.A.; Buyse, J.; Ollevier, F.

    2014-01-01

    The in vitro fermentation of two Non-Digestible Oligosaccharide (NDO) preparations, Arabinoxylan- Oligosaccharides (AXOS) and Oligofructose (OF), and their respective monomeric sugars, xylose and fructose, were investigated by hindgut microbiota of two major aquaculture fish species, Siberian

  4. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein

    DEFF Research Database (Denmark)

    Christophersen, C. T.; Petersen, Anne; Licht, Tine Rask

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic...... cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate......-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse...

  5. Supplementation of the sow diet with chitosan oligosaccharide during late gestation and lactation affects hepatic gluconeogenesis of suckling piglets.

    Science.gov (United States)

    Xie, Chunyan; Guo, Xiaoyun; Long, Cimin; Fan, Zhiyong; Xiao, Dingfu; Ruan, Zheng; Deng, Ze-yuan; Wu, Xin; Yin, Yulong

    2015-08-01

    Chitosan oligosaccharide (COS) has a blood glucose lowering effect in diabetic rats and is widely used as a dietary supplement. However, the effect of COS on the offspring of supplemented mothers is unknown. This experiment investigates the effect of supplementing sows during gestation and lactation on the levels of plasma glucose on suckling piglets. From day 85 of gestation to day 14 of lactation, 40 pregnant sows were divided into two treatment groups and fed either a control diet or a control diet containing 30mgCOS/kg. One 14 day old piglet per pen was selected to collect plasma and tissue (8pens/diet). Performance, hepatic gluconeogenesis genes and proteins expression, amino acids contents in sow milk, hepatic glycogen and free fatty acid were determined. Results showed that supplementation of the maternal diet with COS improved daily gain and weaning weight (Pgluconeogenesis and improved the growth rate of suckling piglets. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Rapidly identify oligosaccharides in Morinda officinalis by UPLC-Q-TOF-MSE].

    Science.gov (United States)

    Hao, Qing-Xiu; Kang, Li-Ping; Zhu, Shou-Dong; Yu, Yi; Hu, Ming-Hua; Ma, Fang-Li; Zhou, Jie; Guo, Lan-Ping

    2018-03-01

    In this paper, an approach was applied for separation and identification of oligosaccharides in Morinda officinalis How by Ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with collision energy. The separation was carried out on an ACQUITY UPLC BEH Amide C₁₈(2.1mm×100 mm,1.7 μm) with gradient elution using acetonitrile(A) and water(B) containing 0.1% ammonia as mobile phase at a flow rate of 0.2 mL·min⁻¹. The column temperature was maintained at 40 °C. The information of accurate mass and characteristic fragment ion were acquired by MSE in ESI negative mode in low and high collision energy. The chemical structures and formula of oligosaccharides were obtained and identified by the software of UNIFI and Masslynx 4.1 based on the accurate mass, fragment ions, neutral losses, mass error, reference substance, isotope information, the intensity of fragments, and retention time. A total of 19 inulin oligosaccharide structures were identified including D(+)-sucrose, 1-kestose, nystose, 1F-fructofuranosyl nystose and other inulin oligosaccharides (DP 5-18). This research provided important information about the inulin oligosaccharides in M. officinalis. The results would provide scientific basis for innovative utilization of M. officinalis. Copyright© by the Chinese Pharmaceutical Association.

  7. Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan.

    Science.gov (United States)

    MacCormick, Benjamin; Vuong, Thu V; Master, Emma R

    2018-02-12

    A chemo-enzymatic pathway was developed to transform 4-O-methylglucuronic acid (MeGlcpA) containing xylo-oligosaccharides from beechwood into clickable monomers capable of polymerizing at room temperature and in aqueous conditions to form unique polytriazoles. While the gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum was used to oxidize C6-propargylated oligosaccharides, the acid-amine coupling reagents 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDAC) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) were employed and compared for their ability to append click functionalities to carboxylic acid groups of enzyme-treated oligosaccharides. While DMT-MM was a superior coupling reagent for this application, a triazine side product was observed during C-1 amidation. Resulting bifunctional xylo-oligosaccharide monomers were polymerized using a Cu(I) catalyst, forming a soft gel which was characterized by 1 H NMR, confirming the triazole product.

  8. Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides

    Science.gov (United States)

    2004-01-01

    XGH (xylogalacturonan hydrolase; GH 28) is an enzyme that is capable of degrading XGA (xylogalacturonan), which is a polymer of α-D-galacturonic acid, highly substituted with β-D-xylose. XGA is present in cell walls of various plants and exudates, such as gum tragacanth. XGA oligosaccharides were derived from an XGH digestion of gum tragacanth, then fractionated, and analysed for their sugar composition and structure by matrix-assisted laser-desorption ionization–time-of-flight MS and nanospray MS. Several oligosaccharides from XGA were identified with different galacturonic acid/xylose ratios including five oligosaccharide isomers. Although XGH can act as an endo-enzyme, product-progression profiling showed that the disaccharide GalAXyl was predominantly produced from XGA by XGH, which indicated also an exolytic action. The latter was further supported by degradation studies of purified oligosaccharide GalA4Xyl3. It was shown that XGH acted from the non-reducing end towards the reducing end of this oligosaccharide, and showed the processive character of XGH. The results from this study further show that although XGH prefers to act between two xylosidated GalA units, it tolerates unsubstituted GalA units in its −1 and +1 subsites. PMID:15560751

  9. Using low-field NMR to infer the physical properties of glassy oligosaccharide/water mixtures.

    Science.gov (United States)

    Aeberhardt, Kasia; Bui, Quang D; Normand, Valéry

    2007-03-01

    Low-field NMR (LF-NMR) is usually used as an analytical technique, for instance, to determine water and oil contents. For this application, no attempt is made to understand the physical origin of the data. Here we build a physical model to explain the five fit parameters of the conventional free induction decay (FID) for glassy oligosaccharide/water mixtures. The amplitudes of the signals from low-mobility and high-mobility protons correspond to the density of oligosaccharide protons and water protons, respectively. The relaxation time of the high-mobility protons is described using a statistical model for the probability that oligosaccharide hydroxyl groups form multiple hydrogen bonds. The variation of energy of the hydrogen bond is calculated from the average bond distance and the average angle contribution. Applying the model to experimental data shows that hydrogen atoms screen the water oxygen atoms when two water molecules solvate a single hydroxyl group. Furthermore, the relaxation time of the oligosaccharide protons is independent of its molecular weight and the water content. Finally, inversion of the FID using the inverse Laplace transform gives the continuous spectrum of relaxation times, which is a fingerprint of the oligosaccharide.

  10. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus.

    Science.gov (United States)

    Hou, Yiling; Ding, Xiang; Hou, Wanru

    2015-05-01

    Oligosaccharide are carbohydrate molecules, comprising repeating units joined together by glycosidic bonds. In recent years, an increasing number of oligosaccharides have been reported to exhibit various biological activities, including antitumor, immune-stimulation and antioxidation effects. In the present study, crude water‑soluble oligosaccharides were extracted from the fruiting bodies of Hericium erinaceus with water and then successively purified by diethylaminoethyl‑cellulose 52 and Sephadex G‑100 column chromatography, yielding one major oligosaccharide fraction: Hericium erinaceus oligosaccharide (HEO‑A). The structural features of HEO‑A were investigated by a combination of monosaccharide component analysis by thin layer chromatography, infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy and high‑performance gel permeation chromatography. The results indicated that HEO‑A was composed of D‑xylose and D‑glucose, and the average molecular size was ~1,877 Da. The antioxidant activity of HEO‑A was evaluated using three biochemical methods to determine the scavenging activity of HEO‑A on 1,1‑diphenyl‑2‑picrylhydrazyl, hydrogen peroxide and 2,2'‑azino‑bis(3‑ethylbenzthiazoline‑6‑sufonic acid) diammonium radicals. The results indicated that HEO‑A may serve as an effective healthcare food and source of natural antioxidant compounds.

  11. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Han NK

    2016-04-01

    Full Text Available Na-Kyung Han,1,* Dae Hwan Shin,1,* Jung Seok Kim,1 Kwon Yeon Weon,2 Chang-Young Jang,1 Jin-Seok Kim1 1Research Center for Cell Fate Control (RCCFC and College of Pharmacy, Sookmyung Women’s University, Seoul, 2College of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea *These authors contributed equally to this work Abstract: Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on targeted liposomal delivery systems have indicated the conjugation of hyaluronan (HA, a primary ligand for CD44 surface markers, as an appropriate method for targeting BCSCs. For this study, enriched BCSCs were obtained by culturing MCF-7 breast cancer cells in nonadherent conditions. The enriched BCSCs were challenged with HA-conjugated liposomes encapsulating gemcitabine (2, 2-difluoro-2-deoxycytidine, GEM. In vitro study showed that the HA-conjugated liposomes significantly enhanced the cytotoxicity, anti-migration, and anti-colony formation abilities of GEM through targeting of CD44 expressed on BCSCs. In pharmacokinetic study, area under the drug concentration vs time curve (AUC of the immunoliposomal GEM was 3.5 times higher than that of free GEM, indicating that the HA-conjugated liposomes enhanced the stability of GEM in the bloodstream and therefore prolonged its half-life time. The antitumor effect of the immunoliposomal GEM was 3.3 times higher than that of free GEM in a xenograft mouse model, probably reflecting the unique targeting of the CD44 receptor by HA and the increased cytotoxicity and stability through the liposomal formulation. Furthermore, marginal change in body weight demonstrated that the use of liposomes considerably reduced the systemic toxicity of GEM on normal healthy cells. Taken together

  12. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  13. Neutral and acidic oligosaccharides supplementation does not increase the vaccine antibody response in preterm infants in a randomized clinical trial

    NARCIS (Netherlands)

    van den Berg, Jolice P.; Westerbeek, Elisabeth A. M.; van der Klis, Fiona R. M.; Berbers, Guy A. M.; Lafeber, Harrie N.; van Elburg, Ruurd M.

    2013-01-01

    In preterm infants, a decreased immunological response and lower serological effectiveness are observed after immunizations due to ineffectiveness of both humoral and cellular immune mechanisms. To determine the effect of 80% neutral oligosaccharides [small-chain galacto-oligosaccharides/long-chain

  14. Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk

    NARCIS (Netherlands)

    Albrecht, S.A.; Schols, H.A.; Heuvel, van den E.G.H.M.; Voragen, A.G.J.

    2011-01-01

    The characterization of oligosaccharides in the feces of breast-fed babies is a valuable tool for monitoring the gastrointestinal fate of human milk oligosaccharides (HMOs). In the present study we monitored fecal oligosaccharide profiles together with the HMO-profiles of the respective breast milks

  15. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency.

    Science.gov (United States)

    Quijada-Morín, Natalia; Williams, Pascale; Rivas-Gonzalo, Julián C; Doco, Thierry; Escribano-Bailón, M Teresa

    2014-07-01

    The influence of the proanthocyanidic, polysaccharide and oligosaccharide composition on astringency perception of Tempranillo wines has been evaluated. Statistical analyses revealed the existence of relationships between chemical composition and perceived astringency. Proanthocyanidic subunit distribution had the strongest contribution to the multiple linear regression (MLR) model. Polysaccharide families showed clear opposition to astringency perception according to principal component analysis (PCA) results, being stronger for mannoproteins and rhamnogalacturonan-II (RG-II), but only Polysaccharides Rich in Arabinose and Galactose (PRAGs) were considered in the final fitted MLR model, which explained 96.8% of the variability observed in the data. Oligosaccharides did not show a clear opposition, revealing that structure and size of carbohydrates are important for astringency perception. Mannose and galactose residues in the oligosaccharide fraction are positively related to astringency perception, probably because its presence is consequence of the degradation of polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update.

    Science.gov (United States)

    Chen, Rachel

    2018-04-01

    Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature's catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2' fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.

  17. Impact of Novel Prebiotic Galacto-Oligosaccharides on Various Biomarkers of Colorectal Cancer in Wister Rats

    Directory of Open Access Journals (Sweden)

    Tahir Rasool Qamar

    2017-08-01

    Full Text Available Colorectal cancer (CRC is one of the leading causes of cancer deaths around the globe. Bioactive food ingredients such as prebiotics have protective potential in colon cancer. Data on galacto-oligosaccharides (GalOS against CRC are very limited and GalOS used in this study have β-1,6 and β-1,3 as major glycosidic linkages and, to our best knowledge, were never used before against any cancer treatment. This study aims to investigate the protective role of novel GalOS against various biomarkers of CRC including aberrant crypt foci (ACF, bacterial enzymes and short chain fatty acids (SCFA in a rodent model induced with 1,2-dimethylhydrazine dihydrochloride (DMH. Inulin group was taken as positive control in present study to compare novel GalOS protective effects. GalOS doses of 76–151 mg and inulin doses of 114 mg were given to different groups treated with DMH. Results showed that ACF formation was significantly (p ≤ 0.05 less in high dose GalOS group (27.3%. GalOS also had protective effects against DMH-induced body weight loss and showed higher level of cecal and fecal SCFA (acetate, propionate and butyrate. High doses of GalOS also resulted in significant (p ≤ 0.05 reduction of bacterial enzymatic activities. Increased populations of beneficial bacteria (bifidobacteria and lactobacilli and decreased concentrations of harmful bacteria were observed in all prebiotics treatment groups. It can be concluded that novel GalOS exhibit robust protective activity against ACF formation in vivo.

  18. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans.

    Science.gov (United States)

    Newburg, D S

    2009-04-01

    This review discusses the role of human milk glycans in protecting infants, but the conclusion that the human milk glycans constitute an innate immune system whereby the mother protects her offspring may have general applicability in all mammals, including species of commercial importance. Infants that are not breastfed have a greater incidence of severe diarrhea and respiratory diseases than those who are breastfed. In the past, this had been attributed primarily to human milk secretory antibodies. However, the oligosaccharides are major components of human milk, and milk is also rich in other glycans, including glycoproteins, mucins, glycosaminoglycans, and glycolipids. These milk glycans, especially the oligosaccharides, are composed of thousands of components. The milk factor that promotes gut colonization by Bifidobacterium bifidum was found to be a glycan, and such prebiotic characteristics may contribute to protection against infectious agents. However, the ability of human milk glycans to protect the neonate seems primarily to be due to their inhibition of pathogen binding to their host cell target ligands. Many such examples include specific fucosylated oligosaccharides and glycans that inhibit specific pathogens. Most human milk oligosaccharides are fucosylated, and their production depends on fucosyltransferase enzymes; mutations in these fucosyltransferase genes are common and underlie the various Lewis blood types in humans. Variable expression of specific fucosylated oligosaccharides in milk, also a function of these genes (and maternal Lewis blood type), is significantly associated with the risk of infectious disease in breastfed infants. Human milk also contains major quantities and large numbers of sialylated oligosaccharides, many of which are also present in bovine colostrum. These could similarly inhibit several common viral pathogens. Moreover, human milk oligosaccharides strongly attenuate inflammatory processes in the intestinal mucosa. These

  19. The application of HP-GFC chromatographic method for the analysis of oligosaccharides in bioactive complexes

    Directory of Open Access Journals (Sweden)

    Savić Ivan

    2009-01-01

    Full Text Available The aim of this work was to optimize a GFC method for the analysis of bioactive metal (Cu, Co and Fe complexes with olygosaccharides (dextran and pullulan. Bioactive metal complexes with olygosaccharides were synthesized by original procedure. GFC was used to study the molecular weight distribution, polymerization degree of oligosaccharides and bioactive metal complexes. The metal bounding in complexes depends on the ligand polymerization degree and the presence of OH groups in coordinative sphere of the central metal ion. The interaction between oligosaccharide and metal ions are very important in veterinary medicine, agriculture, pharmacy and medicine.

  20. Structural basis for arabinoxylo‐oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl‐04

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby; Fredslund, Folmer; Vujicic‐Zagar, Andreja

    2013-01-01

    Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo‐oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria...... in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactis Bl‐04. The binding protein BlAXBP, which is associated with an ATP‐binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad...

  1. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  2. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  3. Altered expression of hyaluronan, HAS1-2, and HYAL1-2 in oral lichen planus.

    Science.gov (United States)

    Siponen, Maria; Kullaa, Arja; Nieminen, Pentti; Salo, Tuula; Pasonen-Seppänen, Sanna

    2015-07-01

    Oral lichen planus (OLP) is an immune-mediated mucosal disease of unclear etiology and of unresolved pathogenesis. Hyaluronan (HA) is an extracellular matrix glycosaminoglycan involved in inflammation and tumor progression. However, its presence in OLP has not been reported. We therefore aimed to study the immunohistochemical expression of HA, its receptor CD44, hyaluronan synthases (HAS1-3), and hyaluronidases (HYAL1-2) in OLP. The presence of HA, CD44, HAS1-3, and HYAL1-2 was studied by immunohistochemical methods in 55 OLP and 23 control oral mucosal specimens (CTR). The localization, intensity, and differences of the epithelial expression between OLP and CTRs were analyzed. HA and CD44 were found on cell membranes in the epithelial basal and intermediate layers in CTR and OLP specimens. The HA staining intensity was stronger in the basal layer of the epithelium in OLP than in CTRs (P < 0.001). HAS1 (P = 0.001) and HAS2 (P < 0.001) showed stronger staining in the basal and weaker staining in the superficial (P < 0.001) epithelial layers in OLP than in CTRs. The immunostaining of HAS3 was low in both OLP and CTRs. Positive HYAL1 and HYAL2 staining were mainly found in the basal and intermediate epithelial layers, and their intensities were significantly increased in OLP, except HYAL 2 in the intermediate epithelial layer. HA, HAS1-2, and HYAL1-2 have altered expression in OLP compared to CTRs and may therefore have a role in OLP pathogenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The impact of freeze-drying infant fecal samples on measures of their bacterial community profiles and milk-derived oligosaccharide content

    Directory of Open Access Journals (Sweden)

    Zachery T. Lewis

    2016-01-01

    Full Text Available Infant fecal samples are commonly studied to investigate the impacts of breastfeeding on the development of the microbiota and subsequent health effects. Comparisons of infants living in different geographic regions and environmental contexts are needed to aid our understanding of evolutionarily-selected milk adaptations. However, the preservation of fecal samples from individuals in remote locales until they can be processed can be a challenge. Freeze-drying (lyophilization offers a cost-effective way to preserve some biological samples for transport and analysis at a later date. Currently, it is unknown what, if any, biases are introduced into various analyses by the freeze-drying process. Here, we investigated how freeze-drying affected analysis of two relevant and intertwined aspects of infant fecal samples, marker gene amplicon sequencing of the bacterial community and the fecal oligosaccharide profile (undigested human milk oligosaccharides. No differences were discovered between the fecal oligosaccharide profiles of wet and freeze-dried samples. The marker gene sequencing data showed an increase in proportional representation of Bacteriodes and a decrease in detection of bifidobacteria and members of class Bacilli after freeze-drying. This sample treatment bias may possibly be related to the cell morphology of these different taxa (Gram status. However, these effects did not overwhelm the natural variation among individuals, as the community data still strongly grouped by subject and not by freeze-drying status. We also found that compensating for sample concentration during freeze-drying, while not necessary, was also not detrimental. Freeze-drying may therefore be an acceptable method of sample preservation and mass reduction for some studies of microbial ecology and milk glycan analysis.

  5. Intra-articular hyaluronan is without clinical effect in knee osteoarthritis: a multicentre, randomised, placebo-controlled, double-blind study of 337 patients followed for 1 year

    DEFF Research Database (Denmark)

    Jørgensen, Anette; Stengaard-Pedersen, Kristian; Simonsen, Lars Ole

    2010-01-01

    Objective To examine the long-term efficacy and safety of five intra-articular injections with hyaluronan in knee osteoarthritis. Methods A multicentre, randomised, placebo-controlled double-blind study of 337 patients fulfilling the American College of Rheumatology (ACR) criteria for knee...... osteoarthritis (clinical and laboratory) and with a Lequesne algofunctional index score (LFI) of 10 or greater. Patients received a hyaluronan product (sodium hyaluronate; Hyalgan) (n= 167) or saline (n= 170) intra-articularly weekly for 5 weeks and were followed up to 1 year. Time to recurrence was the primary...... efficacy parameter. LFI, pain on walking 50 m based on visual analogue scale (VAS pain 50 m), paracetamol consumption, patients' global assessment, Nottingham health profile, joint effusion and number of responders were secondary efficacy parameters. The efficacy parameters were analysed by intention...

