WorldWideScience

Sample records for hyalinizing trabecular pattern

  1. Medullary carcinoma of the thyroid - an unusual case of hyalinizing ...

    African Journals Online (AJOL)

    Medullary thyroid carcinoma is a neoplasm occurring in sporadic and familial patterns. A rare variant of medullary thyroid carcinoma shows microscopic features similar to hyalinizing trabecular adenoma of thyroid. Detection of this variant requires a high index of suspicion and immunohistochemical confirmation by ...

  2. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    Science.gov (United States)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  3. Hyalinizing trabecular tumor of the thyroid: Diagnosed of a rare tumor using ultrasonography, cytology, and intraoperative frozen sections

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyun Sik; Kim, Eun Kyung; Kwak, Jin Young; Moon, Hee Jung; Yoon, Jung Hyun [Dept. of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Park, Cheol Keun; Son, Eun Ju [Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to evaluate the clinicopathological and imaging features of thyroid nodules surgically diagnosed as hyaline trabecular tumor (HTT), and to assess the role of cytology and frozen sections (FS) in the diagnosis of HTT. This study included 21 thyroid nodules in 21 patients treated from August 2005 to March 2015 (mean age, 53.3 years) who were either diagnosed as HTT or had HTT suggested as a possible diagnosis based on cytology, FS, or the final pathology report. Patients' medical records were retrospectively reviewed for cytopathologic results and outcomes during the course of follow-up. Sonograms were reviewed and categorized. Twelve nodules from 12 patients were surgically confirmed as HTT. Ultrasonography (US)-guided fine needle aspiration (FNA) was performed on 11 nodules, of which six (54.5%) were papillary thyroid carcinoma (PTC) or suspicious for PTC and three (27.3%) were HTT or suspicious for HTT. Intraoperative FS suggested the possibility of HTT in seven nodules, of which four (57.1%) were confirmed as HTT. US-FNA suggested the diagnosis of HTT in 10 nodules, of which three (30.0%) were confirmed as HTT. Common US features of the 12 pathologically confirmed cases of HTT were hypoechogenicity or marked hypoechogenicity (83.4%), absence of calcifications (91.7%), parallel shape (100.0%), presence of vascularity (75.0%), and probable benignity (58.3%). HTT should be included in the differential diagnosis of solid tumors with hypoechogenicity or marked hypoechogenicity and otherwise benign US features that have been diagnosed as PTC through cytology.

  4. Hyalinizing trabecular tumor of the thyroid: Diagnosed of a rare tumor using ultrasonography, cytology, and intraoperative frozen sections

    International Nuclear Information System (INIS)

    Jang, Hyun Sik; Kim, Eun Kyung; Kwak, Jin Young; Moon, Hee Jung; Yoon, Jung Hyun; Park, Cheol Keun; Son, Eun Ju

    2016-01-01

    The goal of this study was to evaluate the clinicopathological and imaging features of thyroid nodules surgically diagnosed as hyaline trabecular tumor (HTT), and to assess the role of cytology and frozen sections (FS) in the diagnosis of HTT. This study included 21 thyroid nodules in 21 patients treated from August 2005 to March 2015 (mean age, 53.3 years) who were either diagnosed as HTT or had HTT suggested as a possible diagnosis based on cytology, FS, or the final pathology report. Patients' medical records were retrospectively reviewed for cytopathologic results and outcomes during the course of follow-up. Sonograms were reviewed and categorized. Twelve nodules from 12 patients were surgically confirmed as HTT. Ultrasonography (US)-guided fine needle aspiration (FNA) was performed on 11 nodules, of which six (54.5%) were papillary thyroid carcinoma (PTC) or suspicious for PTC and three (27.3%) were HTT or suspicious for HTT. Intraoperative FS suggested the possibility of HTT in seven nodules, of which four (57.1%) were confirmed as HTT. US-FNA suggested the diagnosis of HTT in 10 nodules, of which three (30.0%) were confirmed as HTT. Common US features of the 12 pathologically confirmed cases of HTT were hypoechogenicity or marked hypoechogenicity (83.4%), absence of calcifications (91.7%), parallel shape (100.0%), presence of vascularity (75.0%), and probable benignity (58.3%). HTT should be included in the differential diagnosis of solid tumors with hypoechogenicity or marked hypoechogenicity and otherwise benign US features that have been diagnosed as PTC through cytology

  5. Contribution of the endosteal surface of cortical bone to the trabecular pattern seen on IOPA radiographs: an in vitro study

    Directory of Open Access Journals (Sweden)

    P T Ravikumar

    2012-01-01

    Full Text Available Objectives: A study was conducted to assess the contribution of the cancellous and endosteal surface of the cortical bone to the trabecular pattern seen in an IOPA radiograph. Materials and methods: An in vitro study analyzing the contribution of the endosteal surface of cortical bone and cancellous bone to the trabecular pattern was conducted, using 60 specimens of desiccated human mandibles. The mode of execution involved IOPA radiographic evaluation of premolarmolar segments in the specimens before and after removal of cancellous bone. The radiographs were numbered for identification and subjected to evaluation by 5 dentomaxillofacial radiologists who were doubleblinded to ensure an unbiased interpretation. Results: The trabecular pattern appreciation by the experts in the IOPA radiographs before and after removal of cancellous bone displayed immaculate correlation as per the Goodman-Kruskal Gamma Coefficient values which was 0.78 indicating a very large correlation. The relative density of trabecular pattern was significantly higher in radiograph before than after removal of cancellous bone with p-value less than 0.05. Conclusion: Based on these results it was adjudged that both the cancellous and endosteal surface of cortical bone contributed significantly to the trabecular pattern in an IOPA radiograph.

  6. Trabecular architecture of the manual elements reflects locomotor patterns in primates.

    Science.gov (United States)

    Matarazzo, Stacey A

    2015-01-01

    The morphology of trabecular bone has proven sensitive to loading patterns in the long bones and metacarpal heads of primates. It is expected that we should also see differences in the manual digits of primates that practice different methods of locomotion. Primate proximal and middle phalanges are load-bearing elements that are held in different postures and experience different mechanical strains during suspension, quadrupedalism, and knuckle walking. Micro CT scans of the middle phalanx, proximal phalanx and the metacarpal head of the third ray were used to examine the pattern of trabecular orientation in Pan, Gorilla, Pongo, Hylobates and Macaca. Several zones, i.e., the proximal ends of both phalanges and the metacarpal heads, were capable of distinguishing between knuckle-walking, quadrupedal, and suspensory primates. Orientation and shape seem to be the primary distinguishing factors but differences in bone volume, isotropy index, and degree of anisotropy were seen across included taxa. Suspensory primates show primarily proximodistal alignment in all zones, and quadrupeds more palmar-dorsal orientation in several zones. Knuckle walkers are characterized by having proximodistal alignment in the proximal ends of the phalanges and a palmar-dorsal alignment in the distal ends and metacarpal heads. These structural differences may be used to infer locmotor propensities of extinct primate taxa.

  7. Sex-specific patterns in cortical and trabecular bone microstructure in the Kirsten Skeletal Collection, South Africa.

    Science.gov (United States)

    Beresheim, Amy C; Pfeiffer, Susan K; Grynpas, Marc D; Alblas, Amanda

    2018-02-07

    The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. The 206 adult individuals ( n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa. © 2018 Wiley Periodicals, Inc.

  8. Agreement between radiographic and photographic trabecular patterns

    Energy Technology Data Exchange (ETDEWEB)

    Korstjens, C.M.; Geraets, W.G.M.; Stelt, P.F. van der [Dept. of Oral Radiology, Academic Centre for Dentistry, Amsterdam (Netherlands); Spruijt, R.J. [Div. of Psychosocial Research and Epidemiology, Netherlands Cancer Inst., Amsterdam (Netherlands); Mosekilde, L. [Dept. of Cell Biology, Univ. of Aarhus (Denmark)

    1998-11-01

    Purpose: It has been hypothesized that photographs can facilitate the interpretation of the radiographic characteristics of trabecular bone. The reliability of these photographic and radiographic approaches has been determined, as have various agreements between the two approaches and their correlations with biomechanical characteristics. Material and Methods: Fourteen vertebral bodies were obtained at autopsy from 6 women and 8 men aged 22-76 years. Photographs (n=28) and radiographs (n=28) were taken of midsagittal slices from the third lumbar vertebra. The radiographs and photographs were digitized and the geometric properties of the trabecular architecture were then determined with a digital images analysis technique. Information on the compressive strength and ash density of the vertebral body was also available. Results: The geometric properties of both radiographs and photographs could be measured with a high degree of reliability (Cronbach`s {alpha}>0.85). Agreement between the radiographic and photographic approaches was mediocre as only the radiographic measurements showed insignificant correlations (p<0.05) with the biomechanical characteristics. We suggest that optical phenomena may result in the significant correlations between the photographs and the biomechanical characteristics. Conclusion: For digital image processing, radiography offers a superior description of the architecture of trabecular bone to that offered by photography. (orig.)

  9. Agreement between radiographic and photographic trabecular patterns

    International Nuclear Information System (INIS)

    Korstjens, C.M.; Geraets, W.G.M.; Stelt, P.F. van der; Spruijt, R.J.; Mosekilde, L.

    1998-01-01

    Purpose: It has been hypothesized that photographs can facilitate the interpretation of the radiographic characteristics of trabecular bone. The reliability of these photographic and radiographic approaches has been determined, as have various agreements between the two approaches and their correlations with biomechanical characteristics. Material and Methods: Fourteen vertebral bodies were obtained at autopsy from 6 women and 8 men aged 22-76 years. Photographs (n=28) and radiographs (n=28) were taken of midsagittal slices from the third lumbar vertebra. The radiographs and photographs were digitized and the geometric properties of the trabecular architecture were then determined with a digital images analysis technique. Information on the compressive strength and ash density of the vertebral body was also available. Results: The geometric properties of both radiographs and photographs could be measured with a high degree of reliability (Cronbach's α>0.85). Agreement between the radiographic and photographic approaches was mediocre as only the radiographic measurements showed insignificant correlations (p<0.05) with the biomechanical characteristics. We suggest that optical phenomena may result in the significant correlations between the photographs and the biomechanical characteristics. Conclusion: For digital image processing, radiography offers a superior description of the architecture of trabecular bone to that offered by photography. (orig.)

  10. Fusarium and other opportunistic hyaline fungi

    Science.gov (United States)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  11. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  12. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits.

    Science.gov (United States)

    Chang, Nai-Jen; Lin, Chih-Chan; Shie, Ming-You; Yeh, Ming-Long; Li, Chien-Feng; Liang, Peir-In; Lee, Kuan-Wei; Shen, Pei-Hsun; Chu, Chih-Jou

    2015-12-01

    The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full

  13. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images.

    Science.gov (United States)

    Modlesky, Christopher M; Whitney, Daniel G; Carter, Patrick T; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman

    2014-03-01

    Magnetic resonance imaging (MRI) is used to assess trabecular bone microarchitecture in humans; however, image processing can be labor intensive and time consuming. One aim of this study was to determine the pattern of trabecular bone microarchitecture in the distal femur of typically developing children. A second aim was to determine the proportion and location of magnetic resonance images that need to be processed to yield representative estimates of trabecular bone microarchitecture. Twenty-six high resolution magnetic resonance images were collected immediately above the growth plate in the distal femur of 6-12year-old typically developing children (n=40). Measures of trabecular bone microarchitecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the lateral aspect of the distal femur were determined using the twenty most central images (20IM). The average values for appBV/TV, appTb.N, appTb.Th and appTb.Sp from 20IM were compared to the average values from 10 images (10IM), 5 images (5IM) and 3 images (3IM) equally dispersed throughout the total image set and one image (1IM) from the center of the total image set using linear regression analysis. The resulting mathematical models were cross-validated using the leave-one-out technique. Distance from the growth plate was strongly and inversely related to appBV/TV (r(2)=0.68, p0.05). However, there was a progressive decrease in the strength of the relationships as a smaller proportion of images were used to predict estimates from 20IM (r(2)=0.98 to 0.99 using 10IM, 0.94 to 0.96 using 5IM, 0.87 to 0.90 using 3IM and 0.66 to 0.72 using 1IM; all pimage sets agreed extremely well with estimates from 20IM. The findings indicate that partial magnetic resonance image sets can be used to provide reasonable estimates of trabecular bone microarchitecture status in the distal femur of typically

  14. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  15. Trabecular bone in the calcaneus of runners.

    Directory of Open Access Journals (Sweden)

    Andrew Best

    Full Text Available Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6, rearfoot-striking runners (n = 6, and non-runners (n = 6, all males aged 20-41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (<0.80. Trabecular thickness was positively correlated with weekly running distance (r2 = 0.417, p<0.05 and years running (r2 = 0.339, p<0.05 and negatively correlated with age at onset of running (r2 = 0.515, p<0.01 Trabecular thickness, mineral density and bone volume ratio of nonrunners were highly correlated with body mass (r2 = 0.824, p<0.05 and nonrunners were significantly heavier than runners (p<0.05. Adjusting for body mass revealed significantly thicker trabeculae in the posterior calcaneus of forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the

  16. Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis). Whole-body MR findings in two siblings with different subcutaneous nodules distribution

    International Nuclear Information System (INIS)

    Castiglione, Davide; Terranova, Maria Chiara; Picone, Dario; Lo Re, Giuseppe; Salerno, Sergio

    2018-01-01

    Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis) is a rare, progressive, autosomal recessive disorder whose main hallmark is the deposition of amorphous hyaline material in soft tissues, with an evolutionary course and health impairment. It may present involvement of subcutaneous or periskeletal soft tissue, or may develop as a visceral infiltration entity with poor prognosis. Very few radiological data about this inherited condition have been reported, due to the extreme rarity of disease. We herein present a case of two siblings, affected by different severity of the disease, with different clinical features. They were examined by whole-body MR (WBMR) in order to assess different lesions localization, to rule out any visceral involvement and any other associated anomalies and to define patients' management. (orig.)

  17. Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis). Whole-body MR findings in two siblings with different subcutaneous nodules distribution

    Energy Technology Data Exchange (ETDEWEB)

    Castiglione, Davide; Terranova, Maria Chiara; Picone, Dario; Lo Re, Giuseppe; Salerno, Sergio [Policlinico, Universita degli Studi di Palermo, Dipartimento di Biopatologia e Biotecnologie Mediche, Palermo (Italy)

    2018-03-15

    Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis) is a rare, progressive, autosomal recessive disorder whose main hallmark is the deposition of amorphous hyaline material in soft tissues, with an evolutionary course and health impairment. It may present involvement of subcutaneous or periskeletal soft tissue, or may develop as a visceral infiltration entity with poor prognosis. Very few radiological data about this inherited condition have been reported, due to the extreme rarity of disease. We herein present a case of two siblings, affected by different severity of the disease, with different clinical features. They were examined by whole-body MR (WBMR) in order to assess different lesions localization, to rule out any visceral involvement and any other associated anomalies and to define patients' management. (orig.)

  18. Hyaline fibromatosis of Hoffa's fat pad in a patient with a mild type of hyaline fibromatosis syndrome

    International Nuclear Information System (INIS)

    Raak, Sjoerd M. van; Meuffels, Duncan E.; Leenders, Geert J.L.H. van; Oei, Edwin H.G.

    2014-01-01

    Hyaline fibromatosis syndrome (HFS) is a rare, homozygous, autosomal recessive disease, characterized by deposition of hyaline material in skin and other organs, resulting in esthetic problems, disability, and potential life-threatening complications. Most patients become clinically apparent in the first few years of life, and the disorder typically progresses with the appearance of new lesions. We describe a rare case of a 20-year-old patient with juvenile-onset mild HFS who presented with a history of progressive anterior knee pain. Detailed magnetic resonance (MR) imaging findings with histopathological correlation are presented of hyaline fibromatosis of Hoffa's fat pad, including differential diagnosis. The diagnosis of HFS is generally made on basis of clinical and histopathological findings. Imaging findings, however, may contribute to the correct diagnosis in patients who present with a less typical clinical course of HFS. (orig.)

  19. Trabecular bone in the calcaneus of runners.

    Science.gov (United States)

    Best, Andrew; Holt, Brigitte; Troy, Karen; Hamill, Joseph

    2017-01-01

    Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6), rearfoot-striking runners (n = 6), and non-runners (n = 6), all males aged 20-41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the posterior calcaneus.

  20. Fisiología trabecular y glaucoma de ángulo abierto Trabecular physiology and open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Yoanner Martín Perera

    2012-01-01

    Full Text Available El glaucoma constituye una de las enfermedades oculares más frecuentes en el mundo. Su etiología es variada, pero el problema radica generalmente en la evacuación del humor acuoso a nivel de la red trabecular y del canal de Schlemm. Se realizó una revisión bibliográfica sobre los principales mecanismos envueltos en la función trabecular: capacidad fagocítica de las células trabeculares, regulación de la composición de la matriz extracelular, contracción-relajación de las células trabeculares y los cambios en su volumen y forma. Un mayor conocimiento de la fisiología trabecular y su relación con la fisiopatología del glaucoma permitirá un mejor manejo de la enfermedad, así como el desarrollo de nuevos fármacos que tengan como diana la vía trabecular de manera selectiva y que permitan evitar los efectos secundarios relacionados con el empleo de medicamentos poco específicos.Glaucoma is one of the most common eye diseases worldwide, but usually the problem lies in the evacuation of aqueous humor at the trabecular meshwork and Schlemm's canal. A literature review was made about the main mechanisms involved in the trabecular function: the phagocytic capacity of trabecular cells, the regulation of the extracellular matrix composition, the contraction-relaxation of trabecular cells and the changes in their volume and shape. A better understanding of the trabecular physiology and the pathophysiology of glaucoma will allow better disease management and development of new drugs that have as their target the trabecular pathway in a selective way and that avoid the side effects associated with the use of nonspecific drugs.

  1. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    Science.gov (United States)

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.

  2. Trabecular bone structure correlates with hand posture and use in hominoids.

    Directory of Open Access Journals (Sweden)

    Zewdi J Tsegai

    Full Text Available Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan, suspensory (Pongo, Hylobates and Symphalangus and manipulative (Homo taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link

  3. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension.

    Science.gov (United States)

    Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M

    2015-10-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.

  4. Mucopolysaccharides in the trabecular meshwork

    International Nuclear Information System (INIS)

    Ohnishi, Yoshitaka; Yamana, Yasuo; Abe, Masahiro

    1982-01-01

    The localization of 35 S-sulfate and 3 H-glucosamine in the trabecular region of the hamster was studied by light and electron microscopic autoradiography after the intraperitoneal injection. Exposed silver grains of 35 S-sulfate were concentrated in the trabecular meshwork, sclera and cornea, and grains of 35 H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells and fibroblasts in Schlemm's canal and the trabecular meshwork. Thereafter, the grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the juxtacanalicular connective tissue. These results suggest that endothelial cells in the trabecular region synthesize and secrete the sulfated mucopolysaccharides and hyaluronic acid. (author)

  5. Hyaline fibromatosis of Hoffa's fat pad in a patient with a mild type of hyaline fibromatosis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Raak, Sjoerd M. van [Albert Schweitzer Hospital, Department of Radiology, Dordrecht (Netherlands); Meuffels, Duncan E. [Erasmus MC - University Medical Center, Department of Orthopaedic Surgery, Rotterdam (Netherlands); Leenders, Geert J.L.H. van [Erasmus MC - University Medical Center, Department of Pathology, Rotterdam (Netherlands); Oei, Edwin H.G. [Erasmus MC - University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2014-04-15

    Hyaline fibromatosis syndrome (HFS) is a rare, homozygous, autosomal recessive disease, characterized by deposition of hyaline material in skin and other organs, resulting in esthetic problems, disability, and potential life-threatening complications. Most patients become clinically apparent in the first few years of life, and the disorder typically progresses with the appearance of new lesions. We describe a rare case of a 20-year-old patient with juvenile-onset mild HFS who presented with a history of progressive anterior knee pain. Detailed magnetic resonance (MR) imaging findings with histopathological correlation are presented of hyaline fibromatosis of Hoffa's fat pad, including differential diagnosis. The diagnosis of HFS is generally made on basis of clinical and histopathological findings. Imaging findings, however, may contribute to the correct diagnosis in patients who present with a less typical clinical course of HFS. (orig.)

  6. Osteoarthritis alters the patellar bones subchondral trabecular architecture.

    Science.gov (United States)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2017-09-01

    Following the principles of "morphology reveals biomechanics," the cartilage-osseous interface and the trabecular network show defined adaptation in response to physiological loading. In the case of a compromised relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise. To describe and quantify the changes within the subchondral bone plate (SBP) and trabecular architecture, 10 human OA patellae were investigated by CT and micro-CT. The results are presented in comparison to a previously published dataset of 10 non-OA patellae which were evaluated in the same manner. The analyzed OA samples showed no distinctive mineralization pattern in regards to the physiological biomechanics, but a highly irregular disseminated distribution. In addition, no regularity in bone distribution and architecture across the trabecular network was found. We observed a decrease of material as the bone volume and trabecular thickness/number were significantly reduced. In comparison to non-OA samples, greatest differences for all parameters were found within the first mm of trabecular bone. The differences decreased toward the fifth mm in a logarithmic manner. The interpretation of the logarithmic relation leads to the conclusion that the main impact of OA on bony structures is located beneath the SBP and lessens with depth. In addition to the clear difference in material with approximately 12% less bone volume in the first mm in OA patellae, the architectural arrangement is more rod-like and isotropic, accounting for an architectural decrease in stability and support. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1982-1989, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Pulmonary hyalinizing granuloma presenting with dysphagia: a rare presentation.

    Science.gov (United States)

    Khan, Fazal; Hamid, Arsalan; Fatima, Benish; Hashmi, Shiraz; Fatimi, Saulat

    2017-01-01

    A 25-year-old man presented with a 2-month history of dysphagia and past history of pulmonary and intestinal tuberculosis. A barium swallow showed a point of constriction 42 mm above the gastroesophageal junction. Computed tomography revealed large opacities in bilateral lung fields, encroaching more on the esophagus. The lesion progressively compressed the esophagus as it moved inferiorly. A right posterolateral thoracotomy was performed for sub-anatomical resection of the mass. A biopsy revealed homogenous whirling hyalinized collagen fibers, highly suggestive of pulmonary hyalinizing granuloma, with no evidence of malignancy. Pulmonary hyalinizing granuloma should be considered in the differential diagnosis of longstanding dysphagia.

  8. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    Science.gov (United States)

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  9. Computed tomography findings in patients with pulmonary hyalinizing granulomas: a case report

    International Nuclear Information System (INIS)

    Marchiori, Edson; Valiante, Paulo Marcos; Correia, Ana Helena Pereira; Carneiro, Leonardo Hoehl; Caldas, Carolina Rodrigues; Souza Junior, Arthur Soares

    2003-01-01

    Hyalinizing granulomas are benign fibrotic lesions that generally present multiple nodules seen on radiological examinations, which are frequently cavitary and/or calcified lesions. We report a case of a 28 year-old-woman with hyalinizing granulomas probably secondary to a previous tuberculosis infection. Hyalinizing granulomas should be included in the differential diagnosis of patients with multiple pulmonary nodules. (author)

  10. The value of MDCT in diagnosis of hyaline-vascular Castleman's disease

    International Nuclear Information System (INIS)

    Sun, Xiaoli; Liu, Cheng; Wang, Rengui; Zhu, Xuejun; Gao, Li; Chen, Jiuhong

    2012-01-01

    Purpose: Castleman's disease (CD) is an uncommon entity characterized by a massive growth of lymphoid tissue. There are two types: the hyaline-vascular (HV) type and the plasma cell (PC) type. The purpose of this study was to evaluate the clinical value of multiple detector computed tomography (MDCT) in the diagnosis and planning of treatment for hyaline-vascular CD. Materials and methods: Fifty-two cases of confirmed hyaline-vascular CD were retrospectively reviewed. Unenhanced and contrast-enhanced MDCT scans had been performed in all patients, followed by surgery and pathological analysis of the lesion. Original MDCT transverse and reconstructed images were used for image interpretation. Features of the lesion and its adjacent structures were identified. Results: The lesion was present in the thorax of 24 patients and the abdomen in 28. Obvious features of hyaline-vascular CD (especially feeding vessels and draining veins) and its adjacent structures were demonstrated on 52 patients. Conclusion: On MDCT imaging, original MDCT transverse and reconstructed images provide an excellent tool for diagnosis of hyaline-vascular CD and have high value in the determination of a treatment plan

  11. Pulmonary Hyalinizing Granuloma Associated with Idiopathic Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Christopher Coleman

    2014-01-01

    Full Text Available Pulmonary hyalinizing granuloma (PHG is a rare, benign lung disease of unknown etiology. It manifests as discrete, rounded nodules within the lung parenchyma. A 39-year-old woman presented for investigation after pulmonary nodules were found incidentally. Chest computed tomography showed multiple, discrete, non-enhancing pulmonary nodules bilaterally. Positron emission tomography (PET was negative. Biopsy demonstrated a non-specific lymphoplasmacytic infiltrate. Open resection yielded two nodules consistent with hyalinizing granulomas. The differential for multiple pulmonary nodules is broad. PET scan can help rule out metastatic disease, although some cancers are not hypermetabolic on PET. Furthermore, some non-malignant conditions, including hyalinizing granuloma, can show increased activity on PET. PHG should be included in the differential of multiple pulmonary nodules, especially if nodule stability can be demonstrated and/or needle biopsies are non-diagnostic. Associated immune-mediated conditions, such as idiopathic thrombocytopenic purpura (ITP in our patient, may also favor HG. In this case report we find an association between PHG and ITP.

  12. A theoretical framework for strain-related trabecular bone maintenance and adaptation.

    Science.gov (United States)

    Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R

    2005-04-01

    It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.

  13. Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan; Goo, Jin Mo [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Moon Kyung Chul [Dept. of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); An, Sang Bu [Dept. of radiology, National Cancer Center, Goyang (Korea, Republic of); Kim, Kwang Gi [Dept. of Biomedical Engineering, Division of Basic and Applied Sciences, National Cancer Center, Goyang (Korea, Republic of)

    2011-05-15

    To evaluate the reproducibility of 3-dimensional histomorphometry for the microarchitecture analysis of trabecular bone parameters using multidetector computed tomography (MDCT). Thirty-six specimens from porcine vertebral bodies were imaged five times with a 64- detector row MDCT system using the same scan protocols. Locations of the specimens were nearly identical through the scans. Three-dimensional structural parameters of trabecular bone were derived from the five data sets using image analyzing software. The features measured by the analysis programs were trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index. The structural trabecular parameters showed excellent reproducibility through repeated scanning. Intraclass correlation coefficients of all seven structural parameters were in the range of 0.998 to 1.000. Coefficients of variation of the six structural parameters, excluding structural model index, were not over 1.6%. The measurement of the trabecular structural parameters using multidetector CT and three-dimensional histomophometry analysis program was validated and showed excellent reproducibility. This method could be used as a noninvasive and easily available test in a clinical setting.

  14. Study of differential properties of fibrochondrocytes and hyaline chondrocytes in growing rabbits.

    Science.gov (United States)

    Huang, L; Li, M; Li, H; Yang, C; Cai, X

    2015-02-01

    We aimed to build a culture model of chondrocytes in vitro, and to study the differential properties between fibrochondrocytes and hyaline chondrocytes. Histological sections were stained with haematoxylin and eosin so that we could analyse the histological structure of the fibrocartilage and hyaline cartilage. Condylar fibrochondrocytes and femoral hyaline chondrocytes were cultured from four, 4-week-old, New Zealand white rabbits. The production of COL2A1, COL1OA1, SOX9 and aggrecan was detected by real time-q polymerase chain reaction (RT-qPCR) and immunoblotting and the differences between them were compared statistically. Histological structures obviously differed between fibrocartilage and hyaline cartilage. COL2A1 and SOX9 were highly expressed within cell passage 2 (P2) of both fibrochondrocytes and hyaline chondrocytes, and reduced significantly after cell passage 4 (P4). The mRNA expressions of COL2A1 (p=0.05), COL10A1 (p=0.04), SOX9 (p=0.03), and aggrecan (p=0.04) were significantly higher in hyaline chondrocytes than in fibrochondrocytes, whereas the expression of COL1A1 (p=0.02) was the opposite. Immunoblotting showed similar results. We have built a simple and effective culture model of chondrocytes in vitro, and the P2 of chondrocytes is recommended for further studies. Condylar fibrocartilage and femoral hyaline cartilage have unique biological properties, and the regulatory mechanisms of endochondral ossification for the condyle should be studied independently in the future. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. 1. 5 MRT of the hyaline articular cartilage of the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G.; Bohndorf, K.; Krasny, R.; Guenther, R.W.; Prescher, A.

    1988-06-01

    MRI is a new method for imaging the knee joint. There is still some uncertainty regarding the extent and the signal from hyaline articular cartilage. MRI images were therefore compared with anatomical and histological preparations of the knee joint and the difference between MRI and the anatomical sections have been determined. It was shown that demonstration of hyaline cartilage was obscured by an artifact. Further investigations are required to determine the cause of this artifact and to achieve accurate imaging of hyaline cartilage by MRI.

  16. Biomechanics and Mechanobiology of Trabecular Bone: A Review

    Science.gov (United States)

    Oftadeh, Ramin; Perez-Viloria, Miguel; Villa-Camacho, Juan C.; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength. PMID:25412137

  17. Magnetic resonance tomography (MRT) of the knee joint: Meniscus, cruciate ligaments and hyaline cartilage. Magnetresonanztomographie (MRT) des Kniegelenks: Meniskus, Kreuzbaender und hyaliner Gelenkknorpel

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. (Radiologie, Universitaetsspital, Zurich (Switzerland) Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland). Radiologische Abt.); Buess, E. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Rodriguez, M. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Imhoff, A. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland))

    1993-08-01

    The use of MRT for diagnosing injury to the meniscus, the cruciate ligaments and hyaline cartilage was evaluated retrospectively in 82 knee joints without any knowledge of operative findings. In 49 cases the results were verified by arthroscopy and in 33 cases by arthrotomy. Sensitivity, specificity and diagnostic accuracy of MRT for meniscus lesions was 73.9%, 96.9%, and 94.6%. Corresponding values for lesions of the anterior cruciate ligament were 88.9%, 96.6%, and 94.7%, and for lesions of the hyaline cartilage 62.6%, 96.1%, and 87.9%, respectively. In addition to its high specificity, MRT proved accurate in excluding lesions of the meniscus (97.1%) of the anterior cruciate ligament (96.6%) and of hyaline cartilage (88.8%). A negative finding on MRT therefore makes the presence of a lesion of the meniscus, cruciate ligaments of cartilage unlikely. In such cases one is justified in delaying the use of arthroscopy or arthrotomy. (orig.)

  18. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Vyacheslav Alexandrovich Vinokurov

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  19. Trabecular bone deficits among Vietnamese immigrants.

    Science.gov (United States)

    Melton, L J; Marquez, M A; McCready, L K; Achenbach, S J; Riggs, B L; Amin, S; Khosla, S

    2011-05-01

    Compared to white women, lower areal bone mineral density (aBMD) in middle-aged Vietnamese immigrants is due to reduced trabecular volumetric bone mineral density (vBMD), which in turn is associated with greater trabecular separation along with lower estrogen levels. The epidemiology of osteoporosis in Asian populations is still poorly known, but we previously found a deficit in lumbar spine aBMD among postmenopausal Southeast Asian women, compared to white women, that persisted after correction for bone size. This issue was revisited using more sophisticated imaging techniques. Twenty Vietnamese immigrants (age, 44-79 years) were compared to 162 same-aged white women with respect to aBMD at the hip, spine and wrist, vBMD at the hip and spine by quantitative computed tomography and vBMD and bone microstructure at the ultradistal radius by high-resolution pQCT. Bone turnover and sex steroid levels were assessed in a subset (20 Vietnamese and 40 white women). The aBMD was lower at all sites among the Vietnamese women, but femoral neck vBMD did not differ from middle-aged white women. Significant differences in lumbar spine and ultradistal radius vBMD in the Vietnamese immigrants were due to lower trabecular vBMD, which was associated with increased trabecular separation. Bone resorption was elevated and bone formation depressed among the Vietnamese immigrants, although trends were not statistically significant. Serum estradiol was positively associated with trabecular vBMD in the Vietnamese women, but their estrogen levels were dramatically lower compared to white women. Although reported discrepancies in aBMD among Asian women are mainly an artifact of smaller bone size, we identified a specific deficit in the trabecular bone among a sample of Vietnamese immigrants that may be related to low estrogen levels and which needs further study.

  20. Mechanical properties of femoral trabecular bone in dogs

    Directory of Open Access Journals (Sweden)

    Nolte Ingo

    2005-03-01

    Full Text Available Abstract Background Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. Methods From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated. Results The elastic modulus along principal bone trajectories was found to be 11.2 GPa ± 0.4, 10.5 ± 2.1 GPa and 10.5 ± 1.8 GPa, respectively. The mean density of the specimens was 1.40 ± 0.09 g/cm3. The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads. Discussion This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data. Conclusion This study provides data about directional elastic

  1. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    Science.gov (United States)

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  2. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  3. Three new species of Trichoderma with hyaline ascospores from China.

    Science.gov (United States)

    Zhu, Z X; Zhuang, W Y

    2015-01-01

    Collections of Trichoderma having hyaline ascospores from different areas of China were examined. Using combined analyses of morphological data, culture characters and phylogenetic information based on rDNA sequences of partial nuc translation elongation factor 1-α encoding gene (TEF1-α) and the gene encoding the second largest nuc RNA polymerase subunit (RPB2), three new species, Trichoderma applanatum, T. oligosporum and T. sinoluteum, were discovered and are described. Trichoderma applanatum produces continuous flat to pulvinate, white to cream stromata with dense orange or pale brown ostioles, and simple acremonium-like to verticillium-like conidiophores, belongs to the Hypocreanum clade and is closely related to T. decipiens. Trichoderma oligosporum forms reddish brown stromata with a downy surface, hyaline conidia and gliocladium-like conidiophores, and is closely related to but distinct from T. crystalligenum in the Psychrophila clade. Trichoderma sinoluteum, as a member of the Polysporum clade, is characterized by pale yellow stromata, white pustulate conidiomata, pachybasium-like conidiophores, and hyaline conidia. Differences between the new species and their close relatives are discussed. © 2015 by The Mycological Society of America.

  4. Mucopolysaccharides in the trabecular meshwork. Light and electron microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Yoshitaka; Yamana, Yasuo; Abe, Masahiro (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1982-09-01

    The localization of /sup 35/S-sulfate and /sup 3/H-glucosamine in the trabecular region of the hamster was studied by light and electron microscopic autoradiography after the intraperitoneal injection. Exposed silver grains of /sup 35/S-sulfate were concentrated in the trabecular meshwork, sclera and cornea, and grains of /sup 35/H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells and fibroblasts in Schlemm's canal and the trabecular meshwork. Thereafter, the grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the juxtacanalicular connective tissue. These results suggest that endothelial cells in the trabecular region synthesize and secrete the sulfated mucopolysaccharides and hyaluronic acid.

  5. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Development of a mechanical testing and loading system for trabecular bone studies for long term culture

    Directory of Open Access Journals (Sweden)

    DB Jones

    2003-03-01

    Full Text Available A highly accurate (�3% mechanical loading and measurement system combined with a trabecular bone diffusion culture-loading chamber has been developed, which provides the ability to study trabecular bone (and possibly cartilage under controlled culture and loading conditions over long periods of time. The loading device has been designed to work in two main modes, either to apply a specific compressive strain to a trabecular bone cylinder or to apply a specific force and measure the resulting deformation. Presently, precisely machined bone cylinders can be loaded at frequencies between 0.1 Hz to 50 Hz and amplitudes over 7,000�e. The system allows accurate measurement of many mechanical properties of the tissue in real time, including visco-elastic properties. This paper describes the technical components, reproducibility, precision, and the calibration procedures of the loading system. Data on long term culture and mechanical responses to different loading patterns will be published separately.

  7. Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation.

    Science.gov (United States)

    Arakaki, Kazunobu; Kitamura, Nobuto; Kurokawa, Takayuki; Onodera, Shin; Kanaya, Fuminori; Gong, Jian-Ping; Yasuda, Kazunori

    2011-02-01

    We have recently discovered that spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect in the rabbit, when we implant a novel double-network (DN) gel plug at the bottom of the defect. To clarify whether joint immobilization inhibits the spontaneous hyaline cartilage regeneration, we conducted this study with 20 rabbits. At 4 or 12 weeks after surgery, the defect in the mobile knees was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen, while no cartilage tissues were observed in the defect in the immobilized knees. Type-2 collagen, Aggrecan, and SOX9 mRNAs were expressed only in the mobile knees at each period. This study demonstrated that joint immobilization significantly inhibits the spontaneous hyaline cartilage regeneration induced by the DN gel implantation. This fact suggested that the mechanical environment is one of the significant factors to induce this phenomenon.