  6. LICHENS' B-OLIGOSACCHARIDES IN THE CORRECTION OF METABOLIC DISORDERS IN TYPE 2 DIABETES MELLITUS.

    Science.gov (United States)

    Kershengolts, B M; Sydykova, L A; Sharoyko, V V; Anshakova, V V; Stepanova, A V; Varfolomeeva, N A

    2015-01-01

    Lichens of the genus Cladonia are used as medicinal plants in folk medicine. Biologically active food supplement (BAFS) on the basis of lichens p. Cladonia was derived by mechanical-chemical biotechnology in the Educational-Research-Engineering Laboratory "Mechanical-Chemical Biotechnology" of the North-Eastern Federal University (NEFU). As a result of biotech impact, the solid β-glycoside bonds are destructed on β-oligosaccharide molecules, and other groups of lichen BAS is mobilized. The content of hydrolysable carbohydrates in samples of lichen increased 8 times after mechanical activation. The aim of investigation was to study the effects of BAFS "Yagel-Detox" in patients with type 2 diabetes mellitus (DM 2). The 150 patients (group 1--100 patients receiving "Yagel-Detox", group 2--50 patients receiving placebo) with a diagnosis DM 2 were examined. The research included: general clinical and instrumental examination, biochemical and clinical blood tests. "Yagel-Detox" was used 1 capsule 3 times a day, the rate of admission was 3 months. Clinical trials have shown that 3-month intake of BAFS "Yagel-Detox" reduces the concentration of blood glucose 1.3 1.6 times (in the control group--1.2 ÷ 1.4 times), glycosylated hemoglobin--from 9.8 ÷ 11.4% to 7.6% (in the control group--1.0%). The concentration of low-density lipoprotein (LDL) reduced on 1.3% through 6 months. Patients of both groups were on the similar tablet glucose-lowering therapy (randomized treatment), which have not been adjusted. The obtained results allow us to recommend BAFS "Yagel-Detox" as an additional remedy to normalize blood glucose concentration in patients with DM 2.

  7. The use of dead-end and cross-flow nanofiltration to purify prebiotic oligosaccharides from reaction mixtures

    Directory of Open Access Journals (Sweden)

    Alistair S. Grandison

    2002-11-01

    Full Text Available Nanofiltration (NF of model sugar solutions and commercial oligosaccharide mixtures were studied in both dead-end and cross-flow modes. Preliminary trials, with a dead-end filtration cell, demonstrated the feasibility of fractionating monosaccharides from disaccharides and oligosaccharides in mixtures, using loose nanofiltration (NF-CA-50, NF-TFC-50 membranes. During the nanofiltration purification of a commercial oligosaccharide mixture, yields of 19% (w w-1 for the monosaccharides and 88% (w w-1 for di, and oligosaccharides were obtained for the NF-TFC-50 membrane after four filtration steps, indicating that removal of the monosaccharides is possible, with only minor losses of the oligosaccharide content of the mixture. The effects of pressure, feed concentration, and filtration temperature were studied in similar experiments carried out in a cross-flow system, in full recycle mode of operation. The rejection rates of the sugar components increased with increasing pressure, and decreased with both increasing total sugar concentration in the feed and increasing temperature. Continuous diafiltration (CD purification of model sugar solutions and commercial oligosaccharide mixtures using NF-CA-50 (at 25oC and DS-5-DL (at 60oC membranes, gave yield values of 14 to 18% for the monosaccharide, 59 to 89% for the disaccharide and 81 to 98% for the trisaccharide present in the feed. The study clearly demonstrates the potential of cross flow nanofiltration in the purification of oligosaccharide mixtures from the contaminant monosaccharides.

  8. Dictyostelium discoideum: mutants in the biosynthesis of the lipid-linked precursor of N-linked oligosaccharides

    International Nuclear Information System (INIS)

    Freeze, H.; Willies, L.; Hamilton, S.

    1986-01-01

    The lysosomal enzymes of Dictyostelium discoideum share highly immunogenic oligosaccharides which contain multiple Man-6-SO 4 residues. Two mutant strains which lack the shared antigenic determinant were analyzed in an attempt to identify the primary defect in each. [ 3 H]Man labelled N-linked oligosaccharides of secreted glycoproteins were released by Endo/PNGaseF digestion and analyzed. Both of the mutant strains produced smaller, less sulfated oligosaccharides compared to the wild-type, yet both still contained considerable amounts of Man-6-SO 4 . The size of the precursor lipid-linked oligosaccharide from the wild-type is consistent with a Glc 3 Man 9 GlcNAc 2 structure, while those from both of the mutants have an oligosaccharide the size of Man 5 GlcNAc 2 . The authors conclude that both of the mutants are defective in the biosynthesis of the precursor oligosaccharide. Both oligosaccharides from the mutants contain a tri-mannosyl core and are not glucosylated. Two of the five Man residues are released by a 1,2 specific α mannosidase. Based on the size and mannosidase digestions the authors conclude that 4/5 of the Man residues on the α1,6 branch of the β-linked Man residues are missing. Thus, these residues must be required to define the shared antigenic determinant

  9. Characterization and charge distribution of the asparagine-linked oligosaccharides on secreted mouse thyrotropin and free alpha-subunits

    International Nuclear Information System (INIS)

    Gesundheit, N.; Gyves, P.W.; DeCherney, G.S.; Stannard, B.S.; Winston, R.L.; Weintraub, B.D.

    1989-01-01

    Mouse hemipituitaries in vitro secrete TSH, composed of an alpha-beta heterodimer, as well as excess (free) alpha-subunits. By dual metabolic labeling with [35S]sulfate and [3H]mannose, we have characterized oligosaccharides from secreted TSH alpha, TSH beta, and free alpha-subunits released from the apoprotein by enzymatic deglycosylation. Oligosaccharides from each subunit displayed a distinct anion exchange HPLC profile due to a specific pattern of sialylation and sulfation. Six species were obtained from TSH alpha (with two glycosylation sites), including neutral oligosaccharides as well as those with one or two negative charges. For TSH beta (with one glycosylation site) at least eight oligosaccharide species were noted, representing nearly every permutation of sialylation and sulfation; approximately 30% contained three or more negative charges. Analysis of [3H]mannose-labeled oligosaccharides on Concanavalin-A-agarose showed 85% binding for those from TSH alpha, 70% for free alpha, and 50% for those from TSH beta. These data demonstrate that oligosaccharides from secreted TSH beta were more sialylated and sulfated, consistent with a more complex branching pattern, than those from TSH alpha. Oligosaccharides from free alpha-subunit were more sialylated than those from TSH alpha, and the net negative charge was intermediate between those of TSH alpha and TSH beta. Although great microheterogeneity is present even at the single glycosylation site on the beta-subunit of secreted TSH, a pattern of sialylation and sulfation could be discerned

  10. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma.

    Directory of Open Access Journals (Sweden)

    Filip Mundt

    Full Text Available PURPOSE: Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. PATIENTS AND METHODS: Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. RESULTS: Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39, N-ERC/mesothelin (4.81, 3.19-7.93, CERC/mesothelin (3.58, 2.43-5.59 and syndecan-1 (1.34, 1.03-1.77. A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00 in the model generation dataset and 0.83 (0.74-0.91 in the validation dataset, respectively. CONCLUSIONS: A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.

  11. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    OpenAIRE

    Alicia M. Barnett; Nicole C. Roy; Warren C. McNabb; Adrian L. Cookson

    2016-01-01

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial ce...

  12. Effect of lactobacillus acidophilus combined with iso-malto-oligosaccharide on the intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD)

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2005-01-01

    Objective: To investigate the corrective effect of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) on the decreased intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 6 days. One group of models were left with natural recovery and three other groups were given gavage with different strengths of synbiotic for 7 days. In each group, stool specimens were taken from 6-8 rats for flora examination, then the animals sacrificed and intestinal mucus contents of SIgA determined (with RIA) on d6, d9 and d13. Results: The intestinal flora in rat models of AAD was greatly altered with marked reduction in probiotics. Also, the intestinal mucus contents of SIgA were significantly decreased. Treatment with different strengths of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) would significantly improve the condition with SIgA contents approaching normal. Conclusion: Synbiotic treatment could increase the intestinal mucosal secretion of SIgA with restoration of the mucosal immuno-barrier function in rat models with AAD. (authors)

  13. Effect of lactobacillus acidophilus combined with iso-malto-oligosaccharide on the intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD)

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Du; Lichao, Fang; Bingbo, Chen; Hong, Wei [Third Military Medical Univ., Chongqing (China). Laboratory Animal Center

    2005-02-15

    Objective: To investigate the corrective effect of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) on the decreased intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 6 days. One group of models were left with natural recovery and three other groups were given gavage with different strengths of synbiotic for 7 days. In each group, stool specimens were taken from 6-8 rats for flora examination, then the animals sacrificed and intestinal mucus contents of SIgA determined (with RIA) on d6, d9 and d13. Results: The intestinal flora in rat models of AAD was greatly altered with marked reduction in probiotics. Also, the intestinal mucus contents of SIgA were significantly decreased. Treatment with different strengths of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) would significantly improve the condition with SIgA contents approaching normal. Conclusion: Synbiotic treatment could increase the intestinal mucosal secretion of SIgA with restoration of the mucosal immuno-barrier function in rat models with AAD. (authors)

  14. Characterisation of oligosaccharides in vegetables by HPLC and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Štikarovská, M.; Chmelík, Josef

    96(S), - (2002), s. S189-S191 ISSN 0009-2770. [Meeting of Chemistry & Life /2./. Brno, 10.09.2002-11.09.2002] Institutional research plan: CEZ:AV0Z4031919 Keywords : oligosaccharides * HPLC * MALDI-TOF-MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.336, year: 2002

  15. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability

    NARCIS (Netherlands)

    Buitink, J.; Hemminga, M.A.; Hoekstra, F.A.

    2000-01-01

    We examined whether oligosaccharides extend seed longevity by increasing the intracellular glass stability. For that purpose, we used a spin probe technique to measure the molecular mobility and glass transition temperature of the cytoplasm of impatiens (Impatiens walleriana) and bell pepper

  16. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    DEFF Research Database (Denmark)

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickael

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor recep...

  17. Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonelle: protective role of calcium

    NARCIS (Netherlands)

    Bruggencate, ten S.J.M.; Bovee-Oudenhoven, I.M.J.; Lettink-Wissink, M.L.G.; Katan, M.B.; Meer, van der R.

    2004-01-01

    Background: We have shown recently that rapid fermentable fructo-oligosaccharides (FOS) decreased resistance of rats towards salmonella. It is not known whether inulin ( which is fermented more gradually) has similar effects or whether buffering nutrients can counteract the adverse effects of rapid

  18. New futures of sialyated lipo-oligosaccharide structures in campylobacter jejuni

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier)

    2012-01-01

    textabstractThe zoonotic human enteric pathogen Campylobacter jejuni is acquired by humans through contaminated water, poultry, shellfish and pets 1. Motility, chemotaxis, glycosylation and lipo-oligosaccharides (LOS) structures are all different virulence features exploited by C. jejuni to adhere,

  19. Label-free electrochemical analysis of chitosan and glucosamine-containing oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil

    2016-01-01

    Roč. 187, JAN 1 2016 (2016), s. 375-380 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA15-15479S Institutional support: RVO:68081707 Keywords : Chitosan * Glucosamine-containing oligosaccharides * Alkaline deacetylation of N-acetylated glycans Subject RIV: BO - Biophysics Impact factor: 4.798, year: 2016

  20. Protecting intestinal epithelial integrity by galacto-oligosaccharides: Keeping it tight

    NARCIS (Netherlands)

    Akbari, P.

    2016-01-01

    The intestinal barrier serves as a first line of host defense against potentially harmful stressors from the environment ingested with food, and is primarily formed by epithelial cells connected by tight junctions. Oligosaccharides have been identified as components in milk, particularly in

  1. The antioxidant effects of complexes of tilapia fish skin collagen and different marine oligosaccharides

    Science.gov (United States)

    Ren, Shuwen; Li, Jing; Guan, Huashi

    2010-12-01

    An excess of reactive oxygen species (ROS) leads to a variety of chronic health problems. As potent antioxidants, marine bioactive extracts containing oligosaccharides and peptides have been extensively studied. Recently, there is a growing interest in protein-polysaccharide complexes because of their potential uses in pharmaceutical and food industries. However, only few studies are available on the antioxidant activities of such complexes, in terms of their ROS scavenging capability. In this study, we combined different marine oligosaccharides (isolated and purified) with collagen peptides derived from tilapia fish skin, and evaluated the antioxidant activity of the marine peptide-oligosaccharide complexes vis-à-vis the activity of their original component molecules. Biochemical and cellular assays were performed to measure the scavenging effects on 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide radicals, and to evaluate the influences on the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the level of malondialdehyde (MDA) in UV-induced photoaging models. The results indicated that the antioxidant activities of all the complexes were stronger than those of their individual components. Among the 11 complexes tested, two complexes, namely MA1000+CP and κ-ca3000+CP, turned out to be highly effective antioxidants. Although the detailed mechanisms of this improved scavenging ability are not fully understood, this work provides insights into the design of highly efficient peptide-oligosaccharide complexes for potential applications in pharmaceutical, cosmetics and food industries.

  2. Inter-species differences in the growth of bifidobacteria cultured on human milk oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Ročková, Š.; Rada, V.; Nevoral, J.; Maršík, Petr; Vlková, E.; Bunešová, V.

    2012-01-01

    Roč. 57, č. 4 (2012), s. 321-324 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50380511 Keywords : human milk * oligosaccharides * bifidobacteria Subject RIV: GA - Agricultural Economics Impact factor: 0.791, year: 2012

  3. Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum

    DEFF Research Database (Denmark)

    Yin, Heng; Yan, Li; HongYan, Zhang

    2013-01-01

    Chitosan oligosaccharides (collectively, oligochitosan, or COS) are considered to be potent plant immunity elicitors. In this article, the induction of resistance to Sclerotinia sclerotiorum in Brassica napus L. var. Huyou 15 by COS is studied. Even though COS (50 mg mL1) did not affect radial...

  4. Relationships Among Microbial Communities, Maternal Cells, Oligosaccharides, and Macronutrients in Human Milk.

    Science.gov (United States)

    Williams, Janet E; Price, William J; Shafii, Bahman; Yahvah, Katherine M; Bode, Lars; McGuire, Mark A; McGuire, Michelle K

    2017-08-01

    Human milk provides all essential nutrients necessary for early life and is rich in nonnutrients, maternally derived (host) cells, and bacteria, but almost nothing is known about the interplay among these components. Research aim: The primary objective of this research was to characterize relationships among macronutrients, maternal cells, and bacteria in milk. Milk samples were collected from 16 women and analyzed for protein, lipid, fatty acid, lactose, and human milk oligosaccharide concentrations. Concentrations of maternal cells were determined using microscopy, and somatic cell counts were enumerated. Microbial ecologies were characterized using culture-independent methods. Absolute and relative concentrations of maternal cells were mostly consistent within each woman as were relative abundances of bacterial genera, and there were many apparent relationships between these factors. For instance, relative abundance of Serratia was negatively associated with somatic cell counts ( r = -.47, p < .0001) and neutrophil concentration ( r = -.38, p < .0006). Concentrations of several oligosaccharides were correlated with maternally derived cell types as well as somatic cell counts; for example, lacto-N-tetraose and lacto-N-neotetraose were inversely correlated with somatic cell counts ( r = -.64, p = .0082; r = -.52, p = .0387, respectively), and relative abundance of Staphylococcus was positively associated with total oligosaccharide concentration ( r = .69, p = .0034). Complex relationships between milk nutrients and bacterial community profile, maternal cells, and milk oligosaccharides were also apparent. These data support the possibility that profiles of maternally derived cells, nutrient concentrations, and the microbiome of human milk might be interrelated.

  5. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells

    NARCIS (Netherlands)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H.A.M.; Difilippo, Elisabetta; Schols, Henk A.; Schoterman, Margriet H.C.; Garssen, Johan; Braber, Saskia

    2017-01-01

    Purpose: The direct effects of galacto-oligosaccharides (GOS), including Vivinal® GOS syrup (VGOS) and purified Vivinal® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To

  6. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis

    NARCIS (Netherlands)

    Bentsink, L.; Alonso-Blanco, C.; Vreugdenhil, D.; Tesnier, K.; Groot, S.P.C.; Koornneef, M.

    2000-01-01

    Seed oligosaccharides (OSs) and especially raffinose series OSs (RSOs) are hypothesized to play an important role in the acquisition of desiccation tolerance and consequently in seed storability. In the present work we analyzed the seed-soluble OS (sucrose, raffinose, and stachyose) content of

  7. Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides

    NARCIS (Netherlands)

    Zandleven, J.S.; Beldman, G.; Bosveld, M.; Benen, J.A.E.; Voragen, A.G.J.

    2005-01-01

    XGH (xylogalacturonan hydrolase; GH 28) is an enzyme that is capable of degrading XGA (xylogalacturonan), which is a polymer of ¿-D-galacturonic acid, highly substituted with ß-D-xylose. XGA is present in cell walls of various plants and exudates, such as gum tragacanth. XGA oligosaccharides were

  8. Improved oligosaccharide synthesis by protein engineering of b-glucosidase from hyperthermophilic Pyrococcus furiosus

    NARCIS (Netherlands)

    Hanson, T.; Kaper, T.; Oost, van der J.; Vos, de W.M.

    2001-01-01

    Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type -glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type -mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme

  9. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp

    NARCIS (Netherlands)

    Gómez, Belén; Gullón, Beatriz; Yáñez, Remedios; Schols, Henk; Alonso, José L.

    2016-01-01

    Sugar beet pulp (SBP) and lemon peel wastes (LPW) were used to obtain two mixtures of pectic oligosaccharides (denoted as SBPOS and LPOS, respectively). Oligogalacturonides in LPOS showed a larger molecular weight, higher degree of methylation and lower degree of acetylation than the ones in

  10. Galacto-oligosaccharides exert a protective effect against heat stress in a Caco-2 cell model

    NARCIS (Netherlands)

    Varasteh, Soheil; Braber, Saskia; Garssen, Johan; Fink-Gremmels, Johanna

    Thermal stress can evoke a stress response and enhance the synthesis of heat shock proteins, while gut barrier dysfunction is considered as an important adverse effect of thermal stress. Considering the previously described effects of galacto-oligosaccharides, nowadays mainly used in infant

  11. New Prebiotic Blend of Polydextrose and Galacto-oligosaccharides Has a Bifidogenic Effect in Young Infants

    NARCIS (Netherlands)

    Scalabrin, Deolinda M. F.; Mitmesser, Susan H.; Welling, Gjalt W.; Harris, Cheryl L.; Marunycz, John D.; Walker, D. Carey; Bos, Nico A.; Tolkko, Satu; Salminen, Seppo; Vanderhoof, Jon A.

    Objective: The aim of the study was to evaluate the effect of infant formula with polydextrose (PDX) and galacto-oligosaccharides (GOS) on fecal microbiota and secretory IgA (sIgA). Materials and Methods: In the present double-blind, randomized study, term infants received control (Enfamil Lipil) or

  12. Enzymatic production and purification of prebiotic oligosaccharides by chromatography and membrane systems

    DEFF Research Database (Denmark)

    Michalak, Malwina

    of sialylated oligosaccharides was obtained with the same donor of sialic acid – cGMP and different glycans with a new Trypanosoma rangeli transsialidase, Tr13. Well-documented prebiotics galactooligosaccharides (GOS), isomaltooligosaccharides (IMO) and lactulose, and three other compounds, i.e., melibiose...

  13. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera.

    Science.gov (United States)

    Tao, Zhi-Peng; Sun, Le-Chang; Qiu, Xu-Jian; Cai, Qiu-Feng; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2016-07-01

    In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides. A cellulase was purified from the hepatopancreas of abalone by ammonium sulfate precipitation and two-steps column chromatography. The molecular weight of the cellulase was 45 kDa on SDS-PAGE. Peptide mass fingerprinting analysis yielded 103 amino acid residues, which were identical to cellulases from other species of abalone. Substrate specificity analysis indicated that the cellulase is an endo-1,4-β-glucanase. Hydrolysis of seaweed Porphyra haitanensis polysaccharides by the enzyme produced oligosaccharides with degree of polymerisation of two to four, whose monosaccharide composition was 58% galactose, 4% glucose and 38% xylose. The oligosaccharides revealed 2,2'-diphenyl-1-picrylhydrazyl free radical as well as hydrogen peroxide scavenging activity. It is feasible and meaningful to utilise cellulase from the viscera of abalone for preparation of functional oligosaccharides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Efeito da utilização de oligossacarídeo manose e acidificantes sobre o desempenho de coelhos em crescimento Effect of the utilization of oligosaccharide mannose and acidifiers on growing rabbits performance

    Directory of Open Access Journals (Sweden)

    Claudio Scapinello

    2001-07-01

    Full Text Available Foi conduzido um experimento com o objetivo de se determinar os efeitos da adição às rações de ácido fumárico, Oligossacarídeo manose (BIO-MOS®, acidificante (ACID-ALL® e a combinação de oligossacarídeo com acidificantes sobre o desempenho de coelhos em crescimento. Foram utilizados 100 coelhos da raça Nova Zelândia Branco, 50 machos e 50 fêmeas, de 39 a 75 dias de idade, distribuídos em um delineamento experimental inteiramente casualizado com cinco tratamentos e 10 repetições e dois animais por unidade experimental. Considerando-se os períodos analisados 39-50 dias de idade e 39-75 dias, nenhuma das características de desempenho estudada foi afetada pela adição de oligossacarídeo, acidificantes ou a combinação de ambos.A trial was carried out to verify the effects of the addition of fumaric acid, oligosaccharide mannose (BIO-MOS®, acidifiers (ACID-ALL® and oligosaccharide + acidifiers in diets growing rabbits on performance. One hundred NZW rabbits, 50 males and 50 females from 39 to 75 days old, distributed in a randomized experimental design with five treatments, 10 replications and two animals by experimental unit. In the period from 39-50 and 39-75 days of experiment none of these performance characteristics was affected by inclusion of oligosaccharide mannose, acidifiers and oligosaccharide +acidifiers did not influence the performance of growing rabbits.

  15. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    International Nuclear Information System (INIS)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P.

    1991-01-01

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with [ 3 H]glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Galβ1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked α1-6 to the asparagine-linked N-acetylglucosamine

  16. Effect of dietary mannan oligosaccharide from Saccharomyces cerevisiae on live performance of broilers under Clostridium perfringens challenge

    Directory of Open Access Journals (Sweden)

    Alaeldein M. Abudabos

    2013-04-01

    Full Text Available A 30-day broiler cage trial was conducted to evaluate the effect of dietary mannan oligosaccharide (MOS from one commercial product (SAF-Mannan on growth parameters, gut health and control pathogen colonization of broilers under Clostridium perfringens (C. perfringens challenge. One hundred, 0-day old male Ross 308 broilers were allocated in 4 experimental treatments for 30 days. The four dietary treatments were T1, standard broiler basal diets without any medication as a control (+CONT; T2, basal diets as in T1 plus C. perfringens challenge (-CONT; T3, enramycin 0.1 g/kg of feed plus C. perfringens challenge (ENRA; T4, SAF-Mannan at 0.5 g/kg in starter and finisher diets plus C. perfringens challenge (SAF. Overall, feed conversion ratio (FCR and body weight gain (BWG in treatments ENRA and SAF were significantly better (P<0.01 than the –CONT treatment, whereas treatment +CONT was intermediate and not different from SAF. Feed intake (FI was not influenced by treatment. SAF-Mannan supplementation was able to lower the ileal C. perfringens count as compared to all other treatments (P<0.05. The changes in C. perfringens count appear in parallel to observed improvement in the cumulative FCR.  The results from this study clearly indicated that SAF-Mannan could act as a replacement for antimicrobial growth promoters in broilers (AGPs. SAF-Mannan level of 0.05% was enough to achieve a response competitive with that of the antibiotic.

  17. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    Directory of Open Access Journals (Sweden)

    K. Kollárová

    2012-01-01

    Full Text Available The effect of galactoglucomannan oligosaccharides (GGMOs compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains and GGMOs-r (with reduced reducing ends on mung bean (Vigna radiata (L. Wilczek adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA, while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  18. Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice.

    Science.gov (United States)

    Bindels, Laure B; Neyrinck, Audrey M; Salazar, Nuria; Taminiau, Bernard; Druart, Céline; Muccioli, Giulio G; François, Emmanuelle; Blecker, Christophe; Richel, Aurore; Daube, Georges; Mahillon, Jacques; de los Reyes-Gavilán, Clara G; Cani, Patrice D; Delzenne, Nathalie M

    2015-01-01

    We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.

  19. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions.

    Science.gov (United States)

    Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin

    2014-05-01

    There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.

  20. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    Science.gov (United States)

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented. PMID:24690139

  1. Structure of the oligosaccharides isolated from Prosopis juliflora (Sw.) DC. seed polysaccharide.

    Science.gov (United States)

    Bhatia, Himani; Gupta, P K; Soni, P L

    2014-01-30

    A water soluble polysaccharide isolated from Prosopis juliflora seed was purified and major homogenous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of d-galactose and d-mannose in the ratio 1:1.10, respectively. Partial hydrolysis of the polysaccharide furnished one hepta-(I), one octa-(II) and nona-(III) saccharides. Hydrolysis of oligosaccharide I, II and III followed by GLC analysis furnished d-galactose and d-mannose in the ratio 3:4, 3:5 and 5:4, respectively. Methylation analysis, periodate oxidation and (1)H NMR spectral studies of oligosaccharides indicated the presence of (1→4) mannose units linked to (1→6) galactose units. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling.

    Science.gov (United States)

    Cai, Tie; Ting, Hu; Jin-Lan, Zhang

    2016-01-01

    Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, M.P.; Sá, V.K. de; Martins, V. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, J.R.M. [Disciplina de Biologia Molecular, Departamento de Bioquímica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Disciplina de Endocrinologia e Metabolismo, Laboratório de Endocrinologia Molecular e Translacional-LEMT, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Parra, E.R. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Mendes, A. [Disciplina de Biologia Molecular, Departamento de Bioquímica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Andrade, P.C. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Reis, R.M. [Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Guimarães (Portugal); Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Fundação Pio XII, Barretos, SP (Brazil); Longatto-Filho, A. [Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Guimarães (Portugal); Laboratório de Investigação Médica (LIM 14), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Fundação Pio XII, Barretos, SP (Brazil); Oliveira, C.Z. [Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Fundação Pio XII, Barretos, SP (Brazil); Takagaki, T. [Divisão de Pneumologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Carraro, D.M. [Centro Internacional de Pesquisa/CIPE, AC Camargo Cancer Center, São Paulo, SP (Brazil); Nader, H.B. [Disciplina de Biologia Molecular, Departamento de Bioquímica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-08

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.

  4. Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin

    Directory of Open Access Journals (Sweden)

    Pierfrancesco Morganti

    2014-07-01

    Full Text Available The paper describes the process to produce Chitin Nanofibril-Hyaluronan nanoparticles (CN-HA, showing their ability to easily load active ingredients, facilitate penetration through the skin layers, and increase their effectiveness and safety as an anti-aging agent. Size and characterization of CN-HA nanoparticles were determined by Scanning Electron Microscopy (SEM and Zetasizer, while encapsulation efficiency and loading capacity of the entrapped ingredients were controlled by chromatographic and spectrophotometric methods. Safeness was evidenced on fibroblasts and keratinocytes culture viability by the MTT (Methylthiazol assay; anti-aging activity was evaluated in vitro measuring antioxidant capacity, anti-collagenase activity, and metalloproteinase and pro-inflammatory release; efficacy was shown in vivo by a double-blind vehicle-controlled study for 60 days on 60 women affected by photo-aging. In addition, the CN-HA nanoparticles have shown interesting possibility to be used as active ingredients, for designing and making advanced medication by the electrospinning technology, as well as to produce transparent films for food packaging, by the casting method, and can be used also in their dry form as tissues or films without adding preservatives. These unusual CN-HA nanoparticles obtained from the use of raw materials of waste origin may offer an unprecedented occasion for making innovative products, ameliorating the quality of life, reducing pollution and safeguarding the environment’s integrity.

  5. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    International Nuclear Information System (INIS)

    Rangel, M.P.; Sá, V.K. de; Martins, V.; Martins, J.R.M.; Parra, E.R.; Mendes, A.; Andrade, P.C.; Reis, R.M.; Longatto-Filho, A.; Oliveira, C.Z.; Takagaki, T.; Carraro, D.M.; Nader, H.B.; Capelozzi, V.L.

    2015-01-01

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology

  6. Pursuing Intracellular Pathogens with Hyaluronan. From a 'Pro-Infection' Polymer to a Biomaterial for 'Trojan Horse' Systems.

    Science.gov (United States)

    Montanari, Elita; Di Meo, Chiara; Oates, Angela; Coviello, Tommasina; Matricardi, Pietro

    2018-04-18

    Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is ‘Cluster of Differentiation 44’ (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as ‘reservoirs’ for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a ‘Trojan Horse’. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.

  7. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    Science.gov (United States)

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  8. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    International Nuclear Information System (INIS)

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-01-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  9. Effect of Hyaluronan on Developmental Competence and Quality of Oocytes and Obtained Blastocysts from In Vitro Maturation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    Jolanta Opiela

    2014-01-01

    Full Text Available The objective of the present study was to evaluate the effect of hyaluronan (HA during IVM on meiotic maturation, embryonic development, and the quality of oocytes, granulosa cells (GC, and obtained blastocysts. COCs were matured in vitro in control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference (P<0.001 was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P<0.01. Our results suggest that addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found significantly higher Bax mRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the success of the IVP procedure.

  10. Feruloylated and Nonferuloylated Arabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth of Bifidobacterium spp. in Human Fecal in Vitro Fermentations

    DEFF Research Database (Denmark)

    Holck, Jesper; Lorentzen, Andrea; Vigsnæs, Louise Kristine

    2011-01-01

    The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD...... feruloylated arabino-oligosaccharides from sugar beet pulp and an initial indication of the potentially larger bifidogenic effect of relatively long-chain arabino-oligosaccharides as opposed to short-chain arabino-oligosaccharides....

  11. Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

    OpenAIRE

    Marcobal, Angela; Barboza, Mariana; Sonnenburg, Erica D.; Pudlo, Nicholas; Martens, Eric C.; Desai, Prerak; Lebrilla, Carlito B.; Weimer, Bart C.; Mills, David A.; German, J. Bruce; Sonnenburg, Justin L.

    2011-01-01

    Newborns are colonized with an intestinal microbiota shortly after birth but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mu...

  12. Aureobasidium pullulans Fermented Feruloyl Oligosaccharide: Optimization of Production, Preliminary Characterization, and Antioxidant Activity

    OpenAIRE

    Xiaohong Yu; Zhenxin Gu

    2013-01-01

    Wheat bran (WB) was subjected to processing with Aureobasidium pullulans (A. pullulans) under selected conditions to partially break down the xylan into soluble products (mainly feruloyl oligosaccharides, FOs). The objective of this study was to investigate the technology for one-step fermentation of WB by A. pullulans without melanin secretion to produce FOs as well as to determine their structural features and antioxidant activity. Initial pH, inoculation quantity, and fermentation temperat...

  13. Determination of pore diameter from rejection measurements with a mixture of oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Gomez, Heriberto; Rogel-Hernandez, Eduardo [Universidad Autonoma de Baja California-Tijuana, Facultad de Ciencias Quimicas e Ingenieria, Tijuana, BC (Mexico); Lin, Shui Wai [Centro de Graduados e Investigacion del Instituto Tecnologico de Tijuana, Apdo. Postal 1166, Tijuana, BC (Mexico)

    2005-04-01

    This paper present a method to determine pore diameters and effective transport through membranes using a mixture of oligosaccharides. The results are compared with the Maxwell-Stefan equations. The partition coefficients of the solutes are a function of the pore diameter according to the Ferry equation. Thus, with the pore diameter as the only unknown parameter, rejection is described and the pore diameter is obtained by a Marquardt-Levenberg optimization procedure. (orig.)

  14. Voltammetric determination of Os(VI)-modified oligo-saccharides at nanomolar level

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2012-01-01

    Roč. 88, DEC (2012), s. 8-14 ISSN 1567-5394 R&D Projects: GA ČR(CZ) GPP301/10/P548; GA ČR(CZ) GAP301/11/2055; GA MŠk(CZ) ME09038 Institutional research plan: CEZ:AV0Z50040702 Keywords : electroactive labels * mercury electrodes * Os(VI)-modified oligosaccharides Subject RIV: BO - Biophysics Impact factor: 3.947, year: 2012

  15. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    Science.gov (United States)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-05-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  16. Variation of fibrinogen oligosaccharide structure in the acute phase response: Possible haemorrhagic implications

    Directory of Open Access Journals (Sweden)

    Stephen O. Brennan

    2015-06-01

    Conclusions and implications: The failure of incorporation Gal excludes the possibility of the hepatic NAcNeu Gal transferase capping the oligosaccharides with sialic acid. This has two desirable haemostatic outcomes: fibrin monomers will polymerise and form clots more rapidly, and two galactose residues can never be exposed diminishing uptake of the protein by the asialoglycoprotein receptor and ramping up concentration at a time of challenge.

  17. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    Science.gov (United States)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-02-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  18. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2011-11-01

    Full Text Available Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA, jasmonic acid (JA and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i Pathogenesis-Related (PR proteins with antifungal and antibacterial activities; (ii defense enzymes such as pheylalanine ammonia lyase (PAL and lipoxygenase (LOX which determine accumulation of phenylpropanoid compounds (PPCs and oxylipins with antiviral, antifugal and antibacterial activities and iii enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  20. Structural identification of novel oligosaccharides produced by Lactobacillus bulgaricus and Lactobacillus plantarum.

    Science.gov (United States)

    Black, Brenna A; Lee, Vivian S Y; Zhao, Yuan Yuan; Hu, Ying; Curtis, Jonathan M; Gänzle, Michael G

    2012-05-16

    β-Galactosidases (β-Gal) of lactic acid bacteria produce oligosaccharides from lactose when suitable acceptor carbohydrates are present. This study aimed to elucidate the structure of oligosaccharides formed by galactosylation of N-acetylglucosamine (GlcNAc) and fucose. Crude cellular extract of Lactobacillus bulgaricus and LacLM of Lactobacillus plantarum were used as sources of β-Gal activity. Disaccharides obtained by galactosylation of GlcNAc were identified as Gal-β-(1→4)-GlcNAc or Gal-β-(1→6)-GlcNAc by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and comparison with external standards. Trisaccharides were identified as Gal-β-(1→6)-Gal-β-(1→[4 or 6])-GlcNAc by LC-MS, analysis of the MS/MS spectra of selected in-source fragment ions, and their relative retention times. LC-MS analysis revealed the presence of five galactosylated fucosides, but their linkage type could not be identified, partly due to the lack of reference compounds. β-Gal of lactic acid bacteria may serve as suitable tools for the chemoenzymatic synthesis of therapeutic oligosaccharides.

  1. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency.

    Science.gov (United States)

    Boulet, Jean-Claude; Trarieux, Corinne; Souquet, Jean-Marc; Ducasse, Maris-Agnés; Caillé, Soline; Samson, Alain; Williams, Pascale; Doco, Thierry; Cheynier, Véronique

    2016-01-01

    Astringency elicited by tannins is usually assessed by tasting. Alternative methods involving tannin precipitation have been proposed, but they remain time-consuming. Our goal was to propose a faster method and investigate the links between wine composition and astringency. Red wines covering a wide range of astringency intensities, assessed by sensory analysis, were selected. Prediction models based on multiple linear regression (MLR) were built using UV spectrophotometry (190-400 nm) and chemical analysis (enological analysis, polyphenols, oligosaccharides and polysaccharides). Astringency intensity was strongly correlated (R(2) = 0.825) with tannin precipitation by bovine serum albumin (BSA). Wine absorbances at 230 nm (A230) proved more suitable for astringency prediction (R(2) = 0.705) than A280 (R(2) = 0.56) or tannin concentration estimated by phloroglucinolysis (R(2) = 0.59). Three variable models built with A230, oligosaccharides and polysaccharides presented high R(2) and low errors of cross-validation. These models confirmed that polysaccharides decrease astringency perception and indicated a positive relationship between oligosaccharides and astringency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics.

    Science.gov (United States)

    Vandenplas, Yvan; Zakharova, Irina; Dmitrieva, Yulia

    2015-05-14

    The gastrointestinal (GI) microbiota differs between breast-fed and classic infant formula-fed infants. Breast milk is rich in prebiotic oligosaccharides (OS) and may also contain some probiotics, but scientific societies do not recommend the addition of prebiotic OS or probiotics to standard infant formula. Nevertheless, many infant formula companies often add one or the other or both. Different types of prebiotic OS are used in infant formula, including galacto-oligosaccharide, fructo-oligosaccharide, polydextrose and mixtures of these OS, but none adds human milk OS. There is evidence that the addition of prebiotics to infant formula brings the GI microbiota of formula-fed infants closer to that of breast-fed infants. Prebiotics change gut metabolic activity (by decreasing stool pH and increasing SCFA), have a bifidogenic effect and bring stool consistency and defecation frequency closer to those of breast-fed infants. Although there is only limited evidence that these changes in GI microbiota induce a significant clinical benefit for the immune system, interesting positive trends have been observed in some markers. Additionally, adverse effects are extremely seldom. Prebiotics are added to infant formula because breast milk contains human milk OS. Because most studies suggest a trend of beneficial effects and because these ingredients are very safe, prebiotics bring infant formula one step closer to the golden standard of breast milk.

  3. FNCA guideline on development of hydrogel and oligosaccharides by radiation processing

    International Nuclear Information System (INIS)

    Kudo, Hisaaki; Yoshii, Fumio; Kume, Tamikazu

    2009-10-01

    This report summarizes the current status of development of hydrogel and oligosaccharides by radiation (electron beams and gamma rays) processing in Asian countries, as an outcome of activities of the FNCA (Forum for Nuclear Co-operation in Asia)-industry group during the phase 2 (2006-2008), as one of FNCA Guidelines. The nine countries, Bangladesh (since 2007), China, Indonesia, Japan, Korea, Malaysia, Philippines, Thailand and Vietnam, participates in the phase 2 of the FNCA-industry group, focusing on radiation processing of natural polymers. Participating countries have been studying radiation processing of natural polymers such as chitosan from shrimp/crab shells and carrageenan taken from seaweeds, in terms of cross-linking for gel and degradation for oligosaccharides. The former obtains hydrogel which can absorb a lot of water, and application for wound dressing and super water absorbent in the fields of medical and environmental conservation are expected. The latter obtained oligosaccharides have functions as growth promoter and elicitor activator of plants, sea-creatures and livestocks etc., and application in the fields of agri- and aqua- cultures are expected. This Guideline consists of 3 parts; part 1 describes the outline of radiation chemistry of polymers; part 2 compiles the protocols of versatile applications; part 3 refers the examples of cost analysis and current status of the technology. This Guideline would facilitate development, commercialization and technical transfer to end-users of radiation processing of natural polymers. (author)

  4. Oligosaccharide-specific receptors for gangliosides in the central nervous system

    International Nuclear Information System (INIS)

    Tiemeyer, M.J.

    1989-01-01

    Synthetic ganglioside-derivatized proteins were prepared, radiolabeled, and used as ligands to search for specific receptors on rat brain membranes. Chemical derivatization schemes were designed to covalently link gangliosides (specifically, G T1b ) to bovine serum albumin (BSA) via their ceramide portions leaving the glycolipid oligosaccharides intact and limiting the ability of the ganglioside moiety to interact with brain membranes non-specifically by insertion or hydrophobic adsorption. Following characterization and tyrosine-radioiodination, 125 I-(G T1b ) 4 BSA (BSA derivatized with 4 G T1b moieties/protein molecule), revealed a high affinity and saturable binding site on rat brain membranes. Pretreatment of brain membranes with low concentrations of trypsin blocked binding, consistent with the presence of a proteinaceous ganglioside-receptor. The most potent lipid inhibitors of 125 I-(G T1b ) 4 BSA binding were the gangliosides G T1b , G D1b , and G Q1b which share common structural features in their oligosaccharide portions; maximal inhibitory potency required a full length gangliotetraose oligosaccharide core and α2-8 linked sialic acid

  5. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    Science.gov (United States)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  6. Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides.

    Science.gov (United States)

    Finke, B; Mank, M; Daniel, H; Stahl, B

    2000-09-10

    Pooled human milk oligosaccharides were separated into neutral and several acidic oligosaccharide fractions by preparative anion-exchange chromatography (AEC) using AG 1-X2. The oligosaccharides were eluted stepwise using deionized water and three different concentrations of ammonium acetate buffer, pH 6.8. The elution order of the compounds was determined directly by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of the AEC effluent without any cleanup or concentration steps. Up to a concentration of 500 mM ammonium acetate, the masses of acidic oligosaccharides could be detected by screening the fractions in an automated mode. The combination of the improved chromatographic procedure, the applied MALDI matrices, and operating parameters is suitable for the detection of neutral oligosaccharides as well as acidic oligosaccharides. The method provides high sensitivity and mass accuracy, including for the high-molecular-weight monosialylated oligosaccharides up to 2751.5 Da. The applied ionic strength of the anion-exchange eluents enables a rapid and an unambiguous composition assignment by MALDI-MS for neutral, monosialylated, and disialylated oligosaccharides from human milk. The acidic fractions have to be desalted by electrodialysis and were finally analyzed by HPAEC-PAD to get a high-resolution "fingerprint" of structures present in each fraction. From these analyses, it can be concluded that the isomeric variety of monosialylated oligosaccharides occurring in human milk is higher than estimated before. Copyright 2000 Academic Press.

  7. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels.

    Science.gov (United States)

    Gurski, Lisa A; Xu, Xian; Labrada, Lyana N; Nguyen, Ngoc T; Xiao, Longxi; van Golen, Kenneth L; Jia, Xinqiao; Farach-Carson, Mary C

    2012-01-01

    To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, "invadopodia", consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of

  9. Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein

    Science.gov (United States)

    Christophersen, Claus T.; Petersen, Anne; Licht, Tine R.; Conlon, Michael A.