  8. FRACTAL ANALYSIS OF TRABECULAR BONE: A STANDARDISED METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ian Parkinson

    2011-05-01

    Full Text Available A standardised methodology for the fractal analysis of histological sections of trabecular bone has been established. A modified box counting method has been developed for use on a PC based image analyser (Quantimet 500MC, Leica Cambridge. The effect of image analyser settings, magnification, image orientation and threshold levels, was determined. Also, the range of scale over which trabecular bone is effectively fractal was determined and a method formulated to objectively calculate more than one fractal dimension from the modified Richardson plot. The results show that magnification, image orientation and threshold settings have little effect on the estimate of fractal dimension. Trabecular bone has a lower limit below which it is not fractal (λ<25 μm and the upper limit is 4250 μm. There are three distinct fractal dimensions for trabecular bone (sectional fractals, with magnitudes greater than 1.0 and less than 2.0. It has been shown that trabecular bone is effectively fractal over a defined range of scale. Also, within this range, there is more than 1 fractal dimension, describing spatial structural entities. Fractal analysis is a model independent method for describing a complex multifaceted structure, which can be adapted for the study of other biological systems. This may be at the cell, tissue or organ level and compliments conventional histomorphometric and stereological techniques.

  9. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds

    NARCIS (Netherlands)

    Mulder, E.L.W. de; Hannink, G.J.; Kuppevelt, T.H. van; Daamen, W.F.; Buma, P.

    2014-01-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular

  10. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions.

    Science.gov (United States)

    Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2017-09-01

    Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.

  11. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions

    Directory of Open Access Journals (Sweden)

    Yehonatan Ben-Zvi

    2017-09-01

    Full Text Available Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA analysis—an analysis of network topological parameters and regularity of network-forming nodes—was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes. These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study, we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices, analyze the ITA parameters in porcine proximal femora and mandibles, and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with three edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkably conserved, but locally do adapt to applied stresses.

  12. Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains

    Directory of Open Access Journals (Sweden)

    Taro Kataoka

    2017-10-01

    Full Text Available Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15, has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4 on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.

  13. Juvenile hyaline fibromatosis. Radiological diagnosis

    International Nuclear Information System (INIS)

    Fuentes, R.; Sar, V.; Cabrera, J.J.; Diaz, L.; Hernandez, B.; Valeron, P.; Baez, O.; Rodriguez, M.

    1993-01-01

    Juvenile hyaline fibromatosis (JHF) is a rare disorder of unknown etiology, very few cases of which have been reported in the literature. It presents similarities to other fibromatosys, but has its particular radiological features which differentiate it from them. The clinical findings consist of several, slow growing, subcutaneous nodules, flexion contractures of the joints which can lead to disability, gingival hypertrophy and muscular atrophy. The suspected radiological diagnosis is confirmed by electron microscopy study of the nodules, although light microscopy can also reveal suggestive images. Author (9 refs.)

  14. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    , such as apparent, apparent ash and collagen densities of human tibial trabecular bone have significant relationships with age. Tissue density and mineral concentration remain constant throughout life. Trabecular bone is tougher in the younger age, i.e. fracture requires more energy. Collagen density was the single......Initiated and motivated by clinical and scientific problems such as age-related bone fracture, prosthetic loosening, bone remodeling, and degenerative bone diseases, much significant research on the properties of trabecular bone has been carried out over the last two decades. This work has mainly...... focused on the central vertebral trabecular bone, while little is known about age-related changes in the properties of human peripheral (tibial) trabecular bone. Knowledge of the properties of peripheral (tibial) trabecular bone is of major importance for the understanding of degenerative diseases...

  15. Is the T1ρ MRI profile of hyaline cartilage in the normal hip uniform?

    Science.gov (United States)

    Rakhra, Kawan S; Cárdenas-Blanco, Arturo; Melkus, Gerd; Schweitzer, Mark E; Cameron, Ian G; Beaulé, Paul E

    2015-04-01

    T1ρ MRI is an imaging technique sensitive to proteoglycan (PG) content of hyaline cartilage. However, normative T1ρ values have not been established for the weightbearing cartilage of the hip, and it is not known whether it is uniform or whether there is topographic variation. Knowledge of the T1ρ profile of hyaline cartilage in the normal hip is important for establishing a baseline against which comparisons can be made to experimental and clinical arthritic subjects. In this diagnostic study, we determined (1) the T1ρ MRI values of hyaline cartilage of the normal hip; and (2) whether the T1ρ MRI profile of the normal hip hyaline cartilage is uniform. Fourteen asymptomatic volunteers (11 men, three women; mean age, 35 years) prospectively underwent 1.5-T T1ρ MRI of a single hip. The weightbearing hyaline cartilage bilayer of the acetabulum and femoral head was evaluated on sagittal images and segmented into four zones: (1) anterior; (2) anterosuperior; (3) posterosuperior; and (4) and posterior. For the full region of interest and within each zone and each sagittal slice, we calculated the mean T1ρ relaxation value, a parameter that indirectly quantifies PG content, where T1ρ is inversely related to PG concentration. There was variation in the T1ρ relaxation values depending on zone (anterior to posterior) and slice (medial to lateral). When combining the most anterior quadrants (Zones 1 and 2), the T1ρ relaxation values were lower than those in the combined posterior quadrants (Zones 3 and 4) (30.4 msec versus 32.2 msec, respectively; p = 0.002), reflecting higher PG concentration. There was a difference between the T1ρ relaxation values of the sagittal slices (p = 0.038), most pronounced anteriorly in Zone 1 (26.6 msec, p = 0.001). With a selective combination of zones and slices, there were lower mean T1ρ values in the anterolateral-most region compared with the remainder of the weightbearing portion of the hip (28.6 msec versus 32.2 msec

  16. Pulmonary Changes in Preterm Neonates with Hyaline Membrane Disease (a Clinicomorphological Study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2009-01-01

    Full Text Available Objective: to reveal lung morphological changes in preterm neonatal infants with hyaline membrane disease (HMD in the use of exogenous surfactants and artificial ventilation. Materials and methods. Case histories and autopsy protocols were analyzed in 90 preterm neonates who had died from severe respiratory failure. All the neonates were divided into 4 groups: 1 20 (22.2% infants who had received the exogenous surfactant Curosurf in the combined therapy of HMD; 2 19 (21.1% babies with HMD who had taken Surfactant BL; 3 25 (27.8% surfactant-untreated infants who had died from HMD; 4 26 (28.9% very preterm neonates with extremely low birth weight who had died within the first hour of life. The lungs were histologically and morphometrically examined. Results. The study demonstrated the specific course of HMD when exogenous surfactants and artificial ventilation were used. The contributors to the development of the disease are intranatal amniotic fluid aspiration and intranatal fetal hypoxia. Conclusion. Artificial ventilation and the use of exogenous surfactants do not block the generation of hyaline membranes. The latter differ in formation time, form, and location. The differences in a cell response to hyaline membranes were found in the neonatal infants receiving exogenous surfactants. The characteristic morphological signs of the disease for all the neonates enrolled in the study are alveolar and bronchial epithelial damages and microcirculatory disorders. Key words: preterm neonatal infants, hyaline membrane disease, exogenous surfactants, artificial ventilation, histology, morphometry.

  17. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  18. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  19. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  20. Particle migration and gap healing around trabecular metal implants

    DEFF Research Database (Denmark)

    Rahbek, O; Kold, S; Zippor, Berit

    2005-01-01

    Bone on-growth and peri-implant migration of polyethylene particles were studied in an experimental setting using trabecular metal and solid metal implants. Cylindrical implants of trabecular tantalum metal and solid titanium alloy implants with a glass bead blasted surface were inserted either i...

  1. A Hyalinized Trichilemmoma of the Eyelid in a Teenager.

    Science.gov (United States)

    Jakobiec, Frederick A; Stagner, Anna M; Sassoon, Jodi; Goldstein, Scott; Mihm, Martin C

    2016-01-01

    A 16-year-old African American male, the youngest patient to date, presented with a well-circumscribed upper eyelid lesion. On excision, the dermal nodule was contiguous with the epidermis, displayed trichohyalin-like bodies in an expanded outer root sheath, and was composed chiefly of small cellular clusters separated by a prominent network of periodic acid Schiff -positive hyaline bands of basement membrane material. The tumor cells were positive for high molecular weight cytokeratins (CK) 5/6, CK14, and CK34βE12 and were negative for CK7, carcinoembryonic antigen and epithelial membrane antigen. Negative S100, glial fibrillary acidic protein, and smooth muscle actin immunoreactions ruled out a myoepithelial lesion. The Ki-67 proliferation index was <10%. The diagnosis was a hyalinized trichilemmoma, contrasting with the more common lobular type. As an isolated lesion, trichilemmoma does not portend Cowden syndrome.

  2. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.

    OpenAIRE

    O'Connor, P; Brereton, J D; Gardner, D L

    1984-01-01

    Papain was used to digest the hyaline femoral condylar cartilages of 30 adult Wistar rats. Matrix proteoglycan degradation was assessed by the light microscopy of paraffin sections stained with toluidine blue. The extent of surface structural change was estimated by scanning electron microscopy, and the structural integrity of the hyaline cartilage tested by the controlled impact of a sharp pin. The results demonstrated an early loss of cartilage metachromasia, increasing with time of papain ...

  3. Influence of cortical endplates on ultrasonic properties of trabecular bone

    International Nuclear Information System (INIS)

    Kim, Yoon Mi; Lee, Kang Il

    2015-01-01

    The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 mm and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

  4. [Multicentric hyaline vascular Castleman's disease. A POEMS type variant].

    Science.gov (United States)

    Gracia-Ramos, Abraham Edgar; Cruz-Domínguez, María del Pilar; Vera-Lastra, Olga Lidia

    2013-01-01

    Castleman's disease is an atypical lymphoproliferative disorder which may be compatible with paraneoplastic manifestations of POEMS syndrome. a 53 year old man with a history of type 2 diabetes, hypothyroidism and Addison's disease presented with numbness and weakness in limbs, dyspnea, skin hardening, Raynaud's phenomenon, weight loss and fatigue. A physical exam showed tachypnea, generalized cutaneous hyperpigmentation and skin hardening of extremities, muscle weakness, hypoesthesia and hyporeflexia. Laboratory showed hyperprolactinemia, low testosterone, hypothyroidism and Addison's disease. Electrophoresis of proteins showed polyclonal hypergammaglobulinemia. Somatosensory evoked potentials reported peripheral neuropathy and severe axonal polyneuropathy by electromyography. Chest X-rays showed bilateral reticular infiltrates and mediastinal widening. An echocardiogram displayed moderate pulmonary hypertension. Skin biopsy had no evidence of scleroderma. CT reported axillar, mediastinal and retroperitoneal nodes. The mediastinal lesion biopsy reported hyaline vascular Castleman's disease, multicentric variety. He was treated with rituximab. the case meet criteria for multicentric hyaline vascular Castleman's disease, POEMS variant, treated with rituximab.

  5. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    Science.gov (United States)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  6. Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study

    OpenAIRE

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K.; Bhattacharya, Sanjoy K.; Parel, Jean-Marie A

    2009-01-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In a...

  7. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    Science.gov (United States)

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  8. Anorexia Nervosa: Analysis of Trabecular Texture with CT.

    Science.gov (United States)

    Tabari, Azadeh; Torriani, Martin; Miller, Karen K; Klibanski, Anne; Kalra, Mannudeep K; Bredella, Miriam A

    2017-04-01

    Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.

  9. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors

    Science.gov (United States)

    Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2011-01-01

    Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062

  10. Pleomorphic Hyalinizing Angiectatic Tumour: A Rare Case Report and Discussion of Differential Diagnosis.

    Science.gov (United States)

    Chalmeti, Ambica; Arakeri, Surekha U; Javalgi, Anita P; Goyal, Shefali

    2017-08-01

    Pleomorphic Hyalinizing Angiectatic Tumour (PHAT) is one of the rare soft tissue tumour which is non-metastasizing. The origin of this tumour is yet uncertain. It occurs in adults as a slow growing subcutaneous mass mimicking clinically and histologically to various benign and malignant soft tissue tumours such as schwannoma, haemangioma and malignant fibrous histiocytoma. The microscopic features of this tumour include clusters of ectatic, fibrin containing, hyalinized blood vessels with pleomorphic and spindle shaped tumour cells showing intranuclear inclusions, stromal haemosiderin pigment and a variable inflammatory infiltrate. Despite marked pleomorphism, the lesion behaves as a low grade neoplasm, with frequent recurrences, but no metastases. The incidence of this tumour is very rare with less than 100 cases being published. Hence, awareness of this entity is must for proper management of the patient and to avoid misdiagnosis of the lesion. We report a case of pleomorphic hyalinizing angiectatic tumour in a 50-year-old man who presented with a slow growing mass in the left calf region since two years.

  11. Scanning electron microscopy of the trabecular meshwork: Understanding the pathogenesis of primary angle closure glaucoma

    Directory of Open Access Journals (Sweden)

    Ramanjit Sihota

    2012-01-01

    Full Text Available Purpose: To study ultrastructural changes of the trabecular meshwork in acute and chronic primary angle closure glaucoma (PACG and primary open angle glaucoma (POAG eyes by scanning electron microscopy. Materials and Methods: Twenty-one trabecular meshwork surgical specimens from consecutive glaucomatous eyes after a trabeculectomy and five postmortem corneoscleral specimens were fixed immediately in Karnovsky solution. The tissues were washed in 0.1 M phosphate buffer saline, post-fixed in 1% osmium tetraoxide, dehydrated in acetone series (30-100%, dried and mounted. Results: Normal trabecular tissue showed well-defined, thin, cylindrical uveal trabecular beams with many large spaces, overlying flatter corneoscleral beams and numerous smaller spaces. In acute PACG eyes, the trabecular meshwork showed grossly swollen, irregular trabecular endothelial cells with intercellular and occasional basal separation with few spaces. Numerous activated macrophages, leucocytes and amorphous debris were present. Chronic PACG eyes had a few, thickened posterior uveal trabecular beams visible. A homogenous deposit covered the anterior uveal trabeculae and spaces. Converging, fan-shaped trabecular beam configuration corresponded to gonioscopic areas of peripheral anterior synechiae. In POAG eyes, anterior uveal trabecular beams were thin and strap-like, while those posteriorly were wide, with a homogenous deposit covering and bridging intertrabecular spaces, especially posteriorly. Underlying corneoscleral trabecular layers and spaces were visualized in some areas. Conclusions: In acute PACG a marked edema of the endothelium probably contributes for the acute and marked intraocular pressure (IOP elevation. Chronically raised IOP in chronic PACG and POAG probably results, at least in part, from decreased aqueous outflow secondary to widening and fusion of adjacent trabecular beams, together with the homogenous deposit enmeshing trabecular beams and spaces.

  12. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  13. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  14. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    International Nuclear Information System (INIS)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da; Alves, Jose Marcos

    2014-01-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  15. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da, E-mail: alhakme@sc.usp.br [Universidade de Sao Paulo (EESC/FMRP/IQSC/USP), Sao Carlos, SP (Brazil); Alves, Jose Marcos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Departamento de Engenharia Eletrica e Computacao

    2014-07-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  16. Hyperfunctioning solid/trabecular follicular carcinoma of the thyroid gland.

    Science.gov (United States)

    Giovanella, Luca; Fasolini, Fabrizio; Suriano, Sergio; Mazzucchelli, Luca

    2010-01-01

    A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the (99m)Tc-pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules.

  17. Suitability of texture features to assess changes in trabecular bone architecture

    DEFF Research Database (Denmark)

    Veenland, JF; Grashuis, JL; Weinans, H

    2002-01-01

    The purpose of this study was to determine the ability of texture features to assess changes in trabecular bone architecture as projected in radiographs. Micro-CT datasets of trabecular bone were processed to simulate different changes in architecture. Radiographs were simulated by projecting the...

  18. Quasi-static elastography comparison of hyaline cartilage structures

    Science.gov (United States)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  19. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach.

    Science.gov (United States)

    Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M

    2012-11-01

    Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Changes of enzyme activities in lens after glaucoma trabecular resection

    Directory of Open Access Journals (Sweden)

    Jian-Ping Wang

    2013-08-01

    Full Text Available AIM: To observe the change of lens antioxidant enzyme activity after glaucoma trabecular resection. METHODS: Thirty-two eyes of sixteen New-Zealand rabbits(2.2-2.4kgwere divided into two groups. The left eyes of rabbits underwent standard glaucoma trabecular resection were treatment group, and the normal right eyes served as controls. Transparency of lenses was monitored by a slit-lamp biomicroscopy before and after glaucoma trabecular resection. The morphology of lens cells was observed under the light microscope.The activities of Na+-K+-ATPase,catalase(CAT, glutathion peroxidase(GSH-px, glutathione reductase(GR, superoxide dismutase(SODand content of malondialdehyde(MDAin lenses were detected six months after trabecular resection. RESULTS: Lenses were clear in both treatment group and normal control group during the six months after operation. The morphology and structure of lens cells were normal under the light microscope in both operation group and normal group. The activity of lens cells antioxidant enzyme activity were significantly decreased in operation group compared with control group, Na+-K+-ATPase declined by 20.97%, CAT declined by 16.36%, SOD declined by 4.46%, GR declined by 4.85%, GSH-px declined by 10.02%, and MDA increased by 16.31%. CONCLUSION: Glaucoma trabecular resection can induce the change of Na+-K+-ATPase, CAT, GSH-px, GR, SOD and MDA in lens of rabbit. Glaucoma filtration surgery for the occurrence of cataract development mechanism has important guiding significance.

  1. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    OpenAIRE

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cart...

  2. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  3. Attenuating trabecular morphology associated with low magnesium diet evaluated using micro computed tomography.

    Directory of Open Access Journals (Sweden)

    Shu-Ju Tu

    Full Text Available The literature shows that bone mineral density (BMD and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice.Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3 was obtained using a standard phantom.We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA, and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96% decrease in Mg and a 40% (71% decrease in Ca in plasma (urine excretion.This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice.

  4. Hyperfunctioning Solid/Trabecular Follicular Carcinoma of the Thyroid Gland

    Directory of Open Access Journals (Sweden)

    Luca Giovanella

    2010-01-01

    Full Text Available A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the 99mTc-pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules.

  5. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Science.gov (United States)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  6. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.

    Science.gov (United States)

    de Mulder, Eric L W; Hannink, Gerjon; van Kuppevelt, Toin H; Daamen, Willeke F; Buma, Pieter

    2014-02-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular to the AC surface would result in qualitatively better tissue repair due to a guided cellular influx from the subchondral bone. By specific freezing protocols, type I collagen scaffolds with isotropic and anisotropic fiber architectures were produced. Rabbits were operated on bilaterally and two full thickness defects were created in each knee joint. The defects were filled with (1) an isotropic scaffold, (2) an anisotropic scaffold with pores parallel to the cartilage surface, and (3) an anisotropic scaffold with pores perpendicular to the cartilage surface. Empty defects served as controls. After 4 (n=13) and 12 (n=13) weeks, regeneration was scored qualitatively and quantitatively using histological analysis and a modified O'Driscoll score. After 4 weeks, all defects were completely filled with partially differentiated hyaline cartilage tissue. No differences in O'Driscoll scores were measured between empty defects and scaffold types. After 12 weeks, all treatments led to hyaline cartilage repair visualized by increased glycosaminoglycan staining. Total scores were significantly increased for parallel anisotropic and empty defects over time (phyaline-like cartilage repair. Fiber architecture had no effect on cartilage repair.

  7. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Klintstroem, Eva; Smedby, Oerjan [Linkoeping University, Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden); UHL County Council of Oestergoetland, Department of Radiology, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences (IMH)/Radiology, Linkoeping (Sweden); Moreno, Rodrigo [Linkoeping University, Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences (IMH)/Radiology, Linkoeping (Sweden); Brismar, Torkel B. [KUS Huddinge, Department of Clinical Science, Intervention and Technology at Karolinska Institutet and Department of Radiology, Stockholm (Sweden)

    2014-02-15

    Bone strength depends on both mineral content and bone structure. The aim of this in vitro study was to develop a method of quantitatively assessing trabecular bone structure by applying three-dimensional image processing to data acquired with multi-slice and cone-beam computed tomography using micro-computed tomography as a reference. Fifteen bone samples from the radius were examined. After segmentation, quantitative measures of bone volume, trabecular thickness, trabecular separation, trabecular number, trabecular nodes, and trabecular termini were obtained. The clinical machines overestimated bone volume and trabecular thickness and underestimated trabecular nodes and number, but cone-beam CT to a lesser extent. Parameters obtained from cone beam CT were strongly correlated with μCT, with correlation coefficients between 0.93 and 0.98 for all parameters except trabecular termini. The high correlation between cone-beam CT and micro-CT suggest the possibility of quantifying and monitoring changes of trabecular bone microarchitecture in vivo using cone beam CT. (orig.)

  8. Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs

    Directory of Open Access Journals (Sweden)

    Akihiro Yamashita

    2015-03-01

    Full Text Available Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs. We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1, and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects.

  9. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography

    International Nuclear Information System (INIS)

    Singer, K.P.; Breidahl, P.D.; Royal Perth Hospital

    1990-01-01

    Quantitative computed tomography was used to assess vertebral trabecular density in 26 post-mortem spines from individuals aged between 14 and 80 years. All vertebrae from T10 to L1 were scanned transversely near the mid-vertebral level with calculations of trabecular density in HUs averaged and referenced to a mineral equivalent phantom. An age-related decline in trabecular density was recorded (r=0.55, p<0.0001). Density measures from the anterior aspect of the vertebral body were significantly greater than from postero-lateral regions. From T10 to L1, there was a significant decrease in trabecular density, whereas density measures multiplied by vertebral body cross-sectional area were constant. Predictions of vertebral compressive strength using quantitative computed tomography may become more accurate by increasing the sampling area per scan and including vertebral body cross-sectional area as part of the radiologic assessment. (orig.)

  10. Trabecular mineral content of the spine in women with hip fracture: CT measurement

    International Nuclear Information System (INIS)

    Firooznia, H.; Rafii, M.; Golimbu, C.; Schwartz, M.S.; Ort, P.

    1986-01-01

    The trabecular bone mineral content (BMC) of the spine was measured by computed tomography in 185 women aged 47-84 years with vertebral fracture (n = 74), hip fracture (n = 83), and both vertebral and hip fracture (n = 28). Eighty-seven percent of vertebral-fracture patients, 38% of hip-fracture patients, and 82% of vertebral- and hip-fracture patients had spinal BMC values below the fifth percentile for healthy premenopausal women and values 64%, 9%, and 68% below the fifth percentile for age-matched control subjects. No significant loss of spinal trabecular bone was seen in patients with hip fracture. If it is assumed that the rate of trabecular bone loss is the same in the spine and femoral neck, then hip fracture (unlike osteoporotic vertebral fracture) is not associated with disproportionate loss of trabecular bone. Hip fracture occurs secondary to weakening of bone and increased incidence of falls. Bone weakening may be due to disproportionate loss of trabecular or cortical bone, proportionate loss of both, or other as yet undetermined qualitative changes in bone

  11. INAA of cortical and trabecular bone samples from animals

    International Nuclear Information System (INIS)

    Takata, M.K.; Saiki, M.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Sr and Zn in bovine and porcine rib bones. Precise results were obtained in analyses of freeze-dried cortical and trabecular bones separately, and also of whole bone ashes. Cortical tissues presented higher concentrations of Ba, Ca, Mg, Mn, Na, P, Sr and Zn than those obtained in trabecular ones. Comparisons were also made between the results obtained for bovine and porcine rib bones. (author)

  12. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies

    Directory of Open Access Journals (Sweden)

    AM Taylor

    2012-04-01

    Full Text Available It is widely held that bone architecture is finely regulated in accordance with homeostatic requirements. Aberrant remodelling (hyperdensification and/or cyst formation in the immediately subchondral region has previously been described in bone underlying cartilage in arthropathies. The present study examined the trabecular architecture of samples of bone, initially in the severe osteoarthropathy of alkaptonuria, but subsequently in osteoarthritis using a combination of light microscopy, 3D scanning electron microscopy and quantitative backscattered electron scanning electron microscopy. We report an extraordinary and previously unrecognised bone phenotype in both disorders, including novel microanatomical structures. The underlying subchondral trabecular bone contained idiosyncratic architecture. Trabecular surfaces had numerous outgrowths that we have termed "trabecular excrescences", of which three distinct types were recognised. The first type arose from incomplete resorption of branching secondary trabeculae arising from the deposition of immature (woven bone in prior marrow space. These were characterised by very deeply scalloped surfaces and rugged edges. The second type had arisen in a similar way but been smoothed over by new bone deposition. The third type, which resembled coarse stucco, probably arises from resting surfaces that had been focally reactivated. These were poorly integrated with the prior trabecular wall. We propose that these distinctive microanatomical structures are indicative of abnormal osteoclast/osteoblast modelling in osteoarthropathies, possibly secondary to altered mechanical loading or other aberrant signalling. Identification of the mechanisms underlying the formation of trabecular excrescences will contribute to a better understanding of the role of aberrant bone remodelling in arthropathies and development of new therapeutic strategies.

  13. Radiologic and histologic features of hyaline membrane diseases of the newbone

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Choi, Kyung Hee; Suh, Jeong Soo; Rhee, Chung Sik; Kim, Hee Seup

    1984-01-01

    This study represents the radiologic, histologic features and clinical analysis of hyaline membrane diseases in 47 newbone infants who were delivered in Ewha Womans Univ. Hospital and expired caused by respiratory distress and confirmed by autopsy, during Jan. 1981 to June. 1984. The results were as follows: 1. Classification of radiographic stage (by Wolfson's criteria); Stage III (34.1%) was the most frequent. 2. Male to female ratio was 2.4 : 1. 3. Method of delivery; Cesarean section (44.7%) was the highest frequency, compared with percent of cesarean section to total delivery (29.0%) 4. Distribution of birth weight; 1.0-2.0 kg (48.9%) was the most frequent. 5. Distribution of gestational period; 32-36 weeks (29.8%) was the most frequent. 6. Complication; pulmonary hemorrhage (31.9%) was the most frequent, in order, subarachnoid hemorrhage and pneumothorax were followed. 7. Final diagnosis of hyaline membrane diseases was based on histo-pathologic diagnosis.

  14. Radiologic and histologic features of hyaline membrane diseases of the newbone

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Yon; Choi, Kyung Hee; Suh, Jeong Soo; Rhee, Chung Sik; Kim, Hee Seup [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    1984-12-15

    This study represents the radiologic, histologic features and clinical analysis of hyaline membrane diseases in 47 newbone infants who were delivered in Ewha Womans Univ. Hospital and expired caused by respiratory distress and confirmed by autopsy, during Jan. 1981 to June. 1984. The results were as follows: 1. Classification of radiographic stage (by Wolfson's criteria); Stage III (34.1%) was the most frequent. 2. Male to female ratio was 2.4 : 1. 3. Method of delivery; Cesarean section (44.7%) was the highest frequency, compared with percent of cesarean section to total delivery (29.0%) 4. Distribution of birth weight; 1.0-2.0 kg (48.9%) was the most frequent. 5. Distribution of gestational period; 32-36 weeks (29.8%) was the most frequent. 6. Complication; pulmonary hemorrhage (31.9%) was the most frequent, in order, subarachnoid hemorrhage and pneumothorax were followed. 7. Final diagnosis of hyaline membrane diseases was based on histo-pathologic diagnosis.

  15. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    Science.gov (United States)

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  16. Quantitative computed tomography in measurement of vertebral trabecular bone mass

    International Nuclear Information System (INIS)

    Nilsson, M.; Johnell, O.; Jonsson, K.; Redlund-Johnell, I.

    1988-01-01

    Measurement of bone mineral concentration (BMC) can be done by several modalities. Quantitative computed tomography (QCT) can be used for measurements at different sites and with different types of bone (trabecular-cortical). This study presents a modified method reducing the influence of fat. Determination of BMC was made from measurements with single-energy computed tomography (CT) of the mean Hounsfield number in the trabecular part of the L1 vertebra. The method takes into account the age-dependent composition of the trabecular part of the vertebra. As the amount of intravertebral fat increases with age, the effective atomic number for these parts decreases. This results in a non-linear calibration curve for single-energy CT. Comparison of BMC values using the non-linear calibration curve or the traditional linear calibration with those obtained with a pixel-by-pixel based electron density calculation method (theoretically better) showed results clearly in favor of the non-linear method. The material consisted of 327 patients aged 6 to 91 years, of whom 197 were considered normal. The normal data show a sharp decrease in trabecular bone after the age of 50 in women. In men a slower decrease was found. The vertebrae were larger in men than in women. (orig.)

  17. Genomic and post-genomic effects of anti-glaucoma drugs preservatives in trabecular meshwork

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto, E-mail: izzotti@unige.it [Mutagenesis Unit, IRCCS AOU San Martino – IST, Genova (Italy); Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa (Italy); La Maestra, Sebastiano; Micale, Rosanna Tindara; Longobardi, Maria Grazia [Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa (Italy); Saccà, Sergio Claudio [Ophthalmology Unit, IRCCS AOU San Martino-IST, Genova (Italy)

    2015-02-15

    Highlights: • Glaucoma drug preservatives induce DNA damage in trabecular meshwork cells. • Cellular alteration is related with the occurrence of activation of apoptosis through the intrinsic pathway. • Drug preservatives unable to induce cell damage are ineffective in killing bacteria. • Anti glaucoma drugs should be formulated as single-dose usage devoid of genotoxic preservatives. - Abstract: Oxidative stress plays an important role in glaucoma. Some preservatives of anti-glaucoma drugs, commonly used in glaucoma therapy, can prevent or induce oxidative stress in the trabecular meshwork. The aim of this study is to evaluate cellular and molecular damage induced in trabecular meshwork by preservatives contained in anti-glaucoma drugs. Cell viability (MTT test), DNA fragmentation (Comet test), oxidative DNA damage (8-oxo-dG), and gene expression (cDNA microarray) have been evaluated in trabecular meshwork specimens and in human trabecular meshwork cells treated with benzalkonium chloride, polyQuad, purite, and sofzia-like mixture. Moreover, antimicrobial effectiveness and safety of preservative contents in drugs was tested. In ex vivo experiments, benzalkonium chloride and polyQuad induced high level of DNA damage in trabecular meshwork specimens, while the effect of purite and sofzia were more attenuated. The level of DNA fragmentation induced by benzalkonium chloride was 2.4-fold higher in subjects older than 50 years than in younger subjects. Benzalkonium chloride, and polyQuad significantly increased oxidative DNA damage as compared to sham-treated specimens. Gene expression was altered by benzalkonium chloride, polyQuad, and purite but not by sofzia. In in vitro experiments, benzalkonium chloride and polyQuad dramatically decreased trabecular meshwork cell viability, increased DNA fragmentation, and altered gene expression. A lesser effect was also exerted by purite and sofzia. Genes targeted by these alterations included Fas and effector caspase-3

  18. Hyalinizing Granuloma: An Unusual Case of a Pulmonary Mass

    Directory of Open Access Journals (Sweden)

    Viviane Brandão

    2010-01-01

    Full Text Available We describe the case of pulmonary hyalinizing granuloma in a 34-year-old asymptomatic man who presented with a pulmonary nodule apparent by chest radiography and computed tomography (CT. He had a history of previous treatment for tuberculosis. His laboratory data were normal. Bronchoscopy and CT-guided percutaneous transthoracic fine needle aspiration cytology were inconclusive. The diagnosis was revealed after the histopathological examination of an open lung biopsy.

  19. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...... strain and failure energy showed maxima at younger ages. These age-related variations (except for failure energy) were non-linear. Tissue density and mineral concentration were constant throughout life, whereas apparent density (the amount of bone) varied with ultimate stress. Collagen density (the...... amount of collagen) varied with failure energy. Collagen concentration was maximal at younger ages but varied little with age. Our results suggest that the decrease in mechanical properties of trabecular bone such as Young's modulus and ultimate stress is mainly a consequence of the loss of trabecular...

  20. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  1. In vitro uptake of 153gadolinium and gadolinium complexes by hyaline articular cartilage

    International Nuclear Information System (INIS)

    Engel, A.; Fleischmann, D.; Hamilton, G.; Hajek, P.

    1990-01-01

    This in vitro study evaluated whether Gadolinium (Gd) penetrates into hyaline cartilage and would be incorporated into vital chondrocytes. Hyaline joint cartilage of rabbits was exposed to radioactive 153 GdCl 3 and to a radioactive 153 Gd-DTPA-BSA-complex (DTPA, diethylene-triaminepentaacetic acid; BSA, bovine serum albumine). In addition an exchange experiment with radioactive 153 GdCl 3 versus Gd-DTPA-di-N-methylglucamine (Magnevist) was performed. Incorporation of 153 GdCl 3 into neuroblastoma cells, connective tissue cells and chondrocytes was tested. The results showed that the depth and extent of incorporation of Gd depends on the molecular mass and time of exposure. 153 Gd-DTPA-BSA complexes exhibited an incorporation rate of maximal 11 per cent ± 2.8 per cent up to the middle third of the cartilage within 24 h with almost no incorporation (2 ± 1.9 per cent) for the deep layer. The exchange experiment revealed no uptake of Gd for the deep layer. The maximal incorporation rate of 153 GdCl 3 into vital chondrocytes was 6.3 per cent. These data indicate that under the condition of MR-arthrography, Gd-DTPA-di-N-methylglucamine will not be absorbed into the deep layers of hyaline cartilage and will not be incorporated into vital chondrocytes. (author). 8 refs.; 3 tabs

  2. MIXED HYALINE VASCULAR AND PLASMA CELL TYPE CASTLEMAN’S DISEASE: REPORT OF A CASE

    Directory of Open Access Journals (Sweden)

    F. Asgarani

    2006-05-01

    Full Text Available Castleman’s disease (angiofollicular lymphoid hyperplasia includes a heterogeneous group of lymphoproliferative disorders. The cause of this disease remains uncertain. There are two types of localized Castleman’s disease: the more common hyaline vascular and the plasma cell types. Mixed variant is an uncommon localized lesion in general population. The lesions can occur in any part of the body that contains lymphoid tissue, although seventy percent are found in the anterior mediastinum. We report a thirty years old boy with Castleman’s disease who presented with fever, anorexia, weight loss,sweating, anemia and abdominal mass. The histologic examination of the biopsy specimens revealed a mixed hyaline vascular and plasma cell type of Castleman’s disease.

  3. Inhibition of hyaluronan synthesis reduces versican and fibronectin levels in trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Kate E Keller

    Full Text Available Hyaluronan (HA is a major component of the extracellular matrix (ECM and is synthesized by three HA synthases (HAS. Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU, or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.

  4. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2015-09-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.

  5. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    International Nuclear Information System (INIS)

    Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna

    2015-01-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds

  6. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  7. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    Science.gov (United States)

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  9. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs.

    Science.gov (United States)

    Yamashita, Akihiro; Morioka, Miho; Yahara, Yasuhito; Okada, Minoru; Kobayashi, Tomohito; Kuriyama, Shinichi; Matsuda, Shuichi; Tsumaki, Noriyuki

    2015-03-10

    Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs). We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1), and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  11. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study

    OpenAIRE

    Yvonne Peck; Pengfei He; Geetha Soujanya V. N. Chilla; Chueh Loo Poh; Dong-An Wang

    2015-01-01

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG...

  12. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions.

    Science.gov (United States)

    Qin, W T; Zhuang, W Y

    2016-01-01

    Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed. © 2016 by The Mycological Society of America.

  13. Pulmonary hyalinizing granuloma and retroperitoneal fibrosis in an adolescent

    International Nuclear Information System (INIS)

    Young, Adam S.; Binkovitz, Larry A.; Adler, Brent H.; Nicol, Kathleen K.; Rennebohm, Robert M.

    2007-01-01

    We describe a 15-year-old boy who developed pulmonary hyalinizing granuloma (PHG) and retroperitoneal fibrosis (RPF). His PHG and RPF were not associated with histoplasmosis or tuberculosis and appeared to represent idiopathic autoimmune phenomena. This is the first reported case of PHG in a pediatric patient and the fourth reported co-occurrence of PHG and RPF. The use of F-18 fluorodeoxyglucose positron emission tomography in the diagnostic and follow-up evaluation of PHG is reported. (orig.)

  14. Pulmonary hyalinizing granuloma and retroperitoneal fibrosis in an adolescent

    Energy Technology Data Exchange (ETDEWEB)

    Young, Adam S.; Binkovitz, Larry A.; Adler, Brent H. [Columbus Children' s Hospital, Children' s Radiological Institute, Columbus, OH (United States); Nicol, Kathleen K. [Columbus Children' s Hospital, Department of Pathology, Columbus, OH (United States); Rennebohm, Robert M. [Columbus Children' s Hospital, Department of Rheumatology, Columbus, OH (United States)

    2007-01-15

    We describe a 15-year-old boy who developed pulmonary hyalinizing granuloma (PHG) and retroperitoneal fibrosis (RPF). His PHG and RPF were not associated with histoplasmosis or tuberculosis and appeared to represent idiopathic autoimmune phenomena. This is the first reported case of PHG in a pediatric patient and the fourth reported co-occurrence of PHG and RPF. The use of F-18 fluorodeoxyglucose positron emission tomography in the diagnostic and follow-up evaluation of PHG is reported. (orig.)

  15. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    Science.gov (United States)

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  16. Clinical implications of a rare renal entity: Pleomorphic Hyalinizing Angiectatic Tumor (PHAT).

    Science.gov (United States)

    Scalici Gesolfo, Cristina; Serretta, Vincenzo; Di Maida, Fabrizio; Giannone, Giulio; Barresi, Elisabetta; Franco, Vito; Montironi, Rodolfo

    2017-02-01

    Pleomorphic Hyalinizing Angiectatic Tumor (PHAT) is a rare benign lesion characterized by slow growth, infiltrative behavior and high rate of local recurrences. Only one case has been described in retroperitoneum, at renal hilum, but not involving pelvis or parenchyma. Here we present the first case of PHAT arising in the renal parenchyma. A nodular lesion in right kidney lower pole was diagnosed to a 61 year old woman. The patient underwent right nephrectomy. Microscopically, the lesion showed solid and pseudo-cystic components with hemorrhagic areas characterized by aggregates of ectatic blood vessels. Pleomorphic cells were characterized by large eosinophilic cytoplasm with irregular and hyperchromatic nuclei. Immunohistochemistry was performed and the lesion was classified as a Pleomorphic Hyalinizing Angiectatic Tumor (PHAT). Due to the clinical behavior of this tumor, in spite of its benign nature, review of the surgical margins and close follow up after partial nephrectomy are mandatory. Copyright © 2016. Published by Elsevier GmbH.

  17. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats.

    Directory of Open Access Journals (Sweden)

    Zhongshuang Liu

    Full Text Available To evaluate the effect of trabecular thickness and trabecular separation on modulating the trabecular architecture of the mandibular bone in ovariectomized rats.Fourteen 12-week-old adult female Wistar rats were divided into an ovariectomy group (OVX and a sham-ovariectomy group (sham. Five months after the surgery, the mandibles from 14 rats (seven OVX and seven sham were analyzed by micro-CT. Images of inter-radicular alveolar bone of the mandibular first molars underwent three-dimensional reconstruction and were analyzed.Compared to the sham group, trabecular thickness in OVX alveolar bone decreased by 27% (P = 0.012, but trabecular separation in OVX alveolar bone increased by 59% (P = 0.005. A thickness and separation map showed that trabeculae of less than 100 μm increased by 46%, whereas trabeculae of more than 200 μm decreased by more than 40% in the OVX group compared to those in the sham group. Furthermore, the OVX separation of those trabecular of more than 200 μm was 65% higher compared to the sham group. Bone mineral density (P = 0.028 and bone volume fraction (p = 0.001 were also significantly decreased in the OVX group compared to the sham group.Ovariectomy-induced bone loss in mandibular bone may be related to the distributional variations in trabecular thickness and separation which profoundly impact the modulation of the trabecular architecture.

  18. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  19. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  20. Trabecular microstructure and surface changes in the greater tuberosity in rotator cuff tears

    International Nuclear Information System (INIS)

    Jiang, Yebin; Zhao, Jenny; Ouyang, Xiaolong; Genant, Harry K.; Holsbeeck, Marnix T. van; Flynn, Michael J.

    2002-01-01

    Abstract Objective. When planning surgery in patients with rotator cuff tear, strength of bone at the tendon insertion and trabecular bone structure in the greater tuberosity are usually taken into consideration. We investigated radiographic changes in bone structure of the greater tuberosity in rotator cuff tears.Design. Twenty-two human cadaveric shoulders from subjects ranging from 55 to 75 years of age were obtained. The integrity of the rotator cuff was examined by sonography to determine if it is intact without any tear, or torn partially or completely. The humeral head was sectioned in 3 mm thick coronal slab sections and microradiographed. After digitization of the microradiographs and imaging processing with in-house semi-automated image processing software tools developed using software interfaces on a Sun workstation, the trabecular histomorphometrical structural parameters and connectivity in the greater tuberosity were quantified. The degenerative changes on the surface of the greater tuberosity were interpreted blindly by 2 independent readers.Results. Among the 22 shoulder specimens, the rotator cuff was found intact in 10 shoulders, partially in 7 and fully torn in 5. Statistically significant loss in apparent trabecular bone volume fraction, number of trabecular nodes, and number of trabecular branches, and a statistically significant increase in apparent trabecular separation and number of trabecular free ends were found in the greater tuberosity of the shoulders with tears. The loss was greater in association with full tear than in partial tear. Thickening of the cortical margin of the enthesis, irregularity of its surface, and calcification beyond the tidemark were observed in 2 (20%) shoulders with intact rotator cuff, in 6 (86%) shoulders with partial tear, and in 5 (100%) shoulders with full tear.Conclusions. Rotator cuff tears are associated with degenerative changes on the bone surface and with disuse osteopenia of the greater tuberosity

  1. Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi.

    Science.gov (United States)

    Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C

    2009-12-01

    OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.

  2. Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression

    Energy Technology Data Exchange (ETDEWEB)

    Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné [Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Armitage, Paul [The Academic Unit of Radiology, The University of Sheffield, Sheffield S10 2JF (United Kingdom); Whitby, Elspeth [The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield S10 2SF (United Kingdom); King, David [The Academic Unit of Child Health, The University of Sheffield, Sheffield S10 2TH (United Kingdom); Dimitri, Paul [The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield S10 2RX (United Kingdom); Frangi, Alejandro F. [Center for Computational Imaging and Simulation Technologies in Biomedicine, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2016-06-15

    Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by using a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.

  3. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  4. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    Science.gov (United States)

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  5. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) of Cadaveric Shoulders: Comparison of Contrast Dynamics in Hyaline and Fibrous Cartilage after Intraarticular Gadolinium Injection

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, E. (Dept. of Radiology, Charite Universitaetsmedizin Berlin (Germany)); Hodler, J.; Pfirrmann, C.W.A. (Dept. of Radiology, Orthopedic Univ. Hospital Balgrist, Zuerich (Switzerland))

    2009-01-15

    Background: Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. Purpose: To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Material and Methods: Transverse T1 maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T1 maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. Results: T1 of unenhanced hyaline cartilage of the glenoid was 568+-34 ms. T1 of unenhanced fibrous cartilage of the labrum was 552+-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T1(Gd) values in fibrous cartilage. T1 and ?R1 values of hyaline and fibrous cartilage after 2.5 hours were 351+-16 ms and 1.1+-0.09/s, and 332+-31 ms and 1.2+-0.1/s, respectively. Conclusion: A significant decrease in T1(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium

  6. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    Science.gov (United States)

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  7. Rationale for the evaluation of trabecular bone turnover

    International Nuclear Information System (INIS)

    Kimmel, D.B.; Jee, W.S.S.

    1976-01-01

    A procedure for the morphometric evaluation of trabecular bone is identified. Its scrupulous use allows total identification of bone formation and resorption rates, items necessary for the direct histologic analysis of bone turnover

  8. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model.

    Science.gov (United States)

    Elder, Steven H; Cooley, Avery J; Borazjani, Ali; Sowell, Brittany L; To, Harrison; Tran, Scott C

    2009-10-01

    A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.

  9. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    Science.gov (United States)

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The junction between hyaline cartilage and engineered cartilage in rabbits.

    Science.gov (United States)

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Enhancement pattern analysis of hypervascular hepatocellular carcinoma on dynamic MR imaging with histopathological correlation: Validity of portal phase imaging for predicting tumor grade

    International Nuclear Information System (INIS)

    Okamoto, Daisuke; Yoshimitsu, Kengo; Nishie, Akihiro; Tajima, Tsuyoshi; Asayama, Yoshiki; Ishigami, Kousei; Hirakawa, Masakazu; Ushijima, Yasuhiro; Kakihara, Daisuke; Nakayama, Tomohiro; Nishihara, Yunosuke; Aishima, Shinichi; Taketomi, Akinobu; Kishimoto, Junji; Honda, Hiroshi

    2012-01-01

    Purpose: To elucidate the correlation between hypervascular hepatocellular carcinoma (HCC) enhancement patterns on dynamic MR imaging and histological findings. Materials and methods: Surgically proven 46 hypervascular HCCs of forty-one patients were enrolled. For each HCC, the signal intensity in the portal phase (SIPP) was evaluated. In this study, high, iso-, or low intensity in the portal phase was hypothesized as late, moderate, or early washout pattern, respectively. The SIPP of each HCC was correlated to histological grade and architectural subtypes that represent degrees of trabecular structure. For the trabecular HCCs, the thickness of tumor plate was also correlated for indirect estimation of tumor sinusoid. Results: There was a significant correlation between the SIPP vs. histological grade and also vs. architectural subtypes, namely the degree of trabecular structure. Washout of hypervascular HCC occurred earlier as the histological grade advanced and the histological architecture got closer to pure trabecular HCC. For the trabecular HCCs, the thickness of tumor plate correlated significantly with SIPP or histological grade. Hypervascular HCCs with thicker tumor plates showed worse histological grade and earlier washout pattern. Conclusions: Histological grade of hypervascular HCC may be predicted using SIPP. The thickness of tumor plate, resultantly the size of sinusoid between tumor plates, can account for the relationship between washout pattern and histological grade in the trabecular HCCs.

  12. Finite element analysis of trabecular bone structures : a comparison of image-based meshing techniques

    NARCIS (Netherlands)

    Ulrich, D.; Rietbergen, van B.; Weinans, H.; Rüegsegger, P.

    1998-01-01

    In this study, we investigate if finite element (FE) analyses of human trabecular bone architecture based on 168 microm images can provide relevant information about the bone mechanical characteristics. Three human trabecular bone samples, one taken from the femoral head, one from the iliac crest,

  13. Influence of Structure and Composition on Dynamic Viscoelastic Property of Cartilaginous Tissue: Criteria for Classification between Hyaline Cartilage and Fibrocartilage Based on Mechanical Function

    Science.gov (United States)

    Miyata, Shogo; Tateishi, Tetsuya; Furukawa, Katsuko; Ushida, Takashi

    Recently, many types of methodologies have been developed to regenerate articular cartilage. It is important to assess whether the reconstructed cartilaginous tissue has the appropriate mechanical functions to qualify as hyaline (articular) cartilage. In some cases, the reconstructed tissue may become fibrocartilage and not hyaline cartilage. In this study, we determined the dynamic viscoelastic properties of these two types of cartilage by using compression and shear tests, respectively. Hyaline cartilage specimens were harvested from the articular surface of bovine knee joints and fibrocartilage specimens were harvested from the meniscus tissue of the same. The results of this study revealed that the compressive energy dissipation of hyaline cartilage showed a strong dependence on testing frequency at low frequencies, while that of fibrocartilage did not. Therefore, the compressive energy dissipation that is indicated by the loss tangent could become the criterion for the in vitro assessment of the mechanical function of regenerated cartilage.

  14. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  16. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Science.gov (United States)

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  17. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients.

    Science.gov (United States)

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L

    2017-04-03

    Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography

  18. Prediction of mechanical properties of trabecular bone using quantitative MRI

    International Nuclear Information System (INIS)

    Lammentausta, E; Hakulinen, M A; Jurvelin, J S; Nieminen, M T

    2006-01-01

    Techniques for quantitative magnetic resonance imaging (MRI) have been developed for non-invasive estimation of the mineral density and structure of trabecular bone. The R* 2 relaxation rate (i.e. 1/T* 2 ) is sensitive to bone mineral density (BMD) via susceptibility differences between trabeculae and bone marrow, and by binarizing MRI images, structural variables, such as apparent bone volume fraction, can be assessed. In the present study, trabecular bone samples of human patellae were investigated in vitro at 1.5 T to determine the ability of MRI-derived variables (R* 2 and bone volume fraction) to predict the mechanical properties (Young's modulus, yield stress and ultimate strength). Further, the MRI variables were correlated with reference measurements of volumetric BMD and bone area fraction as determined with a clinical pQCT system. The MRI variables correlated significantly (p 2 and MRI-derived bone volume fraction further improved the prediction of yield stress and ultimate strength. Although pQCT showed a trend towards better prediction of the mechanical properties, current results demonstrate the feasibility of combined MR imaging of marrow susceptibility and bone volume fraction in predicting the mechanical strength of trabecular bone and bone mineral density

  19. Structure model index does not measure rods and plates in trabecular bone

    Directory of Open Access Journals (Sweden)

    Phil L Salmon

    2015-10-01

    Full Text Available Structure model index (SMI is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4, to cylindrical (SMI = 3 to planar (SMI = 0. The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+ and negative (SMI- components, bone volume fraction (BV/TV, the fraction of the surface that is concave (CF, and mean ellipsoid factor (EF in trabecular bone using 38 X-ray microtomography (XMT images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile. We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely less than 20%, of the trabecular surface is concave (CF 0.155 – 0.700. SMI is unavoidably influenced by aberrations from SMI-, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from SMI's close and artefactual relationship with BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with

  20. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study.

    Science.gov (United States)

    Limbert, Georges; van Lierde, Carl; Muraru, O Luiza; Walboomers, X Frank; Frank, Milan; Hansson, Stig; Middleton, John; Jaecques, Siegfried

    2010-05-07

    The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation). In order to reach these objectives, a microCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of microCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young's modulus of the trabecular bone tissue to be 5, 10 and 15GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    Science.gov (United States)

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666

  2. Radiography of the mandible prior to endosseous implant treatment. Localization of the mandibular canal and assessment of trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Lindh, C.

    1996-03-01

    Mandibular autopsy specimens were examined with different radiographic techniques in order to evaluate the visibility of the mandibular canal and the measurement accuracy of distances related to the mandibular canal. Hypocycloidal, spiral and computed tomography (CT) were superior to periapical and panoramic radiography in visualizing the mandibular canal. The tomographic techniques were more accurate when measurements of distances related to the mandibular canal were performed. No difference in measurement accuracy was found between the tomographic techniques. Concerning visibility of the mandibular canal, interobserver agreement was lowest for periapical radiography and highest for CT. Intraobserver agreement was moderate or good for all techniques. A high interobserver variation was found for measurability of distances related to the mandibular canal. The trabecular bone tissue in mandibular autopsy specimens was studied concerning different characteristics. A classification system to be used prior to implant treatment, based on the trabecular pattern in periapical radiographs, was proposed. 74 refs.

  3. Radiography of the mandible prior to endosseous implant treatment. Localization of the mandibular canal and assessment of trabecular bone

    International Nuclear Information System (INIS)

    Lindh, C.

    1996-03-01

    Mandibular autopsy specimens were examined with different radiographic techniques in order to evaluate the visibility of the mandibular canal and the measurement accuracy of distances related to the mandibular canal. Hypocycloidal, spiral and computed tomography (CT) were superior to periapical and panoramic radiography in visualizing the mandibular canal. The tomographic techniques were more accurate when measurements of distances related to the mandibular canal were performed. No difference in measurement accuracy was found between the tomographic techniques. Concerning visibility of the mandibular canal, interobserver agreement was lowest for periapical radiography and highest for CT. Intraobserver agreement was moderate or good for all techniques. A high interobserver variation was found for measurability of distances related to the mandibular canal. The trabecular bone tissue in mandibular autopsy specimens was studied concerning different characteristics. A classification system to be used prior to implant treatment, based on the trabecular pattern in periapical radiographs, was proposed. 74 refs

  4. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.

    Science.gov (United States)

    Rieger, R; Auregan, J C; Hoc, T

    2018-03-01

    The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Trabecular bone structure and strength - remodelling and repair

    DEFF Research Database (Denmark)

    Mosekilde, Lis; Ebbesen, Ebbe Nils; Erikstrup, Lise Tornvig

    2000-01-01

    The strength of the spinal trabecular bone declines by a factor of 4-5 from the age of 20 to 80 years. At the same time, the volumetric (apparent) density declines by a factor of only 2. This discrepancy can be explained by the known power relationship between density and strength; this power rel......; and the hydraulic effect of the bone marrow. In order to answer these questions, more in vitro and in vivo studies on human bone in relation to aging, to immobilisation, to exercise and in relation to different treatment regimens are needed.......The strength of the spinal trabecular bone declines by a factor of 4-5 from the age of 20 to 80 years. At the same time, the volumetric (apparent) density declines by a factor of only 2. This discrepancy can be explained by the known power relationship between density and strength; this power...

  6. Intraoperative optical coherence tomography and ab interno trabecular meshwork surgery with the Trabectome

    Directory of Open Access Journals (Sweden)

    Junker B

    2017-09-01

    Full Text Available Bernd Junker,1 Jens F Jordan,2 Carsten Framme,1 Amelie Pielen1 1University Eye Hospital, Medical School Hannover, Hannover, 2Eye Center, Medical Center, University of Freiburg, Freiburg, Germany Importance: This study is the first description of the use of the intraoperative optical coherence tomography (iOCT for trabecular meshwork surgery with the Trabectome in a regular clinical setting.Background: The aim of this study is to evaluate intraoperatively the immediate success of ab interno trabeculotomy with the Trabectome defined as a removal of the trabecular meshwork.Design: This is a retrospective clinical study performed in the University Eye Hospital, Medical School Hannover.Participants: A total of nine consecutive Caucasian patients suffering from primary open angle glaucoma, pigment dispersion glaucoma, or pseudoexfoliation glaucoma took part in the study.Methods: All patients underwent ab interno trabeculotomy surgery with the Trabectome using a commercially available iOCT to visualize the anterior chamber angle (ACA before and after the procedure. The visualization was done using a modified Swan-Jacobs lens (all nine patients or without lens (view from above, five patients.Main outcome measures: The main outcome of this study is the success of visualization of the ACA on iOCT, especially the postprocedural visualization of the wound gap after removal of the trabecular meshwork.Results: Using the view from above, the ACA could be visualized before and after the procedure in only two of the five cases. Using the modified Swan-Jacobs lens, the ACA could be visualized before the procedure and the trabecular meshwork opening after the procedure in all nine patients.Conclusion: The iOCT can be used to objectify the immediate success of the surgical procedure, ie, the removal of the trabecular meshwork, of ab interno trabeculotomy with the Trabectome. The procedure itself cannot be captured sufficiently via iOCT. Keywords: glaucoma, imaging

  7. Texture analysis of trabecular bone using conventional radiographs: medical imaging and osteoporosis

    International Nuclear Information System (INIS)

    Karunanithi, R.; Panicker, T.M.R.; Paul Korath, M.; Jagadeesan, K.; Ganesan, S.

    2008-01-01

    Osteoporosis is characterized by reduced bone mass, microstructural deterioration with advancing age, and an increase in fracture risk. The accurate clinical assessment of bone strength and fracture risk is important for management of bone loss diseases such as osteoporosis risk. From a clinical point of view, microarchitecture is an interesting aspect to study and define patterns of bone alterations with aging and pathology. Microarchitecture seems to be a determinant of bone fragility independent of bone density. Moreover, bone microarchitecture seems to be important to understand the mechanisms of bone fragility independent of bone density. Moreover bone microarchitecture seems to be important to understand the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. In the case of osteoporosis the bone texture of the trabecular network as it appears on the plain radiographs can be quantified by applying image processing tools. Among the factors conditioning bone strength and osteoporotic fractures, bone mineral density is the most important and the best studied. Though, other factors also play a role: macroarchitecture of bones, cortical thickness, quality of bone crystal and of collagen network and trabecular microarchitecture. The microarchitecture plays a major role, and is an aspect of the definition of osteoporosis. Therefore, it would be very helpful if these alterations could be measured in addition to bone mineral density with noninvasive techniques, such as radiographs, and to assess the status of the bone by texture analysis

  8. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    Science.gov (United States)

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.

  9. Assessment of jawbone trabecular bone structure amongst osteoporotic women by cone-beam computed tomography: the OSTEOSYR project.

    Science.gov (United States)

    Barngkgei, Imad; Al Haffar, Iyad; Shaarani, Eyad; Khattab, Razan; Mashlah, Ammar

    2016-11-01

    To assess the trabecular bone structure of jawbones and the dens (the odontoid process of the second cervical vertebra) amongst osteoporotic and nonosteoporotic women using cone-beam computed tomography (CBCT). Analysis of the dens trabecular bone structure aimed to test the validity of CBCT in such analysis. Thirty-eight women who went under dual-energy X-ray absorptiometry (DXA) examination were scanned by CBCT. Cuboids from different areas of jawbones and the dens were extracted from each scan. Trabecular thickness (Tb.Th), trabecular separation (Tb.S), bone volume fraction (BV/TV), specific bone surface (BS/TV) and connectivity density were calculated. Student's t-test, Pearson correlation, and logistic regression analysis were used to explore differences in these measures between groups. Jawbone-derived measures showed insignificant differences (P > 0.05) between osteoporotic and non-osteoporotic groups, and weak correlations with femoral neck and lumbar vertebrae T-scores (r ≤ 0.4). Dens-derived measures, however, resulted in the opposite (r = 0.34-0.38 [P value = 0.02-0.036] and r = 0.48-0.61 [P value ≤ 0.003]) and the highest accuracy of osteoporosis prediction: 84.2% and 78.9% respectively. Trabecular bone structure of the mandible and maxilla is not affected in osteoporosis as assessed by CBCT. Dens trabecular bone analysis revealed the opposite, so some trabecular bone measures may be assessed by CBCT, which may aid in predicting osteoporosis. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Study of MR sequence in detecting hyaline cartilage defects of the knee joint

    International Nuclear Information System (INIS)

    Li Songbai; He Cuiju; Sun Wenge; Li Chunkui; Qi Xixun; Li Yanliang; Xu Ke; Bai Xizhuang; Wu Zhenhua

    2003-01-01

    Objective: To evaluate the value of various MR imaging sequences for detecting hyaline cartilage defects. Methods: Ten animal models of cartilage defect were established in 5 pig knees. 5 knees were examined with nine different MR sequences. The signal noise ratio of cartilage and contrast noise ratio were calculated and compared between cartilage and adjacent tissue. Measurement of the defect depth and width on the imaging was correlated with the actual measurement before imaging. 23 patients with hyaline cartilage defects of the knee were evaluated with MR imaging. All these patients underwent subsequent arthroscopy. MR imaging protocol included the selected sequences in the experimental study. Results: The cartilage SNR was better in FSE PD, FS 3D FSPGR, and FS FSE PD sequences. CNR between cartilage and subcartilaginous bone was best in FS 3D FSPGR and FS FSE PD sequences. CNR between cartilage and joint fluid was best in FS 3D FSPGR and FS FSE T 2 WI sequences. CNR between cartilage and meniscus and ligament was best in FS 3D FSPGR, FS FSE PD, SE T 1 WI, and IR TI700 sequences. CNR between cartilage and fat was best in FS 3D FSPGR and SE T 1 WI sequences. The width and depth correlation was best in IR TI700 sequence, which showed the statistical significance (P 2 WI sequence, 68%, 99%, and 0.74, respectively with IR TI700 sequence. Conclusion: The sensitivity of FS 3D FSPGR sequence in detecting hyaline cartilage defect is the highest. T 1 WI of spin echo sequence and T 2 WI/PDWI of fast spin-echo with fat saturation should be the standard sequence in the examination of knee joint. T 1 WI of IR sequence has potential clinical value for cartilage examination

  11. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  12. Variability of morphometric parameters of human trabecular tissue from coxo-arthritis and osteoporotic samples

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2012-01-01

    Full Text Available Morphometric and architectural bone parameters change in diseases such as osteoarthritis and osteoporosis. The mechanical strength of bone is primarily influenced by bone quantity and quality. Bone quality is defined by parameters such as trabecular thickness, trabecular separation, trabecular density and degree of anisotropy that describe the micro-architectural structure of bone. Recently, many studies have validated microtomography as a valuable investigative technique to assess bone morphometry, thanks to micro-CT non-destructive, non-invasive and reliability features, in comparison to traditional techniques such as histology. The aim of this study is the analysis by micro-computed tomography of six specimens, extracted from patients affected by osteoarthritis and osteoporosis, in order to observe the tridimensional structure and calculate several morphometric parameters.

  13. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc.

    Science.gov (United States)

    Mwale, F; Roughley, P; Antoniou, J

    2004-12-15

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio) in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  14. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc

    Directory of Open Access Journals (Sweden)

    Mwale F.

    2004-12-01

    Full Text Available Tissue engineering of intervertebral discs (IVD using mesenchymal stem cells (MSCs induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  15. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  16. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity.

    Directory of Open Access Journals (Sweden)

    Ratan Kumar Rai

    Full Text Available Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx. Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group, and restoration was allowed to become comparable to sham Ovx (control group using bone mineral density (BMD and µCT determinants. We used a technique combining (1H NMR spectroscopy with (31P and (13C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1 and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and

  17. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  18. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  19. Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study

    Science.gov (United States)

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K.; Bhattacharya, Sanjoy K.; Parel, Jean-Marie A

    2009-01-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and non-treated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to non-lasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to non-lasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty. PMID:19432485

  20. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats.

    Science.gov (United States)

    Levkovitch-Verbin, Hana; Quigley, Harry A; Martin, Keith R G; Valenta, Danielle; Baumrind, Lisa A; Pease, Mary Ellen

    2002-02-01

    To develop and characterize a model of pressure-induced optic neuropathy in rats. Experimental glaucoma was induced unilaterally in 174 Wistar rats, using a diode laser with wavelength of 532 nm aimed at the trabecular meshwork and episcleral veins (combination treatment group) or only at the trabecular meshwork (trabecular group) through the external limbus. Intraocular pressure (IOP) was measured by a tonometer in rats under ketamine-xylazine anesthesia. Possible retinal vascular compromise was evaluated by repeated fundus examinations and by histology. The degree of retinal ganglion cell (RGC) loss was assessed by a masked, semiautomated counting of optic nerve axons. Effects of laser treatment on anterior ocular structures and retina were judged by light microscopy. After the laser treatment, IOP was increased in all eyes to higher than the normal mean IOP of 19.4 +/- 2.1 mm Hg (270 eyes). Peak IOP was 49.0 +/- 6.1 mm Hg (n = 108) in the combination group that was treated by a laser setting of 0.7 seconds and 0.4 W and 34.0 +/- 5.7 mm Hg (n = 46) in the trabecular group. Mean IOP after 6 weeks was 25.5 +/- 2.9 mm Hg in glaucomatous eyes in the combination group compared with 22.0 +/- 1.8 mm Hg in the trabecular group. IOP in the glaucomatous eyes was typically higher than in the control eyes for at least 3 weeks. In the combination group, RGC loss was 16.1% +/- 14.4% at 1 week (n = 8, P = 0.01), 59.7% +/- 25.7% at 6 weeks (n = 88, P < 0.001), and 70.9% +/- 23.6% at 9 weeks (n = 12, P < 0.001). The trabecular group had mean axonal loss of 19.1% +/- 14.0% at 3 weeks (n = 9, P = 0.004) and 24.3% +/- 20.2% at 6 weeks (n = 25, P < 0.001), increasing to 48.4% +/- 32.8% at 9 weeks (n = 12, P < 0.001). Laser treatment led to closure of intertrabecular spaces and the major outflow channel. The retina and choroid were normal by ophthalmoscopy at all times after treatment. Light microscopic examination showed only loss of RGCs and their nerve fibers. Increased IOP caused

  1. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    Science.gov (United States)

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  2. In vitro and in vivo experimental studies on trabecular meshwork degeneration induced by benzalkonium chloride (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Baudouin, Christophe; Denoyer, Alexandre; Desbenoit, Nicolas; Hamm, Gregory; Grise, Alice

    2012-12-01

    Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. Trabecular specimens were examined using immunohistology and reverse transcriptase-polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. BAK enhances all characteristics of TM degeneration typical of glaucoma-trabecular apoptosis, oxidative stress, induction of inflammatory chemokines-and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents.

  3. NUMERICAL AND MECHANICAL ANALYSES OF A 3D-PRINTED TITANIUM TRABECULAR DENTAL IMPLANT

    Directory of Open Access Journals (Sweden)

    Luboš Řehounek

    2017-06-01

    Full Text Available The main focus of this paper is to investigate and describe a novel biomaterial structure. The trabecular structure has only recently been recognized as a viable alternative for prostheses and implants and seems to have very promising biocompatibility and mechanical properties. The 3D printing technique was used to create test specimens. These specimens were then tested by nanoindentation and tensile and compression tests. A numerical model was created and curve-fitted to represent the mechanical behavior of the trabecular structure. A significant reduction in the values of Young’s modulus E was observed. The values of E for conventional implant materials are approximately 110–120GPa and the trabecular structure reached a value just below 1GPa. The next effort will be to apply the model onto a real implant. It is the “four leaf clover” implant variant by authors F. Denk Jr., A. Jíra and F. Denk Sr.

  4. Organic carbon pattern and foraminiferal assemblage in the sediments of Gulf of Kutch

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Ambre, N.V.

    . The foraminiferal number (TFN) and the species diversity (TSN) seem to fluctuate with the variation in the sediment pattern. It is highest in the fine clays chiefly with embryonic or meiofaunal in size, thin-walled and hyaline, whereas it is large, thick...

  5. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Science.gov (United States)

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  6. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Directory of Open Access Journals (Sweden)

    Sébastien Touraine

    Full Text Available Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals.We assessed the hyaline cartilage, subchondral cortical plate (SCP, and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration. Bone cores harvested from the medial tibial plateau at locations uncovered (central, partially covered (posterior, and completely covered (peripheral by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3 and thickness (Cart.Th, mm; SCP thickness (SCP.Th, μm and porosity (SCP.Por, %; bone volume to total volume fraction (BV/TV, %; trabecular thickness (Tb.Th, μm, spacing (Tb.Sp, μm, and number (Tb.N, 1/mm; structure model index (SMI; trabecular pattern factor (Tb.Pf; and degree of anisotropy (DA.Among the 28 specimens studied (18 females from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf, a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly.The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  7. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.

    Science.gov (United States)

    Daly, Andrew C; Critchley, Susan E; Rencsok, Emily M; Kelly, Daniel J

    2016-10-07

    Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro. Each hydrogel was seeded with MSCs, cultured for 28 days in the presence of TGF-β3 and then analysed for markers indicative of differentiation towards either a fibrocartilaginous or hyaline cartilage-like phenotype. Alginate and agarose hydrogels best supported the development of hyaline-like cartilage, as evident by the development of a tissue staining predominantly for type II collagen. In contrast, GelMA and BioINK ™ (a PEGMA based hydrogel) supported the development of a more fibrocartilage-like tissue, as evident by the development of a tissue containing both type I and type II collagen. GelMA demonstrated superior printability, generating structures with greater fidelity, followed by the alginate and agarose bioinks. High levels of MSC viability were observed in all bioinks post-printing (∼80%). Finally we demonstrate that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments, generating composites with bulk compressive moduli comparable to articular cartilage. This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications.

  8. Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.

    Science.gov (United States)

    Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo

    2011-06-01

    This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.

  9. Long range node-strut analysis of trabecular bone microarchitecture

    DEFF Research Database (Denmark)

    Schmah, Tanya; Marwan, Norbert; Thomsen, Jesper Skovhus

    2011-01-01

    PURPOSE: We present a new morphometric measure of trabecular bone microarchitecture, called mean node strength (NdStr), which is part of a newly developed approach called long range node-strut analysis. Our general aim is to describe and quantify the apparent "latticelike" microarchitecture of th...

  10. Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Dolgushkin, D. A.; Volova, L. T.; Lazarev, V. A.; Tyumchenkova, A. S.; Markova, M. D.

    2017-08-01

    The paper presents the results of a comparative analysis by the method of Raman spectroscopy of the joint hyaline cartilage of adults and children. Differences in the spectral characteristics of the surface of articular cartilage are shown. New optical coefficients have been introduced, which make it possible to evaluate the age-related changes in cartilaginous tissue.

  11. Age-related changes in cortical and trabecular bone mineral status: A quantitative CT study in lumbar vertebrae

    International Nuclear Information System (INIS)

    Tanno, M.; Horiuchi, T.; Nakajima, I.; Maeda, S.; Igarashi, M.; Yamada, H.

    2000-01-01

    To investigate the age and sex dependence of the bone mineral status of human lumbar vertebrae with special regard to differences between cortical and trabecular bone. The study group comprised 125 normal Japanese healthy volunteers (54 males and 71 females), and was subdivided into adult male and female groups (subjects younger than 40 years), intermediate male and female groups (ages ranging between 41 and 64 years) and old male and female groups (subjects older than 65 years). The cortical bone mineral status was estimated using a single-energy quantitative CT (SE-QCT) technique, whereas trabecular bone mineral density (BMD) was estimated using a dual-energy (DE-QCT) technique. A considerable gender difference in the age-related cortical bone status was found. There was a significant reduction of the mean values of the cortical volume and BMD in the old female group compared with those obtained in the old male group. The results suggest that in men, cortical and trabecular bone volume decrease very little with age. In women, cortical volume and BMD and trabecular BMD decrease with age while trabecular bone volume does not. The study showed that all variables had higher values in men than in women and that the difference increased with age

  12. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI

    DEFF Research Database (Denmark)

    Marques, Joselene; Genant, Harry K.; Lillholm, Martin

    2013-01-01

    loss were assessed by a segmentation process. Aiming to quantify and potentially capture the structure of the trabecular bone anatomy, a machine learning approach used a set of texture features for training a classifier to recognize the trabecular bone of a knee with radiographic osteoarthritis. Using...

  13. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models

    International Nuclear Information System (INIS)

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M.; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J.; Waldt, Simone; Bauer, Jan S.

    2015-01-01

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n = 12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0–5.6 % and 1.3–6.1 %, respectively, and were not statistically significant (p > 0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r = 0.89–0.99; p < 0.05). The correlation coefficients r were not significantly different for the two preservation methods (p > 0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure

  14. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    Science.gov (United States)

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic

  15. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    Science.gov (United States)

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  16. Relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro: Application of a stratified model

    Science.gov (United States)

    Lee, Kang Il

    2012-08-01

    The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  17. Three-dimensional trabecular bone architecture of the lumbar spine in bone metastasis from prostate cancer: comparison with degenerative sclerosis

    International Nuclear Information System (INIS)

    Tamada, Tsutomu; Sone, Teruki; Imai, Shigeki; Kajihara, Yasumasa; Fukunaga, Masao; Jo, Yoshimasa

    2005-01-01

    Prostate cancer frequently metastasizes to bone, inducing osteosclerotic lesions. The objective of this study was to clarify the three-dimensional (3D) trabecular bone microstructure in bone metastasis from prostate cancer by comparison with normal and degenerative sclerotic bone lesions, using microcomputed tomography (micro-CT). A total of 32 cancellous bone samples were excised from the lumbar spine of six autopsy patients: 15 metastatic samples (one patient), eight degenerative sclerotic samples (four patients) and the rest from normal sites (three patients). The samples were serially scanned cross-sectionally by micro-CT with a pixel size of 23.20 μm, slice thickness of 18.56 μm, and image matrix of 512 x 512. Each image data set consisted of 250 consecutive slices. The volumes of interest (96 x 96 x 120 voxels) were defined in the original image sets and 3D indices of the trabecular microstructure were determined. The trabecular thickness (Tb.Th) in degenerative sclerotic lesions was significantly higher than that in normal sites, whereas no significant difference was observed in trabecular number (Tb.N). By contrast, in metastatic lesions, the Tb.N was significantly higher with increased bone volume fraction (BV/TV) than in normal sites, and no significant difference was found in Tb.Th. The characteristics of the trabecular surface in the metastatic samples showed concave structural elements with an increase in BV/TV, indicating osteolysis of the trabecular bone. In 3D reconstructed images, increased trabecular bone with an irregular surface was observed in samples from metastatic sites, which were uniformly sclerotic on soft X-ray radiographs. These results support, through 3D morphological features, the strong bone resorption effect in bone metastasis from prostate cancer. (orig.)

  18. [Analysis of correlation between trabecular microstructure and clinical imaging parameters in fracture region of osteoporotic hip].