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic simulator consisting of a proximal vessel (PV) (pH 5.5) and a distal vessel (DV) (pH 6.8) inoculated with human faeces and media containing soy protein. Genotoxicity of the liquid phase and microbial population changes in the vessels were measured. Soy protein (3%) was fermented with 1% low amylose cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse correlation between levels of damage induced by the ferments and levels of sulphate-reducing bacteria, Bacteroides fragilis, and acetate. In conclusion, dietary XOS can potentially modulate the genotoxicity of the colonic environment and specific bacterial groups and short chain fatty acids may mediate this. PMID:24064573

  10. Chitosan oligosaccharides with degree of polymerization 2-6 induces apoptosis in human colon carcinoma HCT116 cells.

    Science.gov (United States)

    Zou, Pan; Yuan, Shoujun; Yang, Xin; Zhai, Xingchen; Wang, Jing

    2018-01-05

    Colon cancer is the third most common cancer, and yet there is a lack of effective therapeutic method with low side effects. Chitosan oligosaccharides (COS) is derived from chitosan after chitin deacetylation, and attracts more interests due to smaller molecular weight and soluble property. Previously, COS, mainly absorbed through intestinal epithelia, has been reported to exhibit many bioactivities, especially its anti-tumor effect. Recent references pay little attention to molecular weight distribution which is crucial for understanding its biological behavior. Here, we studied reducing sugar content and degree of polymerization (DP) of COS. 86.73% reducing sugar exists in COS sample and the content of chitosan fractions with 2-6 is 85.8%. COS suppressed the growth of HCT116 cells in vitro and in vivo, and the inhibition rate of tumor weight in vivo was high up to 58.6%. Moreover, the morphology observation, flow cytometry analysis and mRNA expression were applied to study the apoptosis related mechanism. COS treatment promoted mitosis, late stage apoptosis and S cell cycle arrest in HCT116 cells, and enhanced the mRNA expression of BAK and reduce BCL-2 and BCL-x L . These findings may provide an important clue for clinical applications of COS as anti-tumor drug or pharmaceutic adjuvant in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Immune response, stress resistance and bacterial challenge in juvenile rainbow trouts Oncorhynchus mykiss fed diets containing chitosan-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Lin LUO, Xuefeng CAI, Chuan HE, Min XUE, Xiufeng WU , Haining CAO

    2009-12-01

    Full Text Available Effects of dietary supplementation of chitosan-oligosaccharides (COS on the growth performance, immune response, stress resistance, and disease resistance of juvenile rainbow trout Oncorhynchus mykiss were studied. Four experimental diets containing 0, 20, 40, or 60 mg/kg COS (COS0, COS20, COS40, and COS60, respectively were fed to juvenile rainbow trout (initial weight = 5.2 ± 0.3 g for 8 weeks. By the end of the feeding trial, representative groups of fish from each dietary treatment were challenged with stressor (30 sec air exposure and pathogen exposure (intraperitoneal injection with Aeromonas hydrophila. Results showed that supplementation of COS in diets did not affect production performance and body composition of rainbow trout. However, fish fed the COS40 diet demonstrated improved phagocytic activities, respiratory burst activities and decreased serum cortisol level. Additionally, survival following A. hydrophila challenge was significant higher among fish fed the COS-supplemented feeds, although there was no difference based on the level of supplementation. The present study suggests that COS can be used as an immuno-stimulant in rainbow trout feeds [Current Zoology 55 (6: 416– 422, 2009].

  12. The role of human milk oligosaccharides in preventing necrotising ...

    African Journals Online (AJOL)

    2013-07-11

    Jul 11, 2013 ... N-acteylneuaminic acid.1,12. With a few exceptions, all HMOs contain lactose at their reducing end. .... antiretroviral treatment, maternal sepsis and immunological abnormalities. ..... Flash-heat inactivation of HIV-1 in human.

  13. Chromatographic profiles of blood plasma free oligosaccharides in patients with cardiovascular disease

    Directory of Open Access Journals (Sweden)

    I. U. Pismenetskaya

    2015-03-01

    Full Text Available Free oligosaccharides (FOS are unbound structural analogs of glycans of glycoconjugates. There are several sources of them inside the cell: 1 multistep pathways of N-glycosylation, 2 the cell quality control and endoplastic reticulum-associated degradation of mis-glycosylated and/or misfolded glycoproteins, 3 lysosomal degradation of mature glycoconjugates. Some of these FOS are the earliest indicators of potential glycosylation alterations that would be revealed in the course of the cell quality control and the endoplastic reticulum-associated degradation. Ischemia and hypertension cause stress of intracellular organelles leading to disruption of their functions. The main objective of the work was the characterization of free oligosaccharides (FOS in plasma obtained from patients with cardiovascular diseases compared to those from healthy subjects to evaluate the potential of these compounds for diagnostics. Chromatographic profiles of FOS composed of 4–12 monosaccharides were obtained and analyzed for quantitative and qualitative differences between the samples. After plasma deproteinization and FOS purification the oligosaccharides were labelled with anthranilic acid (2-AA, separated into the neutral and charged with QAE Sephadex (Q25-120 chromatography and analysed using high-performance liquid chromatography (HPLC. Glucose unit values were determined following comparison with a 2-AA-labelled glucose oligomer ladder derived from a partial hydrolysate of dextran as an external standard. The data were collected and processed using Empower software. The charged FOS were digested with the sialidase from Arthrobacter ureafaciens. 2-AA – labelled free oligosaccharides from transferrin were used as an external standard for the structure decoding. The profiles obtained were compared with intracellular free oligosaccharides of known structures and with the glycan structures and their descriptions in the databases GlycoBase and EUROCarbDB. These

  14. Oligosaccharide substrate preferences of human extracellular sulfatase Sulf2 using liquid chromatography-mass spectrometry based glycomics approaches.

    Directory of Open Access Journals (Sweden)

    Yu Huang

    Full Text Available Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2.

  15. Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants.

    Science.gov (United States)

    Stepans, Mary Beth Flanders; Wilhelm, Susan L; Hertzog, Melody; Rodehorst, T Kim Callahan; Blaney, Susan; Clemens, Beth; Polak, Josef J; Newburg, David S

    2006-01-01

    A pilot study tested the relationship between human milk oligosaccharide consumption, oligosaccharide content of feces, and subsequent disease in breastfed infants. Forty-nine (49) mother-infant pairs provided milk and fecal samples 2 weeks postpartum; infant health was assessed through 2, 6, 12, and 24 weeks. LNF-II (lacto-N-fucopentaose II), a major human milk oligosaccharide, was measured to represent levels of total oligosaccharides consumed in milk and remaining in feces. LNF-II levels in milk at 2 weeks postpartum were associated with fewer infant respiratory problems by 6 weeks (p = 0.010), as were LNF-II levels in infant feces (p = 0.003). LNF-II levels in milk at 2 weeks were also associated with fewer respiratory problems by 12 weeks (p = 0.038), and fewer enteric problems by 6 weeks (p = 0.004) and 12 weeks (p = 0.045). Thus, consumption of human milk oligosaccharides through breastfeeding, represented by LNF-II, was associated with less reported respiratory and gastrointestinal illness in infants.

  16. Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow.

    Science.gov (United States)

    Huang, Yu; Shi, Xiaofeng; Yu, Xiang; Leymarie, Nancy; Staples, Gregory O; Yin, Hongfeng; Killeen, Kevin; Zaia, Joseph

    2011-11-01

    Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.

  17. Differentiation of norm and pathology during selective biochemical skreening of lysosomal storage diseases with increased excretion of oligosaccharides

    Directory of Open Access Journals (Sweden)

    N. Y. Mytsyk

    2015-06-01

    Full Text Available Oligosaccharides are a class of polymeric carbohydrates, which are constituents of a glycoside portion of glycoprotein and glycolipid molecules. The lysosomal hydrolase dysfunction due to lysosomal storage disorders results in partial or complete failure of degradation of some glycoproteins and glycolipids, causing the accumulation of specific undegraded substrates in the lysosomes of cells, the formation of the great number of oligosaccharide chains and their increased excretion with urine. Our work was aimed at detailed study of the specificities of interpreting the results of thin-layer chromatography (TLC of urine oligosaccharides in healthy persons of different age groups with the purpose of further application of these data while differentiating the norm and pathology in the course of primary selective screening of lysosomal storage disorders. The results obtained demonstrated that TLC plates for the majority of healthy persons had insignificant excretion of a number of oligosaccharides (from monosaccharides to hexasaccharides with Rlac > 0.15, which can be characterized as physiological oligosacchariduria, conditioned by the metabolism specificities in lysosomes. Therefore while interpreting the urine samples of patients with the suspected lysosomal storage disorder it is diagnostically reasonable to examine the TLC plates for the presence of both oligosaccharide groups, absent in the samples of healthy persons, and all the fractions with Rlac < 0.15.

  18. Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed

    Science.gov (United States)

    Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan

    2017-01-01

    Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895

  19. Oral hyaluronan relieves wrinkles: a double-blinded, placebo-controlled study over a 12-week period

    Directory of Open Access Journals (Sweden)

    Oe M

    2017-07-01

    Full Text Available Mariko Oe,1 Seigo Sakai,1 Hideto Yoshida,1 Nao Okado,1 Haruna Kaneda,1 Yasunobu Masuda,1 Osamu Urushibata2 1R&D Division, Kewpie Corporation, Sengawa-cho, Chofu-shi, 2Department of Dermatology, Toho University Ohashi Medical Center, Ohashi, Meguro-ku, Tokyo, Japan Background: Hyaluronan (HA has critical moisturizing property and high water retention capacity especially for human skin. This study aimed to evaluate the effect of oral intake of HA. Methods: The mean molecular weight (MW of HA is 2 k and 300 k. Sixty Japanese male and female subjects aged 22–59 years who presented with crow’s feet wrinkles were randomly assigned to the HA 2 k or HA 300 k at 120 mg/day or the placebo group. The subjects were administered HA at a rate of 120 mg/day or a placebo for 12 weeks. The skin wrinkles were evaluated by image analysis of skin wrinkle replicas, and their skin condition was evaluated using a questionnaire survey. Results: During the study period, the HA groups showed better level of the whole sulcus ­volume ratio, wrinkle area ratio, and wrinkle volume ratio than the placebo group. After 8 weeks of ingestion, the HA 300 k group showed significantly diminished wrinkles compared with the placebo group. Skin luster and suppleness significantly improved after 12 weeks in all groups compared with the baseline. Conclusion: The results suggest that oral HA (both HA 2 k and HA 300 k inhibits skin wrinkles and improves skin condition. Keywords: hyaluronic acid, dietary supplement, skin, wrinkle volume, molecular weight

  20. Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.

    Science.gov (United States)

    Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan

    2017-03-21

    Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.

  1. An ATP Binding Cassette Transporter Mediates the Uptake of alpha-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates

    NARCIS (Netherlands)

    Ejby, Morten; Fredslund, Folmer; Andersen, Joakim Mark; Zagar, Andreja Vujicic; Henriksen, Jonas Rosager; Andersen, Thomas Lars; Svensson, Birte; Slotboom, Dirk Jan; Abou Hachem, Maher

    2016-01-01

    The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco--(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and

  2. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  3. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.

    Science.gov (United States)

    Ruiz-Moyano, Santiago; Totten, Sarah M; Garrido, Daniel A; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B; Mills, David A

    2013-10-01

    Human milk contains a high concentration of complex oligosaccharides that influence the composition of the intestinal microbiota in breast-fed infants. Previous studies have indicated that select species such as Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum can utilize human milk oligosaccharides (HMO) in vitro as the sole carbon source, while the relatively few B. longum subsp. longum and Bifidobacterium breve isolates tested appear less adapted to these substrates. Considering the high frequency at which B. breve is isolated from breast-fed infant feces, we postulated that some B. breve strains can more vigorously consume HMO and thus are enriched in the breast-fed infant gastrointestinal tract. To examine this, a number of B. breve isolates from breast-fed infant feces were characterized for the presence of different glycosyl hydrolases that participate in HMO utilization, as well as by their ability to grow on HMO or specific HMO species such as lacto-N-tetraose (LNT) and fucosyllactose. All B. breve strains showed high levels of growth on LNT and lacto-N-neotetraose (LNnT), and, in general, growth on total HMO was moderate for most of the strains, with several strain differences. Growth and consumption of fucosylated HMO were strain dependent, mostly in isolates possessing a glycosyl hydrolase family 29 α-fucosidase. Glycoprofiling of the spent supernatant after HMO fermentation by select strains revealed that all B. breve strains can utilize sialylated HMO to a certain extent, especially sialyl-lacto-N-tetraose. Interestingly, this specific oligosaccharide was depleted before neutral LNT by strain SC95. In aggregate, this work indicates that the HMO consumption phenotype in B. breve is variable; however, some strains display specific adaptations to these substrates, enabling more vigorous consumption of fucosylated and sialylated HMO. These results provide a rationale for the predominance of this species in breast-fed infant feces and

  4. Enzymatic synthesis of novel oligosaccharides from N-acetylsucrosamine using β-fructofuranosidase from Aspergillus oryzae.

    Science.gov (United States)

    Nishio, Toshiyuki; Juami, Mai; Wada, Toru; Sugimoto, Yuta; Senou, Hiroki; Komori, Wataru; Sakuma, Chiseko; Hirano, Takako; Hakamata, Wataru; Tashiro, Mitsuru

    2013-12-15

    Mycelia of Aspergillus oryzae NBRC100959 contain 2 types of β-fructofuranosidases, transfructosylation-catalyzing enzyme (βFFaseI), and hydrolysis-catalyzing enzyme (βFFaseII). Using βFFaseI extracted from the mycelia of strain NBRC100959, two novel oligosaccharides consisting of GlcNAc and fructose, β-d-fructofuranosyl-(2→1)-β-d-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-d-glucopyranoside (N-acetyl-1-kestosamine, 1-KesNAc) and β-d-fructofuranosyl-(2→1)-β-d-fructofuranosyl-(2→1)-β-d-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-d-glucopyranoside (N-acetylnystosamine, NysNAc), were synthesized from β-d-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-d-glucopyranoside (N-acetylsucrosamine, SucNAc). We next planned to synthesize 1-KesNAc and NysNAc using A. oryzae mycelia. However, it was thought that the presence of βFFaseII is disadvantageous for the production of these oligosaccharides by βFFaseI, because βFFaseII hydrolyzed 1-KesNAc and NysNAc. We succeeded to produce A. oryzae mycelia containing βFFaseI as the major β-fructofuranosidase, by increasing sucrose concentration in the culture medium. Then, using a dried sample of these A. oryzae mycelia, reaction for the oligosaccharide production was performed. As the results, 190mg of 1-KesNAc and 60mg of NysNAc were obtained from 0.6g of SucNAc. This whole-cell catalysis method facilitates the synthesis of 1-KesNAc and NysNAc because extraction and purification of βFFaseI from mycelia are unnecessary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Synthesis of branched–backbone oligosaccharides of the pectic RG-I plant cell wall polysaccharide

    DEFF Research Database (Denmark)

    Awan, Shahid Iqbal; Clausen, Mads Hartvig

    with numerous branches of galactan, arabinan, or arabinogalactan positioned at C-4 of the rhamnose residues. The use of defined oligosaccharides rather than isolated polysaccharides can aid in obtaining detailedinformation about biosynthetic pathways, plant evolution, and agronomical properties. Furthermore......,biological testing can provide new insight into plant biology; important for plant preservation, engineering,and utilization of plants as a source of bioenergy. Present work towards defined RG-I substructures involvesa [4+3]-coupling to furnish a heptasaccharide backbone unit (see Figure 1). Moreover, installation...

  6. Synthesis of branched and linear 1,4-linked galactan oligosaccharides

    DEFF Research Database (Denmark)

    Andersen, Mathias C. Franch; Boos, Irene; Kinnaert, Christine

    2018-01-01

    We report the synthesis of linear and branched (1→4)-D-galactans. Four tetra- and one pentasaccharide were accessed by adopting a procedure of regioselective ring opening of a 4,6-O-naphthylidene protecting group followed by glycosylation using phenyl thioglycoside donros. The binding of the linear...... pentasaccharide with galectin-3 is also investigated by determination of a co-crystal structure. The binding of the (1→4)-linked galactan to Gal-3 highlights oligosaccharides of pectic galactan, which is abundant in the human diet, as putative Gal-3 ligands....

  7. Human Milk Oligosaccharides and the Preterm Infant: A Journey in Sickness and in Health.

    Science.gov (United States)

    Moukarzel, Sara; Bode, Lars

    2017-03-01

    Human milk oligosaccharides (HMOs) are a group of approximately 200 different unconjugated sugar structures in human milk proposed to support infant growth and development. Data from several preclinical animal studies and human cohort studies suggest HMOs reduce preterm infant mortality and morbidity by shaping the gut microbiome and protecting against necrotizing enterocolitis, candidiasis, and several other immune-related diseases. Current feeding practices and clinical algorithms do not consider infant HMO intake when assessing dietary adequacy or disease risk. Advancements in HMO analytical methodologies and HMO synthesis facilitate cohort and intervention studies to investigate which particular HMOs are most relevant in supporting preterm infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chemical Synthesis of Oligosaccharides related to the Cell Walls of Plants and Algae

    DEFF Research Database (Denmark)

    Kinnaert, Christine; Daugaard, Mathilde; Nami, Faranak

    2017-01-01

    in good quantities and with high purity. This review contains an overview of those plant and algal polysaccharides, which have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin......Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately...

  9. Subtilisin-catalyzed esterification of di- and oligosaccharides containing a d-fructose moiety

    International Nuclear Information System (INIS)

    Riva, S.; Nonini, M.; Ottolina, G.; Danieli, B.

    1998-01-01

    Several di- and oligosaccharides containing a d-fructose moiety have been acylated by protease subtilisin in anhydrous dimethylformamide in the presence of the activated ester trifluoroethyl butanoate. Under the reaction conditions used, all the substrates were converted into the corresponding monobutanoates in ca. 50% isolated yields. Structural determination of the products by 13 C NMR indicated a strong preference of subtilisin towards the regioselective esterification of the primary hydroxyls of the fructose moiety and, specifically, of the C-1 OH, as already observed with sucrose. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Cation exchange assisted binding-elution strategy for enzymatic synthesis of human milk oligosaccharides (HMOs).

    Science.gov (United States)

    Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang

    2017-09-15

    A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    Science.gov (United States)

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Complete NMR assignment of a bisecting hybrid-type oligosaccharide transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase.

    Science.gov (United States)

    Yamanoi, Takashi; Oda, Yoshiki; Katsuraya, Kaname; Inazu, Toshiyuki; Yamamoto, Kenji

    2016-06-02

    This study describes the complete nuclear magnetic resonance (NMR) spectral assignment of a bisecting hybrid-type oligosaccharide 1, transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M). Through (1)H- and (13)C-NMR, DQF-COSY, HSQC, HMBC, TOCSY, and NOESY experiments, we determine the structure of the glycoside linkage formed by the Endo-M transglycosylation, i.e., the connection between GlcNAc and GlcNAc in oligosaccharide 1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Muschiol, Jan; Holck, Jesper

    2018-01-01

    Abstract Human milk oligosaccharides (HMOs) constitute a unique family of bioactive lactose-based molecules present in human breast milk. HMOs are of major importance for infant health and development but also virtually absent from bovine milk used for infant formula. Among the HMOs...... to be able to catalyse transfucosylation. The α-l-1,3/4-fucosidase CpAfc2 from Clostridium perfringens efficiently catalysed the formation of the more complex human milk oligosaccharide structure lacto-N-fucopentaose II (LNFP II) using 3-fucosyllactose as fucosyl donor and lacto-N-tetraose as acceptor...

  14. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations.

    Science.gov (United States)

    Sprenger, Georg A; Baumgärtner, Florian; Albermann, Christoph

    2017-09-20

    Human milk oligosaccharides (HMO) are almost unique constituents of breast milk and are not found in appreciable amounts in cow milk. Due to several positive aspects of HMO for the development, health, and wellbeing of infants, production of HMO would be desirable. As a result, scientists from different disciplines have developed methods for the preparation of single HMO compounds. Here, we review approaches to HMO preparation by (chemo-)enzymatic syntheses or by whole-cell biotransformation with recombinant bacterial cells. With lactose as acceptor (in vitro or in vivo), fucosyltransferases can be used for the production of 2'-fucosyllactose, 3-fucosyllactose, or more complex fucosylated core structures. Sialylated HMO can be produced by sialyltransferases and trans-sialidases. Core structures as lacto-N-tetraose can be obtained by glycosyltransferases from chemical donor compounds or by multi-enzyme cascades; recent publications also show production of lacto-N-tetraose by recombinant Escherichia coli bacteria and approaches to obtain fucosylated core structures. In view of an industrial production of HMOs, the whole cell biotransformation is at this stage the most promising option to provide human milk oligosaccharides as food additive. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota

    Science.gov (United States)

    Davis, Jasmine C. C.; Lewis, Zachery T.; Krishnan, Sridevi; Bernstein, Robin M.; Moore, Sophie E.; Prentice, Andrew M.; Mills, David A.; Lebrilla, Carlito B.; Zivkovic, Angela M.