    Science.gov (United States)

    Peng, Jing; Zhou, Yong; Min, Li; Zhang, Wenli; Luo, Yi; Zhang, Xuelei; Zou, Chang; Shi, Rui; Tu, Chongqi

    2014-05-01

    To analyze the correlation between the trabecular microstructure and the clinical imaging parameters in the fracture region of osteoporotic hip so as to provide a simple method to evaluate the trabecular microstructure by a non-invasive way. Between June 2012 and January 2013, 16 elderly patients with femoral neck fracture underwent hip arthroplasty were selected as the trial group; 5 young patients with pelvic fracture were selected as the control group. The hip CT examination was done, and cancellous bone volume/marrow cavity volume (CV/MV) was analyzed with Mimics 10.01 software in the control group. The CT scan and bone mineral density (BMD) measurement were performed on normal hips of the trial group, and cuboid specimens were gained from the femoral necks at the place of the tensional trabeculae to evaluate the trabecular microstructure parameters by Micro-CT, including bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), connect density (Conn.D), and structure model index (SMI). The correlation between imaging parameters and microstructure parameters was analyzed. In the trial group, the BMD value was 0.491-0.698 g/cm2 (mean, 0.601 g/cm2); according to World Health Organization (WHO) standard, 10 cases were diagnosed as having osteoporosis, and 6 cases as having osteopenia. The CV/MV of the trial group (0.670 1 +/- 0.102 0) was significantly lower than that of the control group (0.885 0 +/- 0.089 1) (t = -4.567, P = 0.000). In the trial group, CV/MV had correlation with BV/TV, Tb.Th, and SMI (P 0.05). BV/TV had correlation with Tb.Th, Tb.N, Tb.Sp, and SMI (P microstructure parameters (P > 0.05). CV/MV obviously decreases in the osteoporotic hip, and there is a correlation between CV/MV and the microstructure parameters of BV/TV, Tb.Th, and SMI, to some extent, which can reflect the variety of the microstructure of the trabeculae. There is no correlation between BMD of femoral neck and

  19. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    Science.gov (United States)

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  20. [Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extra- cellular matrix].

    Science.gov (United States)

    Linyi, Cai; Xiangli, Kong; Jing, Xie

    2016-06-01

    This study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM). Enzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities. After continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.

  1. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    Science.gov (United States)

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  2. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  3. Relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro: application of a stratified model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of)

    2012-08-15

    The present study aims to provide insight into the relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21 - 0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  4. Relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro: application of a stratified model

    International Nuclear Information System (INIS)

    Lee, Kang Il

    2012-01-01

    The present study aims to provide insight into the relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21 - 0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  5. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  6. Experimental erbium: YAG laser photoablation of trabecular meshwork in rabbits: an in-vivo study.

    Science.gov (United States)

    Dietlein, T S; Jacobi, P C; Schröder, R; Krieglstein, G K

    1997-05-01

    Photoablative laser trabecular surgery has been proposed as an outflow-enhancing treatment for open-angle glaucoma. The aim of the study was to investigate the time course of repair response following low-thermal Erbium: YAG laser trabecular ablation. In 20 anaesthetized rabbits gonioscopically controlled ab-interno photoablation of the ligamenta pectinata and underlying trabecular meshwork (TM) was performed with a single-pulsed (200 microseconds) Erbium: YAG (2.94 microns) laser. The right eye received 12-15 single laser pulses (2 mJ) delivered through an articulated zirconium fluoride fiberoptic and a 200 microns (core diameter) quartz fiber tip, the left unoperated eye served as control. At time intervals of 30 minutes, 2, 10, 30, and 60 days after laser treatment, eyes were processed for light- and scanning electron microscopy. The applied energy density of 6-4 J cm-2 resulted in visible dissection of the ligamenta pectinata and reproducible microperforations of the TM exposing scleral tissue accompanied by blood reflux from the aqueous plexus. The initial ablation zones measured 154 +/- 36 microns in depth and 45 +/- 6 microns in width. Collateral thermal damage zones were 22 +/- 8 microns. At two days post-operative, ablation craters were still blood- and fibrin-filled. The inner surface of the craters were covered with granulocytes. No cellular infiltration of the collateral thermal damage zone was observed. At 10 days post-operative, progressive fibroblastic proliferation was observed, resulting in dense scar tissue formation with anterior synechiae, proliferating capillaries and loss of intertrabecular spaces inside the range of former laser treatment at 60 days post-operative. Trabecular microperforations were closed 60 days after laser treatment in all rabbits. IOP in treated and contralateral eyes did not significantly change its level during whole period of observation. Low-thermal infrared laser energy with minimal thermal damage to collateral

  7. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  8. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.

    Science.gov (United States)

    Chang, N-J; Lam, C-F; Lin, C-C; Chen, W-L; Li, C-F; Lin, Y-T; Yeh, M-L

    2013-10-01

    Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II (COLII) content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness (Tb.Th). The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    Science.gov (United States)

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  10. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  11. Validation of calcaneus trabecular microstructure measurements by HR-pQCT.

    Science.gov (United States)

    Metcalf, Louis M; Dall'Ara, Enrico; Paggiosi, Margaret A; Rochester, John R; Vilayphiou, Nicolas; Kemp, Graham J; McCloskey, Eugene V

    2018-01-01

    Assessment of calcaneus microstructure using high-resolution peripheral quantitative computed tomography (HR-pQCT) might be used to improve fracture risk predictions or to assess responses to pharmacological and physical interventions. To develop a standard clinical protocol for the calcaneus, we validated calcaneus trabecular microstructure measured by HR-pQCT against 'gold-standard' micro-CT measurements. Ten human cadaveric feet were scanned in situ using HR-pQCT (isotropic 82μm voxel size) at 100, 150 and 200ms integration times, and at 100ms integration time following removal of the calcaneus from the foot (ex vivo). Dissected portions of these bones were scanned using micro-computed tomography (micro-CT) at an isotropic 17.4μm voxel size. HR-pQCT images were rigidly registered to those obtained with micro-CT and divided into multiple 5mm sided cubes to evaluate and compare morphometric parameters between the modalities. Standard HR-pQCT measurements (derived bone volume fraction (BV/TV d ); trabecular number, Tb.N; derived trabecular thickness, Tb.Th d ; derived trabecular spacing, Tb.Sp d ) and corresponding micro-CT voxel-based measurements (BV/TV, Tb.N, Tb.Th, Tb.Sp) were compared. A total of 108 regions of interest were analysed across the 10 specimens. At all integration times HR-pQCT BV/TV d was strongly correlated with micro-CT BV/TV (r 2 =0.95-0.98, RMSE=1%), but BV/TV d was systematically lower than that measured by micro-CT (mean bias=5%). In contrast, HR-pQCT systematically overestimated Tb.N at all integration times; of the in situ scans, 200ms yielded the lowest mean bias and the strongest correlation with micro-CT (r 2 =0.61, RMSE=0.15mm -1 ). Regional analysis revealed greater accuracy for Tb.N in the superior regions of the calcaneus at all integration times in situ (mean bias=0.44-0.85mm -1 ; r 2 =0.70-0.88, pmicrostructure, particularly in the superior region of the calcaneus, can be assessed by HR-pQCT. The highest integration time

  12. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  13. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    Science.gov (United States)

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  14. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I

    2000-01-01

    Structure model type and trabecular thickness are important characteristics in describing cancellous bone architecture. It has been qualitatively observed that a radical change of trabeculae from plate-like to rod-like occurs in aging, bone remodeling, and osteoporosis. Thickness of trabeculae has...... traditionally been measured using model-based histomorphometric methods on two-dimensional (2-D) sections. However, no quantitative study has been published based on three-dimensional (3-D) methods on the age-related changes in structure model type and trabecular thickness for human peripheral (tibial......, structure model type and trabecular thickness were quantified by means of novel 3-D methods. Structure model type was assessed by calculating the structure model index (SMI). The SMI was quantified based on a differential analysis of the triangulated bone surface of a structure. This technique allows...

  15. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  16. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    Science.gov (United States)

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  17. Pleomorphic Hyalinizing Angiectatic Tumor Arising in the Hand

    Science.gov (United States)

    Kane, Patrick M.; Gaspar, Michael P.; Whiting, Benjamin B.; Culp, Randall W.

    2016-01-01

    Background: Background: Pleomorphic hyalinizing angiectatic tumors (PHATs) are extremely rare, non-metastasizing tumors of uncertain origin that are typically seen in the lower extremities. To date, it is estimated that less than 100 cases have been reported worldwide since first described in 1996. Methods: The case of a 35-year-old male with a several-year history of a dorsal hand mass is presented. Although the patient was initially asymptomatic, in the months prior to presentation, the patient complained of pain with power grasp and direct pressure over the mass. The patient underwent uncomplicated surgical excision, during which the mass was noted to be adherent to the underlying extensor tendons. Results: Immunopathology confirmed the mass to be PHAT. We believe this is the first documented case of this rare tumor occurring in the hand. Conclusions: History and epidemiology of PHAT are reviewed. Then, in the context of the presented case, pre-operative evaluation, surgical management, pathologic findings and post-operative follow-up are all discussed. PMID:27698646

  18. A theoretical framework for strain-related trabecular bone maintenance and adaptation

    NARCIS (Netherlands)

    Ruimerman, R.; Hilbers, P.A.J.; Rietbergen, van B.; Huiskes, R.

    2005-01-01

    It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for

  19. Relationships between age and microarchitectural descriptors of iliac trabecular bone determined by microCT.

    Science.gov (United States)

    Deguette, C; Ramond-Roquin, A; Rougé-Maillart, C

    2017-06-01

    Estimation of age at death is a major issue in anthropology. The main anthropological histological methods propose studying the architecture of cortical bone. In bone histomorphometry, researches on metabolic bone diseases have provided normative tables for trabecular bone volume (BV/TV) according to age and gender of individuals on trans-iliac bone biopsies. We have used microCT, a non-destructive tool for measuring bone volume and trabecular descriptors to compare the French tables to a series of forensic anthropological population and if the two iliac bones could be used interchangeably. Coxal bone of a personal forensic collection whose age and gender were known (DNA identification) were used. Bone samples, centered on the same area than bone biopsy. MicroCT (pixel size: 36μm) was used to measure BV/TV and morphometric trabecular parameters of microarchitecture. An adjusted Z-score was calculated for BV/TV to compare with normative tables and a right/left comparison of trabecular parameters was provided. Twenty-seven iliac bones, which 20 forming 10 complete pelvises, aged between 24 and 73y.o. (average of 47.7 y.o.) were used. All adjusted Z-score were within normal values. There was a strong positive correlation between right and left sides for Tb.Th, Tb.N and Tb.Sp, but an insignificant correlation was obtained for BV/TV. Normative tables between age and BV/TV are valid and therefore usable in anthropology. They may represent an alternative to determine the age at death. Nevertheless, it requires a precise technique that could be a drawback in current practice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Trabecular evidence for a human-like gait in Australopithecus africanus.

    Directory of Open Access Journals (Sweden)

    Meir M Barak

    Full Text Available Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.

  1. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  2. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study.

    Science.gov (United States)

    Peck, Yvonne; He, Pengfei; Chilla, Geetha Soujanya V N; Poh, Chueh Loo; Wang, Dong-An

    2015-11-09

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG at endpoint. Microscopic inspection revealed that LhCG engraftment restored cartilage thickness, promoted integration with surrounding native cartilage, produced abundant cartilage-specific matrix molecules, and re-established an intact superficial tangential zone. Importantly, the repair efficacy of LhCG was quantitatively shown to be comparable to native, unaffected cartilage in terms of biochemical composition and biomechanical properties. There were no complications related to the donor site of cartilage biopsy. Collectively, these results imply that LhCG engraftment may be a viable approach for articular cartilage repair.

  3. Revision total knee arthroplasty with the use of trabecular metal cones

    DEFF Research Database (Denmark)

    Jensen, Claus L; Petersen, Michael Mygind; Schrøder, Henrik

    2012-01-01

    "Trabecular Metal Cone" (TM Cone) (Zimmer, Inc, Warsaw, Ind) for reconstruction of bone loss in the proximal tibia during revision total knee arthroplasty is now optional. Forty patients were randomized to receive revision total knee arthroplasty with or without TM Cone (No TM Cone). The Anderson...

  4. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men.

    Science.gov (United States)

    Thomsen, Jesper Skovhus; Niklassen, Andreas Steenholt; Ebbesen, Ebbe Nils; Brüel, Annemarie

    2013-11-01

    The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory

  5. Comparison of different plasticity criteria for trabecular bone failure modelling

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej

    2008-01-01

    Roč. 8, č. 1 (2008), s. 10177-10178 ISSN 1617-7061. [Annual Meeting of International Association of Applied Mathematics and Mechanics. Bremen, 31.03.2008-04.04.2008] R&D Projects: GA ČR(CZ) GA103/05/1020 Institutional research plan: CEZ:AV0Z20710524 Keywords : nanoindentation * plasticity criteria * trabecular bone Subject RIV: FI - Traumatology, Orthopedics

  6. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix.

    Science.gov (United States)

    Gigout, A; Guehring, H; Froemel, D; Meurer, A; Ladel, C; Reker, D; Bay-Jensen, A C; Karsdal, M A; Lindemann, S

    2017-11-01

    Fibroblast growth factor (FGF) 18 has been shown to increase cartilage volume when injected intra-articularly in animal models of osteoarthritis (OA) and in patients with knee OA (during clinical development of the recombinant human FGF18, sprifermin). However, the exact nature of this effect is still unknown. In this study, we aimed to investigate the effects of sprifermin at the cellular level. A combination of different chondrocyte culture systems was used and the effects of sprifermin on proliferation, the phenotype and matrix production were evaluated. The involvement of MAPKs in sprifermin signalling was also studied. In monolayer, we observed that sprifermin promoted a round cell morphology and stimulated both cellular proliferation and Sox9 expression while strongly decreasing type I collagen expression. In 3D culture, sprifermin increased the number of matrix-producing chondrocytes, improved the type II:I collagen ratio and enabled human OA chondrocytes to produce a hyaline extracellular matrix (ECM). Furthermore, we found that sprifermin displayed a 'hit and run' mode of action, with intermittent exposure required for the compound to fully exert its anabolic effect. Finally, sprifermin appeared to signal through activation of ERK. Our results indicate that intermittent exposure to sprifermin leads to expansion of hyaline cartilage-producing chondrocytes. These in vitro findings are consistent with the increased cartilage volume observed in the knees of OA patients after intra-articular injection with sprifermin in clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  8. Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.

    Science.gov (United States)

    Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A

    2016-07-01

    Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.

  9. Talocalcaneal Joint Middle Facet Coalition Resection With Interposition of a Juvenile Hyaline Cartilage Graft.

    Science.gov (United States)

    Tower, Dyane E; Wood, Ryan W; Vaardahl, Michael D

    2015-01-01

    Talocalcaneal joint middle facet coalition is the most common tarsal coalition, occurring in ≤2% of the population. Fewer than 50% of involved feet obtain lasting relief of symptoms after nonoperative treatment, and surgical intervention is commonly used to relieve symptoms, increase the range of motion, improve function, reconstruct concomitant pes planovalgus, and prevent future arthrosis from occurring at the surrounding joints. Several approaches to surgical intervention are available for patients with middle facet coalitions, ranging from resection to hindfoot arthrodesis. We present a series of 4 cases, in 3 adolescent patients, of talocalcaneal joint middle facet coalition resection with interposition of a particulate juvenile hyaline cartilaginous allograft (DeNovo(®) NT Natural Tissue Graft, Zimmer, Inc., Warsaw, IN). With a mean follow-up period of 42.8 ± 2.9 (range 41 to 47) months, the 3 adolescent patients in the present series were doing well with improved subtalar joint motion and decreased pain, and 1 foot showed no bony regrowth on a follow-up computed tomography scan. The use of a particulate juvenile hyaline cartilaginous allograft as interposition material after talocalcaneal middle facet coalition resection combined with adjunct procedures to address concomitant pes planovalgus resulted in good short-term outcomes in 4 feet in 3 adolescent patients. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Effect of low-dose irradiation on structural and mechanical properties of hyaline cartilage-like fibrocartilage.

    Science.gov (United States)

    Öncan, Tevfik; Demirağ, Burak; Ermutlu, Cenk; Yalçinkaya, Ulviye; Özkan, Lütfü

    2013-01-01

    The aim of this study was to analyze the effect of low-dose irradiation on fibrous cartilage and to obtain a hyaline cartilage-like fibrocartilage (HCLF) with similar structural and mechanical properties to hyaline cartilage. An osteochondral defect was created in 40 knees of 20 rabbits. At the 7th postoperative day, a single knee of each rabbit was irradiated with a total dose of 5.0 Gy in 1.0 Gy fractions for 5 days (radiotherapy group), while the other knee was not irradiated (control group). Rabbits were then divided into four groups of 5 rabbits each. The first three groups were sacrificed at the 4th, 8th and the 12th postoperative weeks and cartilage defects were macroscopically and microscopically evaluated. The remaining group of 5 rabbits was sacrificed at the 12th week and biomechanical compression tests were performed on the cartilage defects. There was no significant biomechanical difference between the radiotherapy and the control group (p=0.686). There was no significant macroscopic and microscopic difference between groups (p=0.300). Chondrocyte clustering was observed in the irradiated group. Low-dose irradiation does not affect the mechanical properties of HCLF in vivo. However, structural changes such as chondrocyte clustering were observed.

  11. Trabecular bone structure and strength - remodelling and repair

    DEFF Research Database (Denmark)

    Mosekilde, Lis; Ebbesen, Ebbe Nils; Erikstrup, Lise Tornvig

    2000-01-01

    vertical and horizontal struts reaching a certain magnitude and thereby inducing buckling under compression. 4) Microdamage and microfractures will occur - mainly in these very loaded vertical struts. The microfractures will be repaired by microcallus formation, and these calluses will later be removed...... can never be isolated in vivo, other factors need to be investigated: The interplay between the cortical shell and the trabecular network; transmission of load; the interplay between soft tissues (cartilage, connective tissue, muscle) and bone; the shock absorbing capacity of the discs...

  12. Hyaline Tintinnina (Protozoa-Ciliophora-Oligotrichida from northeast Brazilian coastal reefs

    Directory of Open Access Journals (Sweden)

    Roberto Sassi

    1989-01-01

    Full Text Available Seven species of hyaline Tintinnina were obtained from plankton samples collected near the coastal reefs of Ponta do Seixas (Lat. 7º09'16"S, Long. 34º4735"W, Northeastern Brazil, from April 1981 to May 1982 and from April 1983 to May 1984: Amphorellopsis acuta (Schmidt, 1901, Dadayiella ganymedes (Entz Sr., 1884, Epiplocyloides reticulata (Ostenfeld & Schmidt, 1901, Eutintinnus tubulosus (Ostenfeld, 1899, Favella ehrenbergi (Claparède & Lachmann, 1858, Metacylis mereschkowskyi Kofoid & Campbell, 1929 and M. perspicax (Hada, 1938. The most frequent and abundant species were M. mereschkowskyi and F. ehrenbergi. Except/.ganymedes, E. reticulata and F. ehrenbergi all species are new records from Brazil. Metacylis perspicax is also the seventh world register. For all species we provide description, drawings, measurements, seasonal occurrence, world distribution and some systematic comments.

  13. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian; Widdows, Kate L.; Erol, Melek M.; Nandakumar, Anandkumar; Roqan, Iman S.; Ansari, Tahera I.; Boccaccini, Aldo R.

    2012-01-01

    amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating

  14. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture

    NARCIS (Netherlands)

    Rietbergen, van B.; Odgaard, A.; Kabel, J.; Huiskes, H.W.J.

    1996-01-01

    A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric

  15. Multi-axial fatigue of trabecular bone with respect to normal walking

    CERN Document Server

    Mostakhdemin, Mohammad; Syahrom, Ardiyansyah

    2016-01-01

    This book focuses on the analysis and treatment of osteoporotic bone based on drug administration, tracking fatigue behavior and taking into consideration the mechanical interaction of implants with trabecular bone. Weak trabeculae are one of the most important clinical features that need to be addressed in order to prevent hip joint fractures.

  16. Pulmonary hyalinizing granuloma: Bilateral pulmonary nodules associated with chronic idiopathic thrombocytopenic purpura

    International Nuclear Information System (INIS)

    Satti, Mohamed B.; Batouk, Abdelnasir; Ahmad, Mohamed F.; Abdelaal, Mohamed A.; Abdelaziz, Muntasir M.

    2005-01-01

    We report a case of a 30-year-old female who had been treated periodically with steroids for idiopathic thrombocytopenic purpura ICTP over the last 10 years. Recently, during the course of investigation, she was found to have incidental asymptomatic multiple pulmonary nodules on chest CT. Following a needle biopsy to exclude malignancy, 2 nodules were excised and were histologically confirmed as pulmonary hyalinizing granuloma PHG. The remaining 2 nodules regressed on increasing her dose of steroids. The case is discussed with emphasis on the histological and radiological differential diagnosis, in addition to including ITP among the spectrum of immunologic conditions associated with PHG. (author)

  17. Relationship between tissue stiffness and degree of mineralization of developing trabecular bone

    NARCIS (Netherlands)

    Mulder, L.; Koolstra, J.H.; den Toonder, J.M.J.; van Eijden, T.M.G.J.

    2008-01-01

    It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and

  18. The formation of labyrinths, spots and stripe patterns in a biochemical approach to cardiovascular calcification

    International Nuclear Information System (INIS)

    Yochelis, A; Tintut, Y; Demer, L L; Garfinkel, A

    2008-01-01

    Calcification and mineralization are fundamental physiological processes, yet the mechanisms of calcification, in trabecular bone and in calcified lesions in atherosclerotic calcification, are unclear. Recently, it was shown in in vitro experiments that vascular-derived mesenchymal stem cells can display self-organized calcified patterns. These patterns were attributed to activator/inhibitor dynamics in the style of Turing, with bone morphogenetic protein 2 acting as an activator, and matrix GLA protein acting as an inhibitor. Motivated by this qualitative activator-inhibitor dynamics, we employ a prototype Gierer-Meinhardt model used in the context of activator-inhibitor-based biological pattern formation. Through a detailed analysis in one and two spatial dimensions, we explore the pattern formation mechanisms of steady state patterns, including their dependence on initial conditions. These patterns range from localized holes to labyrinths and localized peaks, or in other words, from dense to sparse activator distributions (respectively). We believe that an understanding of the wide spectrum of activator-inhibitor patterns discussed here is prerequisite to their biochemical control. The mechanisms of pattern formation suggest therapeutic strategies applicable to bone formation in atherosclerotic lesions in arteries (where it is pathological) and to the regeneration of trabecular bone (recapitulating normal physiological development)

  19. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    Science.gov (United States)

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (Phyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  20. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified...... matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes...... in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage. Udgivelsesdato: 2004 May...

  1. Identification and Quantification of the Water Soluble Components of JP-4 and a Determination of Their Biological Effects upon Selected Freshwater Organisms.

    Science.gov (United States)

    1982-12-23

    have enlarged. Cells of the notochord are highly vacuolated. The notochord is encased in a thin hyaline sheath. I I J -118 - Plate 25. Stage 25 Retinal...the pharynx which later form the parachordal and trabecular cartilages . The early elements of the lower jaw are visible in sections as lateral and... cartilage (RC) in the PF. The thick-walled foregut (Fg) is edial to the liver tissie (Li). Paired pronephric ducts (PD) are ventral and l.ateral to

  2. A trabecular metal implant 4 months after placement: clinical-histologic case report.

    Science.gov (United States)

    Spinato, Sergio; Zaffe, Davide; Felice, Pietro; Checchi, Luigi; Wang, Hom-Lay

    2014-02-01

    The aim of this case report was to histologically evaluate the behavior of a trabecular metal (TM) implant composed of titanium and spatial 3-dimensional tantalum (Ta) trabeculae. This study is the first human histologic case report of this implant. A TM implant was placed in a 54-year-old woman exhibiting moderate chronic periodontitis. After periodontal treatment, the implant was inserted under favorable clinical conditions. Patient was not seen for 4 months because of unrelated breast reduction surgery. At the surgical reopening, periimplant inflammation affecting the coronal third of the implant was observed 4 months after implant placement. With patient's consent, the implant was removed for histologic analysis. Histology highlighted a greater amount of bone in close contact with Ta trabeculae than titanium surfaces. The finding of bone formation around the Ta trabeculae suggests that trabecular metal material promotes bone ingrowth for secondary implant stability. Additional evidence is needed to confirm this observation.

  3. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Reproducibility and accuracy in the morphometric and mechanical quantification of trabecular bone from 3 Tesla magnetic resonance images].

    Science.gov (United States)

    Alberich-Bayarri, A; Martí-Bonmatí, L; Sanz-Requena, R; Sánchez-González, J; Hervás Briz, V; García-Martí, G; Pérez, M Á

    2014-01-01

    We used an animal model to analyze the reproducibility and accuracy of certain biomarkers of bone image quality in comparison to a gold standard of computed microtomography (μCT). We used magnetic resonance (MR) imaging and μCT to study the metaphyses of 5 sheep tibiae. The MR images (3 Teslas) were acquired with a T1-weighted gradient echo sequence and an isotropic spatial resolution of 180μm. The μCT images were acquired using a scanner with a spatial resolution of 7.5μm isotropic voxels. In the preparation of the images, we applied equalization, interpolation, and thresholding algorithms. In the quantitative analysis, we calculated the percentage of bone volume (BV/TV), the trabecular thickness (Tb.Th), the trabecular separation (Tb.Sp), the trabecular index (Tb.N), the 2D fractal dimension (D(2D)), the 3D fractal dimension (D(3D)), and the elastic module in the three spatial directions (Ex, Ey and Ez). The morphometric and mechanical quantification of trabecular bone by MR was very reproducible, with percentages of variation below 9% for all the parameters. Its accuracy compared to the gold standard (μCT) was high, with errors less than 15% for BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z. Our experimental results in animals confirm that the parameters of BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z obtained by MR have excellent reproducibility and accuracy and can be used as imaging biomarkers for the quality of trabecular bone. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  5. Pleomorphic Hyalinizing Angiectatic Tumor of Soft Parts

    Directory of Open Access Journals (Sweden)

    Hui-Chin Peng

    2010-08-01

    Full Text Available Pleomorphic hyalinizing angiectatic tumor (PHAT of soft parts is a rare, nonmetastasizing tumor of uncertain lineage which was first reported in 1996. Here, we report a case of PHAT and review the literature. A 49-year-old man presented with a soft and progressively enlarging mass over the right buttock for several years. On suspicion that the mass was a right gluteal lipoma, he underwent surgical excision. The excised lesion measured 14 × 6 × 3.5 cm. It had a variegated appearance with a white-tan to yellowish color on the cut surface. Some punctate hemorrhage and vessel thrombosis were seen. Microscopically, the tumor was a PHAT characterized by clusters of ectatic, fibrin-lined, thin-walled vessels, which were surrounded by a mitotically inert, spindled, pleomorphic, neoplastic stroma that contained a variable inflammatory component. Immunohistochemical study showed that the tumor cells were positive for CD34, and negative for S-100, HMB45 and actin. The patient experienced local recurrence 6 months later. The recurrent tumor was widely excised. No evidence of metastasis was found during the 18 months after the second operation. The recurrent lesion had a microscopic appearance that was similar to the initial lesion.

  6. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  7. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture

    DEFF Research Database (Denmark)

    Woloszynski, T; Podsiadlo, P; Stachowiak, G W

    2012-01-01

    OBJECTIVE.: To develop a system for prediction of progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone (TB) texture. METHODS.: We studied 203 knees with (n=68) or without (n=135) radiographic tibiofemoral OA in 105 subjects (90 men, 15 women, mean age 54 years) who ha...

  8. Decreased trabecular bone biomechanical competence, apparent density, IGF-II and IGFBP-5 content in acromegaly

    DEFF Research Database (Denmark)

    Ueland, Thor; Ebbesen, Ebbe Nils; Thomsen, Jesper Skovhus

    2002-01-01

    of these growth factors in relation to biomechanical properties in acromegaly. MATERIALS AND METHODS: Trabecular bone biomechanical competence (compression test), apparent density (peripheral quantitative computed tomography, pQCT), and bone matrix contents of calcium (HCl hydrolysis) and IGFs (guanidinium......-HCl extraction) were measured in iliac crest biopsies from 13 patients with active acromegaly (two women and 11 men, aged 21-61 years) and 21 age- and sex-matched controls (four women and 17 men, aged 23-64 years). RESULTS: Trabecular bone pQCT was reduced in acromegalic patients compared with controls (P = 0...... bone content of IGF-I, IGFBP-3, or osteocalcin. However, IGF-II and IGFBP-5 content was decreased (P acromegaly, supporting previous observations...

  9. Hyperfunctioning Solid/Trabecular Follicular Carcinoma of the Thyroid Gland

    OpenAIRE

    Luca Giovanella; Fabrizio Fasolini; Sergio Suriano; Luca Mazzucchelli

    2010-01-01

    A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the 9 9 m T c -pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissu...

  10. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones.

    Science.gov (United States)

    Ho, Jung-Ting; Wu, Jay; Huang, Heng-Li; Chen, Michael Y c; Fuh, Lih-Jyh; Hsu, Jui-Ting

    2013-11-09

    This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. The cellular synthetic bones in 4 density groups (Groups 1-4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice.

  11. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    Science.gov (United States)

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (Pmicro-CT and CBCT (Pimplant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  12. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  13. Relationship of bony trabecular characteristics and age to bone mass

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Song, Young Han; Yoon, Young Nam; Lee, Wan; Lee, Byung Do

    2006-01-01

    Bony strength is dependent on bone mass and bony structure. So this study was designed to investigate the relationship between the bone mass and bony mass and bony trabecular characteristics. Study subjects were 51 females (average age 68.6 years) and 20 males (average age 66.4 years). Bony mineral density (BMD, grams/cm 2 ) of proximal femur was measured by a dual energy X-ray absorptiometry (DEXA). Regions of interest (ROIs) were selected from the digitized radiographs of proximal femur. A customized computer program processed morphologic operations (MO) of ROIs. 44 skeletal variables of MO were calculated from ROIs on the Ward's triangle and greater trochanter of femur. WHO BMD classes were predicted by MO variables of the same ROI. Classification and Regression Tree analysis was used for calculating weighted kappa values, sensitivity and specificity of MO. The discriminating factors of morphologic operation were branch point, branch point [per cm sq]. Age also played important role in distinguishing osteoporotic classes. The sensitivity of MO at Ward's triangle and Greater Trochanter was 91.8%, 65.6%, respectively. The specificity of MO was 100% at Ward's triangle and Greater Trochanter. Bony trabecular characteristics obtained using radiological bone morphometric analysis seem to be related to bone mass

  14. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  15. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    Science.gov (United States)

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p hyaline cartilage in osteochondral lesions.

  16. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    Science.gov (United States)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  17. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  18. Ethnic differences in trabecular meshwork height by optical coherence tomography.

    Science.gov (United States)

    Chen, Rebecca I; Barbosa, Diego T; Hsu, Chi-Hsin; Porco, Travis C; Lin, Shan C

    2015-04-01

    Differences in ocular anatomy may contribute to ethnic differences in glaucoma risk. Because the trabecular meshwork (TM) plays an important role in aqueous outflow, its anatomy in relation to at-risk populations may provide insight into a potential contributor to elevated intraocular pressure and thus to probability of glaucoma development. To investigate whether differences exist in TM height between ethnic groups. This prospective study took place from January 1, 2012, to December 31, 2013. Adult patients who self-reported as being of white, Asian, Hispanic, or African American ethnicity were recruited from ophthalmology clinics at the University of California, San Francisco. The TM height was assessed using spectral-domain anterior segment optical coherence tomography. Trabecular meshwork height was measured from the scleral spur to the Schwalbe line. We hypothesized that ethnicities with a higher prevalence of glaucoma would tend to have shorter TM heights. We collected data from 460 eyes of 291 participants after excluding 34 optical coherence tomographic scans owing to poor image quality. The final sample was 32.2% white, 45.1% Asian, 10.5% African American, and 12.1% Hispanic. There were 64.2% women, and the mean age was 68.1 years. The mean (SD) TM height among all eyes included in the study was 836 (131) μm. The mean (SD) TM height was characterized among white (851 [131] μm), Asian (843 [126] μm), Hispanic (822 [147] μm), and African American (771 [118] μm) persons. Ethnicity was not associated with TM height overall (P = .23, linear mixed regression model). However, the TM heights of African American participants (771 μm) were shorter than those of white (851 μm; adjusted difference 95% CI, -119.8 to -8.1; P = .02) and Asian (843 μm; adjusted difference 95% CI, -117.4 to -10.8; P = .02) participants. Although TM height is not associated with ethnicity overall, African American individuals have shorter TM heights compared with Asian and white

  19. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    Science.gov (United States)

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Automatic analysis of trabecular bone structure from knee MRI

    DEFF Research Database (Denmark)

    Marques, Joselene; Granlund, Rabia; Lillholm, Martin

    2012-01-01

    We investigated the feasibility of quantifying osteoarthritis (OA) by analysis of the trabecular bone structure in low-field knee MRI. Generic texture features were extracted from the images and subsequently selected by sequential floating forward selection (SFFS), following a fully automatic......, uncommitted machine-learning based framework. Six different classifiers were evaluated in cross-validation schemes and the results showed that the presence of OA can be quantified by a bone structure marker. The performance of the developed marker reached a generalization area-under-the-ROC (AUC) of 0...

  1. Trabecular metal acetabular components in primary total hip arthroplasty

    DEFF Research Database (Denmark)

    Laaksonen, Inari; Lorimer, Michelle; Gromov, Kirill

    2018-01-01

    Background and purpose - Trabecular metal (TM) cups have demonstrated favorable results in acetabular revision and their use in primary total hip arthroplasty (THA) is increasing. Some evidence show that TM cups might decrease periprosthetic infection (PPI) incidence. We compared the survivorship...... of TM cups with that of other uncemented cups in primary THA, and evaluated whether the use of TM cups is associated with a lower risk of PPI. Patients and methods - 10,113 primary THAs with TM cup and 85,596 THAs with other uncemented cups from 2 high-quality national arthroplasty registries were...

  2. Platelet-rich plasma loaded in situ-formed hydrogel enhances hyaline cartilage regeneration by CB1 upregulation.

    Science.gov (United States)

    Lee, Hye-Rim; Park, Kyung Min; Joung, Yoon Ki; Park, Ki Dong; Do, Sun Hee

    2012-11-01

    The efficacy of three-dimensional (3D) culture on the proliferation and maturation of chondrocytes seeded into a hydrogel scaffold was assessed. Three types of hydrogel were prepared for the 3D culture of primary isolated chondrocytes. Chondrocyte proliferation was assessed using a live/dead viability/cytotoxicity assay and semiquantitative RT-PCR after 3D culture in hydrogel. Cylindrical defects in the center of rat xyphoids were used for the implantation of platelet-rich plasma (PRP)/hydrogel composites. Rats were killed at day 7 postoperatively and evaluated histochemically and immunohistologically. Xyphoid chondrocytes proliferated well with time in hydrogels. In the PRP-containing hydrogels, xyphoid defects displayed early formation of chondroid matrix with massive peripheral infiltration of spindle cells. These results were consistent with Safranin-O staining for proteoglycans and immunohistochemistry for type II collagen. Gene expression analyses in vitro revealed aggrecan, type II collagen, and ChM-1 and CB1 upregulation by PRP/hydrogel. PRP/hydrogel provided a suitable environment for hyaline cartilaginous regeneration, leading to anti-inflammation by significant increase of CB1 and inhibiting vascular ingrowth via considerable upregulation of ChM-1. The results provide a valuable reference for the clinical application of hydrogel scaffolds for hyaline cartilage regeneration, as well as the use of autologous PRP to improve cellular proliferation and maturation of xyphoid repair. Copyright © 2012 Wiley Periodicals, Inc.

  3. The effect of an osteolytic tumor on the three-dimensional trabecular bone morphology in an animal model

    International Nuclear Information System (INIS)

    Kurth, A.A.; Mueller, R.

    2001-01-01

    Objective. To investigate the application of micro-computed tomography (μCT) for the assessment of density differences and deterioration of three-dimensional architecture of trabecular bone in an experimental rat model for tumor- induced osteolytic defects.Design and materials. Walker carcinosarcoma 256 malignant breast cancer cells (W256) were surgically implanted into the medullary canal of the left femur of 15 4-month-old rats. Twenty-eight days after surgery all animals were killed and both femora from each rat were harvested. A total of 30 specimens (left and right femur) were scanned in a desk-top μCT imaging system (μCT 20, Scanco Medical) to assess densitometric and architectural parameters. For each specimen a total of 200 micro-tomographic slices with a resolution of 30 μm in the distal metaphysis was taken. Bone mineral content (BMC) was analyzed for both cortical and trabecular bone (ctBMC), and for trabecular bone only (tBMC). Architectural indices (BV/TV, Tb.N, Tb.Th, Tb.Sp) according to standard definitions used in histomorphometry were calculated for trabecular bone.Results. The quantitative analysis of density parameters revealed significantly (P<0.001) lower values for ctBMC and tBMC in the tumor-bearing group (T) of 26% and 31%, respectively, compared with the contralateral control group. The quantitative analysis revealed significant (P<0.001) changes in the architectural parameters in the tumor-bearing bones compared with the contralateral control group: BV/TV was 30% lower, Tb.N and BS/TV decreased by 24% and 21%, respectively, Tb.Th. decreased by 10% and Tb.Sp. increased by 94%.Conclusions. This study demonstrates that μCT is able to provide three-dimensional parameters of bone mass and trabecular structure in an animal model for tumor-induced bone loss. Recent advances in therapeutic approaches for skeletal diseases such as osteoporosis and metastatic bone disease rely on an understanding of the effects of the agents on the mechanical

  4. Mechanical and morphological properties of trabecular bone samples obtained from third metacarpal bones of cadavers of horses with a bone fragility syndrome and horses unaffected by that syndrome.

    Science.gov (United States)

    Symons, Jennifer E; Entwistle, Rachel C; Arens, Amanda M; Garcia, Tanya C; Christiansen, Blaine A; Fyhrie, David P; Stover, Susan M

    2012-11-01

    To determine morphological and mechanical properties of trabecular bone of horses with a bone fragility syndrome (BFS; including silicate-associated osteoporosis). Cylindrical trabecular bone samples from the distal aspects of cadaveric third metacarpal bones of 39 horses (19 horses with a BFS [BFS bone samples] and 20 horses without a BFS [control bone samples]). Bone samples were imaged via micro-CT for determination of bone volume fraction; apparent and mean mineralized bone densities; and trabecular number, thickness, and separation. Bone samples were compressed to failure for determination of apparent elastic modulus and stresses, strains, and strain energy densities for yield, ultimate, and failure loads. Effects of BFS and age of horses on variables were determined. BFS bone samples had 25% lower bone volume fraction, 28% lower apparent density, 18% lower trabecular number and thickness, and 16% greater trabecular separation versus control bone samples. The BFS bone samples had 22% lower apparent modulus and 32% to 33% lower stresses, 10% to 18% lower strains, and 41 % to 52% lower strain energy densities at yield, ultimate, and failure loads, compared with control bone samples. Differences between groups of bone samples were not detected for mean mineral density and trabecular anisotropy. Results suggested that horses with a BFS had osteopenia and compromised trabecular bone function, consistent with bone deformation and pathological fractures that develop in affected horses. Effects of this BFS may be systemic, and bones other than those that are clinically affected had changes in morphological and mechanical properties.

  5. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  6. Strain analysis of trabecular bone using time-resolved X-ray microtomography

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Zlámal, Petr; Kytýř, Daniel; Kroupa, M.

    2011-01-01

    Roč. 633, Suppl. 1 (2011), s. 148-151 ISSN 0168-9002. [International Workshop on Radiation Imaging Detectors /11./. Praha, 28.06.2009-02.07.2009] R&D Projects: GA ČR(CZ) GP103/07/P483 Institutional research plan: CEZ:AV0Z20710524 Keywords : trabecular bone * X-ray microtomography * strain analysis * intrinsic material properties Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.207, year: 2011

  7. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    Science.gov (United States)

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  9. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study.

    Science.gov (United States)

    Filippucci, E; Riveros, M Gutierrez; Georgescu, D; Salaffi, F; Grassi, W

    2009-02-01

    The main aim of the present study was to determine the sensitivity, specificity and accuracy of ultrasonography (US) in detecting monosodium urate and calcium pyrophosphate dihydrate crystals deposits at knee cartilage level using clinical definite diagnosis as standard reference. A total of 32 patients with a diagnosis of gout and 48 patients with pyrophosphate arthropathy were included in the study. Fifty-two patients with rheumatoid arthritis (RA), psoriatic arthritis or osteoarthritis (OA) were recruited as disease controls. All diagnoses were made using an international clinical criterion. US examinations were performed by an experienced sonographer, blind to clinical and laboratory data. Hyaline cartilage was assessed to detect two US findings recently indicated as indicative of crystal deposits: hyperechoic enhancement of the superficial margin of the hyaline cartilage and hyperechoic spots within the cartilage layer not generating a posterior acoustic shadow. Hyperechoic enhancement of the chondrosynovial margin was found in at least one knee of 14 out of 32 (43.7%) patients with gout and in a single knee of only one patient affected by pyrophosphate arthropathy (specificity=99%). Intra-cartilaginous hyperechoic spots were detected in at least one knee of 33 out of 48 (68.7%) patients with pyrophosphate arthropathy and in two disease controls one with OA and the second with RA (specificity=97.6%). The results of the present study indicate that US may play a relevant role in distinguishing cartilage involvement in patients with crystal-related arthropathy. The selected US findings were found to be highly specific.

  10. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.

    Science.gov (United States)

    Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S

    2013-12-01

    In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices ( and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (), 0.07 to 0.11 (), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.

  11. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    Science.gov (United States)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  12. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  13. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrat...

  14. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    Science.gov (United States)

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  15. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model.

    Science.gov (United States)

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  16. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice

    DEFF Research Database (Denmark)

    Erikstrup, Lise Tornvig; Mosekilde, Leif; Justesen, J

    2001-01-01

    proliferator activated receptor-gamma (PPARgamma). Histomorphometric analysis of proximal tibia was performed in order to quantitate the amount of trabecular bone volume per total volume (BV/TV %), adipose tissue volume per total volume (AV/TV %), and hematopoietic marrow volume per total volume (HV......Aging is associated with decreased trabecular bone mass and increased adipocyte formation in bone marrow. As osteoblasts and adipocytes share common precursor cells present in the bone marrow stroma, it has been proposed that an inverse relationship exists between adipocyte and osteoblast....../TV %) using the point-counting technique. Bone size did not differ between the two groups. In troglitazone-treated mice, AV/TV was significantly higher than in control mice (4.7+/-2.1% vs. 0.2+/-0.3%, respectively, mean +/- SD, P

  17. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    Science.gov (United States)

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  18. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    Science.gov (United States)

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

  19. Histomorphometric Parameters of the Growth Plate and Trabecular Bone in Wild-Type and Trefoil Factor Family 3 (Tff3)-Deficient Mice Analyzed by Free and Open-Source Image Processing Software.

    Science.gov (United States)

    Bijelić, Nikola; Belovari, Tatjana; Stolnik, Dunja; Lovrić, Ivana; Baus Lončar, Mirela

    2017-08-01

    Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.

  20. Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model

    International Nuclear Information System (INIS)

    Verburg, Hennie; Ridder, Laurens C van de; Verhoeven, Vincent WJ; Pilot, Peter

    2014-01-01

    In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA

  1. Copas de metal trabecular y aloinjertos óseos impactados en defectos acetabulares graves. Resultados a los 2-4 años. [Impacted bone allografts and trabecular metal cups in severe acetabular bone defects: 2 to 4-year results.

    Directory of Open Access Journals (Sweden)

    Martín Buttaro

    2014-06-01

    Full Text Available In­tro­duc­ción: El objetivo principal es presentar la supervivencia del componente acetabular en pacientes con defectos graves reconstruidos con copas de metal trabecular combinadas con aloinjertos óseos impactados. Como objetivo secundario, se compararon estos resultados con los previamente obtenidos por los autores en defectos de similar gravedad utilizando anillos de reconstrucción y aloinjertos óseos. Materiales­ y­ Métodos:­ Se realizaron 20 cirugías de revisión en 19 pacientes (edad promedio 65 años, controlados, de forma prospectiva, con defectos acetabulares graves tipos 3A o 3B de Paprosky, por falla mecánica o infecciosa. El puntaje funcional promedio preoperatorio fue de 6,2 puntos, según la escala de Merle D ́Aubigne. Siempre se utilizaron copas de metal trabecular y aloinjertos óseos impactados. Resultados:­ A los 30 meses de seguimiento promedio (rango 24-48 meses, la supervivencia del componente acetabular fue del 95% (IC = 75%-98%. Un paciente presentó un aflojamiento acetabular por infección profunda a las 16 semanas de la revisión y fue tratado con una artroplastia de resección. El puntaje funcional promedio, excluido el caso con aflojamiento posoperatorio, fue de 16,2 puntos. Se observó la incorporación de los aloinjertos óseos en todos los pacientes, salvo el caso con infección profunda. La comparación con nuestras series históricas reconstruidas con anillos de Kerboull o con anillos GAP arrojó resultados altamente favorables a favor de las copas de metal trabecular.  Conclusiones: Las copas de metal trabecular asociadas a aloinjertos óseos impactados ofrecen una alternativa válida en cirugía de revisión acetabular con defectos graves del capital óseo. Este método se asocia a resultados más favorables que los obtenidos antes con anillos de reconstrucción.

  2. Preliminary report of cells at risk at the bone surface in trabecular bone

    International Nuclear Information System (INIS)

    Jee, W.S.S.; Wronski, T.J.; Kimmel, D.B.; Dell, R.B.; Johnson, F.

    1975-01-01

    This is a report of some early work on the cells at risk portion of the dynamic microanatomical dosimetry program of the Bone Group. The cells lining the trabecular bone of thoracic vertebral bodies from beagles aged 568, 2942, 4117, 4277, 4629, and 4801 days were characterized. Histologic and sampling experience gained in this attempt indicates that further improvements are needed

  3. Biochemical characterisation of navicular hyaline cartilage, navicular fibrocartilage and the deep digital flexor tendon in horses with navicular disease.

    Science.gov (United States)

    Viitanen, M; Bird, J; Smith, R; Tulamo, R-M; May, S A

    2003-10-01

    The study hypothesis was that navicular disease is a process analogous to degenerative joint disease, which leads to changes in navicular fibrocartilage and in deep digital flexor tendon (DDFT) matrix composition and that the process extends to the adjacent distal interphalangeal joint. The objectives were to compare the biochemical composition of the navicular articular and palmar cartilages from 18 horses with navicular disease with 49 horses with no history of front limb lameness, and to compare navicular fibrocartilage with medial meniscus of the stifle and collateral cartilage of the hoof. Cartilage oligomeric matrix protein (COMP), deoxyribonucleic acid (DNA), total glycosaminoglycan (GAG), metalloproteinases MMP-2 and MMP-9 and water content in tissues were measured. Hyaline cartilage had the highest content of COMP and COMP content in hyaline cartilage and tendon was higher in lame horses than in sound horses (phyaline cartilage was higher in lame horses than in sound horses. The MMP-2 amounts were significantly higher in tendons compared to other tissue types. Overall, 79% of the lame horses with lesions had MMP-9 in their tendons and the amount was higher than in sound horses (phyaline and fibrocartilage as well as the DDFT with potential implications for the pathogenesis and management of the condition.

  4. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  5. A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image

    International Nuclear Information System (INIS)

    Han, Seung Yun; Lee, Sun Bok; Oh, Sung Ook; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2003-01-01

    To evaluate the relationship between morphometric analysis of microstructure from digital radiographic image and trabecular bone strength. One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI(100 x 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p<0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  6. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    International Nuclear Information System (INIS)

    Lima Filho, Jose de M.; Vieira, Jose W.; Lima, Vanildo J. de M.; Lima, Lindeval F.; Lima, Fernando R.A.; Vasconcelos, Wagner E. de

    2011-01-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  7. Use of MR-based trabecular bone microstructure analysis at the distal radius for osteoporosis diagnostics: a study in post-menopausal women with breast cancer and treated with aromatase inhibitor.

    Science.gov (United States)

    Baum, Thomas; Karampinos, Dimitrios C; Seifert-Klauss, Vanadin; Pencheva, Tsvetelina D; Jungmann, Pia M; Rummeny, Ernst J; Müller, Dirk; Bauer, Jan S

    2016-01-01

    Treatment with aromatase inhibitor (AI) is recommended for post-menopausal women with hormone-receptor positive breast cancer. However, AI therapy is known to induce bone loss leading to osteoporosis with an increased risk for fragility fractures. The purpose of this study was to investigate whether changes of magnetic resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarker can already be detected in subjects with AI intake but still without evidence for osteoporosis according to dual energy X-ray absorptiometry (DXA)-based bone mineral density (BMD) measurements as current clinical gold standard. Twenty-one postmenopausal women (62±6 years of age) with hormone-receptor positive breast cancer, ongoing treatment with aromatase inhibitor for 23±15 months, and no evidence for osteoporosis (current DXA T-score greater than -2.5) were recruited for this study. Eight young, healthy women (24±2 years of age) were included as controls. All subjects underwent 3 Tesla magnetic resonance imaging (MRI) of the distal radius to assess the trabecular bone microstructure. Trabecular bone microstructure parameters were not significantly (p>0.05) different between subjects with AI intake and controls, including apparent bone fraction (0.42±0.03 vs. 0.42±0.05), trabecular number (1.95±0.10 mm(-1) vs 1.89±0.15 mm(-1)), trabecular separation (0.30±0.03 mm vs 0.31±0.06 mm), trabecular thickness (0.21±0.01 mm vs 0.22±0.02 mm), and fractal dimension (1.70±0.02 vs. 1.70±0.03). These findings suggest that the initial deterioration of trabecular bone microstructure as measured by MRI and BMD loss as measured by DXA occur not sequentially but rather simultaneously. Thus, the use of MR-based trabecular bone microstructure assessment is limited as early diagnostic biomarker in this clinical setting.

  8. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  9. Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice.

    Science.gov (United States)

    Zhang, Y; Wang, L; Song, Y; Zhao, X; Wong, M S; Zhang, W

    2016-03-01

    The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis. The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice. The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively. Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K. This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and

  10. Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls.

    Science.gov (United States)

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-02-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1-1.9) and 1.3 (1.0-1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. Copyright © 2011 American Society for Bone and Mineral Research.

  11. Changes of cerebral hemodynamics following the administration of surfactant in the hyaline membrane disease of prematurity

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Hyun; Kim, Kyung Hee [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2000-09-15

    To evaluate the changes of cerebral blood flow velocity according to the time, before and after surfactant administration in hyaline membrane disease using Doppler ultrasonography. The patients were 15 premature babies who were clinically and radiologically diagnosed HMD. The ratio of male : female was 11:4, the mean gestational age was 30.1 {+-} 2.5 wks, mean body weight was 1.4 {+-} 0.6 kg,mean Apgar score at 5 min was 6.28, and type of delivery was C-section : vaginal delivery 9.6. Before and after, 10 mm, 30 min, 1 hr, 6 hr, 12 hr, 1 day, 3 day, 5 day and 7 day after surfactant administration, peak systolic and end-diastolic cerebral blood flow velocity (PSFV, EDFV) and resistive index (RI) were estimated by Doppler ultrasonography measuring MCA flow velocity using temporal window. The averages of all data according to the time were obtained and analyzed statistical significance. For the evaluation of the clinical status systemic BP, FiO2, pH, and respiratory rate were also checked according to the same time. The clinical status of FiO2, metabolic acidosis, and tachypnea was significantly improved after surfactant administration. There was no significant change of cerebral blood flow velocity (PSFV, EDFV) after the surfactant administration. The change of RI was nor statistically significant. The changes of the systemic BP had no significant changes. In spite of clinical improvement, there were no significant increases of cerebral blood flow velocity and changes of RI after surfactant administration in hyaline membrane disease.

  12. Changes of cerebral hemodynamics following the administration of surfactant in the hyaline membrane disease of prematurity

    International Nuclear Information System (INIS)

    Yoo, Jeong Hyun; Kim, Kyung Hee

    2000-01-01

    To evaluate the changes of cerebral blood flow velocity according to the time, before and after surfactant administration in hyaline membrane disease using Doppler ultrasonography. The patients were 15 premature babies who were clinically and radiologically diagnosed HMD. The ratio of male : female was 11:4, the mean gestational age was 30.1 ± 2.5 wks, mean body weight was 1.4 ± 0.6 kg,mean Apgar score at 5 min was 6.28, and type of delivery was C-section : vaginal delivery 9.6. Before and after, 10 mm, 30 min, 1 hr, 6 hr, 12 hr, 1 day, 3 day, 5 day and 7 day after surfactant administration, peak systolic and end-diastolic cerebral blood flow velocity (PSFV, EDFV) and resistive index (RI) were estimated by Doppler ultrasonography measuring MCA flow velocity using temporal window. The averages of all data according to the time were obtained and analyzed statistical significance. For the evaluation of the clinical status systemic BP, FiO2, pH, and respiratory rate were also checked according to the same time. The clinical status of FiO2, metabolic acidosis, and tachypnea was significantly improved after surfactant administration. There was no significant change of cerebral blood flow velocity (PSFV, EDFV) after the surfactant administration. The change of RI was nor statistically significant. The changes of the systemic BP had no significant changes. In spite of clinical improvement, there were no significant increases of cerebral blood flow velocity and changes of RI after surfactant administration in hyaline membrane disease.

  13. The effect of high-energy extracorporeal shock waves on hyaline cartilage of adult rats in vivo.

    Science.gov (United States)

    Mayer-Wagner, Susanne; Ernst, Judith; Maier, Markus; Chiquet, Matthias; Joos, Helga; Müller, Peter E; Jansson, Volkmar; Sievers, Birte; Hausdorf, Jörg

    2010-08-01

    The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel.

    Science.gov (United States)

    Yokota, Masashi; Yasuda, Kazunori; Kitamura, Nobuto; Arakaki, Kazunobu; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian-Ping

    2011-02-22

    Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect. Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks. The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral condyle.

  15. Assessment of vertebral microarchitecture in overt and mild Cushing's syndrome using trabecular bone score.

    Science.gov (United States)

    Vinolas, Helene; Grouthier, Virginie; Mehsen-Cetre, Nadia; Boisson, Amandine; Winzenrieth, Renaud; Schaeverbeke, Thierry; Mesguich, Charles; Bordenave, Laurence; Tabarin, Antoine

    2018-05-21

    Osteoporotic fractures associated with Cushing's syndrome (CS) may occur despite normal bone mineral density (BMD). Few studies have described alterations in vertebral microarchitecture in glucocorticoid-treated patients and during CS. Trabecular bone score (TBS) estimates trabecular microarchitecture from dual-energy X-ray absorptiometry acquisitions. Our aim was to compare vertebral BMD and TBS in patients with overt CS and mild autonomous cortisol secretion (MACE), and following cure of overt CS. University Hospital. Monocentric retrospective cross-sectional and longitudinal studies of consecutive patients. A total of 110 patients were studied: 53 patients had CS (35, 11 and 7 patients with Cushing's disease, bilateral macronodular adrenal hyperplasia and ectopic ACTH secretion respectively); 39 patients had MACE (10 patients with a late post-operative recurrence of Cushing's disease and 29 patients with adrenal incidentalomas); 18 patients with non-secreting adrenal incidentalomas. 14 patients with overt CS were followed for up to 2 years after cure. Vertebral osteoporosis at BMD and degraded microarchitecture at TBS were found in 24% and 43% of patients with CS, respectively (P < .03). As compared to patients with nonsecreting incidentalomas, patients with MACE had significantly decreased TBS (P < .04) but not BMD. Overt fragility fractures tended to be associated with low TBS (P = .07) but not with low BMD. TBS, but not BMD values, decreased with the intensity of hypercortisolism independently of its aetiology (P < .01). Following remission of CS, TBS improved more markedly and rapidly than BMD (10% vs 3%, respectively; P < .02). Trabecular bone score may be a promising, noninvasive, widely available and inexpensive complementary tool for the routine assessment of the impact of CS and MACE on bone in clinical practice. © 2018 John Wiley & Sons Ltd.

  16. Estimating the mechanical competence parameter of the trabecular bone: a neural network approach

    Directory of Open Access Journals (Sweden)

    Érica Regina Filletti

    Full Text Available Abstract Introduction The mechanical competence parameter (MCP of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT, and 83 in vivo distal radius magnetic resonance image samples (MRI. Results It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion There is a strong correlation (R2 = 0.97 between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.

  17. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    Science.gov (United States)

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    Science.gov (United States)

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  19. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass

    International Nuclear Information System (INIS)

    Berthold, L.D.; Alzen, G.; Haras, G.; Mann, M.

    2006-01-01

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  20. Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved.

    Science.gov (United States)

    Thiele, Ralf G; Schlesinger, Naomi

    2010-02-01

    This study aimed at determining whether lowering serum urate (SU) to less than 6 mg/dl in patients with gout affects ultrasonographic findings. Seven joints in five patients with monosodium urate (MSU) crystal proven gout and hyperuricemia were examined over time with serial ultrasonography. Four of the five patients were treated with urate lowering drugs (ULDs) (allopurinol, n = 3; probenecid, n = 1). One patient was treated with colchicine alone. Attention was given to changes in a hyperechoic, irregular coating of the hyaline cartilage in the examined joints (double contour sign or "urate icing"). This coating was considered to represent precipitate of MSU crystals. Index joints included metacarpophalangeal (MCP) joints (n = 2), knee joints (n = 3), and first metatarsophalangeal (MTP) joints (n = 2). The interval between baseline and follow-up images ranged from 7 to 18 months. Serial SU levels were obtained during the follow-up period. During the follow-up period, three patients treated with ULD (allopurinol, n = 2; probenecid, n = 1) achieved a SU level of or =7 mg/dl. In one patient treated with allopurinol, SU levels improved from 13 to 7 mg/dl during the follow-up period. Decrease, but not resolution of the hyperechoic coating was seen in this patient. In the patient treated with colchicine alone, SU levels remained >8 mg/dl, and no sonographic change was observed. In our patients, sonographic signs of deposition of MSU crystals on the surface of hyaline cartilage disappeared completely if sustained normouricemia was achieved. This is the first report showing that characteristic sonographic changes are influenced by ULDs once SU levels remain studies are needed to further assess these potentially important findings.

  1. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc

    OpenAIRE

    Mwale F.; Roughley P.; Antoniou J.

    2004-01-01

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to c...

  2. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF.

    Science.gov (United States)

    Cugat, Ramón; Alentorn-Geli, Eduard; Steinbacher, Gilbert; Álvarez-Díaz, Pedro; Cuscó, Xavier; Seijas, Roberto; Barastegui, David; Navarro, Jordi; Laiz, Patricia; García-Balletbó, Montserrat

    2017-01-01

    Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF). Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them). The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  3. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF

    Directory of Open Access Journals (Sweden)

    Ramón Cugat

    2017-01-01

    Full Text Available Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF. Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them. The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  4. Two rare entities in the same palate lesion: hyalinizing-type clear cell carcinoma and necrotizing sialometaplasia.

    Science.gov (United States)

    Arpaci, Rabia Bozdoğan; Kara, Tuba; Porgali, Canan; Serinsoz, Ebru; Polat, Ayse; Vayisoglu, Yusuf; Ozcan, Cengiz

    2014-05-01

    Hyalinizing clear cell carcinoma is a low-grade malignant epithelial neoplasm of the salivary glands. The tumor has epithelial cells and lacks myoepithelial cells. Necrotizing sialometaplasia is a benign, self-limiting lesion of the salivary glands. The clinical and histologic features mimic those of mucoepidermoid carcinoma or squamous cell carcinoma. The importance of these entities are the rarity of both of them and their potential to be misdiagnosed as other lesions. Pathologists and clinicians should be aware of these entities to prevent misdiagnosis. This is the first clinical report of 2 rare and consecutive different entities of the same location on the hard palate to our knowledge.

  5. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    International Nuclear Information System (INIS)

    Zuki, Mervet El; Omami, Galal; Horner, Keith

    2014-01-01

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  6. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Zuki, Mervet El [Dept. of Oral Medicine and Radiology, Benghazi University College of Dentistry, Benghazi (Libya); Omami, Galal [Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong (Hong Kong); Horner, Keith [Dept. of Oral Radiology, University Dental Hospital of Manchester, Manchester (United Kingdom)

    2014-06-15

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  7. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts

    DEFF Research Database (Denmark)

    Christiansen, Mette; Kveiborg, M.; Kassem, M.

    2000-01-01

    In order to understand the reasons for age-related impairment of the function of bone forming osteoblasts, we have examined the steady-state mRNA levels of the transcription factor CBFA1 and topoisomerase I during cellular aging of normal human trabecular osteoblasts, by the use of semiquantitati...

  8. Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements

    International Nuclear Information System (INIS)

    Rajon, D.A.; Shah, A.P.; Watchman, C.J.; Bolch, W.E.; Jokisch, D.W.; Patton, P.W.

    2002-01-01

    Chord-length distributions through the trabecular regions of the skeleton have been investigated since the early 1960s. These distributions have become important features for bone marrow dosimetry; as such, current models rely on the accuracy of their measurements. Recent techniques utilize nuclear magnetic resonance (NMR) microscopy to acquire 3D images of trabecular bone that are then used to measure 3D chord-length distributions by Monte Carlo methods. Previous studies have shown that two voxel effects largely affect the acquisition of these distributions within digital images. One is particularly pertinent as it dramatically changes the shape of the distribution and reduces its mean. An attempt was made to reduce this undesirable effect and good results were obtained for a single-sphere model using minimum acceptable chord (MAC) methods (Jokisch et al 2001 Med. Phys. 28 1493-504). The goal of the present work is to extend the study of these methods to more general models in order to better quantify their consequences. First, a mathematical model of a trabecular bone sample was used to test the usefulness of the MAC methods. The results showed that these methods were not efficient for this simulated bone model. These methods were further tested on a single voxelized sphere over a large range of voxel sizes. The results showed that the MAC methods are voxel-size dependent and overestimate the mean chord length for typical resolutions used with NMR microscopy. The study further suggests that bone and marrow chord-length distributions currently utilized in skeletal dosimetry models are most likely affected by voxel effects that yield values of mean chord length lower than their true values. (author)

  9. Trabecular meshwork stiffness in glaucoma.

    Science.gov (United States)

    Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross

    2017-05-01

    Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β 2 (TGF-β 2 ), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.

    Science.gov (United States)

    Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt

    2018-05-03

    There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge  = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2  = 0.76), elastic modulus (R 2  = 0.63), failure energy (R 2  = 0.38), and minimum stress (R 2  = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    Science.gov (United States)

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  12. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  13. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    Directory of Open Access Journals (Sweden)

    Pingping Han

    2016-06-01

    Full Text Available Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  14. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel.

    Science.gov (United States)

    Fukui, Takaaki; Kitamura, Nobuto; Kurokawa, Takayuki; Yokota, Masashi; Kondo, Eiji; Gong, Jian Ping; Yasuda, Kazunori

    2014-04-01

    Implantation of PAMPS/PDMAAm double-network (DN) gel can induce hyaline cartilage regeneration in the osteochondral defect. However, it is a problem that the volume of the regenerated cartilage tissue is gradually reduced at 12 weeks. This study investigated whether intra-articular administration of hyaluronic acid (HA) increases the volume of the cartilage regenerated with the DN gel at 12 weeks. A total of 48 rabbits were used in this study. A cylindrical osteochondral defect created in the bilateral femoral trochlea was treated with DN gel (Group DN) or left without any implantation (Group C). In both Groups, we injected 1.0 mL of HA in the left knee, and 1.0 mL of saline solution in the right knee. Quantitative histological evaluations were performed at 2, 4, and 12 weeks, and PCR analysis was performed at 2 and 4 weeks after surgery. In Group DN, the proteoglycan-rich area was significantly greater in the HA-injected knees than in the saline-injected knees at 12 weeks (P = 0.0247), and expression of type 2 collagen, aggrecan, and Sox9 mRNAs was significantly greater in the HA-injected knees than in the saline-injected knees at 2 weeks (P = 0.0475, P = 0.0257, P = 0.0222, respectively). The intra-articular administration of HA significantly enhanced these gene expression at 2 weeks and significantly increased the volume of the hyaline cartilage regenerated by implantation of a DN gel at 12 weeks. This information is important to develop an additional method to increase the volume of the hyaline cartilage tissue in a potential cartilage regeneration strategy using the DN gel.

  15. Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants.

    Science.gov (United States)

    Kulper, Sloan A; Fang, Christian X; Ren, Xiaodan; Guo, Margaret; Sze, Kam Y; Leung, Frankie K L; Lu, William W

    2018-04-01

    A novel computational model of implant migration in trabecular bone was developed using smoothed-particle hydrodynamics (SPH), and an initial validation was performed via correlation with experimental data. Six fresh-frozen human cadaveric specimens measuring 10 × 10 × 20 mm were extracted from the proximal femurs of female donors (mean age of 82 years, range 75-90, BV/TV ratios between 17.88% and 30.49%). These specimens were then penetrated under axial loading to a depth of 10 mm with 5 mm diameter cylindrical indenters bearing either flat or sharp/conical tip designs similar to blunt and self-tapping cancellous screws, assigned in a random manner. SPH models were constructed based on microCT scans (17.33 µm) of the cadaveric specimens. Two initial specimens were used for calibration of material model parameters. The remaining four specimens were then simulated in silico using identical material model parameters. Peak forces varied between 92.0 and 365.0 N in the experiments, and 115.5-352.2 N in the SPH simulations. The concordance correlation coefficient between experimental and simulated pairs was 0.888, with a 95%CI of 0.8832-0.8926, a Pearson ρ (precision) value of 0.9396, and a bias correction factor Cb (accuracy) value of 0.945. Patterns of bone compaction were qualitatively similar; both experimental and simulated flat-tipped indenters produced dense regions of compacted material adjacent to the advancing face of the indenter, while sharp-tipped indenters deposited compacted material along their peripheries. Simulations based on SPH can produce accurate predictions of trabecular bone penetration that are useful for characterizing implant performance under high-strain loading conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1114-1123, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Adipose tissue depot volume relationships with spinal trabecular bone mineral density in African Americans with diabetes.

    Directory of Open Access Journals (Sweden)

    Gary C Chan

    Full Text Available Changes in select adipose tissue volumes may differentially impact bone mineral density. This study was performed to assess cross-sectional and longitudinal relationships between computed tomography-determined visceral (VAT, subcutaneous (SAT, inter-muscular (IMAT, and pericardial adipose tissue (PAT volumes with respective changes in thoracic vertebral and lumbar vertebral volumetric trabecular bone mineral density (vBMD in African Americans with type 2 diabetes. Generalized linear models were fitted to test relationships between baseline and change in adipose volumes with change in vBMD in 300 African American-Diabetes Heart Study participants; adjustment was performed for age, sex, diabetes duration, study interval, smoking, hypertension, BMI, kidney function, and medications. Participants were 50% female with mean ± SD age 55.1±9.0 years, diabetes duration 10.2±7.2 years, and BMI 34.7±7.7 kg/m2. Over 5.3 ± 1.4 years, mean vBMD decreased in thoracic/lumbar spine, while mean adipose tissue volumes increased in SAT, IMAT, and PAT, but not VAT depots. In fully-adjusted models, changes in lumbar and thoracic vBMD were positively associated with change in SAT (β[SE] 0.045[0.011], p<0.0001; 0.40[0.013], p = 0.002, respectively. Change in thoracic vBMD was positively associated with change in IMAT (p = 0.029 and VAT (p = 0.016; and change in lumbar vBMD positively associated with baseline IMAT (p<0.0001. In contrast, vBMD was not associated with change in PAT. After adjusting for BMI, baseline and change in volumes of select adipose depots were associated with increases in thoracic and lumbar trabecular vBMD in African Americans. Effects of adiposity on trabecular bone appear to be site-specific and related to factors beyond mechanical load.

  17. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  18. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  20. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Science.gov (United States)

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  1. Radiographic evaluation of 19 patients with Paprosky 3A and 3B submitted to acetabular review with trabecular metal wedge

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Benvindo Rosal da Fonseca Neto

    Full Text Available ABSTRACT Objective: This study is aimed at evaluating the fixation of trabecular metal wedges in patients who underwent revision of total hip arthroplasty with large acetabular bone defects. Methods: The radiographs of 19 patients (21 hips, who underwent revision of total hip arthroplasty using trabecular metal wedges from September 2010 to December 2014 were evaluated. This study included only cases of Paprosky 3A and 3B. Preoperative and postoperative images were analyzed. Non-fixation of the implant was defined by the presence of angular variation of the component higher 10 degrees or displacement greater than 6 mm. Patients with follow-up times of less than 24 months or who did not attend the last two appointments were excluded from the study. Results: The mean follow-up time was 39.4 months (25-61. Fixation was achieved in all cases despite its complexity. There was only one case of dislocation that was treated with open reduction. One case developed infection, and was surgically approached on two occasions, with extensive debridement and intravenous antibiotics following protocol, with good evolution. Conclusion: The implanted trabecular metal wedges showed excellent results in the short- and medium-term and may represent another option in the reconstruction of large acetabular defects, sometimes replacing bone reconstruction that uses bone tissue banks or autologous graft.

  2. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice.

    Science.gov (United States)

    Le, Phuong T; Bishop, Kathleen A; Maridas, David E; Motyl, Katherine J; Brooks, Daniel J; Nagano, Kenichi; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2017-12-01

    Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow

  3. Pregnant ewes exposed to multiple endocrine disrupting pollutants through sewage sludge-fertilized pasture show an anti-estrogenic effect in their trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Lind, P. Monica, E-mail: Monica.Lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Ullerakersvaegen 40, 751 85 Uppsala (Sweden); Oberg, Denise [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Larsson, Sune [Department of Orthopaedics, Uppsala University, Uppsala (Sweden); Kyle, Carol E. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Orberg, Jan [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Rhind, Stewart M. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)

    2010-05-01

    Pregnant ewes were maintained on pastures fertilized, twice yearly, with either sewage sludge (2.25 tonnes dry matter/ha; Treated; T) or inorganic fertilizer containing equivalent amounts of nitrogen (Control; C), to determine effects on maternal and fetal bone structures, density and mechanical properties of exposure to environmental concentrations of multiple endocrine disrupting compounds (EDCs) and heavy metal pollutants. The ewes were maintained on the respective pastures from the age of about 8 months until they were 4-6 years of age and they were slaughtered at 110 d gestation. Metaphyseal parts of adult ewe femurs exhibited a significantly reduced mean, total cross sectional area (CSA, - 4%; p < 0.05), lower trabecular bone mineral content (BMC, mg/mm; - 18%; p < 0.05), trabecular bone mineral density (BMD, mg/cm{sup 3}, - 8.0%; p < 0.05) and trabecular CSA, mm{sup 2}, - 11.1%; p < 0.05) in T compared with C animals. Femurs of T ewes were stronger than those of C ewes but this may reflect greater body weights. At the mid-diaphyseal part of the fetal bones, there was a reduction in endosteal circumference (- 6.7%, p < 0.05) and marrow cavity area (- 13.8%, p < 0.05) in the female T fetuses compared with female C fetuses. In the male fetuses the mid-diaphyseal part total bone mineral content was higher (+ 3.0%, p < 0.05) in T than in C animals. No treatment difference in biomechanical bending was detected in the fetuses. It is concluded that ewes grazing pasture fertilized with sewage sludge exhibited an anti-estrogenic effect on their trabecular bone in the form of reduced mineral content and density, despite increased body weight. It is suggested that human exposure to low levels of multiple EDCs may have implications for bone structure and human health.

  4. MR imaging of hyaline cartilage in chondromalacia patellae and osteochondrosis dissecans: A comparison with CT-arthrography and arthroscopy

    International Nuclear Information System (INIS)

    Lehner, K.; Heuck, A.; Lukas, P.; Rodammer, G.; Allgayer, B.; Pasquay, E.

    1987-01-01

    Superior to spin-echo sequences, the articular hyaline cartilage was imaged with fast-field-echo sequences (FFE, Gyroscan 0.5-T, Philips) with an excitation pulse angle of 40 0 to 60 0 . Chondromalaceous lesions could be demonstrated in 30 patients with chondropathia patellae with the same sensitivity compared with CT arthrography. In a further 50 patients with osteochondrosis dissecans, discontinuities of the cartilage could be predicted using the deeply invading articular fluid as an indicator. The sensitivity of MR imaging, as controlled by arthroscopy, was very high in that respect. Separate from the nonhemorrhagic articular fluid, the cartilaginous defects could be imaged directly by variation of the FFE parameters

  5. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    Science.gov (United States)

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fibro-osteochondroma of the uterus

    Directory of Open Access Journals (Sweden)

    Alan W. H. Bates

    2012-01-01

    Full Text Available A case of a uterine fibro-osteochondroma in a 61-year-old woman with postmenopausal bleeding was presented. Ultrasound revealed a calcified lesion in the posterior wall of the uterus and a hysterectomy was performed. Histopathologic examination showed a well-circumscribed triphasic tumor composed of peripheral lobules of mature hyaline cartilage and foci of trabecular bone with a core of loosely arranged fibroblast-like, spindle cells. This is the second reported case of fibro-osteochondroma, which has been described only in the uterus. Diagnosis requires thorough histopathologic examination to exclude metaplasia within a leiomyoma or uterine sarcoma. It is histologically benign and complete excision should be curative.

  7. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study.

    NARCIS (Netherlands)

    Limbert, G.; Lierde, C. van; Muraru, O.L.; Walboomers, X.F.; Frank, M.; Hansson, S.; Middleton, J.; Jaecques, S.