    2017-01-01

    Human milk oligosaccharides (HMOs) play an important role in the health of an infant as substrate for beneficial gut bacteria. Little is known about the effects of HMO composition and its changes on the morbidity and growth outcomes of infants living in areas with high infection rates. Mother’s HMO composition and infant gut microbiota from 33 Gambian mother/infant pairs at 4, 16, and 20 weeks postpartum were analyzed for relationships between HMOs, microbiota, and infant morbidity and growth. The data indicate that lacto-N-fucopentaose I was associated with decreased infant morbidity, and 3‧-sialyllactose was found to be a good indicator of infant weight-for-age. Because HMOs, gut microbiota, and infant health are interrelated, the relationship between infant health and their microbiome were analyzed. While bifidobacteria were the dominant genus in the infant gut overall, Dialister and Prevotella were negatively correlated with morbidity, and Bacteroides was increased in infants with abnormal calprotectin. Mothers nursing in the wet season (July to October) produced significantly less oligosaccharides compared to those nursing in the dry season (November to June). These results suggest that specific types and structures of HMOs are sensitive to environmental conditions, protective of morbidity, predictive of growth, and correlated with specific microbiota.

  16. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Comparative Study of Fructo oligosaccharides Production by Xanthophyllomyces dendrorhous and Aspergillus niger

    International Nuclear Information System (INIS)

    EI-Bialy, H.A.

    2009-01-01

    Neo-fructo oligosaccharides (neo-FOS) production by the red yeast Xanthophyllollfyces dendrorhous NRRL Y-10921 was studied in comparison to fructo oligosaccharides (FOS) produced by crude enzyme of local Aspergillus niger isolates. The lost active FOS producers (Two isolates of A. niger) which converted about 40% or the initial sucrose concentration to FOS were selected out of fifty-two mould isolates. The FOS- transfructosylating enzyme complex slightly increased the yield of FOS production by both selected A. niger isolates. The neo-FOS produced by X. dendrorhous was maximized by optimization of cultivation conditions and reaction parameters. Exponential growth phase of X. dendrorhous slightly enhanced the transferred fructose compared to stationary one. Sucrose is a main nutritional factor affecting the transfructosylating activity of the red yeast cells. Eighteen hours, two hundred grams of sucrose per liter, ph 6 and 30 degree C were the most favorable reaction parameters. Gamma irradiation at dose level equal to 0.2 kGy slightly increased the neo-FOS produced by X. dendrorhous whereas one kGy clearly decreased the production. Also, results revealed the negative effect of X. dendrorhous cell recycling on neo-FOS production either in sucrose syrup or sugarcane juice, the earlier exhibited more negative effect

  18. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.

    Science.gov (United States)

    Marcobal, Angela; Barboza, Mariana; Sonnenburg, Erica D; Pudlo, Nicholas; Martens, Eric C; Desai, Prerak; Lebrilla, Carlito B; Weimer, Bart C; Mills, David A; German, J Bruce; Sonnenburg, Justin L

    2011-11-17

    Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Applications of Tandem Mass Spectrometry in the Structure Determination of Permethylated Sialic Acid-containing Oligosaccharides

    International Nuclear Information System (INIS)

    Yoo, Eun Sun; Yoon, In Mo

    2005-01-01

    Sets of sialic acid-containing trisaccharides having different internal and terminal linkages have been synthesized to develop a sensitive method for analysis of the reducing terminal linkage positions. The trisaccharides, sialyl(α 2-3)Gal(β 1-3)GalNAc and sialyl(α 2-3)Gal(β 1-X)GlcNAc where X=3, 4 and 6, were synthesized and examined using electrospray ionization (ESI)-collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The compounds chosen for this study are related to terminal groups likely to be found on polylactosamine-like glycoproteins and glycolipids which occur on the surface of mammalian cells. The purpose of this study is to develop tandem mass spectrometral methods to determine detailed carbohydrate structures on permethylated or partially methylated oligosaccharides for future applications on biologically active glycoconjugates and to exploit a faster method of synthesizing a series of structural isomeric oligosaccharides to be used for further mass spectrometry and instrumental analysis

  20. Metabolism of periplasmic membrane-derived oligosaccharides by the predatory bacterium Bdellovibrio bacteriovorus 109J

    International Nuclear Information System (INIS)

    Ruby, E.G.; McCabe, J.B.

    1988-01-01

    Membrane-derived oligosaccharides (MDO), a class of osmotically active carbohydrates, are the major organic solutes present in the periplasm of Escherichia coli and many other gram-negative bacteria when cells are grown in a medium of low osmolarity. Analyses of growing cells of Bdellovibrio bacteriovorus, a gram-negative predator of other bacteria, have confirmed that they also synthesize a characteristic MDO-like class of oligosaccharides. The natural growth environment of bdellovibrios is the periplasm of other gram-negative bacteria. Because of this location, prey cell MDO constitute a potential source of organic nutrients for growing bdellovibrios. Using cells of E. coli whose MDO were 3 H labeled, we examined the extent to which B. bacteriovorus 109J metabolizes these prey cell components. Interestingly, there was neither significant degradation nor incorporation of prey cell MDO by bdellovibrios during the course of their intracellular growth. In fact, bdellovibrios had little capability either to degrade extracellular MDO that was made available to them or to transport glucose, the major monomeric constituent of prey cell MDO. Instead, periplasmic MDO were irreversibly lost to the extracellular environment during the period of bdellovibrio attack and penetration. Thus, although prey cell periplasmic proteins are retained, other important periplasmic components are released early in the bdellovibrio growth cycle. The loss of these MDO may aid in the destabilization of the prey cell plasma membrane, increasing the availability of cytoplasmic constituents to the periplasmic bdellovibrio

  1. Microanalysis of oligosaccharide HS203 in beagle dog plasma by postcolumn fluorescence derivatization method.

    Science.gov (United States)

    Sun, Shumeng; Zhao, Xia; Li, Guangsheng; Yu, Guangli; Xing, Xiaoxu; Zeng, Yangyang; Wu, Jian; Wang, Jianing

    2012-06-20

    A rapid and sensitive postcolumn fluorescence derivatization method was developed for microanalysis of antidiabetic oligosaccharide HS203 in beagle dog plasma. After plasma protein was removed by a simple and fast ultrafiltration method, chromatographic separation was performed on an Asahipak GS-320 HQ column with a mobile phase of 50 mmol/L phosphate buffer (pH 6.7) and acetonitrile (83/17, v/v). The column effluent was monitored by fluorescence detection at 249 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as a postcolumn derivatizing reagent. A satisfactory resolution of the analyte was achieved and the limit of detection was found to be 4 ng (more sensitive than silver staining of HS203 in polyacrylamide gel electrophoresis). The method described above was successfully applied to a pharmacokinetic study of HS203 and to monitor blood glucose level simultaneously in beagle dog. It is also possible to be applied for microanalysis of other oligosaccharides in biological samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Structural and functional characterization of the interaction between cyclophilin B and a heparin-derived oligosaccharide.

    Science.gov (United States)

    Hanoulle, Xavier; Melchior, Aurélie; Sibille, Nathalie; Parent, Benjamin; Denys, Agnès; Wieruszeski, Jean-Michel; Horvath, Dragos; Allain, Fabrice; Lippens, Guy; Landrieu, Isabelle

    2007-11-23

    The chemotaxis and integrin-mediated adhesion of T lymphocytes triggered by secreted cyclophilin B (CypB) depend on interactions with both cell surface heparan sulfate proteoglycans (HSPG) and the extracellular domain of the CD147 membrane receptor. Here, we use NMR spectroscopy to characterize the interaction of CypB with heparin-derived oligosaccharides. Chemical shift perturbation experiments allowed the precise definition of the heparan sulfate (HS) binding site of CypB. The N-terminal extremity of CypB, which contains a consensus sequence for heparin-binding proteins was modeled on the basis of our experimental NMR data. Because the HS binding site extends toward the CypB catalytic pocket, we measured its peptidyl-prolyl cis-trans isomerase (PPIase) activity in the absence or presence of a HS oligosaccharide toward a CD147-derived peptide. We report the first direct evidence that CypB is enzymatically active on CD147, as it is able to accelerate the cis/trans isomerization of the Asp(179)-Pro(180) bond in a CD147-derived peptide. However, HS binding has no significant influence on this PPIase activity. We thus conclude that the glycanic moiety of HSPG serves as anchor for CypB at the cell surface, and that the signal could be transduced by CypB via its PPIase activity toward CD147.

  4. Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

    Science.gov (United States)

    Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain

    2005-12-01

    We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.

  5. Synthesis of the oligosaccharides related to branching sites of fucosylated chondroitin sulfates from sea cucumbers.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Fomitskaya, Polina A; Gerbst, Alexey G; Dmitrenok, Andrey S; Nifantiev, Nikolay E

    2015-02-02

    Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS) from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started systematic synthesis of oligosaccharides with well-defined structure related to various fragments of these polysaccharides. In this communication, the synthesis of non-sulfated and selectively O-sulfated di- and trisaccharides structurally related to branching sites of FCS is described. The target compounds are built up of propyl β-d-glucuronic acid residue bearing at O-3 α-l-fucosyl or α-l-fucosyl-(1→3)-α-l-fucosyl substituents. O-Sulfation pattern in the fucose units of the synthetic targets was selected according to the known to date holothurian FCS structures. Stereospecific α-glycoside bond formation was achieved using 2-O-benzyl-3,4-di-O-chloroacetyl-α-l-fucosyl trichloroacetimidate as a donor. Stereochemical outcome of the glycosylation was explained by the remote participation of the chloroacetyl groups with the formation of the stabilized glycosyl cations, which could be attacked by the glycosyl acceptor only from the α-side. The experimental results were in good agreement with the SCF/MP2 calculated energies of such participation. The synthesized oligosaccharides are regarded as model compounds for the determination of a structure-activity relationship in FCS.

  6. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2004-01-01

    at pH 7.4). Exposure of glycosaminoglycans to a MPO-H2O2-Cl- system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R'] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R......-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have...

  7. In vitro effects of inulin and soya bean oligosaccharide on skatole production and the intestinal microbiota in broilers.

    Science.gov (United States)

    Liu, H Y; Hou, R; Yang, G Q; Zhao, F; Dong, W G

    2018-06-01

    The experiment was conducted to investigate the in vitro effects of inulin and soya bean oligosaccharide (SBO) on the metabolism of L-tryptophan (L-try) to skatole production, and the intestinal microbiota in broilers. Treatments were as follows: caecal microbiota control (Cc), Cc + inulin, Cc + SBO, rectal microbiota control (Rc), Rc + inulin and Rc + SBO. Microbial suspensions were anaerobically incubated at 38°C for 24 hr. The results showed that concentrations of skatole and acetic acid were significantly lower in caecal microbiota fermentation broth (MFB) than those in rectal MFB (p inulin or SBO significantly decreased the concentrations of indole and skatole and rate of L-try degradation (p Inulin groups had lower indole than SBO groups (p inulin or SBO decreased the microbiota richness (p  .05). Four distinct bands were detected in inulin and SBO groups, which were related to two of Bacteroides, one of Firmicutes and Bifidobacteria. Six bands were detected only in control groups, which represented uncultured Rikenellaceae, Roseburia, Escherichia/Shigella dysenteriae, Bacteroides uniformis (T), Parabacteroides distasonis and Enterobacter aerogenes. Populations of Lactobacilli, Bifidobacteria and total bacteria in inulin groups were higher than those in control groups (p  .05). These results suggest that reduced concentrations of skatole and indole in the presence of inulin and SBO may be caused by decrease in L-try degradation rate, which were caused by change in microbial ecosystem and pH value. Uncultured B. uniformis (T) and E. aerogenes may be responsible for degradation of L-try to skatole. © 2017 Blackwell Verlag GmbH.

  8. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Han, Hao-Wei; Hsu, Shan-Hui

    2016-09-15

    The controversial roles of mesenchymal stem cells (MSCs) in lung cancer development are not yet resolved because of the lack of an extracellular environment that mimics the tumor microenvironment. Three-dimensional (3D) culture system is an emerging research tool for biomedical applications such as drug screening. In this study, MSCs and human non-small cell lung carcinoma cells (A549) were co-cultured on a thin biomaterial-based substratum (hyaluronan-grafted chitosan, CS-HA; ∼2μm), and they were self-organized into the 3D tumor co-spheroids with core-shell structure. The gene expression levels of tumorigenicity markers in cancer cells associated with cancer stemness, epithelial-mesenchymal transition (EMT) property, and cell mobility were up-regulated for more than twofold in the MSC-tumor co-spheroids, through the promoted expression of certain tumor enhancers and the direct cell-cell interaction. To verify the different extents of tumorigenicity, A549 cells or those co-cultured with MSCs were transplanted into zebrafish embryos for evaluation in vivo. The tumorigenicity obtained from the zebrafish xenotransplantation model was consistent with that observed in vitro. These evidences suggest that the CS-HA substrate-based 3D co-culture platform for cancer cells and MSCs may be a convenient tool for studying the cell-cell interaction in a tumor-like microenvironment and potentially for cancer drug testing. Mesenchymal stem cells (MSCs) have been found in several types of tumor tissues. However, the controversial roles of MSCs in cancer development are still unsolved. Chitosan and hyaluronan are commonly used materials in the biomedical field. In the current study, we co-cultured lung cancer cells and MSCs on the planar hyaluronan-grafted chitosan (CS-HA) hybrid substrates, and discovered that lung cancer cells and MSCs were rapidly self-assembled into 3D tumor spheroids with core-shell structure on the substrates after only two days in culture. Therefore, CS

  9. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library

    Science.gov (United States)

    Lee, Hyeyoung; Cuthbertson, Daniel J.; Otter, Don E.; Barile, Daniela

    2018-01-01

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching. PMID:27428379

  10. Hydrophilic interaction liquid chromatography of anthranilic acid-labelled oligosaccharides with a 4-aminobenzoic acid ethyl ester-labelled dextran hydrolysate internal standard.

    Science.gov (United States)

    Neville, David C A; Alonzi, Dominic S; Butters, Terry D

    2012-04-13

    Hydrophilic interaction liquid chromatography (HILIC) of fluorescently labelled oligosaccharides is used in many laboratories to analyse complex oligosaccharide mixtures. Separations are routinely performed using a TSK gel-Amide 80 HPLC column, and retention times of different oligosaccharide species are converted to glucose unit (GU) values that are determined with reference to an external standard. However, if retention times were to be compared with an internal standard, consistent and more accurate GU values would be obtained. We present a method to perform internal standard-calibrated HILIC of fluorescently labelled oligosaccharides. The method relies on co-injection of 4-aminobenzoic acid ethyl ester (4-ABEE)-labelled internal standard and detection by UV absorption, with 2-AA (2-aminobenzoic acid)-labelled oligosaccharides. 4-ABEE is a UV chromophore and a fluorophore, but there is no overlap of the fluorescent spectrum of 4-ABEE with the commonly used fluorescent reagents. The dual nature of 4-ABEE allows for accurate calculation of the delay between UV and fluorescent signals when determining the GU values of individual oligosaccharides. The GU values obtained are inherently more accurate as slight differences in gradients that can influence retention are negated by use of an internal standard. Therefore, this paper provides the first method for determination of HPLC-derived GU values of fluorescently labelled oligosaccharides using an internal calibrant. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.

  12. Structural studies on 4-O-acetyl-α-N-acetylneuraminyl-(2→3)-lactose, the main oligosaccharide in echidna milk

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Kamerling, J.P.; Dorland, L.; Halbeek, H. van; Messer, M.; Schauer, R.

    1982-01-01

    The main oligosaccharide (50%) in the milk of the Australian echidna (Tachyglossus aculeatus) has been identified unequivocally as 4-O-acetyl-α-N-acetylneur-aminyl-(2→3)-lactose. The 4-O-acetyl substituent of the sialic acid residue was characterised by g.l.c.-m.s. of the isolated (after mild, acid

  13. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Česla, P.; Vaňková, N.; Křenková, Jana; Fischer, J.

    2016-01-01

    Roč. 1438, MAR (2016), s. 179-188 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA14-06319S Institutional support: RVO:68081715 Keywords : HILIC * retention * oligosaccharides Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.981, year: 2016

  14. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples

    NARCIS (Netherlands)

    van Leeuwen, Sander S; Schoemaker, Ruud J W; Gerwig, Gerrit J; van Leusen-van Kan, Ellen J M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in

  15. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003.

    Science.gov (United States)

    O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; van Sinderen, Douwe

    2013-01-01

    Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  16. Post-sensitization administration of non-digestible oligosaccharides and Bifidobacterium breve M-16V reduces allergic symptoms in mice

    NARCIS (Netherlands)

    van Esch, Betty C A M; Abbring, Suzanne; Diks, Mara A P; Dingjan, Gemma M; Harthoorn, Lucien F; Vos, A Paul; Garssen, Johan

    To support dietary management of severe cow's milk allergic infants, a synbiotic mixture of non-digestible oligosaccharides and Bifidobacterium breve M-16V (B. breve) was designed from source materials that are completely cow's milk-free. It was investigated whether this specific synbiotic concept

  17. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003

    Science.gov (United States)

    O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; Sinderen, Douwe

    2013-01-01

    Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. PMID:23199239

  18. The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying

    NARCIS (Netherlands)

    Hinrichs, Wouter; Manceñido, F A; Sanders, N N; Braeckmans, K; De Smedt, S C; Demeester, J; Frijlink, H W

    2006-01-01

    In a previous Study we have shown that the oligosaccharide inulin can prevent aggregation of poly(ethylene glycol) (PEG) coated plasmid DNA/cationic liposome complexes ('' PEGylated lipoplexes '') during freeze thawing and freeze drying [Hinrichs et al., 2005. J. Control. Release 103, 465]. By

  19. Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats

    NARCIS (Netherlands)

    Wijnands, M.V.W.; Schoterman, H.C.; Bruijntjes, J.P.; Hollanders, V.M.H.; Woutersen, R.A.

    2001-01-01

    The aim of the present study was to investigate the effects of galacto-oligosaccharides (GOS, Elix'or) on the development of aberrant crypt foci (ACF) and colorectal tumours in rats treated with azoxymethane (AOM). Two groups of 102 male Fischer 344 rats were injected twice with AOM to induce

  20. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides

    NARCIS (Netherlands)

    van Munster, Jolanda M.; Sanders, Peter; ten Kate, Geralt A.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2015-01-01

    The abundant polymer chitin can be degraded by chitinases (EC 3.2.1.14) and beta-N-acetyl-hexosaminidases (EC 3.2.1.52) to oligosaccharides and N-acetyl-glucosamine (GlcNAc) monomers. Kinetic characterization of these enzymes requires product quantification by an assay method with a low detection

  1. Safety evaluation of pectin-derived acidic oligosaccharides (pAOS): genotoxicity and sub-chronic studies.

    NARCIS (Netherlands)

    Garthoff, J.A.; Heemskerk, S.; Hempenius, R.A.; Lina, B.A.; Krul, C.A.; Koeman, J.H.; Speijers, G.J.

    2010-01-01

    Pectin-derived acidic oligosaccharides (pAOS) are non-digestible carbohydrates to be used in infant formulae and medical nutrition. To support its safety, the genotoxic potential of pAOS was evaluated. pAOS was not mutagenic in the Ames test. Positive results were obtained in the chromosome

  2. Safety evaluation of pectin-derived acidic oligosaccharides (pAOS): Genotoxicity and sub-chronic studies

    NARCIS (Netherlands)

    Garthoff, J.A.; Heemskerk, S.; Hempenius, R.A.; Lina, B.A.R.; Krul, C.A.M.; Koeman, J.H.; Speijers, G.J.A.

    2010-01-01

    Pectin-derived acidic oligosaccharides (pAOS) are non-digestible carbohydrates to be used in infant formulae and medical nutrition. To support its safety, the genotoxic potential of pAOS was evaluated. pAOS was not mutagenic in the Ames test. Positive results were obtained in the chromosome

  3. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Česla, P.; Vaňková, N.; Křenková, Jana; Fischer, J.

    2016-01-01

    Roč. 1438, MAR (2016), s. 179-188 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA14-06319S Institutional support: RVO:68081715 Keywords : HILIC * retention * oligosaccharides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.981, year: 2016

  4. Novel Combination of Prebiotics Galacto-Oligosaccharides and Inulin-Inhibited Aberrant Crypt Foci Formation and Biomarkers of Colon Cancer in Wistar Rats.

    Science.gov (United States)

    Qamar, Tahir Rasool; Syed, Fatima; Nasir, Muhammad; Rehman, Habib; Zahid, Muhammad Nauman; Liu, Rui Hai; Iqbal, Sanaullah

    2016-08-01

    The selectivity and beneficial effects of prebiotics are mainly dependent on composition and glycosidic linkage among monosaccharide units. This is the first study to use prebiotic galacto-oligosaccharides (GOS) that contains β-1,6 and β-1,3 glycosidic linkages and the novel combination of GOS and inulin in cancer prevention. The objective of the present study is to explore the role of novel GOS and inulin against various biomarkers of colorectal cancer (CRC) and the incidence of aberrant crypt foci (ACF) in a 1,2-dimethyl hydrazine dihydrochloride (DMH)-induced rodent model. Prebiotic treatments of combined GOS and inulin (57 mg each), as well as individual doses (GOS: 76-151 mg; inulin 114 mg), were given to DMH-treated animals for 16 weeks. Our data reveal the significant preventive effect of the GOS and inulin combination against the development of CRC. It was observed that inhibition of ACF formation (55.8%) was significantly (p ≤ 0.05) higher using the GOS and inulin combination than GOS (41.4%) and inulin (51.2%) treatments alone. This combination also rendered better results on short-chain fatty acids (SCFA) and bacterial enzymatic activities. Dose-dependent effects of prebiotic treatments were also observed on cecum and fecal bacterial enzymes and on SCFA. Thus, this study demonstrated that novel combination of GOS and inulin exhibited stronger preventive activity than their individual treatments alone, and can be a promising strategy for CRC chemoprevention.

  5. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration.

    Science.gov (United States)

    Franzé, Silvia; Marengo, Alessandro; Stella, Barbara; Minghetti, Paola; Arpicco, Silvia; Cilurzo, Francesco

    2018-01-15

    The work aimed to evaluate the feasibility to design hyaluronic acid (HA) decorated flexible liposomes to enhance the skin penetration of nifedipine. Egg phosphatidylcholine (e-PC) based transfersomes (Tween 80) and transethosomes (ethanol) were prepared. HA was reacted with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (HA-DPPE) and two molar ratios (0.5 and 3%) of conjugate with respect to e-PC were tested. The presence of HA significantly increased the packing order of the bilayer (as verified by differential scanning calorimetry), reducing both the encapsulation efficiency and the flexibility of the decorated liposomes in a dose-dependent manner. In fact, at the highest HA content the constant of deformability (K, N/mm) increased and the carriers remained on the skin surface after topical application. The stiffening effect of HA was counterbalanced by the addition of ethanol as fluidizing agent that allowed to maintain the highest HA concentration, meanwhile reducing the K value of the vesicles. HA-transethosomes allowed a suitable nifedipine permeation (J ∼ 30 ng/cm 2 /h) and significantly improved the drug penetration, favouring the formation of a drug depot in the epidermis. These data suggest the potentialities of HA-transethosomes as drug delivery systems intended for the treatment of cutaneous pathologies and underline the importance of studying the effect of surface functionalization on carrier deformability to rationalize the design of such systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structure of the oligosaccharide of hen phosvitin as determined by two-dimensional 1H NMR of the intact glycoprotein

    International Nuclear Information System (INIS)

    Brockbank, R.L.; Vogel, H.J.

    1990-01-01

    The major form of the oligosaccharide of hen phosvitin was studied with two-dimensional 1 H NMR of the intact glycoprotein. Its structure was determined from an analysis of the chemical shifts of the structural reporter groups, and it was further confirmed by comparison to several related model oligosaccharides. The oligosaccharide is N-linked and is present in a 1:1 stoichiometry to the protein. It has a complex type 1 triantennary structure with two NeuAcα2,6Ga1β1,4G1cNAcβ1,2 arms linked to the Man-4 and Man-4' and a third Ga1β1,4G1cNAcβ1, 4 arm attached to the Man-4. the oligosaccharide contains the common core sequence which is present in all N-linked glycoproteins [Manα1,3(Manα1,6)Manβ1,4G1cNAcβ1,4G1cNAcβ1,N]. In the course of this study, we have found that unique spin systems for the G1cNAc and NeuAc are obtained for spectra recorded in 90% H 2 O. Their NH peaks were assigned at low pH, and these assignments proved useful for confirming the identify of cross-peaks in the anomeric region. In addition, the protons of G1cNAc-1 could be correlated to the NH of the asparagine link. The cross-peak patterns determined in phase-sensitive 2D experiments for the H1,H2 protons have a different appearance for each type of monosaccharide, and this information was also used for making first-order assignments. A comparison with model compounds suggests that the solution conformation of the oligosaccharide is not affected by its attachment to the protein

  7. Neutral and acidic oligosaccharides supplementation does not increase the vaccine antibody response in preterm infants in a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Jolice P van den Berg

    Full Text Available BACKGROUND: In preterm infants, a decreased immunological response and lower serological effectiveness are observed after immunizations due to ineffectiveness of both humoral and cellular immune mechanisms. OBJECTIVE: To determine the effect of 80% neutral oligosaccharides [small-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides (scGOS/lcFOS] in combination with 20% pectin-derived acidic oligosaccharides (pAOS on antibody concentrations after DTaP-IPV-Hib immunization in preterm infants. DESIGN: In this randomized clinical trial, preterm infants with gestational age <32 weeks and/or birth weight <1500 g received enteral supplementation with scGOS/lcFOS/pAOS or placebo (maltodextrin between days 3 and 30 of life. Blood samples were collected at 5 and 12 months of age. RESULTS: In total, 113 infants were included. Baseline and nutritional characteristics were not different in both groups. Geometric mean titers were not different after prebiotic supplementation at 5 months, Ptx (37/44 EU/ml, FHA (78/96 EU/ml, Prn (78/80 EU/ml, Diphtheria (0.40/0.57 IU/ml, Tetanus (0.74/0.99 IU/ml and Hib (0.35/0.63 µg/ml, and at 12 months Ptx (55/66 EU/ml, FHA (122/119 EU/ml, Prn (116/106 Eu/ml, Diphtheria (0.88/1.11 IU/ml, Tetanus (1.64/1.79 IU/ml and Hib (2.91/2.55 µg/ml. CONCLUSIONS: Enteral supplementation of neutral (scGOS/lcFOS and acidic oligosaccharides (pAOS does not improve the immunization response in preterm infants. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN16211826 ISRCTN16211826.

  8. Mineralization Effect of Hyaluronan on Dental Pulp Cells via CD44.

    Science.gov (United States)

    Chen, Kuan-Liang; Yeh, Ying-Yi; Lung, Jrhau; Yang, Yu-Chi; Yuan, Kuo

    2016-05-01

    CD44 is a cell-surface glycoprotein involved in various cellular functions. Recent studies have suggested that CD44 is involved in early mineralization of odontoblasts. Hyaluronic acid (HA) is the principal ligand for receptor CD44. Whether and how HA regulated the mineralization process of dental pulp cells were investigated. The effects of high-molecular-weight HA on differentiation and mineral deposition of dental pulp cells were tested by using alkaline phosphatase (ALP) activity assay and alizarin red S staining. Osteogenesis real-time polymerase chain reaction array, quantitative polymerase chain reaction, and Western blotting were performed to identify downstream molecules involved in the mineralization induction of HA. CD44 was knocked down and examined to confirm whether the mineralization effect of HA was mediated by receptor CD44. Immunohistochemistry was used to understand the localization patterns of CD44 and the identified downstream proteins in vivo. Pulse treatment of HA enhanced ALP activity and mineral deposition in dental pulp cells. Tissue-nonspecific ALP, bone morphogenetic protein 7 (BMP7), and type XV collagen (Col15A1) were upregulated via the HA-CD44 pathway in vitro. Immunohistochemistry of tooth sections showed that the staining pattern of BMP7 was very similar to that of CD44. Results of this study indicated that high-molecular-weight HA enhanced early mineralization of dental pulp cells mediated via CD44. The process involved important mineralization-associated molecules including tissue-nonspecific ALP, BMP7, and Col15A1. The findings may help develop new strategies in regenerative endodontics. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation.

    Directory of Open Access Journals (Sweden)

    Antonietta Stellavato

    Full Text Available Hyaluronic Acid (HA-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM, acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing. Moreover, intradermal HA formulations (injectable HA provide an attractive tool to counteract skin aging (e.g., facial wrinkles, dryness, and loss of elasticity and restore normal dermal functions, through simple and minimally invasive procedures. Biological activity of a commercially available hyaluronic acid, Profhilo®, based on NAHYCO™ technology, was compared to H-HA or L-HA alone. The formation of hybrid cooperative complexes was confirmed by the sudden drop in η0 values in the rheological measurements. Besides, hybrid cooperative complexes proved stable to hyaluronidase (BTH digestion. Using in vitro assays, based on keratinocytes, fibroblasts cells and on the Phenion® Full Thickness Skin Model 3D, hybrid cooperative complexes were compared to H-HA, widely used in biorevitalization procedures, and to L-HA, recently proposed as the most active fraction modulating the inflammatory response. Quantitative real-time PCR analyses were accomplished for the transcript quantification of collagens and elastin. Finally immunofluorescence staining permitted to evaluate the complete biosynthesis of all the molecules investigated. An increase in the expression levels of type I and type III collagen in fibroblasts and type IV and VII collagen in keratinocytes were found with the hybrid cooperative complexes, compared to untreated cells (CTR and to the H-HA and L-HA treatments. The increase in elastin expression found in both cellular model and in the Phenion® Full Thickness Skin Model 3D also at

  10. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology.

    Directory of Open Access Journals (Sweden)

    Tatiana Garcia Diaz

    Full Text Available The objective of this study was to evaluate the effects of dietary supplementation with live yeast (Saccharomyces cerevisiae, mannan-oligosaccharides and the combination of these additives on the inflammatory response, ruminal parameters and rumen morphology of sheep fed a high grain-based diet. Thirty-Two Dorper x Santa Ines crossbred lambs with an average weight of 24±2 kg were distributed in a completely randomized design. The animals were housed in individual stalls and fed ad libitum. Diet treatments were: Control (without additive; LY (2 g/kg DM of live yeast, Saccharomyces cerevisiae, MOS (2 g/kg DM of mannan-oligosaccharides and LY+MOS (2 g/kg DM of LY + 2 g/kg DM of MOS. The experiment lasted 42 days. The supplementation with MOS alone and the additives combination resulted in increased ruminal pH (P<0.01, while the total concentrations of short chain fatty acids (SCFA in the rumen were higher (P<0.05 only in the diets with LY and MOS. Ammonia (NH3 concentration in the rumen decreased (P<0.04 with the additives usage. Diets with LY, MOS and with additives combination reduced (P<0.01 the levels of lipopolysaccharides (LPS in the plasma with values of 0.46; 0.44 and 0.04 EU/mL, respectively when compared to the control (0.93 EU/mL. MOS and LY+MOS treatments had reduced stratum corneum thickness (P<0.01 in comparison to the control treatment. The total thickness of ruminal epithelium was lower with the addition of MOS in the diet (P<0.03 than with LY additive. The incidence and severity of hepatic abscesses in animals whose diet was supplemented with LY and LY+MOS was lower (P<0.05 than in animals fed the control diet. The use of LY, MOS and LY+MOS in the high-concentrate diets for sheep reduced NH3 concentrations and LPS translocation into the bloodstream. Diets containing MOS and LY+MOS enhanced the health of the ruminal epithelium by reducing the thickness of the stratum corneum, and diets containing LY and LY+MOS decreased the

  11. Structure of fructo-oligosaccharides from leaves and stem of Agave tequilana Weber, var. azul.

    Science.gov (United States)

    Praznik, Werner; Löppert, Renate; Cruz Rubio, Josè M; Zangger, Klaus; Huber, Anton

    2013-11-15

    Fructo-oligosaccharides (FOSs) of a six year old agave plant variety, Agave tequilana, were isolated and fractionated by 2D preparative chromatography (SEC and rpHPLC). Structural analyses of different FOS-fractions were performed by reductive methylation analysis connected to GC/FID identification and NMR-analysis. FOSs from leaves (d.p. 3-8) contain single α-d-Glcp residues as well in terminal as internal position, however (2→1)-linked β-d-Fruf residues only. FOSs from stem, however, contain as well (2→1)- and (2→6)-linked β-d-Fruf residues with branched oligomeric repeating units. These characteristics indicate an enzymatically catalyzed metabolic regulation for the biosynthesis and transformation of fructans in A. tequilana which strongly depends on location and transport activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development and Application of Multidimensional HPLC Mapping Method for O-linked Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Koichi Kato

    2011-12-01

    Full Text Available Glycosylation improves the solubility and stability of proteins, contributes to the structural integrity of protein functional sites, and mediates biomolecular recognition events involved in cell-cell communications and viral infections. The first step toward understanding the molecular mechanisms underlying these carbohydrate functionalities is a detailed characterization of glycan structures. Recently developed glycomic approaches have enabled comprehensive analyses of N-glycosylation profiles in a quantitative manner. However, there are only a few reports describing detailed O-glycosylation profiles primarily because of the lack of a widespread standard method to identify O-glycan structures. Here, we developed an HPLC mapping method for detailed identification of O-glycans including neutral, sialylated, and sulfated oligosaccharides. Furthermore, using this method, we were able to quantitatively identify isomeric products from an in vitro reaction catalyzed by N-acetylglucosamine-6O-sulfotransferases and obtain O-glycosylation profiles of serum IgA as a model glycoprotein.

  13. Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003.

    Science.gov (United States)

    O'Connell, Kerry Joan; O'Connell Motherway, Mary; O'Callaghan, John; Fitzgerald, Gerald F; Ross, R Paul; Ventura, Marco; Stanton, Catherine; van Sinderen, Douwe

    2013-10-01

    Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate.

  14. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.

    Science.gov (United States)

    Reiter, Dirk M; Frierson, Johnna M; Halvorson, Elizabeth E; Kobayashi, Takeshi; Dermody, Terence S; Stehle, Thilo

    2011-08-01

    Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.

  15. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.

    Directory of Open Access Journals (Sweden)

    Dirk M Reiter

    2011-08-01

    Full Text Available Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.

  16. Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures.

    Science.gov (United States)

    Miyoshi, Eiji; Nakano, Miyako

    2008-08-01

    Changes in oligosaccharide structures have been reported in certain types of malignant transformation and thus can be used as tumor markers in certain types of cancer. In the case of pancreatic cancer (PC) cell lines, a variety of fucosylated proteins are secreted into the conditioned media. To identify fucosylated proteins in the sera of patients with PC, we performed Western blot analysis using Aleuria Aurantia Lectin (AAL), which is specific for fucosylated structures. An approximately 40 kD protein was found to be highly fucosylated in PC and N-terminal analysis revealed that it was the beta chain of haptoglobin. While the appearance of fucosylated haptoglobin has been reported in other diseases such as hepatocellular carcinoma, liver cirrhosis, gastric cancer, and colorectal cancer, the incidence was significantly higher in the case of PC. Fucosylated haptoglobin was observed more frequently at the advanced stage of PC and disappeared after operation. Haptoglobin has four sites of N-glycans and site-directed oligosaccharide analysis involving MS was performed. Site-specific increases in fucosylation of bi-antennary glycans of sites 2 and 4, and of tri-antennary glycans of all sites were observed in PC, compared to in normal volunteers and chronic pancreatitis. Therefore, increases in fucosylation seem to be not due to inflammation, but cancer itself. Coculturing of a human hepatoma cell line, Hep3B, with PC cells-induced production of fucosylated haptoglobin, suggesting that PC produces a factor that induces the production of fucosylated haptoglobin. On clinical investigation of 100 cases of colorectal cancer, cases in which it was located near the liver showed a higher positive rate of fucosylated haptoglobin, suggesting that the location of the cancer might also be an important factor for fucosylated haptoglobin if cancer tissues produce such inducible factors. Thus, fucosylated haptoglobin could become a novel tumor marker for PC and complicated mechanisms

  17. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  18. Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 alpha-galactosidases

    DEFF Research Database (Denmark)

    Abou Hachem, Maher; Fredslund, Folmer; Andersen, Joakim Mark

    2012-01-01

    The organisation of genes conferring utilisation of raffinose family oligosaccharides (RFOs) has been analysed in several probiotic bacteria from the Bifidobacterium and Lactobacillus genera. Glycoside hydrolase family 36 (GH36) alpha-galatosidase encoding genes occur together with sugar transpor...

  19. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation

    Directory of Open Access Journals (Sweden)

    Desai Nina

    2012-06-01

    Full Text Available Abstract Background Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3-D culture of follicles may ultimately lead to a culture model that can support the longer in vitro culture intervals needed for in vitro maturation of human oocytes from ovarian tissue biopsies. Methods A novel tyramine-based hyaluronan (HA hydrogel was tested for its biocompatibility with ovarian follicles. The HA was prepared at concentrations from 2 to 5 mg/ml. HA hydrogel was also formulated and tested with matrix proteins (ECM. Enzymatically isolated pre-antral follicles from the ovaries of 10–12 day SJL pups were divided amongst control (CT and HA treatments. The growth of both fresh and vitrified follicles was assessed after encapsulation in the hydrogel. The basal culture medium was MEM alpha supplemented with FSH, LH, ITS and 5% FBS. Maturation was triggered by addition of hCG and EGF after in vitro culture (IVC. Outcome parameters monitored were follicle morphology, survival after IVC, antrum formation, GVBD and MII formation. Differences between treatments were analyzed. Results HA and ECM-HA encapsulated follicles looked healthy and maintained their 3-D architecture during IVC. In control cultures, the follicles flattened and granulosa:oocyte connections appeared fragile. Estradiol secretion per follicle was significantly higher by Day 12 in ECM-HA compared to HA or CT (4119, 703 and 1080 pg/ml, respectively. HA and ECM-HA cultured follicles had similar survival rates (62% and 54%, respectively, percent GV breakdown (96–97%, MII formation (47–48% and oocyte diameters at the end of IVC. Control cultures differed significantly in percent GVBD (85% and MII formation (67% . Vitrified-warmed follicles encapsulated in HA had

  20. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): a randomized, double-blind clinical trial.

    Science.gov (United States)

    Savaiano, Dennis A; Ritter, Andrew J; Klaenhammer, Todd R; James, Gareth M; Longcore, Amy T; Chandler, Justin R; Walker, W Allan; Foyt, Howard L

    2013-12-13

    Lactose intolerance (LI) is a common medical problem with limited treatment options. The primary symptoms are abdominal pain, diarrhea, bloating, flatulence, and cramping. Limiting dairy foods to reduce symptoms contributes to low calcium intake and the risk for chronic disease. Adaptation of the colon bacteria to effectively metabolize lactose is a novel and potentially useful approach to improve lactose digestion and tolerance. RP-G28 is novel galacto-oligosaccharide (GOS) being investigated to improve lactose digestion and the symptoms of lactose intolerance in affected patients. A randomized, double-blind, parallel group, placebo-controlled study was conducted at 2 sites in the United States. RP-G28 or placebo was administered to 85 patients with LI for 35 days. Post-treatment, subjects reintroduced dairy into their daily diets and were followed for 30 additional days to evaluate lactose digestion as measured by hydrogen production and symptom improvements via a patient-reported symptom assessment instrument. Lactose digestion and symptoms of LI trended toward improvement on RP-G28 at the end of treatment and 30 days post-treatment. A reduction in abdominal pain was also demonstrated in the study results. Fifty percent of RP-G28 subjects with abdominal pain at baseline reported no abdominal pain at the end of treatment and 30 days post treatment (p = 0.0190). RP-G28 subjects were also six times more likely to claim lactose tolerance post-treatment once dairy foods had been re-introduced into their diets (p = 0.0389). Efficacy trends and favorable safety/tolerability findings suggest that RP-G28 appears to be a potentially useful approach for improving lactose digestion and LI symptoms. The concurrent reduction in abdominal pain and improved overall tolerance could be a meaningful benefit to lactose intolerant individuals.

  1. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): a randomized, double-blind clinical trial

    Science.gov (United States)

    2013-01-01

    Background Lactose intolerance (LI) is a common medical problem with limited treatment options. The primary symptoms are abdominal pain, diarrhea, bloating, flatulence, and cramping. Limiting dairy foods to reduce symptoms contributes to low calcium intake and the risk for chronic disease. Adaptation of the colon bacteria to effectively metabolize lactose is a novel and potentially useful approach to improve lactose digestion and tolerance. RP-G28 is novel galacto-oligosaccharide (GOS) being investigated to improve lactose digestion and the symptoms of lactose intolerance in affected patients. Methods A randomized, double-blind, parallel group, placebo-controlled study was conducted at 2 sites in the United States. RP-G28 or placebo was administered to 85 patients with LI for 35 days. Post-treatment, subjects reintroduced dairy into their daily diets and were followed for 30 additional days to evaluate lactose digestion as measured by hydrogen production and symptom improvements via a patient-reported symptom assessment instrument. Results Lactose digestion and symptoms of LI trended toward improvement on RP-G28 at the end of treatment and 30 days post-treatment. A reduction in abdominal pain was also demonstrated in the study results. Fifty percent of RP-G28 subjects with abdominal pain at baseline reported no abdominal pain at the end of treatment and 30 days post treatment (p = 0.0190). RP-G28 subjects were also six times more likely to claim lactose tolerance post-treatment once dairy foods had been re-introduced into their diets (p = 0.0389). Conclusions Efficacy trends and favorable safety/tolerability findings suggest that RP-G28 appears to be a potentially useful approach for improving lactose digestion and LI symptoms. The concurrent reduction in abdominal pain and improved overall tolerance could be a meaningful benefit to lactose intolerant individuals. Study registration ClinicalTrials.gov NCT01113619. PMID:24330605

  2. Optimization of simultaneously enzymatic fructo- and inulo-oligosaccharide production using co-substrates of sucrose and inulin from Jerusalem artichoke.