    2010-01-01

    The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the

  8. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    Science.gov (United States)

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-08

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  9. The Relationship between Trabecular Bone Structure Modeling Methods and the Elastic Modulus as Calculated by FEM

    Directory of Open Access Journals (Sweden)

    Tomasz Topoliński

    2012-01-01

    Full Text Available Trabecular bone cores were collected from the femoral head at the time of surgery (hip arthroplasty. Investigated were 42 specimens, from patients with osteoporosis and coxarthrosis. The cores were scanned used computer microtomography (microCT system at an isotropic spatial resolution of 36 microns. Image stacks were converted to finite element models via a bone voxel-to-element algorithm. The apparent modulus was calculated based on the assumptions that for the elastic properties, E=10 MPa and ν=0.3. The compressive deformation as calculated by finite elements (FE analysis was 0.8%. The models were coarsened to effectively change the resolution or voxel size (from 72 microns to 288 microns or from 72 microns to 1080 microns. The aim of our study is to determine how an increase in the distance between scans changes the elastic properties as calculated by FE models. We tried to find a border value voxel size at which the module values were possible to calculate. As the voxel size increased, the mean voxel volume increased and the FEA-derived apparent modulus decreased. The slope of voxel size versus modulus relationship correlated with several architectural indices of trabecular bone.

  10. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  11. Prospective case series on trabecular-iris angle status after an acute episode of phacomorphic angle closure

    Directory of Open Access Journals (Sweden)

    Jacky Lee

    2013-02-01

    Full Text Available AIM:To investigate the trabecular-iris angle with ultrasound biomicroscopy (UBM post cataract extraction after an acute attack of phacomorphic angle closure.METHODS: This prospective study involved 10 cases of phacomorphic angle closure that underwent cataract extraction and intraocular lens insertion after intraocular pressure (IOP lowering. Apart from visual acuity and IOP, the trabecular-iris angle was measured by gonioscopy and UBM at 3 months post attack.RESULTS: In 10 consecutive cases of acute phacomorphic angle closure from December 2009 to December 2010, gonioscopic findings showed peripheral anterior synechiae (PAS ≤ 90° in 30% of phacomorphic patients and a mean Shaffer grading of (3.1±1.0. UBM showed a mean angle of (37.1°±4.5° in the phacomorphic eye with the temporal quadrant being the most opened and (37.1°±8.0° in the contralateral uninvolved eye. The mean time from consultation to cataract extraction was (1.4±0.7 days and the mean total duration of phacomorphic angle closure was (3.6±2.8 days but there was no correlation to the degree of angle closure on UBM (Spearman correlation P=0.7. The presenting mean IOP was (50.5±7.4 mmHg and the mean IOP at 3 months was (10.5±3.4 mmHg but there were no correlations with the degree of angle closure (Spearman correlations P=0.9.CONCLUSION:An open trabecular-iris angle and normal IOP can be achieved after an acute attack of phacomorphic angle closure if cataract extraction is performed within 1 day - 2 days after IOP control. Gonioscopic findings were in agreement with UBM, which provided a more specific and object angle measurement. The superior angle is relatively more narrowed compared to the other quadrants. All contralateral eyes in this series had open angles.

  12. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  13. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    Science.gov (United States)

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  14. Dosimetric validation of synthetic trabecular bone generated by parametric Monte Carlo Method; Validação dosimétrica de trabéculas ósseas sintéticas geradas por método Monte Carlo paramétrico

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.G.; Andrade, A.F.G. de; Vieira, J.W., E-mail: baby.oliveira@hotmail.com.br, E-mail: arthurfelandrade@gmail.com, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil); Oliveira, A.C.H. de, E-mail: oliveira_ach@yahoo.com [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil); Lima, F.R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife-PE (Brazil)

    2017-07-01

    One of the greatest challenges of numerical dosimetry is to estimate the dose of ionizing radiation absorbed by the soft tissues that are located in bone trabecular. Due to the difficulty in obtaining micro-CT images of real bone samples (OR), the need for the generation of synthetic bone trabecular appeared. In this work, virtual synthetic trabecular samples (BU), generated by Monte Carlo methods parameterized by the Burr XII probability density function (FDP), and their OR equivalents were submitted to dosimetric evaluations in the adult male Computational Exposure Model (MCE) in orthostatic position (MSTA) coupled to the EGSnrc software with idealized photon-emitting sources and targeting the two most radiosensitive bone tissues: red bone marrow and the foramen-bone surface of trabecular bones, sternum, spine, femur, pelvis and skull regions. When comparing the dosimetric results of the two sample sets, it was found that the overall relative error presented was 4.34%. It is concluded that the synthetic trabecular generated by FDPs with the same characteristics as the Burr XII FDP can successfully replace the OR bones in similar bone dosimetry tests.

  15. Release of transgenic progranulin from a living hyaline cartilage graft model: An in vitro evaluation on anti-inflammation.

    Science.gov (United States)

    Lau, Ting Ting; Zhang, Feng; Tang, Wei; Wang, Dong-An

    2016-12-01

    Osteoarthritis (OA) is a prevalent condition that compromises and even jeopardizes the life quality of millions of people. Common symptoms in OA includes joint stiffness and soreness, and they are often associated with inflammations to various extend. Due to the avascular and aneural nature of articular hyaline cartilage, it has limited self-repair capabilities; especially under inflammatory conditions, damages inflicted on cartilage are often irreversible. Hence, treatment approaches focus on anti-inflammation or articular cartilage replacement. In this study, an engineered, dual-functional living hyaline cartilage graft (LhCG), capable of releasing transgenic anti-inflammatory cytokine-progranulin (PGRN) is developed and envisioned to simultaneously fulfil both requirements. The therapeutic functionality of PGRN releasing LhCG is evaluated by co-culturing the constructs with tumor necrosis factor-alpha (TNFα) secreting THP-1 cells to simulate the inflammatory condition in arthritis. Non-transgenic LhCG constructs and non-coculture sample groups were set up as controls. Gene expression and ECM composition changes across samples were assessed to understand the effects of PGRN as well as inflammatory environment on the cartilage graft. Collectively, the results in this study suggest that in situ release of transgenic recombinant PGRN protects LhCG from induced inflammation in vitro; contrastively, in the absence of PGRN, cartilage grafts are at risk of being degraded and mineralized under exposure to TNFα signaling. This shows that cartilage graft itself can be at risk of degradation or calcification when implanted in arthritic microenvironment. Hence, the inflammatory microenvironment has to be considered in cartilage replacement therapy to increase chances of successful joint mobility restoration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2968-2977, 2016. © 2016 Wiley Periodicals, Inc.

  16. MRI monitoring of autologous hyaline cartilage grafts in the knee joint: a follow-up study over 12 months; MRT-Monitoring autologer Chondrozytentransplantate im Kniegelenk: Eine Verlaufsstudie ueber 12 Monate

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Horvat, C.; Schick, F.; Claussen, C.D.; Groenewaeller, E. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany)

    2004-12-01

    Purpose: To evaluate the suitability of different MR sequences for monitoring the stage of maturation of hyaline cartilage grafts in the knee joint and the early detection of complications like hypertrophy. In addition, it was analyzed whether indirect MR arthrography can indicate debonding of the graft. Materials and Methods: MRI examinations were performed in 19 patients, aged 17-43 years, with autologous transplantation of a hyaline cartilage tissue graft after knee trauma. Examination dates were prior to transplantation to localize the defect, and 6 weeks, 3, 6 and 12 months after transplantation to control morphology and maturation of the autologous graft. Standard T2- and protondensity-weighted turbo spin echo (TSE) sequences and T1-weighted spin echo (SE) sequences were used, as well as gradient echo (GRE) sequences with and without magnetization transfer (MT) prepulses. In some cases, indirect MR arthrography was performed. Results: Cartilage defect and the hyaline cartilage graft could be detected in all 19 patients. Hypertrophy of the graft could be found early in 3 patients and debonding in 1 patient. For depicting the graft a short time after surgery. T2-weighted TSE-sequences showed the best results. Six and 12 months after transplantation, spoiled 3D-GRE-sequences like FLASH3D (fast low angle shot) showed reduced artifacts due to magnetic residues from the surgery. Difference images from GRE-sequences with and without MT pulse provided high contrast between cartilage and surrounding tissue. The quantification of the MT effect showed an assimilation of the graft to the original cartilage within 12 months. Indirect MR arthrography showed subchondral contrast medium even 12 months after transplantation in 3 patients. (orig.)

  17. Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.

    Science.gov (United States)

    Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C

    2017-11-01

    To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Usefulness of the Trabecular Bone Score for assessing the risk of osteoporotic fracture.

    Science.gov (United States)

    Redondo, L; Puigoriol, E; Rodríguez, J R; Peris, P; Kanterewicz, E

    2018-04-01

    The trabecular bone score (TBS) is an imaging technique that assesses the condition of the trabecular microarchitecture. Preliminary results suggest that TBS, along with the bone mineral density assessment, could improve the calculation of the osteoporotic fracture risk. The aim of this study was to analyse TBS values and their relationship with the clinical characteristics, bone mineral density and history of fractures of a cohort of posmenopausal women. We analysed 2,257 posmenopausal women from the FRODOS cohort, which was created to determine the risk factors for osteoporotic fracture through a clinical survey and bone densitometry with vertebral morphometry. TBS was applied to the densitometry images. TBS values ≤1230 were considered indicative of degraded microarchitecture. We performed a simple and multiple linear regression to determine the factors associated with this index. The mean TBS value in L1-L4 was 1.203±0.121. Some 55.3% of the women showed values indicating degraded microarchitecture. In the multiple linear regression analysis, the factors associated with low TBS values were age, weight, height, spinal T-score, glucocorticoid treatment, presence of type 2 diabetes and a history of fractures due to frailty. TBS showed microarchitecture degradation values in the participants of the FRODOS cohort and was associated with anthropometric factors, low bone mineral density values, the presence of fractures, a history of type 2 diabetes mellitus and the use of glucocorticoids. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  19. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

    Directory of Open Access Journals (Sweden)

    Aw MS

    2012-09-01

    Full Text Available Moom Sinn Aw,1 Kamarul A Khalid,2,3 Karan Gulati,1 Gerald J Atkins,2 Peter Pivonka,4 David M Findlay,2 Dusan Losic11School of Chemical Engineering, 2Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, SA, Australia; 3Department of Orthopaedics, Traumatology and Rehabilitation, Faculty of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia; 4Engineering Computational Biology Group, School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, AustraliaPurpose: The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti wires generated with titania nanotube (TNT arrays as drug-releasing implants for local drug deliveryMethods: Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm and horizontal (0–10 mm distances from the implant surface were obtained at a range of release times from 1 hour to 5 days.Results: Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex

  20. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    Science.gov (United States)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  1. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: Short-term results

    Directory of Open Access Journals (Sweden)

    Matsuda Hidetoshi

    2013-01-01

    Full Text Available Abstract Background A double-network (DN gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid and poly(N,N’-dimethyl acrylamide, can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Methods Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control. Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface in the defect. The regenerated tissues were evaluated with the Wayne’s gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. Results According to the total Wayne’s score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p  Conclusions The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  2. Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation.

    Science.gov (United States)

    Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek

    2018-05-04

    Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Differential Canalograms Detect Outflow Changes from Trabecular Micro-Bypass Stents and Ab Interno Trabeculectomy.

    Science.gov (United States)

    Parikh, Hardik A; Loewen, Ralitsa T; Roy, Pritha; Schuman, Joel S; Lathrop, Kira L; Loewen, Nils A

    2016-11-04

    Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself.

  4. Intracapsular and para-articular chondroma adjacent to large joints: report of three cases and review of the literature

    International Nuclear Information System (INIS)

    Gonzalez-Lois, C.; Garcia-de-la-Torre, J.P.; SantosBriz-Terron, A.; Martinez-Tello, F.J.; Vila, J.; Manrique-Chico, J.

    2001-01-01

    Para-articular chondroma is a rare tumor that has been reported in only 30 cases adjacent to large joints in the Anglo-Saxon literature. We report three new cases of this entity, describe its clinical, radiological and pathological features, and review the previous literature. Para-articular chondromas have an insidious clinical presentation and on radiographs show a large soft tissue mass with variable ossification. They appear as a lobulated mass of hyaline cartilage with variable endochondral ossification in the central area. These rare benign tumors arise from the capsule or the para-articular connective tissue of a large joint (mainly the knee), which suffers cartilaginous metaplasia and subsequent ossification. Cases 1 and 2 of this presentation fit all the features described previously. Case 3 has identical clinical features but differs from the former two cases in its microscopic appearance, being composed almost entirely of fibrocartilage and myxoid areas within the fibroadipose tissue of the joint instead of mature trabecular bone surrounded by hyaline cartilage. To the best of our knowledge this is the first description of this histological variant of para-articular chondroma. (orig.)

  5. Intracapsular and para-articular chondroma adjacent to large joints: report of three cases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Lois, C.; Garcia-de-la-Torre, J.P.; SantosBriz-Terron, A.; Martinez-Tello, F.J. [Dept. of Pathology, University Hospital ' ' Doce de Octubre' ' , Madrid (Spain); Vila, J. [Dept. of Orthopedics and Traumatology, University Hospital ' ' Doce de Octubre' ' , Madrid (Spain); Manrique-Chico, J. [Dept. of Radiology, University Hospital ' ' Doce de Octubre' ' , Madrid (Spain)

    2001-12-01

    Para-articular chondroma is a rare tumor that has been reported in only 30 cases adjacent to large joints in the Anglo-Saxon literature. We report three new cases of this entity, describe its clinical, radiological and pathological features, and review the previous literature. Para-articular chondromas have an insidious clinical presentation and on radiographs show a large soft tissue mass with variable ossification. They appear as a lobulated mass of hyaline cartilage with variable endochondral ossification in the central area. These rare benign tumors arise from the capsule or the para-articular connective tissue of a large joint (mainly the knee), which suffers cartilaginous metaplasia and subsequent ossification. Cases 1 and 2 of this presentation fit all the features described previously. Case 3 has identical clinical features but differs from the former two cases in its microscopic appearance, being composed almost entirely of fibrocartilage and myxoid areas within the fibroadipose tissue of the joint instead of mature trabecular bone surrounded by hyaline cartilage. To the best of our knowledge this is the first description of this histological variant of para-articular chondroma. (orig.)

  6. Bone mineral density and trabecular bone tissue quality in obese men

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2017-02-01

    Full Text Available Obesity and osteoporosis are the two metabolic dise­ases with increased prevalence over last decades and a strong impact on the global morbidity and mortality have gained a status of major health threats worldwide. There is evidence that the higher body mass index (BMI values are associated with greater bone mineral density (BMD resulting in a site-specific protective effect for fragility fractures. On the other hand, higher BMI values increases incidence of falls and is associated with worse fractures consolidation. However, trabecular bone score (TBS indirectly explores bone quali­ty, independently of BMD. The aim of the study was to determine the connection between the BMD and TBS parameters in Ukrainian men suffering from obesity. Methods. We examined 396 men aged 40–89 years, by the BMI all the subjects were divided into 2 groups: Group A — with obesity and BMI ≥ 30 kg/m2 (n = 129 and Group B — without obesity and BMI < 30 kg/m2 (n = 267. The BMD of total body, lumbar spine at the site L1–L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA. The TBS of L1–L4 was assessed by means of TBS iNsight (Med-Imaps, Pessac, France. Results. In general, obese men had a significantly higher BMD of lumbar spine, femoral neck, total body and ultradistal forearm (p < 0.001 in comparison with men without obesity. The TBS of L1–L4 was significantly lower in obese men compared to non-obese men (p < 0.001. The significant positive correlation between the fat mass and the BMD at different sites was observed. The correlation between the fat mass and TBS of L1–L4 was also significant, but negative. Conclusions. Obesity negatively affects the quality of trabecular bone, while bone mineral density was significantly higher.

  7. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    International Nuclear Information System (INIS)

    Freemont, Anthony J.; Hoyland, Judith

    2006-01-01

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed

  8. Intratubular large cell hyalinizing Sertoli cell tumor of the testis presenting with prepubertal gynecomastia: a case report.

    Science.gov (United States)

    Tuhan, Hale; Abaci, Ayhan; Sarsık, Banu; Öztürk, Tülay; Olguner, Mustafa; Catli, Gonul; Anik, Ahmet; Olgun, Nur; Bober, Ece

    2017-08-01

    Intratubular large cell hyalinizing Sertoli cell neoplasia (ITLCHSCN) resulting from Sertoli cells of the testis are mainly reported in young adults and these are rarely seen in childhood. The most common presenting symptoms of the patients diagnosed with ITLCHSCN are gynecomastia, enlargement in the testicles, increase in growth velocity, and advanced bone age. Symptoms are basically resulting from increased aromatase enzyme activity in Sertoli cells. In this case report, an eight-and-a-half-year-old case presenting with complaint of bilateral gynecomastia since two years, showing no endocrine abnormality in laboratory during two years of follow-up, determined to have progression in bilateral gynecomastia, increase in testicular volumes, advanced bone age, increase in growth velocity in the clinical follow-up, and diagnosed with ITLCHSCN after testis biopsy was presented.

  9. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  10. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating

    NARCIS (Netherlands)

    Biemond, J.E.; Hannink, G.; Verdonschot, Nicolaas Jacobus Joseph; Buma, P.

    2013-01-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and

  11. Nonlinear pattern formation in bone growth and architecture

    Directory of Open Access Journals (Sweden)

    Phil eSalmon

    2015-01-01

    Full Text Available The 3D morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatio-temporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic nonlinear pattern formation (NPF – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of group intelligence exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called particle swarm optimization (PSO. This theoretical model could be applicable to the behavior of osteoblasts osteoclasts and osteocytes, seeing them operating socially in response simultaneously to both global and local signals (endocrine, cytokine, mechanical resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in-silico simulation of bone modeling.What insights has NPF provided to bone biology? One example concerns the genetic disorder Juvenile Pagets Disease (JPD or Idiopathic Hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here coupling or feedback between osteoblasts and osteoclasts is the critical element.This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the

  12. [Radiographic appraisal between metal and bone interosculate backfill after total hip arthroplasty with trabecular metal cup].

    Science.gov (United States)

    Li, Wei; Zhou, Yi-Xin; Wu, Jian; Xu, Hui; Ji, Song-Jie

    2009-02-15

    To evaluate the bone refilling in the interface between the trabecular metal (TM) acetabular shell and the bone surface according to consecutive X film measuring after surgery. From July 2006 to July 2007, 35 patients (40 hips) accepted total hip replacement using trabecular metal monoblock acetabular cup system (TM). The cup was made of a ellipse shaped press fit Tantalum shell and high cross-linked PE liner (Longevity) with 28 mm inner diameter. The patients demography was: 16 male (20 hips), 19 female (20 hips), 5 bilateral hip replacements, age from 41 - 71 (mean 53), including 18 avascular necrosis hips, 16 osteoarthritis hips (including those secondary to a dysplasia hip), 4 avascular necrosis hips after femoral neck fracture, 2 Ankylosis Spondylitis. All the 40 total hip replacements used posterior approach, using hemispherical acetabular reamer and 2 mm press fit of final metal shell without screw fixation. The consecutive X film was taken at the end time of surgery and 2, 6, 12, 24 weeks, and 12 months. The clinical results was evaluate according to Harris scoring system, and the standard pelvis AP X film was measured at the interface between metal shell and the acetabular bone surface, witch was divided into five regions (A, B, C, D, E). Totally 32 patients (37 hips) were followed with average 8.7 months (7 - 12 months). The Harris before surgery was 50.5 (32 - 85), promoted to 91.0 (72 - 100), including 29 excellent, 6 good, 2 fair, and the total excellent and good rate was 94.6%. Complications include 4 patients leg length discrepancy from 1 - 2 cm, 3 patients moderate thigh pain and released after conservative therapy. No infection and dislocation was found. Twenty-one patients (23 hips) were found lucent line at the bone-metal interface from 1 - 5 mm, most common in B region and BC boundary than C, D, and CD boundary. All the patients followed was found the lucent line disappeared and refilled with bone at X film 24 weeks after surgery, however, no

  13. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    Directory of Open Access Journals (Sweden)

    Hongbin Lu

    Full Text Available This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point. The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate

  14. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Techion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Zaretzky, Asaph [The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel (Israel); Psakhie, Sergey G. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  15. Age-related changes in trabecular and cortical bone microstructure.

    Science.gov (United States)

    Chen, Huayue; Zhou, Xiangrong; Fujita, Hiroshi; Onozuka, Minoru; Kubo, Kin-Ya

    2013-01-01

    The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  16. Crohn’s disease and Trabecular Metal implants: a report of two cases and literature review

    Directory of Open Access Journals (Sweden)

    C. Peron

    2015-10-01

    Full Text Available Aim The aim of the present study was to report two cases with Crohn’s disease in whom dental implants successfully osseointegrated and remained functionally stable up to 13 and 12 months of follow-up, respectively. Cases presentation In cases 1 (age 35 years and 2 (age 36 years, tooth 24 and 14, respectively, were atraumatically extracted and a particulated bone grafting material (buccal and palatal aspect of the defect and a Trabecular Metal implant (11.5 mm length, 4.7 mm diameter were inserted in each extraction socket. After implant placement and abutment connection with the final torque (25 Ncm, the provisional restoration was adapted in the oral cavity creating the emergence profile. The provisional crown was screw-retained and had slight occlusal contacts in the centric occlusion (intercuspation position. A periapical radiograph was taken as a control radiograph at the baseline. Postoperatively, antibiotics were prescribed as well as analgesics and an oral rinse was recommended. In both cases, the provisional restoration was removed after 2 weeks and replaced with a full ceramic restoration. Case-1 and case-2 were followed up after 13 months and 12 months respectively. In both cases postoperative healing was uneventful and radiographs taken at follow-up showed no evidence of crestal bone loss. Implants in both cases demonstrated an excellent clinical condition at follow-up. Conclusion Trabecular Metal implants can osseointegrate and remain functionally stable in patients with Crohn’s disease.

  17. Microstructural properties of trabecular bone autografts: comparison of men and women with and without osteoporosis.

    Science.gov (United States)

    Xie, Fen; Zhou, Bin; Wang, Jian; Liu, Tang; Wu, Xiyu; Fang, Rui; Kang, Yijun; Dai, Ruchun

    2018-03-05

    The microstructure of autologous bone grafts from men over 50 years old and postmenopausal women undergoing spinal fusion were evaluated using micro-CT. We demonstrated postmenopausal women, especially those with osteoporosis (OP) presented more serious microarchitectural deterioration of bone grafts. This study was undertaken to determine microstructural properties of cancellous bone used as autologous bone grafts from osteoporosis patients undergoing lumbar fusion by comparing microstructural indices to controls. Cancellous bone specimens from spinous processes were obtained from 41 postmenopausal women (osteoporosis women, n = 19; controls, n = 22) and 26 men over 50 years old (osteoporosis men, n = 8; controls, n = 18) during lumbar fusion surgery. The microstructural parameters were measured using micro-CT. Significant difference in bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th), and structure model index (SMI) value existed between postmenopausal women with OP and controls. Significant difference in trabecular number (Tb.N) existed between men over 50 years old with OP and controls. Postmenopausal women exhibited lower BV/TV, Tb.Th, and higher SMI value than men over 50 years old. Postmenopausal women with OP exhibited lower BV/TV, Tb.Th, and higher BS/BV than men over 50 years old with OP. Post-menopausal women and older men with OP have worse bone quality in autografts than non-osteoporotic men and women. Postmenopausal women with OP presented serious microarchitectural deterioration in older population.

  18. Cost-effectiveness analysis of iStent trabecular microbypass stent for patients with open-angle glaucoma in Colombia

    OpenAIRE

    Osorio, Urpy; Ordoñez, Angelica

    2018-01-01

    Objective: To estimate cost-effectiveness of trabecular micro bypass stent versus laser trabeculoplasty or medications only, for patients with open-angle glaucoma in setting of Colombian System Health. Methods: This is a cost-effectiveness analysis that based its assumptions in external data sources, used to extrapolate the quality of life related to health, survival and costs. A Markov model, with stages from 0 (ocular hypertension without glaucoma) to 5 and bilateral blindness, was develope...

  19. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  20. Investigations into the visualisation of osseous and hyaline cartilaginous surface structures of the femural head using X-ray computed tomography. Untersuchung der Visualisierbarkeit knoecherner und hyalin knorpeliger Oberflaechenstrukturen des caput femoris mit Roentgen-Computertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Laemmermann, G.

    1989-03-06

    This study investigates into the extent to which fine osseous structures in the head of the femur and hyaline cartilaginous surfaces of the hip joint are accessible to X-ray computed tomography as a method of diagnosis. At first, a true model of the femural head (post-mortem preparation embedded in methylacrylate) was tomographed to compare the sectional displays thus obtained with hard-microtome sections of similar thickness made at the same levels. This permitted preliminary evaluations to be carried out and confirmed that those structures can be visualised by high-resolution CT (1 mm sections). Methods using high-resolution sectional imaging have a role in examinations of congruence in the the hip joint. Particularly useful here are three-dimensional displays of osseous and cartilaginous surfaces of the joint parts examined. Further research is needed until a more refined method of reconstruction can be made available, the usefulness of which in actual practice will depend on the degree of geometrical congruence achieved between a patient's joint and its display on the screen. (orig./GDG).

  1. Short-term survival of the trabecular metal cup is similar to that of standard cups used in acetabular revision surgery.

    Science.gov (United States)

    Mohaddes, Maziar; Rolfson, Ola; Kärrholm, Johan

    2015-02-01

    The use of trabecular metal (TM) cups in revision surgery has increased worldwide during the last decade. Since the introduction of the TM cup in Sweden in 2006, this design has gradually replaced other uncemented designs used in Sweden. According to data from the Swedish Hip Arthroplasty Register (SHAR) in 2012, one-third of all uncemented first-time cup revisions were performed using a TM cup. We compared the risk of reoperation and re-revision for TM cups and the 2 other most frequently used cup designs in acetabular revisions reported to the SHAR. The hypothesis was that the performance of TM cups is as good as that of established designs in the short term. The study population consisted of 2,384 patients who underwent 2,460 revisions during the period 2006 through 2012. The most commonly used cup designs were the press-fit porous-coated cup (n = 870), the trabecular metal cup (n = 805), and the cemented all-polyethylene cup (n = 785). 54% of the patients were female, and the median age at index revision was 72 (19-95) years. Reoperation was defined as a second surgical intervention, and re-revision-meaning exchange or removal of the cup-was used as endpoint. The mean follow-up time was 3.3 (0-7) years. There were 215 reoperations, 132 of which were re-revisions. The unadjusted and adjusted risk of reoperation or re-revision was not significantly different for the TM cup and the other 2 cup designs. Our data support continued use of TM cups in acetabular revisions. Further follow-up is necessary to determine whether trabecular metal cups can reduce the re-revision rate in the long term, compared to the less costly porous press-fit and cemented designs.

  2. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  3. Assessment of spinal trabecular bone by quantitative CT

    International Nuclear Information System (INIS)

    Adachi, Toshiki; Kozakura, Yoshihiro; Kato, Isamu; Yamamoto, Yoshio

    1988-01-01

    127 normal values of spinal trabecular bone mineral content (BMC) for 67 males (age range : 20 ∼ 77) and 60 females (age range : 23 ∼ 76) were studied by quantitative computed tomography (QCT). We have measured L1, L2 and L3 vertebrae, but there is no significant difference between L1, L2 and L3 BMC, so we caliculated the individual BMC from the average of the three vertebrae data. The BMC value was found to be greatly enfluenced by age. Its maximum at the age of 20 years for males and females, and decreases gradually with an increase in age with a much more reduction seen in the females. The mean value of BMC for the males was approximately 171 mg/ml K 2 HPO 4 equivalent to the 20 - 40 age range years and the females was approximately 183 mg/ml, so that by the age 70, the males were reduced by 35 % to approximately 110 mg/ml, the females were reduced by 50 % to approximately 92 mg/ml. The interrelation was analyzed by using a cubic regression study which revealed an adequate correlation (r = 0.77 in the males, r = 0.85 in the females) between BMC and age. (author)

  4. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus

    Directory of Open Access Journals (Sweden)

    Reinaldo Cesar

    2017-06-01

    Full Text Available Abstract Introduction Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA. However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS. Methods Correlations between Bone Quality Index (BQI, determined by calcaneal ultrasonometry of thirty (30 individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E and ultimate compressive strength (UCS from axial compression tests of ninety (90 proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12, first and fourth lumbar (L1 and L4. Results Analysis of variance (ANOVA showed significant differences for E (p = 0.001, for UCS (p = 0.0001 and BQI. Spearman’s rank correlation coefficient (rho between BQI and E (r = 0.499 and BQI and UCS (r = 0.508 were moderate. Discussion Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.

  5. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone.

    Science.gov (United States)

    Levrero-Florencio, Francesc; Pankaj, Pankaj

    2018-01-01

    Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.

  6. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    International Nuclear Information System (INIS)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M.

    2010-01-01

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle ( 64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78.8% classification accuracy and outperformed the WND

  7. Assessment of spinal trabecular bone by quantitative computed tomography

    International Nuclear Information System (INIS)

    Soya, Toshio; Seto, Hikaru; Futatsuya, Ryusuke; Kamei, Tetsuya; Kakishita, Masao

    1987-01-01

    151 normal values of spinal trabecular bone mineral content (BMC) for 79 men and 72 women were studied by single energy quantitative computed tomography (QCT). The BMC value has a great relation to age. It has a maximum in the age of 20 years in men and in the age of 20 ∼ 30 years in women, and decreases gradually after these ages with a more rapid reduction in women (1.1 % per year in men and 1.6 % per year in women). In younger generation (under 50 years of age) the average value of the BMC is 180 mg/ml K 2 HPO 4 equivalent in men, 189 mg/ml in women, and in older generation, is 123 mg/ml and 112 mg/ml respectively. In the individual case, the fluctuation of inter-vertebrae (L1, L2 and L3) has large variation, therefore, to estimate one's BMC enoughly the measurement of at least three vertebrae should be done. There found no physical factor which attributes to the BMC value. It is suggested that the BMC are affected by age and sex. (author)

  8. Age-Related Changes in Trabecular and Cortical Bone Microstructure

    Directory of Open Access Journals (Sweden)

    Huayue Chen

    2013-01-01

    Full Text Available The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT, micro-CT, and high resolution peripheral quantitative CT (HR-pQCT, imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  9. Electron absorbed fractions of energy and S-values in an adult human skeleton based on {mu}CT images of trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J; De O Lira, C A B [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Professor Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Richardson, R B [Radiation Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); Brown, K Robson, E-mail: rkramer@uol.com.br [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)

    2011-03-21

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on {mu}CT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 {mu}m thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters {sup 14}C, {sup 59}Fe, {sup 131}I, {sup 89}Sr, {sup 32}P and {sup 90}Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 {mu}m endosteum and the previously recommended 10 {mu}m endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by {approx}20% when the beta emitters are in marrow.

  10. Multiobjective topology optimization of trabecular Bone Structure in the spine and the femur: Implications for biomimcry

    Science.gov (United States)

    Elbanna, Ahmed; Peetz, Darin

    Bone is classically considered to be a self-optimizing structure in accordance with Wolff's law. However, while the structure's ability to adapt to changing stress patterns has been well documented, whether it is fully optimal for compliance is less certain (Sigmund, 2002). Given the complexity of many biological systems, it is expected that this structure serves several purposes. We present a multi-objective topology optimization formulation for trabecular bone in the human body at two locations: the vertebrae and the femur. We account for the effect of different conflicting objectives such as maximization of stiffness, maximization of surface area, and minimization of buckling susceptibility. Our formulation enables us to determine the relative role of each of these objective in optimizing the structure. Moreover, it provides an opportunity to explore what structural features have to evolve to meet a certain objective requirements that may have been absent otherwise. For example, inclusion of stability considerations introduce numerous horizontal and diagonal members in the topology in the case of human vertebrae under vertical loading. However, the stability is found to play a lesser role in the case of the femur bone optimization. Our formulation enables investigation of bone adaptation at different locations of the body as well as under different loading and boundary conditions (e.g. healthy and diseased discs for the case of the spine). We discuss the implications of our findings on developing design rules for bio-inspired and bio-mimetic architectured materials. National Science Foundation: CMMI.

  11. Trabecular bone microarchitecture analysis, a way for an early detection of genetic dwarfism? Case study of a dwarf mother's offspring.

    Science.gov (United States)

    Colombo, Antony; Hoogland, Menno; Coqueugniot, Hélène; Dutour, Olivier; Waters-Rist, Andrea

    2018-03-01

    A 66 year-old woman with a disproportionate dwarfism and who bore seven children was discovered at the Middenbeemster archaeological site (The Netherlands). Three are perinates and show no macroscopic or radiological evidence for a FGFR3 mutation causing hypo-or achondroplasia. This mutation induces dysfunction of the growth cartilage, leading to abnormalities in the development of trabecular bone. Because the mutation is autosomal dominant, these perinates have a 50% risk of having been affected. This study determines whether trabecular bone microarchitecture (TBMA) analysis is useful for detecting genetic dwarfism. Proximal metaphyses of humeri were μCT-scanned with a resolution of 7-12 μm. Three volumes of interest were segmented from each bone with TIVMI© software. The TBMA was quantified in BoneJ© using six parameters on which a multivariate analysis was then performed. Two of the Middenbeemster perinates show a quantitatively different TBMA organization. These results and the family's medical history suggest a diagnosis of genetic dwarfism for this two perinates. This study provides evidence to support the efficacy of μCT for diagnosing early-stage bone disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  13. Clinical Application of Solid Model Based on Trabecular Tibia Bone CT Images Created by 3D Printer.

    Science.gov (United States)

    Cho, Jaemo; Park, Chan-Soo; Kim, Yeoun-Jae; Kim, Kwang Gi

    2015-07-01

    The aim of this work is to use a 3D solid model to predict the mechanical loads of human bone fracture risk associated with bone disease conditions according to biomechanical engineering parameters. We used special image processing tools for image segmentation and three-dimensional (3D) reconstruction to generate meshes, which are necessary for the production of a solid model with a 3D printer from computed tomography (CT) images of the human tibia's trabecular and cortical bones. We examined the defects of the mechanism for the tibia's trabecular bones. Image processing tools and segmentation techniques were used to analyze bone structures and produce a solid model with a 3D printer. These days, bio-imaging (CT and magnetic resonance imaging) devices are able to display and reconstruct 3D anatomical details, and diagnostics are becoming increasingly vital to the quality of patient treatment planning and clinical treatment. Furthermore, radiographic images are being used to study biomechanical systems with several aims, namely, to describe and simulate the mechanical behavior of certain anatomical systems, to analyze pathological bone conditions, to study tissues structure and properties, and to create a solid model using a 3D printer to support surgical planning and reduce experimental costs. These days, research using image processing tools and segmentation techniques to analyze bone structures to produce a solid model with a 3D printer is rapidly becoming very important.

  14. MRI of the hyaline knee joint cartilage. Animal experimental and clinical studies; MRT des hyalinen Kniegelenkknorpels. Tierexperimentelle und klinische Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Prescher, A. [Technische Hochschule Aachen (Germany). Inst. fuer Anatomie; Nolte-Ernsting, C. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Buehne, M. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Scherer, K. [Technische Hochschule Aachen (Germany). Inst. fuer Versuchstierkunde; Kuepper, W. [Technische Hochschule Aachen (Germany). Inst. fuer Versuchstierkunde; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik

    1994-02-01

    The value of MR imaging for the detection of hyaline cartilage lesions using 2-D spin-echo and 3-D gradient-echo imaging was evaluated in an animal experiment in 10 dogs and in a clinical study in 30 patients. MR imaging findings were compared with histopathological and arthroscopy findings, respectively. Using MRI neither grade I nor grade II hyaline cartilage lesions were detectable. In the animal experiments 77% of grade III lesions and all the grade IV lesions were seen. However, in the clinical study only about the half of grade III and IV lesions were detected. 3-D gradient-echo MR imaging was superior to 2-D spin-echo imaging (p<0.001), while 3-D FLASH and 3-D FISP did not differ significantly in the detection rate (p<0.34). 3-D gradient-echo MR imaging seems to be the best method for the delineation of high grade cartilage lesions. However, early stages of cartilage degeneration are invisible even with this imaging modality. (orig.) [Deutsch] Die Wertigkeit der MRT in der Erfassung von Knorpellaesionen mit 2-D-Spin-Echo- und 3-D-Grafienten-Echo-Sequenzen wurde in einer tierexperimentellen Untersuchung an 10 Hunden sowie in einer klinischen Studie an 30 Patienten ueberprueft. Die kernspintomographischen Ergebnisse wurden mit dem pathologisch-anatomischen Befund bzw. der Arthroskopie verglichen. MR-tomographisch konnten weder Grad-I- noch Grad-II-Knorpellaesionen erfasst werden. Die Erkennbarkeitsrate der Grad-III- und -IV-Laesionen lag fuer die tierexperimentellen Untersuchungen bei 77 bzw. 100%, waehrend klinisch nur etwa 50% dieser Veraenderungen erkannt werden konnten. Dabei waren die 3-D-Gradienten-Echo-Sequenzen den 2-D-Spin-Echo-Sequenzen signifikant ueberlegen (p<0,001), waehrend sich die 3-D-Gradienten-Echo-Sequenzen FISP und FLASH nicht voneinander unterschieden (p<0,34). Derzeit muessen die 3-D-Gradienten-Echo-Sequenzen als die beste Methode zur Erfassung hoehergradiger Knorpellaesionen angesehen werden. Fruehe Stadien der Knorpelschaedigung sind

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    Science.gov (United States)

    Bagratashvili, Viktor N.; Bagratashvili, N. V.; Gapontsev, V. P.; Makhmutova, G. Sh; Minaev, V. P.; Omel'chenko, A. I.; Samartsev, I. E.; Sviridov, A. P.; Sobol', E. N.; Tsypina, S. I.