    Science.gov (United States)

    Kawee-Ai, Arthitaya; Ritthibut, Nuntinee; Manassa, Apisit; Moukamnerd, Churairat; Laokuldilok, Thunnop; Surawang, Suthat; Wangtueai, Sutee; Phimolsiripol, Yuthana; Regenstein, Joe M; Seesuriyachan, Phisit

    2018-02-07

    Prebiotic substances are extracted from various plant materials or enzymatic hydrolysis of different substrates. The production of fructo-oligosaccharide (FOS) and inulo-oligosaccharide (IOS) was performed by applying two substrates, sucrose and inulin; oligosaccharide yields were maximized using central composite design to evaluate the parameters influencing oligosaccharide production. Inulin from Jerusalem artichoke (5-15% w/v), sucrose (50-70% w/v), and inulinase from Aspergillus niger (2-7 U/g) were used as variable parameters for optimization. Based on our results, the application of sucrose and inulin as co-substrates for oligosaccharide production through inulinase hydrolysis and synthesis is viable in comparative to a method using a single substrate. Maximum yields (674.82 mg/g substrate) were obtained with 5.95% of inulin, 59.87% of sucrose, and 5.68 U/g of inulinase, with an incubation period of 9 hr. The use of sucrose and inulin as co-substrates in the reaction simultaneously produced FOS and IOS from sucrose and inulin. Total conversion yield was approximately 67%. Our results support the high value-added production of oligosaccharides using Jerusalem artichoke, which is generally used as a substrate in prebiotics and/or bioethanol production.

  3. Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD

    Science.gov (United States)

    Lu, Xu; Zheng, Zhichang; Miao, Song; Li, Huang; Guo, Zebin; Zhang, Yi; Zheng, Yafeng; Zheng, Baodong; Xiao, Jianbo

    2017-03-01

    Lotus seeds were identified by the Ministry of Public Health of China as both food and medicine. One general function of lotus seeds is to improve intestinal health. However, to date, studies evaluating the relationship between bioactive compounds in lotus seeds and the physiological activity of the intestine are limited. In the present study, by using medium pressure liquid chromatography coupled with evaporative light-scattering detector and diode-array detector, five oligosaccharides were isolated and their structures were further characterized by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. In vitro testing determined that LOS3-1 and LOS4 elicited relatively good proliferative effects on Lactobacillus delbrueckii subsp. bulgaricus. These results indicated a structure-function relationship between the physiological activity of oligosaccharides in lotus seeds and the number of probiotics applied, thus providing room for improvement of this particular feature. Intestinal probiotics may potentially become a new effective drug target for the regulation of immunity.

  4. Analysis of the intestinal microbiota of oligo-saccharide fed mice exhibiting reduced resistance to Salmonella infection

    DEFF Research Database (Denmark)

    Petersen, Anne; Bergström, Anders; Andersen, Jens Bo

    2010-01-01

    recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining...... the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals...... of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased...

  5. NMR experiments for the measurement of proton-proton and carbon-carbon residual dipolar couplings in uniformly labelled oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Pastor, Manuel [Universidad de Santiago de Compostela, Laboratorio Integral de Estructura de Biomoleculas Jose. R. Carracido, Unidade de Resonancia Magnetica, RIAIDT (Spain)], E-mail: mmartin@usc.es; Canales-Mayordomo, Angeles; Jimenez-Barbero, Jesus [Departamento de Estructura y funcion de proteinas, Centro de Investigaciones Biologicas, CSIC (Spain)], E-mail: jjbarbero@cib.csic.es

    2003-08-15

    A 2D-HSQC-carbon selective/proton selective-constant time COSY, 2D-HSQC-(sel C, sel H)-CT COSY experiment, which is applicable to uniformly {sup 13}C isotopically enriched samples (U-{sup 13}C) of oligosaccharides or oligonucleotides is proposed for the measurement of proton-proton RDC in crowded regions of 2D-spectra. In addition, a heteronuclear constant time-COSY experiment, {sup 13}C-{sup 13}C CT-COSY, is proposed for the measurement of one bond carbon-carbon RDC in these molecules. These two methods provide an extension, to U-{sup 13}C molecules, of the original homonuclear constant time-COSY experiment proposed by Tian et al. (1999) for saccharides. The combination of a number of these RDC with NOE data may provide the method of choice to study oligosaccharide conformation in the free and receptor-bound state.

  6. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    International Nuclear Information System (INIS)

    Prem Das, O.; Henderson, E.J.

    1986-01-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum

  7. Isolation and characterization of an agaro-oligosaccharide (AO-hydrolyzing bacterium from the gut microflora of Chinese individuals.

    Directory of Open Access Journals (Sweden)

    Miaomiao Li

    Full Text Available Agarose (AP from red algae has a long history as food ingredients in East Asia. Agaro-oligosaccharides (AO derived from AP have shown potential prebiotic effects. However, the human gut microbes responsible for the degradation of AO and AP have not yet been fully investigated. Here, we reported that AO and AP can be degraded and utilized at various rates by fecal microbiota obtained from different individuals. Bacteroides uniformis L8 isolated from human feces showed a pronounced ability to degrade AO and generate D-galactose as its final end product. PCR-DGGE analysis showed B. uniformis to be common in the fecal samples, but only B. uniformis L8 had the ability to degrade AO. A synergistic strain, here classified as Escherichia coli B2, was also identified because it could utilize the D-galactose as the growth substrate. The cross-feeding interaction between B. uniformis L8 and E. coli B2 led to exhaustion of the AO supply. Bifidobacterium infantis and Bifidobacterium adolescentis can utilize one of the intermediates of AO hydrolysis, agarotriose. Growth curves indicated that AO was the substrate that most favorably sustained the growth of B. uniformis L8. In contrast, κ-carrageenan oligosaccharides (KCO, guluronic acid oligosaccharides (GO, and mannuronic acid oligosaccharides (MO were found to be unusable to B. uniformis L8. Current results indicate that B. uniformis L8 is a special degrader of AO in the gut microbiota. Because B. uniformis can mitigate high-fat-diet-induced metabolic disorders, further study is required to determine the potential applications of AO.

  8. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice.

    Science.gov (United States)

    Paciotti, Silvia; Persichetti, Emanuele; Klein, Katharina; Tasegian, Anna; Duvet, Sandrine; Hartmann, Dieter; Gieselmann, Volkmar; Beccari, Tommaso

    2014-04-04

    Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.

  9. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    Science.gov (United States)

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods

  10. Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel's sifaka and mongoose lemur.

    Science.gov (United States)

    Taufik, Epi; Fukuda, Kenji; Senda, Akitsugu; Saito, Tadao; Williams, Cathy; Tilden, Chris; Eisert, Regina; Oftedal, Olav; Urashima, Tadasu

    2012-04-01

    The structures of milk oligosaccharides were characterized for four strepsirrhine primates to examine the extent to which they resemble milk oligosaccharides in other primates. Neutral and acidic oligosaccharides were isolated from milk of the greater galago (Galagidae: Otolemur crassicaudatus), aye-aye (Daubentoniidae: Daubentonia madagascariensis), Coquerel's sifaka (Indriidae: Propithecus coquereli) and mongoose lemur (Lemuridae: Eulemur mongoz), and their chemical structures were characterized by (1)H-NMR spectroscopy. The oligosaccharide patterns observed among strepsirrhines did not appear to correlate to phylogeny, sociality or pattern of infant care. Both type I and type II neutral oligosaccharides were found in the milk of the aye-aye, but type II predominate over type I. Only type II oligosaccharides were identified in other strepsirrhine milks. α3'-GL (isoglobotriose, Gal(α1-3)Gal(β1-4)Glc) was found in the milks of Coquerel's sifaka and mongoose lemur, which is the first report of this oligosaccharide in the milk of any primate species. 2'-FL (Fuc(α1-2)Gal(β1-4)Glc) was found in the milk of an aye-aye with an ill infant. Oligosaccharides containing the Lewis x epitope were found in aye-aye and mongoose lemur milk. Among acidic oligosaccharides, 3'-N-acetylneuraminyllactose (3'-SL-NAc, Neu5Ac(α2-3)Gal(β1-4)Glc) was found in all studied species, whereas 6'-N-acetylneuraminyllactose (6'-SL-NAc, Neu5Ac(α2-6)Gal(β1-4)Glc) was found in all species except greater galago. Greater galago milk also contained 3'-N-glycolylneuraminyllactose (3'-SL-NGc, Neu5Gc(α2-3)Gal(β1-4)Glc). The finding of a variety of neutral and acidic oligosaccharides in the milks of strepsirrhines, as previously reported for haplorhines, suggests that such constituents are ancient rather than derived features, and are as characteristic of primate lactation is the classic disaccharide, lactose.

  11. Effect of supplementation of Manno-Oligosaccharide and b-glucans on maize based meal on commercial broilers

    Directory of Open Access Journals (Sweden)

    R.C.Shendare

    2008-01-01

    Full Text Available A study with 200 vencobb broilers was carried out to compare the effect of the use of Manno-Oligosaccharide and b-glucans of Saccharomyces cerevisiae cell wall or growth promoter ( AGRIMOS and reg; feed in the diet @ 1Kg /ton of feed to the broiler. Diets were based on maize meal. A completely randomized experimental design was used, and the obtained data were evaluated by analysis. The following parameters were measured: feed intake, daily weight gain, feed conversion ratio, and mortality. After 6 weeks of fattening, the average live weight of broilers in the experimental group was 1821.11g, while the average live weight of broilers in control group was 1712.22g (P<0.01. Supplementation of Manno-Oligosaccharide and b-glucans preparation influence the achievement of higher live weights of broilers from the experimental group ( 5.37% , compared to the control and enhanced feed conversion ( 8.45 % . It was concluded that the effect of the inclusion of Manno-Oligosaccharide and b-glucans in the diet shows significantly higher body weight gain and improvement in feed efficiency as compared to the control diet. [Vet World 2008; 1(1.000: 13-15

  12. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair

    Directory of Open Access Journals (Sweden)

    Yang Y

    2017-09-01

    Full Text Available Yong Yang,1–4,* Zhenhuan Ma,1–4,* Guokai Yang,1–4 Jia Wan,1–4 Guojian Li,1–4 Lingjuan Du,1–4 Ping Lu1–4 1Department of Vascular Surgery, The Second People’s Hospital of Yunnan Province, Kunming, China; 2Department of Vascular Surgery, The Fourth Affiliated Hospital of Kunming Medical University, Kunming, China; 3Department of Vascular Surgery, Vascular Surgery Centre in Yunnan Province, Kunming, China; 4Department of Vascular Surgery, Abdominal Surgery Centre in Yunnan Province, Kunming, China *These authors contributed equally to this work Abstract: Endovascular aortic repair (EVAR is often followed by aneurysm recurrence. Alginate oligosaccharide (AOS has potential antitumor properties as a natural product while the related mechanisms remain unclear. Toll-like receptor (TLR signaling is associated with inflammatory activity of aneurysm and may be affected by miR-29b. Thus, inhibitory function of AOS on aneurysms was explored by measuring the important molecules in TLR4 signaling. After EVAR, a total of 248 aortic aneurysm patients were recruited and randomly assigned into two groups: AOS group (AG, oral administration 10-mg AOS daily and control group (CG, placebo daily. The size of residual aneurysms, aneurysm recurrence, and side effects were investigated. Aneurysm recurrence was determined by Kaplan–Meier analysis. After 2 years, eight and two patients died in the CG and AG, respectively. The sizes of residual aneurysms were significantly larger in the CG than in the AG (P<0.05. The incidence of aneurysm recurrence was also significantly higher in the CG than in the AG (P<0.05. AOS treatment reduced the levels of miR-29b, TLR4, mitogen-activated protein kinase (MAPK, nuclear factor kappa B (NF-kappa B, interleukin 1 (IL-1 beta, and interleukin 6 (IL-6. Overexpression and silence of miR-29b increased and reduced the level of TLR4, phospho-p65 NF-kappa B, phospho-p38 MAPK, IL-1 beta, and IL-6. Spearman’s rank correlation

  13. Effectivity of prebiotic mannan oligosaccharides as the immunity enhancer and growth response on whiteleg shrimp Litopenaeus vannamei against white spot disease

    Directory of Open Access Journals (Sweden)

    Linuwih Aluh Prastiti

    2018-05-01

    Full Text Available ABSTRACT This study aimed to evaluate the immune response and growth performance of white shrimp administered with prebiotic mannan oligosaccharides (MOS with dosages of (0%, 0.2%, 0.4%, and 0.8% in diet and used in the feeding trial. Shrimps (Litopenaeus vannamei (the initial average weight was 3.416±0.064 g were fed at satiation, three times a day. A completely randomized design was used  in the study. Shrimps were cultured at the stock density of 15 shrimps 40/L for each treatment in triplicates. After 30 days of the feeding trial, shrimp were challenged with white spot syndrome virus filtrate by intramuscular injection. The total gut bacteria, total haemocyte count (THC, phenoloxydase (PO, and respiratory burst (RB activity were observed 4 times, before the experiment, day 30th before challenge test, day 32nd after challenge test, and day 36th the end of the experiment. The shrimp survival was observed at day 36th to evaluate the immune responses. The results showed that THC, PO activity, RB activity, growth performance, and shrimp survival administered with prebiotic 0.8% were significantly higher (P<0.05 than control. The administration of prebiotic with dose 0.8% was the best result and could effectively improve the immune responses and growth performance of whiteleg shrimp. Keywords: prebiotic, whiteleg shrimp, white spot disease  ABSTRAK Tujuan dari penelitian ini adalah untuk mengevaluasi respons imun dan performa pertumbuhan pada udang vaname yang diberi prebiotik mannan-oligosaccharides (MOS dengan dosis berbeda (0%, 0,2%, 0,4%, dan 0,8% pada pakan. Udang vaname (Litopenaeus vannamei (dengan rata-rata bobot 3,41 ± 0,06 g diberi pakan tiga kali sehari secara at satiation. Penelitian ini menggunakan rancangan acak lengkap. Udang dipelihara dengan kepadatan 15 ekor per 40/L pada setiap perlakuan dengan tiga kali pengulangan. Setelah 30 hari pemberian pakan, udang diuji tantang menggunakan white spot syndrome virus dengan

  14. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    International Nuclear Information System (INIS)

    Jones, Meredith B.; Tomiya, Noboru; Betenbaugh, Michael J.; Krag, Sharon S.

    2010-01-01

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man 5 GlcNAc 2 -P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man 9 GlcNAc 2 -P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc 3 Man 9 GlcNAc 2 -P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man 5 GlcNAc 2 -PP-Dol through Glc 1 Man 9 GlcNAc 2 -PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc 3 Man 9 GlcNAc 2 -P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  15. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Meredith B., E-mail: mbauman7@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Tomiya, Noboru, E-mail: ntomiya1@jhu.edu [Department of Biology, Johns Hopkins University, 3400 North Charles Street, Mudd Hall 104A, Baltimore, MD 21218 (United States); Betenbaugh, Michael J., E-mail: beten@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Krag, Sharon S., E-mail: skrag@jhsph.edu [Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 (United States)

    2010-04-23

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  16. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  17. Effect of Forsythia suspensa extract and chito-oligosaccharide alone or in combination on performance, intestinal barrier function, antioxidant capacity and immune characteristics of weaned piglets.

    Science.gov (United States)

    Zhao, Panfeng; Piao, Xiangshu; Zeng, Zhikai; Li, Ping; Xu, Xiao; Wang, Hongliang

    2017-06-01

    We investigated the effects of Forsythia suspensa extract (FSE) and chito-oligosaccharide (COS), alone or together, on performance and health status of weaned piglets. The treatments included a basal diet and three diets with 160 mg/kg COS, 100 mg/kg FSE, or 100 mg/kg FSE and 160 mg/kg COS. Supplementation with COS or FSE alone improved (P antioxidant capacity and glutathione peroxidase activities and lower serum endotoxin (P concentrations, generated higher (P concentration, peripheral blood lymphocyte proliferation and serum-specific ovalbumin antibody level than the basal diet. No differences in oxidative injury and immunity indices were detected on day 28. The combined FSE and COS produced similar results compared with FSE or COS when given alone. These data indicate FSE or COS can increase performance by modulating intestinal permeability, antioxidant status and immune function in younger pigs. There appears to be similar advantage in feeding the additives in combination over those obtained from feeding them separately. © 2016 Japanese Society of Animal Science.

  18. Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Li, Yun; Liu, Hong; Dai, Xilin; Li, Jingjing; Ding, Fujiang

    2018-05-01

    The effects of inulin and mannan oligosaccharide (MOS) at different doses (2.5, 4 and 10 mg/g) in singular or combined diet on growth rate, immune related genes expression, and resistance to white spot syndrome virus (WSSV) and Vibrio alginolyticus in Pacific white shrimp (Litopenaeus vannamei) were investigated. At the end of 28-day singular feeding experiment, the highest values of specific growth rate (SGR) and the expression of toll-like receptor1, 2 and 3 (TLR1, 2, 3), signal transducer and activator of transcription (STAT), crustin, anti-lipopolysaccharide factor (ALF) as well as prophenoloxidase (proPO) were observed in shrimp individually fed with 5 mg/g dietary inulin or MOS, respectively. Compared with individual treatments, diet containing combined prebiotics (5 mg/g inulin and MOS) significantly improved the expression of TLRs, STAT, proPO, crustin and ALF in L. vannamei after four-week feeding. Additionally, Pacific white shrimp fed with combined dietary prebiotics showed significantly higher expression of immune related genes and lower cumulative mortality in WSSV and Vibrio alginolyticus challenges, compared to the singular feeding groups and control. These results in the present study demonstrated that the combined supplementation of inulin (5 mg/g) and MOS (5 mg/g) remarkably enhanced innate immune response and pathogen resistance of shrimp, and should be considered as a promising immunostimulatory additive for the culture of Pacific white shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Label-Free Quantitative Proteomic Analysis of Chitosan Oligosaccharide-Treated Rice Infected with Southern Rice Black-Streaked Dwarf Virus.

    Science.gov (United States)

    Yang, Anming; Yu, Lu; Chen, Zhuo; Zhang, Shanxue; Shi, Jing; Zhao, Xiaozhen; Yang, Yuanyou; Hu, Deyu; Song, Baoan

    2017-05-18

    Southern rice black-streaked dwarf virus (SRBSDV) has spread from thesouth of China to the north of Vietnam in the past few years and severelyinfluenced rice production. Its long incubation period and early symptoms are not evident; thus, controlling it is difficult. Chitosan oligosaccharide (COS) is a green plant immunomodulator. Early studies showed that preventing and controlling SRBSDV have a certain effect and reduce disease infection rate, but its underlying controlling and preventing mechanism is unclear. In this study, label-free proteomics was used to analyze differentially expressed proteins in rice after COS treatment. The results showed that COS can up-regulate the plant defense-related proteins and down-regulate the protein expression levels of SRBSDV. Meanwhile, quantitative real-time PCR test results showed that COS can improve defense gene expression in rice. Moreover, COS can enhance the defense enzymatic activities of peroxidase, superoxide dismutase and catalase through mitogen-activated protein kinase signaling cascade pathway, and enhance the rice disease resistance.

  20. RP-UHPLC-UV-ESI-MS/MS analysis of LPMO generated C4-oxidized gluco-oligosaccharides after non-reductive labeling with 2-aminobenzamide.

    Science.gov (United States)

    Frommhagen, Matthias; van Erven, Gijs; Sanders, Mark; van Berkel, Willem J H; Kabel, Mirjam A; Gruppen, Harry

    2017-08-07

    Lytic polysaccharide monooxygenases (LPMOs) are able to cleave recalcitrant polysaccharides, such as cellulose, by oxidizing the C1 and/or C4 atoms. The analysis of the resulting products requires a variety of analytical techniques. Up to now, these techniques mainly focused on the identification of non-oxidized and C1-oxidized oligosaccharides. The analysis of C4-oxidized gluco-oligosaccharides is mostly performed by using high pressure anion exchange chromatography (HPAEC). However, the alkaline conditions used during HPAEC analysis lead to tautomerization of C4-oxidized gluco-oligosaccharides, which limits the use of this technique. Here, we describe the use of reverse phase-ultra high performance liquid chromatography (RP-UHPLC) in combination with non-reductive 2-aminobenzamide (2-AB) labeling. Non-reductive 2-AB labeling enabled separation of C4-oxidized gluco-oligosaccharides from their non-oxidized counterparts. Moreover, RP-UHPLC does not require buffered mobile phases, which reduce mass spectrometry (MS) sensitivity. The latter is seen as an advantage over other techniques such as hydrophilic interaction liquid chromatography and porous graphitized carbon coupled to MS. RP-UHPLC coupled to UV detection and mass spectrometry allowed the identification of both labeled non-oxidized and C4-oxidized oligosaccharides. Non-reductive labeling kept the ketone at the C4-position of LPMO oxidized oligosaccharides intact, while selective reducing agents such as sodium triacetoxyborohydride (STAB) reduced this ketone group. Our results show that RP-UHPLC-UV-ESI-MS in combination with non-reductively 2-AB labeling is a suitable technique for the separation and identification of LPMO-generated C4-oxidized gluco-oligosaccharides. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size.

    Science.gov (United States)

    Li, Junhui; Li, Shan; Yan, Lufeng; Ding, Tian; Linhardt, Robert J; Yu, Yanlei; Liu, Xinyue; Liu, Donghong; Ye, Xingqian; Chen, Shiguo

    2017-10-20

    Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Jang, Ho Am; Kim, Min Seon; Cho, Jae Hyun; Lee, Junbeom; Di Lorenzo, Flaviana; Sturiale, Luisa; Silipo, Alba; Molinaro, Antonio; Lee, Bok Luel

    2017-11-24

    Lipopolysaccharide, the outer cell-wall component of Gram-negative bacteria, has been shown to be important for symbiotic associations. We recently reported that the lipopolysaccharide O-antigen of Burkholderia enhances the initial colonization of the midgut of the bean bug, Riptortus pedestris However, the midgut-colonizing Burkholderia symbionts lack the O-antigen but display the core oligosaccharide on the cell surface. In this study, we investigated the role of the core oligosaccharide, which directly interacts with the host midgut, in the Riptortus-Burkholderia symbiosis. To this end, we generated the core oligosaccharide mutant strains, Δ wabS , Δ wabO , Δ waaF, and Δ waaC, and determined the chemical structures of their oligosaccharides, which exhibited different compositions. The symbiotic properties of these mutant strains were compared with those of the wild-type and O-antigen-deficient Δ wbiG strains. Upon introduction into Riptortus via the oral route, the core oligosaccharide mutant strains exhibited different rates of colonization of the insect midgut. The symbiont titers in fifth-instar insects revealed significantly reduced population sizes of the inner core oligosaccharide mutant strains Δ waaF and Δ waaC These two strains also negatively affected host growth rate and fitness. Furthermore, R. pedestris individuals colonized with the Δ waaF and Δ waaC strains were vulnerable to septic bacterial challenge, similar to insects without a Burkholderia symbiont. Taken together, these results suggest that the core oligosaccharide from Burkholderia symbionts plays a critical role in maintaining a proper symbiont population and in supporting the beneficial effects of the symbiont on its host in the Riptortus-Burkholderia symbiosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Synthesis of Isomalto-Oligosaccharides by Pichia pastoris Displaying the Aspergillus niger α-Glucosidase.

    Science.gov (United States)

    Zhao, Nannan; Xu, Yanshan; Wang, Kuang; Zheng, Suiping

    2017-11-01

    We explored the ability of an Aspergillus niger α-glucosidase displayed on P. pastoris to act as a whole-cell biocatalyst (Pp-ANGL-GCW61) system to synthesize isomalto-oligosaccharides (IMOs). IMOs are a mixture that includes isomaltose (IG 2 ), panose (P), and isomaltotriose (IG 3 ). In this study, the IMOs were synthesized by a hydrolysis-transglycosylation reaction in an aqueous system of maltose. In a 2 mL reaction system, the IMOs were synthesized with a conversion rate of approximately 49% in 2 h when 30% maltose was utilized under optimal conditions by Pp-ANGL-GCW61. Additionally, the 0.5-L reaction system was conducted in a 2-L stirred reactor with a conversion rate of approximately 44% in 2 h. Moreover, the conversion rate was relatively stable after the whole-cell catalyst was reused three times. In conclusion, Pp-ANGL-GCW61 has a high reaction efficiency and operational stability, which makes it a powerful biocatalyst available for industrial scale synthesis.

  4. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2015-09-01

    Full Text Available Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO on lipopolysaccharide (LPS/β-amyloid (Aβ-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO and prostaglandin E2 (PGE2, expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4 and nuclear factor (NF-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer’s disease (AD.

  5. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location.

    Science.gov (United States)

    Kumar, Vineet; Rani, Anita; Goyal, Lokesh; Dixit, Amit Kumar; Manjaya, J G; Dev, Jai; Swamy, M

    2010-04-28

    Sucrose content in soybean seeds is desired to be high because as a sweetness-imparting component, it helps in wider acceptance of soy-derived food products. Conversely, galactosyl derivatives of sucrose, that is, raffinose and stachyose, which are flatulence-inducing components, need to be in low concentration in soybean seeds not only for augmenting utilization of the crop in food uses but also for delivering soy meal with improved metabolizable energy for monogastric animals. In the present study, analysis of 148 soybean genotypes for sucrose and total raffinose family oligosaccharides (RFOs) contents revealed a higher variation (4.80-fold) for sucrose than for RFOs content (2.63-fold). High-performance liquid chromatography analyses revealed ranges of 0.64-2.53 and 2.09-7.1 mmol/100 g for raffinose and stachyose contents, respectively. As information concerning the environmental effects on the sucrose and RFOs content in soybean seeds is not available, we also investigated a set of seven genotypes raised at widely different geographical locations for these quality traits. Sucrose content was found to be significantly higher at cooler location (Palampur); however, differences observed for raffinose and stachyose contents across the growing locations were genotype-dependent. The results suggest that soybean genotypes grown at cooler locations may be better suited for processing soy food products with improved taste and flavor.

  6. The effect of simulated flash heating pasteurisation and Holder pasteurisation on human milk oligosaccharides.

    Science.gov (United States)

    Daniels, Brodie; Coutsoudis, Anna; Autran, Chloe; Amundson Mansen, Kimberly; Israel-Ballard, Kiersten; Bode, Lars

    2017-08-01

    Human milk oligosaccharides (HMOs) have important protective functions in human milk. A low-cost remote pasteurisation temperature-monitoring system has been designed using FoneAstra, a cell phone-based networked sensing system to monitor simulated flash heat pasteurisation. To compare the pasteurisation effect on HMOs of the FoneAstra FH method with the current Sterifeed Holder method used by human milk banks. Donor human milk samples (n = 48) were obtained from a human milk bank and pasteurised using the two pasteurisation methods. HMOs were purified from samples and labelled before separation using high-performance liquid chromatography. Concentrations of total HMOs, sialylated and fucosylated HMOs and individual HMOs using the two pasteurisation methods were compared using repeated-measures ANOVA. The study demonstrated no difference in total concentration of HMOs between the two pasteurisation methods and a small but significant increase in the total concentration of HMOs regardless of pasteurisation methods compared with controls (unpasteurised samples) (pmilk and therefore is a possible alternative for providing safely sterilised human milk for low- and middle-income countries.

  7. Metabolic fate of neutral human milk oligosaccharides in exclusively breast-fed infants.

    Science.gov (United States)

    Dotz, Viktoria; Rudloff, Silvia; Meyer, Christina; Lochnit, Günter; Kunz, Clemens

    2015-02-01

    Various biological effects have been postulated for human milk oligosaccharides (HMO), as deduced from in vitro, animal, and epidemiological studies. Little is known about their metabolic fate in vivo in the breast-fed infant, which is presented here. Human milk and infant urine and feces were collected from ten mother-child pairs and analyzed by MALDI-TOF MS (/MS), accompanied by high-performance anion-exchange chromatography with pulsed amperometric detection. Previously, we detected intact small and complex HMO in infant urine, which had been absorbed from gut, as verified via intrinsic (13) C-labeling. Our current work reveals the presence of novel HMO metabolites in urine and feces of breast-fed infants. The novel metabolites were identified as acetylated HMOs and other HMO-like structures, produced by the infants or by their gut microbiota. The finding of secretor- or Lewis-specific HMO in the feces/urine of infants fed with nonsecretor or Lewis-negative milk suggested a correspondent modification in the infant. Our study reveals new insights into the metabolism of neutral HMO in exclusively breast-fed infants and provides further indications for multiple factors influencing HMO metabolism and functions that should be considered in future in vivo investigations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of heparan sulfate N-deacetylase/N-sulfotransferase isoform 4 using synthetic oligosaccharide substrates.

    Science.gov (United States)

    Li, Yi-Jun; Yin, Feng-Xin; Zhang, Xin-Ke; Yu, Jie; Zheng, Shuang; Song, Xin-Lei; Wang, Feng-Shan; Sheng, Ju-Zheng

    2018-03-01

    The final structure of heparan sulfate chains is strictly regulated in vivo, though the biosynthesis is not guided by a template process. N-deacetylase/N-sulfotransferase (NDST) is the first modification enzyme in the HS biosynthetic pathway. The N-sulfo groups introduced by NDST are reportedly involved in determination of the susceptibility to subsequent processes catalyzed by C 5 -epimerse and 3-O-sulfotransferases. Understanding the substrate specificities of the four human NDST isoforms has become central to uncovering the regulatory mechanism of HS biosynthesis. Highly-purified recombinant NDST-4 (rNDST-4) and a selective library of structurally-defined oligosaccharides were employed to determine the substrate specificity of rNDST-4. Full-length rNDST-4 lacks obvious N-deacetylase activity, and displays only N-sulfotransferase activity. Unlike NDST-1, NDST-4 did not show directional N-sulfotransferase activity while the N-deacetylase domain was inactive. Individual NDST-4 could not effectively assume the key role in the distribution of N-S domains and N-Ac domains in HS biosynthesis in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of fructo-oligosaccharide on nitrogen utilization in guinea pigs.

    Science.gov (United States)

    Kawasaki, Kiyonori; Min, Xiao; Nishiyama, Ai; Sakaguchi, Ei

    2013-04-01

    The present study was conducted to determine the effects of fructo-oligosaccharide (FOS) on the nitrogen (N) utilization and digestibilities of dietary nutrients through cecotrophy in guinea pigs. Adult male guinea pigs that were housed or not housed in wooden frames to prevent cecotrophy were fed a commercial pellet diet (50 g/day) with 3% and 5% glucose or FOS for 8 days in individual metabolism cages. In the guinea pigs allowed cecotrophy, addition of FOS to the diet had no significant effects on body weight gain or apparent digestibility of N, but showed significantly lower value for the urinary N excretion and acid-detergent fiber digestibility (P guinea pigs prevented from cecotrophy, FOS had no effect on N retention, but showed tendencies toward a higher value for fecal N excretion and a lower value for urinary N excretion. These results suggest that FOS stimulates cecal microbial proliferation, thereby improving N utilization in guinea pigs. © 2012 Japanese Society of Animal Science.

  10. Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ting-Yi [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Ho, Chia-Che [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Chen, David Chan-Hen [Institute of Veterinary Microbiology, National Chung-Hsing University, Taichung 402, Taiwan (China); Lai, Meng-Heng [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Ding, Shinn-Jyh, E-mail: sjding@csmu.edu.tw [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung-Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2010-04-15

    A bone substitute material was developed consisting of a chitosan oligosaccharide (COS) solution in a liquid phase and gelatin (GLT) containing calcium phosphate powder in a solid phase. The physicochemical and biocompatible properties of the hybrid cements were evaluated. The addition of COS to cement did not affect the setting time or diametral tensile strength of the hybrid cements, whereas GLT significantly prolonged the setting time and decreased the strength slightly. The setting reaction was inhibited by the addition of GLT to the initial mixture, but not by COS. However, the presence of GLT appreciably improved the anti-washout properties of the hybrid cement compared with COS. COS may promote the cement's biocompatibility as an approximate twofold increase in cell proliferation for 10% COS-containing cements was observed on day 3 as compared with the controls. The combination of GLT and COS was chosen due to the benefits achieved from several synergistic effects and for their clinical applications. Cement with 5% GLT and 10% COS may be a better choice among cements in terms of anti-washout properties and biological activity.

  11. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production

    Science.gov (United States)

    Yopi, Rahmani, Nanik; Jannah, Alifah Mafatikhul; Nugraha, Irfan Pebi; Ramadana, Roni Masri

    2017-11-01

    Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).

  12. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jacquelin N.; Posada, James J. [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Rezende, Rodrigo A. [Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil); Sabino, Marcos A., E-mail: msabino@usb.ve [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-04-01

    Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase. LCST transition occurred around 35–37 °C. The morphology of the porosity of the freeze-dried samples was studied by Scanning Electron Microscopy (SEM). An in vitro test of cell hemolysis on blood agar showed that these gels are noncytotoxic. According to the results obtained, these interpenetrating gels show characteristics of an injectable material, and have a transition LCST at body temperature, which reinforces their potential to be used in the surgical field and as scaffolds for tissue engineering. - Highlights: • Physical blends were prepared to obtain thermosensitive gels PNIPA/polysaccharides. • Rheological test allowed verifying the injectability of the gels. • Gels showed a LCST ∼ 37 °C, which makes them interesting for biomedical applications. • Porosity is a function of hydrophobicity/hydrophilicity/molecular weight of phases. • The PNIPA/starch gel showed better morphology as scaffold for tissue engineering.

  13. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides.

    Science.gov (United States)

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2018-01-01

    This article illustrates the basis and applications of methodologies for the analysis of simple and complex carbohydrates by means of CE. After a description of the most common and novel approaches useful for the analysis and characterization of carbohydrates, this review covers the recent advances in CE separation of monosaccharides, oligosaccharides, and polysaccharides. Various CE techniques are also illustrated for the study of carbohydrates derived from complex glyco-derivatives such as glycoproteins and glycolipids, essential for biopharmaceutical and glycoproteomics applications as well as for biomarker detection. Most glycans have no significant UV absorption, and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved electrophoretic profile. We also discuss the recent applications and separations by CE of derivatized simple and more complex carbohydrates with different chromophoric active tags. Overall, this review aims to give an overview of the most recent state-of-the-art techniques used in carbohydrate analysis by CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines.

    Science.gov (United States)

    Musilova, Sarka; Modrackova, Nikol; Doskocil, Ivo; Svejstil, Roman; Rada, Vojtech

    2017-12-01

    Adhesion of gut bacteria to the intestinal epithelium is the first step in their colonization of the neonatal immature gut. Bacterial colonization of the infant gut is influenced by several factors, of which the most important are the mode of delivery and breast-feeding. Breast-fed infants ingest several grams of human milk oligosaccharides (HMOs) per day, which can become receptor decoys for intestinal bacteria. The most abundant intestinal bacteria in vaginally delivered infants are bifidobacteria, whereas infants born by cesarean section are colonized by clostridia. The influence of HMOs on the adhesion of five strains of intestinal bacteria (three bifidobacterial strains and two clostridial strains) to mucus-secreting and non-mucus-secreting human epithelial cells was investigated. Bifidobacterium bifidum 1 and Bifidobacterium longum displayed almost the same level of adhesion in the presence and absence of HMOs. By contrast, adhesion of Clostridium butyricum 1 and 2 decreased from 14.41% to 6.72% and from 41.54% to 30.91%, respectively, in the presence of HMOs. The results of this study indicate that HMOs affect bacterial adhesion and are an important factor influencing bacterial colonization of the gut. Adhesion of the tested bacteria correlates with their ability to autoaggregate.

  15. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  16. Digestion of Human Milk Oligosaccharides by Bifidobacterium breve in the Premature Infant.

    Science.gov (United States)

    Underwood, Mark A; Davis, Jasmine C C; Kalanetra, Karen M; Gehlot, Sanjay; Patole, Sanjay; Tancredi, Daniel J; Mills, David A; Lebrilla, Carlito B; Simmer, Karen

    2017-10-01

    The aim of this study was to measure consumption and absorption of human milk oligosaccharides (HMOs) in a cohort of premature infants treated with probiotic Bifidobacterium breve. Twenty-nine premature infants (median gestational age 28 weeks, range 23-32 weeks) cared for in the neonatal intensive care unit of the King Edward and Princess Margaret Hospital in Perth, Australia, were treated with B breve at a dose of 1.66 billion organisms per day. Samples of feces, urine, and milk were obtained at initiation of the probiotic and again 3 weeks later. 16S ribosomal RNA from the feces was analyzed by next-generation sequencing. Quantitation of HMO content of the milk, urine, and feces was performed using nano-high-performance liquid chromatography-chip/time-of-flight mass spectrometry. There was heterogeneity in colonization with bifidobacteria. "Responders" received milk with higher percentages of fucosylated HMOs and had higher percentages of bifidobacteria and lower percentages of Enterobacteriaceae in their feces than "nonresponders." Several individual HMOs in the milk were associated with changes in fecal bifidobacteria over time. Changes over time in milk, fecal, and urine HMOs suggested heterogeneity among HMO structures in consumption by microbes in the gut lumen and absorption from the intestine. Colonization of the premature infant intestinal tract with probiotic B breve is influenced by prebiotic HMOs. B breve is a selective consumer of HMOs in the premature infant.

  17. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa).

    Science.gov (United States)

    Kumar, V Prasanna; Prashanth, K V Harish; Venkatesh, Y P

    2015-03-06

    Onion (Allium cepa) is an immune-boosting food rich in fructans. The major aim of this study is to characterize and investigate the immunomodulatory properties of onion fructo-oligosaccharides (FOS). FOS was isolated from onion bulbs by hot 80% ethanol extraction (yield: ∼4.5 g/100 g fw) followed by gel permeation chromatography. NMR of onion FOS revealed unusual β-D-Glc terminal residue at the non-reducing end. TLC and ESI-MS analyses showed that onion FOS ranged from trisaccharides to hexasaccharides. Onion FOS (50 μg/mL) significantly increased (∼3-fold) the proliferation of mouse splenocytes/thymocytes vs. control. Further, onion FOS enhanced (∼2.5-fold) the production of nitric oxide by peritoneal exudates cells (PECs) from Wistar rats; intracellular free radicals production and phagocytic activity of isolated murine PECs were also augmented. Our structural and in vitro results indicate that onion FOS comprising of tri- to hexasaccharide units belongs to inulin-type fructans, and possess immunostimulatory activities towards murine lymphocytes and macrophages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Profiling of oligosaccharides and p53 gene mutation in Filipino breast tumors

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Vera, Azucena C.; Magno, Jose Donato A.; Cruz, Michael Joseph B.; Prodigalidad, Abelardo-Alan T.; Jacinto, Sonia D.

    2010-01-01

    Majority of patients are diagnosed with benign tumors, however, such benign tumors can progress to an invasive disease. Since carbohydrate-mediated cell-cell adhesion and proliferative potential play crucial roles in tumorigenesis and tumor aggressive behavior, we analyzed the qualitative changes in oligosaccharide expression and analyzed for presence of mutation in the tumor suppressor p53 gene, the most mutated gene in all human cancers. Forty-three (43) breast tumors were screened for p53 mutation in exons 2-11 using polymerase chain reaction (PCR)-amplification coupled to temporal temperature gradient electrophoresis (TTGE). Paraffin-embedded tissues were stained with biotinylated-glycoproteins containing the following sugar groups: mannose (Man), lactose (Lac), fucoidan (Fuc), N-acetyl-glucosamine (GlcNac), N-acetyl-b-galactosamine (GalNAc) and hyaluronic acid (Hya). Expression of carbohydrate receptors was significantly elevated (p=0.003) in malignant compared with benign tumors, particularly at receptors for GalNAc, lac and Fuc. No change in overall glycan signatures using our panel of neoglycoconjugates was noted when grouped according to p53 mutation status in both benign and malignant cases. Although the prognostic value of carbohydrate-receptors in breast cancer has not been validated to date, our results indicate that benign and malignant tumors can be defined by their affinities to our battery of neoglyconjugates. However, result from our reverse lectin histochemistry failed to correlated glycan signature with presence of p53 mutations. (author)

  19. Aureobasidium pullulans Fermented Feruloyl Oligosaccharide: Optimization of Production, Preliminary Characterization, and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Xiaohong Yu

    2013-11-01

    Full Text Available Wheat bran (WB was subjected to processing with Aureobasidium pullulans (A. pullulans under selected conditions to partially break down the xylan into soluble products (mainly feruloyl oligosaccharides, FOs. The objective of this study was to investigate the technology for one-step fermentation of WB by A. pullulans without melanin secretion to produce FOs as well as to determine their structural features and antioxidant activity. Initial pH, inoculation quantity, and fermentation temperature were found to be efficient for releasing FOs according to the Plackett-Burman design (PBD. Based on the D-Optimal design, a yield of 904 nmol of FOs / L of fermentation broth was obtained under optimal conditions of initial pH 6.0, inoculation quantity 4.50%, and fermentation temperature 29 oC. Purification of FOs was performed with alcohol precipitation and Amberlite XAD-2. GC, IR, and ESI-MS demonstrated that FOs consist of feruloyl arabinosyl xylopentose (FAX5, Mw986, feruloyl arabinosyl xylotetraose (FAX4, Mw854, feruloyl arabinosyl xylotriose (FAX3, Mw722, and feruloyl arabinosyl xylobiose (FAX2, Mw590. Increasing the FO dose led to increased activity of SOD and GSH-Px in serum of S180 tumor-bearing mice, while the level of MDA was reduced, thus improving its in vivo antioxidant activity.

  20. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.