    2001-06-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues.

  16. Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)

    1994-08-01

    In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)

  17. Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling

    Directory of Open Access Journals (Sweden)

    Hunter KS

    2014-03-01

    Full Text Available Kendall S Hunter,1 Todd Fjield,2 Hal Heitzmann,2 Robin Shandas,1 Malik Y Kahook3 1Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; 2Glaukos Corporation, Laguna Hills, CA, USA; 3University of Colorado Hospital Eye Center, Aurora, CO, USA Abstract: Micro-invasive glaucoma surgery with the Glaukos iStent® or iStent inject® (Glaukos Corporation, Laguna Hills, CA, USA is intended to create a bypass through the trabecular meshwork to Schlemm's canal to improve aqueous outflow through the natural physiologic pathway. While the iStent devices have been evaluated in ex vivo anterior segment models, they have not previously been evaluated in whole eye perfusion models nor characterized by computational fluid dynamics. Intraocular pressure (IOP reduction with the iStent was evaluated in an ex vivo whole human eye perfusion model. Numerical modeling, including computational fluid dynamics, was used to evaluate the flow through the stents over physiologically relevant boundary conditions. In the ex vivo model, a single iStent reduced IOP by 6.0 mmHg from baseline, and addition of a second iStent further lowered IOP by 2.9 mmHg, for a total IOP reduction of 8.9 mmHg. Computational modeling showed that simulated flow through the iStent or iStent inject is smooth and laminar at physiological flow rates. Each stent was computed to have a negligible flow resistance consistent with an expected significant decrease in IOP. The present perfusion results agree with prior clinical and laboratory studies to show that both iStent and iStent inject therapies are potentially titratable, providing clinicians with the opportunity to achieve lower target IOPs by implanting additional stents. Keywords: glaucoma, iStent, trabecular bypass, intraocular pressure, ab-interno, CFD

  18. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  19. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  20. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair.

    Science.gov (United States)

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei

    2014-10-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. ©AlphaMed Press.

  1. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M. [Tribology Laboratory, School of Mechanical Engineering, University of Western Australia, Crawley, Western Australia 6009 (Australia); Chair of Computer Systems and Networks, Faculty of Electronics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2010-05-15

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system

  2. Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease.

    Science.gov (United States)

    Sharma, Gulshan B; Robertson, Douglas D; Laney, Dawn A; Gambello, Michael J; Terk, Michael

    2016-06-14

    Type 1 Gaucher disease (GD) is an autosomal recessive lysosomal storage disease, affecting bone metabolism, structure and strength. Current bone assessment methods are not ideal. Semi-quantitative MRI scoring is unreliable, not standardized, and only evaluates bone marrow. DXA BMD is also used but is a limited predictor of bone fragility/fracture risk. Our purpose was to measure trabecular bone microarchitecture, as a biomarker of bone disease severity, in type 1 GD individuals with different GD genotypes and to apply machine learning based analytics to discriminate between GD patients and healthy individuals. Micro-MR imaging of the distal radius was performed on 20 type 1 GD patients and 10 healthy controls (HC). Fifteen stereological and textural measures (STM) were calculated from the MR images. General linear models demonstrated significant differences between GD and HC, and GD genotypes. Stereological measures, main contributors to the first two principal components (PCs), explained ~50% of data variation and were significantly different between males and females. Subsequent PCs textural measures were significantly different between GD patients and HC individuals. Textural measures also significantly differed between GD genotypes, and distinguished between GD patients with normal and pathologic DXA scores. PCA and SVM predictive analyses discriminated between GD and HC with maximum accuracy of 73% and area under ROC curve of 0.79. Trabecular STM differences can be quantified between GD patients and HC, and GD sub-types using micro-MRI and machine learning based analytics. Work is underway to expand this approach to evaluate GD disease burden and treatment efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens

    Science.gov (United States)

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2017-01-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk. PMID:29170581

  4. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis

    Directory of Open Access Journals (Sweden)

    Karunanithi R

    2007-01-01

    Full Text Available The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA, which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 pre-menopausal (mean age ± SD: 39.4 ± 3.8 and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9 women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA. For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI of 256 x 256 pixels was selected, the run-length matrix was computed for calculating seven parameters [Table 1] and the two-dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD was derived and the root mean square (RMS value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.

  5. Granuloma hialinizante de pulmão recidivante Recurrent pulmonary hyalinizing granuloma

    Directory of Open Access Journals (Sweden)

    Guilherme D'Andréa Saba Arruda

    2010-10-01

    Full Text Available Relatamos o caso de um paciente de 61 anos, masculino, internado com objetivo de exérese de massa pulmonar para estudo anatomopatológico. O paciente apresentara anteriormente um quadro de febre, tosse seca e dor torácica, associado à presença de massas pulmonares detectadas por radiografia de tórax, tendo sido submetido em duas ocasiões (1976 e 1981 a toracotomia para a investigação diagnóstica, sem diagnóstico anatomopatológico conclusivo. A TC de tórax revelou volumosas massas com áreas de calcificação em ambos os campos pulmonares. O material do estudo anatomopatológico foi compatível com granuloma hialinizante de pulmão. No pós-operatório, o paciente apresentou vários episódios de broncoespasmo que foram revertidos com medicação sintomática. Foi mantido com prednisona na dose de 40 mg/dia com boa evolução clínica até o envio deste relato.We report the case of a 61-year-old male patient who underwent surgical excision of a lung mass for anatomopathological study. The patient had previously presented with fever, dry cough, and chest pain, together with lung masses detected by chest X-ray, and had undergone thoracotomy for diagnostic investigation on two occasions (1976 and 1981, although a conclusive diagnosis had not been made. A CT scan of the chest revealed large masses with areas of calcification in both lung fields. The anatomopathological study was consistent with pulmonary hyalinizing granuloma. In the postoperative period, the patient experienced several episodes of bronchospasm, which was reversible with the use of symptomatic medication. At this writing, the patient was receiving maintenance therapy with prednisone (40 mg/day and had shown clinical improvement.

  6. Treatment of deep hyalin cartilage defects with autologous perichondrial grafts.

    Science.gov (United States)

    Bruns, J; Steinhagen, J

    2003-07-01

    Perichondrial transplantation was performed in 29 patients suffering from a deep chondral lesion with different etiologies. Only those patients with a cartilage lesion in the knee joint were included. Patients were initially and postoperatively examined using the Lysholm- and HSS-Score. In most of the patients (20/29) trauma and the recurrence of osteochondrosis dissecans (6/29) were the cause of the cartilage lesion. Most often the medial femoral condyle (19/29) and, secondly, the lateral femoral condyle (5/29) were involved. In six patients additional therapeutic measures (ACL-plasty, n = 2; high tibial osteotomy because of varus mal-alignment, n = 4) had to be adopted. Follow-up examination was possible in 26/29 patients after a minimum postoperative period of 12 months. All patients exhibited a distinct and significant increase in both the Lysholm and the HSS-score. A follow-up after a minimum of 24 months was possible in 13/29 patients. Even these patients exhibited a distinct and significant improvement. Multiple follow-up examinations in 9/29 patients demonstrated maintenance of the first postoperative results obtained after one postoperative year for a maximum of 49 months in most of the patients. Only in one female patient, implantation of a semi-constrained total knee replacement was necessary because of osteoarthrosis resulting from crystal arthropathy (chondrocalcinosis). It was possible to obtain biopsies from three patients at the time osteosynthetic material was removed. In all cases hyaline-like cartilage was histologically observed. In the treatment of selected patients suffering from a circumscript cartilaginous lesion resulting from trauma or the recurrence of osteochondritis dissecans with a concomitant cartilage lesion but without major signs of osteoarthritis, perichondrial grafting can achieve acceptable clinical results, after a short follow-up period. In order to achieve satisfying results a good selection of patients and additional

  7. Preliminary result on trabecular bone score (TBS in lumbar vertebrae with experimentally altered microarchitecture

    Directory of Open Access Journals (Sweden)

    M. Di Stefano

    2013-01-01

    Full Text Available The aim of this preliminary research is to investigate the reliability of a new qualitative parameter, called Trabecular Bone Score (TBS, recently proposed for evaluating the microarchitectural arrangement of cancellous bone in scans carried out by dual energy X-ray absorptiometry (DXA. Vertebral bodies of 15 fresh samples of lumbar spines of adult pig were analysed either in basal conditions and with altered microarchitecture of the cancellous bone obtained by progressive drilling. The examined bony areas do not show changes in bone mineral density (BMD, whereas TBS values decrease with the increasing alteration of the vertebral microtrabecular structure. Our preliminary data seem to confirm the reliability of TBS as a qualitative parameter useful for evaluating the microarchitectural strength in bony areas quantitatively analysed by DXA.

  8. Orientation-weighted local Minkowski functionals in 3D for quantitative assessment of trabecular bone structure in the hip

    Science.gov (United States)

    Boehm, H. F.; Bitterling, H.; Weber, C.; Kuhn, V.; Eckstein, F.; Reiser, M.

    2007-03-01

    Fragility fractures or pathologic fractures of the hip, i.e. fractures with no apparent trauma, represent the worst complication in osteoporosis with a mortality close to 25% during the first post-traumatic year. Over 90% of hip fractures result from falls from standing height. A substantial number of femoral fractures are initiated in the femoral neck or the trochanteric regions which contain an internal architecture of trabeculae that are functionally highly specialized to withstand the complex pattern of external and internal forces associated with human gait. Prediction of the mechanical strength of bone tissue can be achieved by dedicated texture analysis of data obtained by high resolution imaging modalities, e.g. computed tomography (CT) or magnetic resonance tomography (MRI). Since in the case of the proximal femur, the connectivity, regional distribution and - most of all - the preferred orientation of individual trabeculae change considerably within narrow spatial limits, it seems most reasonable to evaluate the femoral bone structure on an orientation-weighted, local scale. In past studies, we could demonstrate the advantages of topological analysis of bone structure using the Minkowski Functionals in 3D on a global and on a local scale. The current study was designed to test the hypothesis that the prediction of the mechanical competence of the proximal femur by a new algorithm considering orientational changes of topological properties in the trabecular architecture is feasible and better suited than conventional methods based on the measurement of the mineral density of bone tissue (BMD).

  9. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study.

    Science.gov (United States)

    Lee, Jin Whan; Wen, Hai Bo; Gubbi, Prabhu; Romanos, Georgios E

    2018-02-01

    This study evaluated new bone formation activities and trabecular bone microarchitecture within the highly porous region of Trabecular Metal™ Dental Implants (TM) and between the threads of Tapered Screw-Vent® Dental Implants (TSV) in fresh canine extraction sockets. Eight partially edentulated dogs received four implants (4.1 mmD × 13 mmL) bilaterally in mandibular fresh extraction sockets (32 TM, 32 TSV implants), and allowed to heal for 2, 4, 8, and 12 weeks. Calcein was administered to label mineralizing bone at 11 and 4 days before euthanasia for dogs undergoing all four healing periods. Biopsies taken at each time interval were examined histologically. Histomorphometric assay was conducted for 64 unstained and 64 stained slides at the region of interest (ROI) (6 mm long × 0.35 mm deep) in the midsections of the implants. Topographical and chemical analyses were also performed. Histomorphometry revealed significantly more new bone in the TM than in the TSV implants at each healing time (p = .0014, .0084, .0218, and .0251). Calcein-labeled data showed more newly mineralized bone in the TM group than in the TSV group at 2, 8, and 12 weeks (p = .045, .028, .002, respectively) but not at 4 weeks (p = .081). Histologically TM implants exhibited more bone growth and dominant new immature woven bone at an earlier time point than TSV implants. The parameters representing trabecular bone microarchitecture corroborated faster new bone formation in the TM implants when compared to the TSV implants. TM exhibited an irregular faceted topography compared to a relatively uniform microtextured surface for TSV. Chemical analysis showed peaks associated with each implant's composition material, and TSV also showed peaks reflecting the elements of the calcium phosphate blasting media. Results suggest that the healing pathway associated with the highly porous midsection of TM dental implant could enable faster and stronger secondary implant stability than

  10. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Latta, Peter; Sramek, Milos; Hassard, H. Thomas; Orr, F. William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 μm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological 'gold standard' The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure

  12. Identification of a constitutive law for trabecular bone samples under remodeling in the framework of irreversible thermodynamics

    Science.gov (United States)

    Louna, Zineeddine; Goda, Ibrahim; Ganghoffer, Jean-François

    2018-01-01

    We construct in the present paper constitutive models for bone remodeling based on micromechanical analyses at the scale of a representative unit cell (RUC) including a porous trabecular microstructure. The time evolution of the microstructure is simulated as a surface remodeling process by relating the surface growth remodeling velocity to a surface driving force incorporating a (surface) Eshelby tensor. Adopting the framework of irreversible thermodynamics, a 2D constitutive model based on the setting up of the free energy density and a dissipation potential is identified from FE simulations performed over a unit cell representative of the trabecular architecture obtained from real bone microstructures. The static and evolutive effective properties of bone at the scale of the RUC are obtained by combining a methodology for the evaluation of the average kinematic and static variables over a prototype unit cell and numerical simulations with controlled imposed first gradient rates. The formulated effective growth constitutive law at the scale of the homogenized set of trabeculae within the RUC is of viscoplastic type and relates the average growth strain rate to the homogenized stress tensor. The postulated model includes a power law function of an effective stress chosen to depend on the first and second stress invariants. The model coefficients are calibrated from a set of virtual testing performed over the RUC subjected to a sequence of loadings. Numerical simulations show that overall bone growth does not show any growth kinematic hardening. The obtained results quantify the strength and importance of different types of external loads (uniaxial tension, simple shear, and biaxial loading) on the overall remodeling process and the development of elastic deformations within the RUC.

  13. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.

    Science.gov (United States)

    Lee, W D; Hurtig, M B; Pilliar, R M; Stanford, W L; Kandel, R A

    2015-08-01

    In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. In vitro and in silico characterization of open-cell structures of trabecular bone.

    Science.gov (United States)

    Ramos-Infante, S J; Pérez, M A

    2017-11-01

    This work aimed to perform a detailed in vitro and in silico characterization of open-cell structures, which resemble trabecular bone, to elucidate osteoporosis failure mechanisms. Experimental and image-based computational methods were used to estimate Young's modulus and porosities of different open-cell structures (Sawbones; Malmö, Sweden). Three different open-cell structures with different porosities were characterized. Additionally, some open-cell structures were scanned using a microcomputed tomography system (μCT) to non-destructively predict specimen Young's modulus of the structures by developing voxel-based and tetrahedral finite element (FE) models. A 3D reconstruction and FE analyses were used. The experimental and computational results with different element types (linear and quadratic tetrahedrons and voxel-based meshes) were compared with Sawbones data (Sawbones; Malmö, Sweden) revealing important differences in Young's modulus and porosities. The specimens with high and low volume fractions were best represented by linear and quadratic tetrahedrons, respectively. These results could be used to develop new osteoporosis-prevention strategies.

  15. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.

    Science.gov (United States)

    Legendre, Florence; Ollitrault, David; Hervieu, Magalie; Baugé, Catherine; Maneix, Laure; Goux, Didier; Chajra, Hanane; Mallein-Gerin, Frédéric; Boumediene, Karim; Galera, Philippe; Demoor, Magali

    2013-07-01

    Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.

  16. Roentgenographic findings in hyaline membrane disease treated with exogenous surfactant: comparison with control group

    International Nuclear Information System (INIS)

    Lee, Sun Kyoung; Lim, Chae Ha; Lim, Woo Young; Kim, Young Sook; Byen, Ju Nam; Oh, Jae Hee; Kim, Young Chul

    1997-01-01

    To compare, with the use of chest radiographic findings, improvement and complications in newborns treated with exogenous surfactant for hyaline membrane disease (HMD), and an untreated control group. Thirty-six patients with HMD were randomly assigned to a control group (n=18) or surfactant treated group (n=18). As part of an initial evaluation of their pulmonary status, we then performed a retrospective statistical analysis of chest radiographic findings obtained in exogenous surfactant treated and untreated infants within the first 90 minutes of life. Subsequent examinations were performed at less than 24 hours of age. Chest radiograph before treatment showed no significant differences between the two groups, but significant improvement was noted in the surfactant treated group, in contrast to the control group. The most common chest radiographic finding after surfactant administration was uniform (n=15) or disproportionate (n=2) improvement of pulmonary aeration. Patent ductus arteriosus developed in three treated neonates and in four cases in the control group. Air leak occurred in three cases in the treated group and in five cases in the control group. In one treated patient pulmonary hemorrhage developed and intracranial hemorrhage occurred in three treated neonates and in four cases in the control group. Bronchopulmonary dysplasia was developed in 6 cases of treated group and 3 cases of control group. A chest radiograph is considered to be helpful in the evaluation of improvement and complications of HMD in infants treated with surfactant

  17. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass; Trabekulaere Knochendichte der Lendenwirbelsaeule bei Kindern und Jugendlichen in der quantitativen CT: Referenzwerte und Peak Bone Mass

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, L.D.; Alzen, G. [Kinderradiologie, Zentrum fuer Radiologie, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany); Haras, G. [Siemens AG, Medical Solutions, Forchheim (Germany); Mann, M. [AG Medizinische Statistik, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany)

    2006-12-15

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  18. Use of dual energy X-ray absorptiometry, the trabecular bone score and quantitative computed tomography in the evaluation of chronic kidney disease-mineral and bone disorders.

    Science.gov (United States)

    Pocock, Nicholas

    2017-03-01

    In subjects with chronic kidney disease (CKD) who suffer a minimal trauma fracture, the problem is to differentiate between osteoporosis and the various forms of renal bone disease associated with CKD-mineral and bone disorder. This problem is exacerbated by the fact that renal osteodystrophy may coexist with osteoporosis. The World Health Organization's bone mineral density (BMD) criteria for osteopenia ( -2.5 < T-score < -1.0) and osteoporosis (a T-score ≤ -2.5) may be used in patients with CKD stages 1-3. In CKD stages 4-5, BMD by dual-energy X-ray absorptiometry (DXA) is less predictive and may underestimate fracture risk. The development of absolute fracture risk (AFR) algorithms, such as FRAX® and the Garvan absolute fracture risk calculator, to predict risk of fracture over a given time (usually 10 years) aims to incorporate non-BMD risk factors into the clinical assessment. FRAX® has been shown to be useful to assess fracture risk in CKD but may underestimate fracture risk in advanced CKD. The trabecular bone score is a measure of grey scale homogeneity obtained from spine DXA, which correlates to trabecular microarchitecture and is an independent risk factor for fracture. Recent data demonstrate the potential utility of the trabecular bone score adjustment of AFR through the FRAX® algorithm in subjects with CKD. Parameters of bone microarchitecture using peripheral quantitative computed tomography (pQCT) or high-resolution pQCT are also able to discriminate fracture status in subjects with CKD. However, there are at present no convincing data that the addition of pQCT or high-resolution pQCT parameters to DXA BMD improves fracture discrimination. More advanced estimates of bone strength derived from measurements of micro-architecture, by QCT-derived finite element analysis may be incorporated into AFR algorithms in the future. © 2017 Asian Pacific Society of Nephrology.

  19. Pattern of Testicular Biopies as Seen in a Tertiary Institution in ...

    African Journals Online (AJOL)

    obstructive azoospermia and 22.4% had extensive or marked diffuse tubular atrophy associated with peritubular hyalinization and interstitial fibrosis. Early and prompt treatment of known causes of infertility in the males is recommended to prevent progression to an irreversible histology. Primary testicular tumor is a disease ...

  20. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    Science.gov (United States)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  1. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.

    Science.gov (United States)

    Shah, Furqan A; Zanghellini, Ezio; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders

    2016-02-01

    The orientation of nanoscale mineral platelets was quantitatively evaluated in relation to the shape of lacunae associated with partially embedded osteocytes (osteoblastic-osteocytes) on the surface of deproteinised trabecular bone of adult sheep. By scanning electron microscopy and image analysis, the mean orientation of mineral platelets at the osteoblastic-osteocyte lacuna (Ot.Lc) floor was found to be 19° ± 14° in the tibia and 20° ± 14° in the femur. Further, the mineral platelets showed a high degree of directional coherency: 37 ± 7% in the tibia and 38 ± 9% in the femur. The majority of Ot.Lc in the tibia (69.37%) and the femur (74.77%) exhibited a mean orientation of mineral platelets between 0° and 25°, with the largest fraction within a 15°-20° range, 17.12 and 19.8% in the tibia and femur, respectively. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used to characterise the features observed on the anorganic bone surface. The Ca/P (atomic %) ratio was 1.69 ± 0.1 within the Ot.Lc and 1.68 ± 0.1 externally. Raman spectra of NaOCl-treated bone showed peaks associated with carbonated apatite: ν1, ν2 and ν4 PO4(3-), and ν1 CO3(2-), while the collagen amide bands were greatly reduced in intensity compared to untreated bone. The apatite-to-collagen ratio increased considerably after deproteinisation; however, the mineral crystallinity and the carbonate-to-phosphate ratios were unaffected. The ~19°-20° orientation of mineral platelets in at the Ot.Lc floor may be attributable to a gradual rotation of osteoblasts in successive layers relative to the underlying surface, giving rise to the twisted plywood-like pattern of lamellar bone.

  2. 3D porous architecture of stacks of β-TCP granules compared with that of trabecular bone: a microCT, vector analysis and compression study

    Directory of Open Access Journals (Sweden)

    Daniel eCHAPPARD

    2015-10-01

    Full Text Available The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of β-TCP were prepared with either 12.5 or 25g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP or low porosity (LP, respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high density (HD blocks. Low density (LD blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector projection algorithm was used to image porosity employing a frontal plane image which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4% and fractal lacunarity (0.043 ± 0.007 intermediate between that of HD (resp. 69.1 ± 6.4%, p<0.05 and 0.087 ± 0.045, p<0.05 and LD bones (resp. 88.8 ± 1.57% and 0.037 ± 0.014 but exhibited a higher surface density (5.56 ± 0.11 mm2/mm3 vs. 2.06 ± 0.26 for LD, p<0.05. LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabeculae. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture.

  3. Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?

    Science.gov (United States)

    Agarwal, Puneet; Agarwal, Renu

    2018-06-14

    Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.

  4. Dietary acid load, trabecular bone integrity, and mineral density in an ageing population: the Rotterdam study.

    Science.gov (United States)

    de Jonge, E A L; Koromani, F; Hofman, A; Uitterlinden, A G; Franco, O H; Rivadeneira, F; Kiefte-de Jong, J C

    2017-08-01

    We studied the relation between a diet that is high in acid-forming nutrients (e.g. proteins) and low in base-forming nutrients (e.g. potassium) and bone structure. We showed a negative relation, which was more prominent if proteins were of animal rather than of vegetable origin and if intake of dietary fibre was high. Studies on dietary acid load (DAL) and fractures have shown inconsistent results. Associations between DAL, bone mineral density (BMD) and trabecular bone integrity might play a role in these inconsistencies and might be influenced by renal function and dietary fibre intake. Therefore, our aim was to study (1) associations of DAL with BMD and with the trabecular bone score (TBS) and (2) the potential influence of renal function and dietary fibre in these associations. Dutch individuals aged 45 years and over (n = 4672) participating in the prospective cohort of the Rotterdam study were included. Based on food frequency questionnaires, three indices of DAL were calculated: the net endogenous acid production (NEAP) and the ratios of vegetable or animal protein and potassium (VegPro/K and AnPro/K). Data on lumbar spinal TBS and BMD were derived from dual-energy X-ray absorptiometry measurements. Independent of confounders, NEAP and AnPro/K, but not VegPro/K, were associated with low TBS (standardized β (95%) = -0.04 (-0.07, -0.01) and -0.08 (-0.11, -0.04)) but not with BMD. Associations of AnPro/K and VegPro/K with TBS were non-linear and differently shaped. Unfavourable associations between NEAP, BMD and TBS were mainly present in subgroups with high fibre intake. High NEAP was associated with low TBS. Associations of AnPro/K and VegPro/K and TBS were non-linear and differently shaped. No significant associations of DAL with BMD were observed, nor was there any significant interaction between DAL and renal function. Mainly in participants with high intake of dietary fibre, DAL might be detrimental to bone.

  5. Three-dimensional quantification of structures in trabecular bone using measures of complexity

    DEFF Research Database (Denmark)

    Marwan, Norbert; Kurths, Jürgen; Thomsen, Jesper Skovhus

    2009-01-01

    The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensiona......The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three......-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures...... evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (µCT) from human proximal tibiae and lumbar vertebrae at different stages...

  6. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.

    Science.gov (United States)

    Marchand, Catherine; Chen, Gaoping; Tran-Khanh, Nicolas; Sun, Jun; Chen, Hongmei; Buschmann, Michael D; Hoemann, Caroline D

    2012-03-01

    This study analyzed the long-term cartilage and subchondral bone repair of microdrilled defects treated with chitosan glycerol-phosphate/blood implant, using thrombin (Factor IIa) to accelerate in situ solidification. We also evaluated the cartilage repair response to six smaller microdrill holes compared with two larger holes. Bilateral knee trochlear cartilage defects were created in n=8 skeletally mature rabbits, drilled with six proximal 0.5 mm and two distal 0.9 mm holes, then covered with in situ-solidified IIa-implants (treated) or with IIa-alone (control). After 6.5 months of repair, cartilage repair tissues were analyzed by histological scoring and histomorphometry for hyaline matrix characteristics and osseous integration. Subchondral repair bone was analyzed by 3D microcomputed tomography and compared to acute defects (n=6) and intact trochlea (n=8). Implant-treated cartilage repair tissues had higher structural integrity through the entire defect (p=0.02), twofold higher percent staining for glycosaminoglycan (p=0.0004), and ~24% more collagen type II staining over the smaller drill holes (p=0.008) compared with controls. Otherwise, hole diameter had no specific effect on cartilage repair. The subchondral bone plate was partially restored in treated and control defects but less dense than intact trochlea, with evidence of incomplete regeneration of the calcified cartilage layer. More residual drill holes (p=0.054) were detected in control versus treated defects, and control defects with more than 40% residual holes presented abnormally thicker trabeculae compared with treated defects. Low osteoclast numbers after 6.5 months repair suggested that bone was no longer remodeling. The subchondral bone plate surrounding the defects exhibited a significant thickening compared with age-matched intact trochlea. These data suggest that debridement and drilling can lead to long-term subchondral bone changes outside the cartilage defect. Compared with drilled

  7. Relationship between cement distribution pattern and new compression fracture after percutaneous vertebroplasty.

    Science.gov (United States)

    Tanigawa, Noboru; Komemushi, Atsushi; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Omura, Naoto; Sawada, Satoshi

    2007-12-01

    The objective of this study was to prospectively investigate relationships between cement distribution patterns and the occurrence rates of new compression fractures after percutaneous vertebroplasty. Percutaneous vertebroplasty was performed for osteoporotic compression fractures in 76 consecutive patients. Patients were divided into two groups according to the cement filling pattern shown on radiography and CT: cleft pattern group (group C, n = 34), compact and solid cement filling pattern in vertebrae; and trabecular pattern group (group T, n = 42), sponge-like filling pattern. A visual analog scale (VAS) was used to assess pain severity, and anterior and lateral radiographs of the thoracic and lumbar vertebrae were obtained 1-3 days and 1, 4, 10, 22, and 34 months after percutaneous vertebroplasty. Differences in treatment efficacy and the occurrence rates of new compression fractures were examined and compared for both groups using the Mann-Whitney U test and chi-square test. A significant difference was seen between groups with respect to the volume of cement injected per vertebra (mean volume: group C, 4.5 mL; group T, 3.7 mL; p = 0.01). VAS improvement did not differ significantly between group C (4.6) and group T (4.5). The mean follow-up period was 19.5 months, during which new compression fractures were significantly more frequent in group C (17 of 34 [50%]) than in group T (11 of 42 [26.2%]; p = 0.03). Although cement distribution patterns do not significantly affect initial clinical response, a higher incidence of new compression fractures is seen in patients with treated vertebrae exhibiting a cleft pattern.

  8. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results.

    Science.gov (United States)

    Matsuda, Hidetoshi; Kitamura, Nobuto; Kurokawa, Takayuki; Arakaki, Kazunobu; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2013-01-31

    A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne's gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. According to the total Wayne's score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (phyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  9. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  10. Storage of the complement components C4, C3, and C 3-activator in the human liver as PAS-negative globular hyaline bodies.

    Science.gov (United States)

    Storch, W; Riedel, H; Trautmann, B; Justus, J; Hiemann, D

    1982-01-01

    Liver biopsies of a 58-year-old clinically healthy patient with a hepatomegaly and intracisternal PAS-negative globular hyaline bodies were immunofluorescent-optically examined for the content of the complement components C 1 q, C 4, C 9, C 1-inactivator, C 3-activator. Further examinations were performed for fibrinogen, IgG, IgA, IgM, IgD, IgE, L-chain (type chi and lambda), alpha 1-antitrypsin, alpha 1-fetoprotein, alpha 1- and alpha 2-glycoprotein, cholinesterase, ceruloplasmin, myoglobin, hemopexin, HBsAg and HBsAg. Th inclusion bodies reacted with antisera against the complement components C 4, C 3 and C 3-activator, as also identified by double immunofluorescence. Probably this is a disturbance of the protein metabolism of the liver cell with abnormal complement storage in the presence of normal total complement and normal complement components in the serum.

  11. Freeze-thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model

    Directory of Open Access Journals (Sweden)

    Yalong Dang

    2017-08-01

    Full Text Available Objective The trabecular meshwork (TM is the primary substrate of outflow resistance in glaucomatous eyes. Repopulating diseased TM with fresh, functional TM cells might be a viable therapeutic approach. Decellularized TM scaffolds have previously been produced by ablating cells with suicide gene therapy or saponin, which risks incomplete cell removal or dissolution of the extracellular matrix, respectively. We hypothesized that improved trabecular meshwork cell ablation would result from freeze-thaw cycles compared to chemical treatment. Materials and Methods We obtained 24 porcine eyes from a local abattoir, dissected and mounted them in an anterior segment perfusion within two hours of sacrifice. Intraocular pressure (IOP was recorded continuously by a pressure transducer system. After 72 h of IOP stabilization, eight eyes were assigned to freeze-thaw (F ablation (−80 °C × 2, to 0.02% saponin (S treatment, or the control group (C, respectively. The TM was transduced with an eGFP expressing feline immunodeficiency viral (FIV vector and tracked via fluorescent microscopy to confirm ablation. Following treatment, the eyes were perfused with standard tissue culture media for 180 h. TM histology was assessed by hematoxylin and eosin staining. TM viability was evaluated by a calcein AM/propidium iodide (PI assay. The TM extracellular matrix was stained with Picro Sirius Red. We measured IOP and modeled it with a linear mixed effects model using a B-spline function of time with five degrees of freedom. Results F and S experienced a similar IOP reduction of 30% from baseline (P = 0.64. IOP reduction of about 30% occurred in F within 24 h and in S within 48 h. Live visualization of eGFP demonstrated that F conferred a complete ablation of all TM cells and only a partial ablation in S. Histological analysis and Picro Sirius staining confirmed that no TM cells survived in F while the extracellular matrix remained. The viability assay showed

  12. Investigations into the visualisation of osseous and hyaline cartilaginous surface structures of the femural head using X-ray computed tomography

    International Nuclear Information System (INIS)

    Laemmermann, G.

    1989-01-01

    This study investigates into the extent to which fine osseous structures in the head of the femur and hyaline cartilaginous surfaces of the hip joint are accessible to X-ray computed tomography as a method of diagnosis. At first, a true model of the femural head (post-mortem preparation embedded in methylacrylate) was tomographed to compare the sectional displays thus obtained with hard-microtome sections of similar thickness made at the same levels. This permitted preliminary evaluations to be carried out and confirmed that those structures can be visualised by high-resolution CT (1 mm sections). Methods using high-resolution sectional imaging have a role in examinations of congruence in the the hip joint. Particularly useful here are three-dimensional displays of osseous and cartilaginous surfaces of the joint parts examined. Further research is needed until a more refined method of reconstruction can be made available, the usefulness of which in actual practice will depend on the degree of geometrical congruence achieved between a patient's joint and its display on the screen. (orig./GDG) [de

  13. Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography.

    Science.gov (United States)

    Baskaran, Mani; Ho, Sue-Wei; Tun, Tin A; How, Alicia C; Perera, Shamira A; Friedman, David S; Aung, Tin

    2013-11-01

    To evaluate the diagnostic performance of the iris-trabecular contact (ITC) index, a measure of the degree of angle-closure, using swept-source optical coherence tomography (SSOCT, CASIA SS-1000, Tomey Corporation, Nagoya, Japan) in comparison with gonioscopy. Prospective observational study. A total of 108 normal subjects and 32 subjects with angle-closure. The SSOCT 3-dimensional angle scans, which obtain radial scans for the entire circumference of the angle, were performed under dark conditions and analyzed using customized software by a single examiner masked to the subjects' clinical details. The ITC index was calculated as a percentage of the angle that was closed on SSOCT images. First-order agreement coefficient (AC1) statistics and area under the receiver operating characteristic curve (AUC) analyses were performed for angle-closure on the basis of the ITC index in comparison with gonioscopy. Angle-closure on gonioscopy was defined as nonvisibility of posterior trabecular meshwork for at least 2 quadrants. Agreement of the ITC index with gonioscopically defined angle-closure was assessed using the AC1 statistic. Study subjects were predominantly Chinese (95.7%) and female (70.7%), with a mean age of 59.2 (standard deviation, 8.9) years. The median ITC index was 15.24% for gonioscopically open-angle eyes (n = 108) and 48.5% for closed-angle eyes (n = 32) (P = 0.0001). The agreement for angle-closure based on ITC index cutoffs (>35% and ≥50%) and gonioscopic angle-closure was 0.699 and 0.718, respectively. The AUC for angle-closure detection using the ITC index was 0.83 (95% confidence interval, 0.76-0.89), with an ITC index >35% having a sensitivity of 71.9% and specificity of 84.3%. The ITC index is a summary measure of the circumferential extent of angle-closure as imaged with SSOCT. The index had moderate agreement and good diagnostic performance for angle-closure with gonioscopy as the reference standard. Copyright © 2013 American Academy of

  14. Large-angle coherent/Compton scattering method for measurement in vitro of trabecular bone mineral concentration

    International Nuclear Information System (INIS)

    Gigante, G.E.; Sciuti, S.

    1985-01-01

    In this paper, experiments and related theoretical deductions on coherent/Compton scattering of 59.5-keV Am241 gamma line by bonelike materials are described. In particular, the authors demonstrate that a photon scattering mineralometer (PSM) can attain the best working conditions when it operates in a backscattering geometry mode. In fact, the large scattering angle they chose, theta = 135 degrees, allowed them to assemble a very compact source-detector device. Further, the relative sensitivity at 135 degrees turns out to be congruent to 1.7 and congruent to 6 times bigger than at 90 degrees and 45 degrees, respectively. The performances of the theta = 135 degrees PSM were experimentally investigated; i.e., in a measuring time of 10(3) s, a congruent to 5% statistical precision for bonelike materials, such as K 2 HPO 4 -water solutions, was obtained. The large-angle PSM device seems to be very promising for trabecular bone mineral density measurements in vivo in peripheral anatomic sites

  15. Clopidogrel (Plavix®), a P2Y(12) receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo

    DEFF Research Database (Denmark)

    Syberg, Susanne; Brandao-Burch, Andrea; Patel, Jessal J

    2012-01-01

    Clopidogrel (Plavix®), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signalling through P2 receptors, play...... a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation and activity in vitro; and, (2) trabecular and cortical bone parameters in vivo. P2Y(12) receptor expression...

  16. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    Science.gov (United States)

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    Science.gov (United States)

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits.

    Science.gov (United States)

    Sancho-Tello, María; Forriol, Francisco; Martín de Llano, José J; Antolinos-Turpin, Carmen; Gómez-Tejedor, José A; Gómez Ribelles, José L; Carda, Carmen

    2017-07-05

    To study the influence of scaffold properties on the organization of in vivo cartilage regeneration. Our hypothesis was that stress transmission to the cells seeded inside the pores of the scaffold or surrounding it, which is highly dependent on the scaffold properties, determines the differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. 4 series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells, were implanted in cartilage defects in rabbits. Subchondral bone was injured during the surgery to allow blood to reach the implantation site and fill the scaffold pores. At 3 months after implantation, excellent tissue regeneration was obtained, with a well-organized layer of hyaline-like cartilage at the condylar surface in most cases of the hydrophobic or slightly hydrophilic series. The most hydrophilic material induced the poorest regeneration. However, no statistically significant difference was observed between preseeded and non-preseeded scaffolds. All of the materials used were biocompatible, biostable polymers, so, in contrast to some other studies, our results were not perturbed by possible effects attributable to material degradation products or to the loss of scaffold mechanical properties over time due to degradation. Cartilage regeneration depends mainly on the properties of the scaffold, such as stiffness and hydrophilicity, whereas little difference was observed between preseeded and non-preseeded scaffolds.

  19. [Water-exchange processes in hyaline cartilage and its basic components in a normal state and in osteoarthritis].

    Science.gov (United States)

    Nikolaeva, S S; Chkhol, K Z; Bykov, V A; Roshchina, A A; Iakovleva, L V; Koroleva, O A; Omel'ianenko, N P; Rebrov, L B

    2000-01-01

    The content of different forms of tissue water was studied in the normal articular cartilage and osteoarthrosis cartilage and its structural components: collagen, potassium hyaluronate, sodium chondroitinsulphate and its complexes. In the components of cartilage matrix a few of fractions of bound water different in the strength of binding are present. At the maximal humidity, all water in collagen binds with the active groups of biopolymers and in the glycosaminoglycans, in addition to bound water, are present, two crystal forms of freezing water (free water) at least. The quantity of free water in the collagen-chondroitin sulphat membrane, is increased with the increase of chondroitin sulphate. In the collagen-hyaluronate complex, fraction of free water is found only at the low concentration of hyaluronate kalium. It was shown that in the hyalin cartilage, in different from the other connective tissue (skin, achilles tendon), the most part of water is free water and its quantity is increased in the osteoarthrosis. It is supposed that the rearrangement of binding and free-water fractions in the osteoarthrosis is the result of deficiency of hyaluronic acid and therefore this may be regarded in the improvement of methods of treatment. This scientific and methodical approach allow to receive information on the forms and binding energy of water in the biological tissues, which is absorbed from fluids and steam phase and determine characters of the pathological changes.

  20. Optical Coherence Tomography Observation of Gonio Structures during Microhook Ab Interno Trabeculotomy

    Directory of Open Access Journals (Sweden)

    Masaki Tanito

    2017-01-01

    Full Text Available Introduction. Intraoperative observation of ocular structures using microscope-integrated optical coherence tomography (iOCT has been adopted recently. I report my initial feasibility assessment of iOCT for the incised trabecular meshwork observation during microhook ab interno trabeculotomy. Case Series. Both the nasal and temporal sides or either side of the trabecular meshwork/inner wall of Schlemm’s canal was incised more than 3 clock hours. After then, under observation using a Swan-Jacob gonioprism lens with the real-time 5-line scan mode, OCT images of the area were successfully acquired in 10 (83% of 12 sides in nine eyes. Based on the appearance of the acquired images of the 10 sides, the trabeculotomy cleft could be classified into three incisional patterns, that is, six (60% anterior-opening patterns (posterior-based flap, three (30% middle-opening patterns (posterior- and anterior-based flaps, and one (10% posterior-opening pattern (anterior-based flap, according to the predominant locations of the trabecular meshwork flaps. Conclusion. Intraoperative observation of the gonio structures including the trabeculotomy cleft was feasible using the RESCAN 700 in combination with a gonioprism.

  1. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Hansen, Ole Møller; Kristiansen, Asger Albæk; Le, Dang Quang Svend; Nielsen, Agnete Desirée; Nygaard, Jens Vinge; Bünger, Cody Erik; Lind, Martin

    2012-06-01

    To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide) scaffold. By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water-dioxane-PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT-PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O'Driscoll score. In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells. The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.

  2. Outcomes of combined trabecular micro-bypass and phacoemulsification in a predominantly Hispanic patient population

    Directory of Open Access Journals (Sweden)

    Gallardo MJ

    2016-10-01

    Full Text Available Mark J Gallardo,1,2 Richard A Supnet,1 Jane Ellen Giamporcaro,3 Dana M Hornbeak3 1El Paso Eye Surgeons, PA, El Paso, 2Department of Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 3Division of Clinical Research and Medical Affairs, Glaukos Corporation, Laguna Hills, CA, USA Purpose: The purpose of this study was to evaluate intraocular pressure (IOP and topical ocular hypotensive medication burden at 12 months postoperatively in a predominantly Hispanic patient population with primary open-angle glaucoma each implanted with one trabecular micro-bypass stent during cataract surgery.Methods: This was a retrospective, consecutive case series. The main objective was to assess reduction of IOP and/or medication burden in all eyes at the 12-month postoperative exam. A secondary objective was to assess outcomes in 3 subgroups, distinguished preoperatively by IOP control and by medication burden (suboptimal or maximum therapy and with different treatment goals. Group 1 had medication-controlled IOP and goal to reduce medications while maintaining IOP control (n=65; Group 2 had uncontrolled IOP on ≤2 medications and goal to reduce IOP and maintain/reduce medication burden (n=31; and Group 3 had uncontrolled IOP on ≥3 medications and goal to reduce IOP and avoid filtering surgery (n=38. Evaluations included IOP, medication use, cup-to-disc ratio, visual fields, complications, and interventions. One hundred subjects (134 eyes have been followed for 12 months.Results: Most patients (80% were Hispanic and had moderate or severe glaucoma (87%. At 12 months, mean IOP reduced to 12.9 mmHg vs 16.5 mmHg preoperatively; 92% had an IOP ≤15 mmHg at 12 months (99% had ≤18 mmHg. Mean medication burden had decreased to 0.9 vs 2.3 preoperatively. At the 12-month time point, 94% of all eyes achieved their predefined treatment goal of reduced IOP and/or medications. Reductions in medication burden for Group 1, and

  3. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  4. The influence of platelet-rich plasma on the healing of extraction sockets: an explorative randomised clinical trial.

    Science.gov (United States)

    Alissa, Rami; Esposito, Marco; Horner, Keith; Oliver, Richard

    2010-01-01

    To investigate the effect of platelet-rich plasma (PRP) on the healing of hard and soft tissues of extraction sockets with a pilot study. Patients undergoing tooth extraction under intravenous sedation were asked to participate in the trial. Autologous platelet concentrates were prepared from the patients' blood and autologous thrombin was produced. Outcome measures were: pain level, analgesic consumption, oral function (ability to eat food, swallowing, mouth opening and speech), general activity, swelling, bruising, bleeding, bad taste or halitosis, food stagnation, patient satisfaction, healing complications, soft tissue healing, trabecular pattern of newly formed bone in extraction sockets, trabecular bone volume, trabecular separation, trabecular length, trabecular width, and trabecular number. Patients were followed up to 3 months post-extraction. Twelve patients (15 sockets) were randomly allocated to the PRP group and 11 patients (14 sockets) to the control group. Two patients from the control group did not attend any of the scheduled appointments following tooth extraction, and were considered dropouts. Additionally, one more patient from the control group and four patients from the PRP group did not attend their 3-month radiographic assessment appointments. Statistically significantly more pain was recorded in the control group for the first (P=0.02), second (P=0.02) and third (P=0.04) post-operative days for Visual Analogue Scale scores, whereas no differences were observed for the fourth (P=0.17), fifth (P=0.38), sixth (P=0.75) and seventh (P=0.75) post-operative days. There was a statistically significantly higher analgesic consumption for the first (P=0.03) and second (P=0.02) post-operative days in the control group and no differences thereafter. Differences in patients' responses in the health-related quality of life questionnaire were statistically significant in favour of PRP treatment only for the presence of bad taste or bad smell in the mouth (P

  5. Embryonic development of the axial column in the little skate, Leucoraja erinacea.

    Science.gov (United States)

    Criswell, Katharine E; Coates, Michael I; Gillis, J Andrew

    2017-03-01

    The morphological patterns and molecular mechanisms of vertebral column development are well understood in bony fishes (osteichthyans). However, vertebral column morphology in elasmobranch chondrichthyans (e.g., sharks and skates) differs from that of osteichthyans, and its development has not been extensively studied. Here, we characterize vertebral development in an elasmobranch fish, the little skate, Leucoraja erinacea, using microCT, paraffin histology, and whole-mount skeletal preparations. Vertebral development begins with the condensation of mesenchyme, first around the notochord, and subsequently around the neural tube and caudal artery and vein. Mesenchyme surrounding the notochord differentiates into a continuous sheath of spindle-shaped cells, which forms the precursor to the mineralized areolar calcification of the centrum. Mesenchyme around the neural tube and caudal artery/vein becomes united by a population of mesenchymal cells that condenses lateral to the sheath of spindle-shaped cells, with this mesenchymal complex eventually differentiating into the hyaline cartilage of the future neural arches, hemal arches, and outer centrum. The initially continuous layers of areolar tissue and outer hyaline cartilage eventually subdivide into discrete centra and arches, with the notochord constricted in the center of each vertebra by a late-forming "inner layer" of hyaline cartilage, and by a ring of areolar calcification located medial to the outer vertebral cartilage. The vertebrae of elasmobranchs are distinct among vertebrates, both in terms of their composition (i.e., with centra consisting of up to three tissues layers-an inner cartilage layer, a calcified areolar ring, and an outer layer of hyaline cartilage), and their mode of development (i.e., the subdivision of arch and outer centrum cartilage from an initially continuous layer of hyaline cartilage). Given the evident variation in patterns of vertebral construction, broad taxon sampling, and

  6. Calcium and phosphorus concentrations and the calcium/phosphorus ratio in trabecular bone from the femoral neck of healthy humans as determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Tzaphlidou, Margaret

    2003-01-01

    The Ca and P concentrations as well as the Ca/P ratio were estimated in intact trabecular bone samples from the femoral neck of healthy humans, 34 women and 44 men, aged from 15 to 55 years, using instrumental neutron activation analysis. The mean values (M±SD) for the investigated parameters (on a dry-weight basis) were: 12.1±3.0%, 5.94±1.71%, 2.07±0.25 and 10.9±2.5%, 5.30±1.23%, 2.07±0.22 for females and males, respectively. A statistically significant (p≤0.05) decrease of Ca concentration with age was found only for males while the P concentration and the Ca/P ratio were not affected by age. No statistically significant sex-related differences were observed in any of the parameters. The mean values for Ca, P and the Ca/P ratio lay close to the median of the very wide range of published data. The individual variation for the Ca/P ratio in trabecular bone from the healthy human femoral neck was lower than those for Ca and P separately. This suggests that the specificity of the Ca/P ratio is better than that of Ca and P concentrations and may be more reliable for the diagnosis of bone disorders

  7. Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Yasuno, Yoshiaki; Yamanari, Masahiro; Kawana, Keisuke; Miura, Masahiro; Fukuda, Shinichi; Makita, Shuichi; Sakai, Shingo; Oshika, Tetsuro

    2010-11-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is known to be advantageous because of its additional tissue-specific contrast of the anterior eye. So far, this advantage has been shown only qualitatively. We evaluate the improved visibility afforded by 3-D PS corneal and anterior eye segment OCT (PS-CAS-OCT) in visualizing the trabecular meshwork (TM) based on statistical evidences. A total of 31 normal subjects participated in this study. The anterior eye segments of both the eyes of the subjects are scanned using a custom-made PS-CAS-OCT and the standard-scattering OCT (S-OCT) and polarization-sensitive phase-retardation OCT (P-OCT) images are obtained. Three graders grade the visibility of the TM using a four-leveled grading system. The intergrader agreement, intermodality differences, and interquadrant dependence of visibility are statistically examined. All three of three combinations of graders show substantial agreement in visibility with P-OCT (ρ = 0.74, 0.70, and 0.68, Spearman's correlation), while only one of three shows substantial agreement with S-OCT (ρ = 0.72). Significant dependence of the visibility on the modality (S-OCT versus P-OCT) and quadrants are found by the analysis of variance. A subsequent Wilcoxon signed-rank test reveals significantly improved visibility. PS-CAS-OCT may become a useful tool for screening angle-closure glaucoma.

  8. TRABECULAR BONE SCORE – A NON-INVASIVE ANALYTICAL METHOD TO EVALUATE BONE QUALITY BASED ON ROUTINE DUAL-ENERGY ABSORPTIOMETRY. PERSPECTIVES OF ITS USE IN CLINICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    T. T. Tsoriev

    2016-01-01

    Full Text Available Two-dimensional dual-energy X-ray absorptiometry (DXA, osteodensitometry is currently considered as the gold standard for diagnosis of osteoporosis. However, despite good operational characteristics, this type of investigation cannot help to assess bone microarchitecture and the degree of its derangement in osteoporosis. Therefore, trabecular bone score (TBS has been developed as a  non-invasive method of indirect description of bone microarchitecture based on data derived from a  standard DXA of the lumbar spine. Not being a direct mapping of the physical measurements of trabecular microarchitecture, TBS nevertheless shows a positive correlation with quantitative values obtained from micro-computed tomography and high resolution peripheral quantitative computed tomography, i.e. with the bone volume fraction, junction density, trabecular numbers and their disintegration. There is also an association between the ability of the bone tissue to resist stress in experimental studies ex vivo and TBS measurement. Due to TBS, there is a possibility to detect bone microarchitecture impairment even in individuals with normal bone mineral density (BMD, i.e. higher TBS values correlate with improved bone microstructure, whereas a  reduced TBS shows its deterioration. Limitation of TBS use are primarily related to the DXA image quality: image faults caused either by technical reasons or by too low or too high body mass index can lead to an overestimation/underestimation of the index. Assessment of the lumbar TBS has been repeatedly performed in cross-sectional and prospective studies in representative patient samples (mainly postmenopausal women and significant numbers of healthy subjects, and proved to be a predictor (independent of BMD of fracture risk. An evaluation of the possibility to use TBS for early diagnosis of secondary osteoporosis (related to various endocrine disorders  would be of great interest, as BMD, as known from clinical

  9. Initial clinical experience with the trabecular micro-bypass stent in patients with glaucoma.

    Science.gov (United States)

    Spiegel, Detlev; Wetzel, Wolfgang; Haffner, David S; Hill, Richard A

    2007-01-01

    This study was undertaken to evaluate the efficiency of a trabecular micro-bypass stent designed to allow direct aqueous drainage from the anterior chamber into Schlemm's canal in patients with glaucoma. In this prospective case series of 6 patients with open-angle glaucoma, the microstent was inserted ab interno under local anesthesia in an ophthalmic operating room. Patients were seen postoperatively at 1 to 2 d, 1 wk, and 1, 2, 6, and 12 mo. All stents were successfully placed within Schlemm's canal. Mean intraocular pressure (IOP) at preoperative baseline was 20.2+/-6.3 mm Hg (range, 14-31 mm Hg). Mean IOP decreased during the immediate postoperative period to approximately 12 to 13 mm Hg and was stabilized at 14 to 15 mm Hg with reduction of medication throughout 1 y of follow-up. No major complications occurred. According to observations reported in this feasibility study, the microstent was effective in reducing IOP and in decreasing the number of glaucoma medications required to control IOP. Implantation procedures were safe, and stents remained in place throughout the follow-up period. None of the complications traditionally associated with filtering surgery were reported. Further research on this stent in a larger group of patients is needed to assess its role in glaucoma therapy.

  10. Differential Protein Expression Profiles in Glaucomatous Trabecular Meshwork: An Evaluation Study on a Small Primary Open Angle Glaucoma Population.

    Science.gov (United States)

    Micera, Alessandra; Quaranta, Luciano; Esposito, Graziana; Floriani, Irene; Pocobelli, Augusto; Saccà, Sergio Claudio; Riva, Ivano; Manni, Gianluca; Oddone, Francesco

    2016-02-01

    Primary open angle glaucoma (POAG) is a progressive optic neuropathy characterized by impaired aqueous outflow and extensive remodeling in the trabecular meshwork (TM). The aim of this study was to characterize and compare the expression patterns of selected proteins belonging to the tissue remodeling, inflammation and growth factor pathways in ex vivo glaucomatous and post-mortem TMs using protein-array analysis. TM specimens were collected from 63 white subjects, including 40 patients with glaucoma and 23 controls. Forty POAG TMs were collected at the time of surgery and 23 post-mortem specimens were from non-glaucomatous donor sclerocorneal tissues. Protein profiles were evaluated using a chip-based array consisting of 60 literature-selected antibodies. A different expression of some factors was observed in POAG TMs with respect to post-mortem specimens, either in abundance (interleukin [IL]10, IL6, IL5, IL7, IL12, IL3, macrophage inflammatory protein [MIP]1δ/α, vascular endothelial growth factor [VEGF], transforming growth factor beta 1 [TGFβ1], soluble tumor necrosis factor receptor I [sTNFRI]) or in scarcity (IL16, IL18, intercellular adhesion molecule 3 [ICAM3], matrix metalloproteinase-7 [MMP7], tissue inhibitor of metalloproteinase 1 [TIMP1]). MMP2, MMP7, TGFβ1, and VEGF expressions were confirmed by Western blot, zymography, and polymerase chain reaction. No difference in protein profile expression was detected between glaucomatous subtypes. The analysis of this small TM population highlighted some proteins linked to POAG, some previously reported and others of new detection (IL7, MIPs, sTNFαRI). A larger POAG population is required to select promising disease-associated biomarker candidates. This study was partially supported by the Fondazione Roma, the Italian Ministry of Health and the "National 5xMille 2010 tax donation to IRCCS-G.B. Bietti Foundation".

  11. An adaptation model for trabecular bone at different mechanical levels

    Directory of Open Access Journals (Sweden)

    Lv Linwei

    2010-07-01

    Full Text Available Abstract Background Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different. Methods An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method. Results The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone. Conclusions The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological

  12. Prospective Evaluation of Two iStent® Trabecular Stents, One iStent Supra® Suprachoroidal Stent, and Postoperative Prostaglandin in Refractory Glaucoma: 4-year Outcomes.

    Science.gov (United States)

    Myers, Jonathan S; Masood, Imran; Hornbeak, Dana M; Belda, Jose I; Auffarth, Gerd; Jünemann, Anselm; Giamporcaro, Jane Ellen; Martinez-de-la-Casa, Jose M; Ahmed, Iqbal Ike K; Voskanyan, Lilit; Katz, L Jay

    2018-03-01

    This study evaluates long-term outcomes of two trabecular micro-bypass stents, one suprachoroidal stent, and postoperative prostaglandin in eyes with refractory open angle glaucoma (OAG). Prospective ongoing 5-year study of 80 eligible subjects (70 with 4-year follow-up) with OAG and IOP ≥ 18 mmHg after prior trabeculectomy and while taking 1-3 glaucoma medications. Subjects received two iStent ® trabecular micro-bypass stents, one iStent Supra ® suprachoroidal stent, and postoperative travoprost. Postoperative IOP was measured with medication and annually following medication washouts. Performance was measured by the proportion of eyes with ≥ 20% IOP reduction on one medication (the protocol-specified prostaglandin) versus preoperative medicated IOP (primary outcome); and the proportion of eyes with postoperative IOP ≤ 15 and ≤ 18 mmHg on one medication (secondary outcome). Additional clinical and safety data included medications, visual field, pachymetry, gonioscopy, adverse events, visual acuity, and slit-lamp and fundus examinations. Preoperatively, mean medicated IOP was 22.0 ± 3.1 mmHg on 1.2 ± 0.4 medications, and mean unmedicated IOP was 26.4 ± 2.4 mmHg. Postoperatively, among eyes without later cataract surgery, mean medicated IOP at all visits through 48 months was ≤ 13.7 mmHg (≥ 37% reduction), and annual unmedicated IOP was ≤ 18.4 mmHg (reductions of ≥ 30% vs. preoperative unmedicated IOP and ≥ 16% vs. preoperative medicated IOP). At all postoperative visits among eyes without additional surgery or medication, ≥ 91% of eyes had ≥ 20% IOP reduction on one medication versus preoperative medicated IOP. At month 48, 97 and 98% of eyes achieved IOP ≤ 15 and ≤ 18 mmHg, respectively, on one medication. Six eyes required additional medication, no eyes required additional glaucoma surgery, and safety measurements were favorable throughout follow-up. IOP control was achieved safely with two

  13. Direct estimation of human trabecular bone stiffness using cone beam computed tomography.

    Science.gov (United States)

    Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo

    2018-04-10

    The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Colonization of a Central Venous Catheter by the Hyaline Fungus Fusarium solani Species Complex: A Case Report and SEM Imaging

    Directory of Open Access Journals (Sweden)

    Alberto Colombo

    2013-01-01

    Full Text Available The incidence of opportunistic infections by filamentous fungi is increasing partly due to the widespread use of central venous catheters (CVC, indwelling medical devices, and antineoplastic/immunosuppressive drugs. The case of a 13-year-old boy under treatment for acute lymphoblastic leukemia is presented. The boy was readmitted to the Pediatric Ward for intermittent fever of unknown origin. Results of blood cultures drawn from peripheral venous sites or through the CVC were compared. CVC-derived bottles (but not those from peripheral veins yielded hyaline fungi that, based on morphology, were identified as belonging to the Fusarium solani species complex. Gene amplification and direct sequencing of the fungal ITS1 rRNA region and the EF-1alpha gene confirmed the isolate as belonging to the Fusarium solani species complex. Portions of the CVC were analyzed by scanning electron microscopy. Fungi mycelia with long protruding hyphae were seen into the lumen. The firm adhesion of the fungal formation to the inner surface of the catheter was evident. In the absence of systemic infection, catheter removal and prophylactic voriconazole therapy were followed by disappearance of febrile events and recovery. Thus, indwelling catheters are prone to contamination by environmental fungi.

  15. Development of a 3-D x-ray micro-tomography system and its application to trabecular bone/cement interface

    International Nuclear Information System (INIS)

    Chi, Yong Ki; Cho, Gyuseong

    2004-01-01

    In recent years, the interface analysis of micro-structure based objects is an important research in osteoporosis, vascular imaging since a 3-D X-ray micro-tomography system was developed. However, the micro-tomographic image shows the white-out appearance in case of imaging of similar density objects with low energy X-ray. Therefore these images must be analyzed about the interface between microstructure based objects for its application to biomechanical study. Many published studies suggested approximately assumed model of interface and predicted mechanical failure by means of Finite Element Method (FEM) but these FEM analysis has not used for modeling the real structure and interface between objects such as roughness, voids and pores of objects. We developed micro-tomography system and suggest the application of micro-tomographic image for predicting mechanical failure at the interface. The micro-tomography system consists of a 5 μm micro-focus X-ray tube, a CMOS-based image sensor and a rotating sample holder controlled by a precision motor. CMOS image sensor has 62x62 mm 2 sensing area and uses optical lenses system for increasing resolution. The sample which was manufactured by implanting cement in a pig hip bone was used and its fracture is considered to be an important cause of loosening of hip joint replacement in orthopedic implants. A Feldkamp's cone-beam reconstruction algorithm on the equispatial detector case was used for bone/cement 3D volume data and the analysis of a trabecular bone/cement interface containing white-out appearance was performed by using multiple criterion segmentation of region and volume. Finally, the segmented data can be used for fracture prediction of FEM by determining node of hexahedron meshing. In this paper, we present development of a 3-D cone beam micro-tomographic system with CMOS image sensor and its application to a complex structure of a trabecular bone and implanted cement for predicting the failure mechanism of

  16. Hyaline cartilage thickness in radiographically normal cadaveric hips: comparison of spiral CT arthrographic and macroscopic measurements.

    Science.gov (United States)

    Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis

    2007-02-01

    To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral multidetector CT arthrography depicts cartilage thickness gradients in radiographically normal cadaveric hips. (c) RSNA, 2007.

  17. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  18. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    Science.gov (United States)

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Trabecular bone score as a skeletal fragility index in acromegaly patients.

    Science.gov (United States)

    Hong, A R; Kim, J H; Kim, S W; Kim, S Y; Shin, C S

    2016-03-01

    Lumbar spine trabecular bone score (TBS) was significantly decreased in active acromegaly patients. TBS may be useful to assess the skeletal fragility in acromegaly in which bone mineral density (BMD) is not sufficient to represent bone strength and explain the high incidence of fragility fractures in acromegaly patients. Although the data on BMD are controversial, patients with acromegaly have an increased risk of fragility fracture. We examined the lumbar spine TBS to explain the skeletal deterioration in acromegaly patients. We included 14 men and 19 women acromegaly patients who underwent dual-energy X-ray absorptiometry at the time of diagnosis from 2000 to 2014 at Seoul National University Hospital. Ninety-nine age-, sex- and body mass index-matched controls were recruited. Biochemical parameters, lumbar spine TBS, and BMD at all sites were measured. Gonadal status was evaluated at diagnosis. Lumbar spine TBS was lower in acromegaly patients than in controls in both genders (1.345 ± 0.121 vs. 1.427 ± 0.087, P = 0.005 in men; 1.356 ± 0.082 vs. 1.431 ± 0.071, P = 0.001 in women). In contrast, BMD at all sites did not differ between the two groups. Hypogonadal acromegaly patients (men, n = 9; women, n = 12) had lower TBS values compared with controls both in men and women (all P acromegaly patients, lumbar spine TBS was lower than in women controls only (P = 0.041). Skeletal microarchitecture was deteriorated in acromegaly patients as assessed by TBS, which seems to be a consequence of growth hormone excess as well as hypogonadism, especially in women.

  20. Orientation-dependent changes in MR signal intensity of articular cartilage: a manifestation of the ``magic angle`` effect

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, F.K.; Bolze, X.; Felsenberg, D.; Wolf, K.J. [Department of Radiology, Benjamin Franklin University Hospital, Free University Berlin, D-12200 Berlin (Germany)

    1998-06-01

    Objective: To study magnetic resonance (MR) imaging pattern of normal hyaline articular cartilage in the knee joint with regard to the contribution of the ``magic angle`` effect to the MR signal. Design. Thirty-two healthy volunteers were imaged in a standard supine position in a 1.5-T unit using spin echo and gradient echo sequences. Nine volunteers were reimaged with the knee flexed. The signal behavior of the hyaline cartilage of the femoral condyles was evaluated qualitatively and quantitatively. The extended and flexed positions of the nine volunteers were compared. Results. A superficial and a deep hyperintense layer and a hypointense middle cartilage layer were observed. Segments of increased signal intensity were visible along the condyles; a magic angle effect on signal intensity was evident in the hypointense middle layer with both gradient echo and spin echo images. Conclusion. The MR signal behavior of hyaline cartilage is influenced by the alignment of the collagen fibers within the cartilage in relation to the magnetic field. Failure to recognize this effect may lead to inaccurate diagnosis. (orig.) With 4 figs., 17 refs.

  1. Medullar fat influences texture analysis of trabecular microarchitecture on X-ray radiographs

    International Nuclear Information System (INIS)

    Chappard, Daniel; Pascaretti-Grizon, Florence; Gallois, Yves; Mercier, Philippe; Basle, Michel F.; Audran, Maurice

    2006-01-01

    Alteration of trabecular architecture is a predictor of fracture risk in osteoporosis. Until now, microarchitecture analysis is difficult to evaluate in routine clinical practice for osteoporosis. Texture analysis on X-ray images has been advocated to be a suitable method to assess microarchitecture in bone diseases. The X-ray acquisition conditions have been often taken into consideration; however, the influence of anatomical conditions on texture parameters has received little interest. Because fat is a well-known problem with computed tomography and densitometry, we have designed a cadaver study to compare the influence of marrow lipids on numerous texture parameters. Twenty-one human distal radii were obtained, radiographed, and analyzed using a software that measures: heterogeneity, skeletonized parameters, run-lengths and fractal dimensions. Texture parameters were measured before, and after an extensive delipidation period lasting 3 weeks. Quality of the radiographs was improved after defatting. Delipidation had a very significant effect on measurements: afterwards defatting, the images were less blurred, and a better delineation of trabeculae and marrow cavities was obtained. This provoked an increase of parameters based on the grey level distribution but had no influence on parameters describing the reticulated honeycomb microarchitecture of the trabeculae (i.e., fractal dimension). Some parameters appeared anisotropy-sensitive, due to the different constitution and size of the trabeculae. The fat content of bone marrow induces noise that can modify some texture parameters. One should take into account the fat content of the marrow when using texture analysis to compare patients with osteoporosis due to various etiologies

  2. A Novel Mgp-Cre Knock-In Mouse Reveals an Anticalcification/Antistiffness Candidate Gene in the Trabecular Meshwork and Peripapillary Scleral Region.

    Science.gov (United States)

    Borrás, Teresa; Smith, Matthew H; Buie, LaKisha K

    2015-04-01

    Soft tissue calcification is a pathological condition. Matrix Gla (MGP) is a potent mineralization inhibitor secreted by cartilage chondrocytes and arteries' vascular smooth muscle cells. Mgp knock-out mice die at 6 weeks due to massive arterial calcification. Arterial calcification results in arterial stiffness and higher systolic blood pressure. Intriguingly, MGP was highly abundant in trabecular meshwork (TM). Because tissue stiffness is relevant to glaucoma, we investigated which additional eye tissues use Mgp's function using knock-in mice. An Mgp-Cre-recombinase coding sequence (Cre) knock-in mouse, containing Mgp DNA plus an internal ribosomal entry site (IRES)-Cre-cassette was generated by homologous recombination. Founders were crossed with Cre-mediated reporter mouse R26R-lacZ. Their offspring expresses lacZ where Mgp is transcribed. Eyes from MgpCre/+;R26RlacZ/+ (Mgp-lacZ knock-in) and controls, 1 to 8 months were assayed for β-gal enzyme histochemistry. As expected, Mgp-lacZ knock-in's TM was intensely blue. In addition, this mouse revealed high specific expression in the sclera, particularly in the peripapillary scleral region (ppSC). Ciliary muscle and sclera above the TM were also positive. Scleral staining was located immediately underneath the choroid (chondrocyte layer), began midsclera and was remarkably high in the ppSC. Cornea, iris, lens, ciliary body, and retina were negative. All mice exhibited similar staining patterns. All controls were negative. Matrix Gla's restricted expression to glaucoma-associated tissues from anterior and posterior segments suggests its involvement in the development of the disease. Matrix Gla's anticalcification/antistiffness properties in the vascular tissue, together with its high TM and ppCS expression, place this gene as a strong candidate for TM's softness and sclera's stiffness regulation in glaucoma.

  3. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  4. Automated selection of trabecular bone regions in knee radiographs

    International Nuclear Information System (INIS)

    Podsiadlo, P.; Wolski, M.; Stachowiak, G. W.

    2008-01-01

    Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the ''gold standard'' that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8x12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI)=0.83 (medial) and 0.81 (lateral) and the offset=[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions

  5. Joint unloading implant modifies subchondral bone trabecular structure in medial knee osteoarthritis: 2-year outcomes of a pilot study using fractal signature analysis

    Directory of Open Access Journals (Sweden)

    Miller LE

    2015-01-01

    Full Text Available Larry E Miller,1,2 Miki Sode,3 Thomas Fuerst,3 Jon E Block2 1Miller Scientific Consulting, Inc., Asheville, NC, USA; 2The Jon Block Group, San Francisco, CA, USA; 3Bioclinica, Newark, CA, USA Background: Knee osteoarthritis (OA is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring® Knee Implant System.Methods: Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years. Main outcomes included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC pain, function, and stiffness subscores and independent core laboratory determinations of joint space width and fractal signature of the tibial cortex.Results: WOMAC scores, on average, improved by 92% for pain, 91% for function, and 79% for stiffness over the 2-year follow-up period. Joint space width in the medial compartment of the treated knee significantly increased from 0.9 mm at baseline to 3.1 mm at 2 years; joint space width in the medial compartment of the untreated knee was unchanged. Fractal signatures of the vertically oriented trabeculae in the medial compartment decreased by 2.8% in the treated knee and increased by 2.1% in the untreated knee over 2 years. No statistically significant fractal signature changes were observed in the horizontally oriented trabeculae in the medial compartment or in the horizontal or vertical trabeculae of the lateral compartment in the treated knee.Conclusion: Preliminary evidence suggests that the KineSpring System may modify knee OA disease progression by increasing joint space width and improving subchondral bone trabecular integrity, thereby reducing pain and improving joint function. Keywords: disease modification, KineSpring, joint space, pain, trabecular

  6. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  7. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  8. Hyaline cartilage calcification of the first metatarsophalangeal joint is associated with osteoarthritis but independent of age and BMI.

    Science.gov (United States)

    Hubert, Jan; Hawellek, Thelonius; Hischke, Sandra; Bertrand, Jessica; Krause, Matthias; Püschel, Klaus; Rüther, Wolfgang; Niemeier, Andreas

    2016-11-15

    Hyaline cartilage calcification (CC) is associated with osteoarthritis (OA) in hip and knee joints. The first metatarsophalangeal joint (1 st MTPJ) is frequently affected by OA, but it is unclear if CC occurs in the 1 st MTPJ. The aim of the present study was to analyze the prevalence of CC of the 1 st MTPJ in the general population by high-resolution digital contact radiography (DCR) and to determine its association with histological OA severity, age and body mass index (BMI). 168 metatarsal heads of 84 donors (n = 47 male, n = 37 female; mean age 62.73 years, SD ±18.8, range 20-93) were analyzed by DCR for the presence of CC. Histological OA grade (hOA) by OARSI was analyzed in the central load-bearing zone of the first metatarsal head (1 st MH). Structural equation modeling (SEM) was performed to analyze the interrelationship between CC, hOA, age and BMI. The prevalence of CC of 1 st MH was 48.8 % (41/84) (95 %-CI [37.7 %, 60.0 %]), independent of the affected side (p = 0.42), gender (p = 0.41) and BMI (p = 0.51). The mean amount of CC of one MH correlated significantly with that of the contralateral side (r s  = 0.4, 95 %-CI [0.26, 0.52], p cartilage area) of the MH correlated significantly with the severity of hOA (r s  = 0.51, 95 %-CI [0.32, 0.65], p studies.

  9. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities.

    Science.gov (United States)

    Ley, C J; Ekman, S; Hansson, K; Björnsdóttir, S; Boyde, A

    2014-03-25

    Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA) in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining) and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC), articular calcified cartilage (ACC), subchondral bone (SCB) and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints.

  10. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  11. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bergmann de Carvalho

    2012-03-01

    Full Text Available PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS. METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T while the other did not (OVX, those groups were compared to a control group (C not ovariectomized. Tibolone administration (1mg/day began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at POBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T e o outro não (OVX. Esses grupos foram comparados a um grupo controle (C não ooforectomizado. A administração de tibolona (1mg/dia começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona

  12. New species of Parotocinclus (Siluriformes: Loricariidae) from coastal drainages of Rio de Janeiro, southeastern Brazil.

    Science.gov (United States)

    Roxo, Fábio F; Melo, Bruno F; Silva, Gabriel S C; Oliveira, Claudio

    2017-02-15

    A new species of Parotocinclus is described from tributaries of rio São João, an Atlantic coastal river of Rio de Janeiro, southeastern Brazil. The new species is distinguished from its congeners by the possession of a triangular patch of dark pigmentation on the anterior portion of the dorsal-fin base, a fully developed adipose fin, complete exposure of the ventral surface of the pectoral girdle, and a distinctive pigmentation pattern of the caudal fin. The caudal fin has a hyaline background with a large black blotch covering its anterior portion, tapering irregularly through distal portions of the ventral lobe with a hyaline rounded area, and a small patch of dark pigmentation on distal portions of the dorsal lobe.

  13. Fragility Fracture Incidence in Chronic Obstructive Pulmonary Disease (COPD) Patients Associates With Nanoporosity, Mineral/Matrix Ratio, and Pyridinoline Content at Actively Bone-Forming Trabecular Surfaces.

    Science.gov (United States)

    Paschalis, Eleftherios P; Gamsjaeger, Sonja; Dempster, David; Jorgetti, Vanda; Borba, Victoria; Boguszewski, Cesar L; Klaushofer, Klaus; Moreira, Carolina A

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with low areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and altered microstructure by bone histomorphometry and micro-computed tomography. Nevertheless, not all COPD patients sustain fragility fractures. In the present study, we used Raman microspectroscopic analysis to determine bone compositional properties at actively forming trabecular surfaces (based on double fluorescent labels) in iliac crest biopsies from 19 postmenopausal COPD patients (aged 62.1 ± 7.3 years). Additionally, we analyzed trabecular geometrical centers, representing tissue much older than the forming surfaces. Eight of the patients had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. None of the patients had taken oral glucocorticoids. The monitored parameters were mineral/matrix ratio (MM), nanoporosity, and relative glycosaminoglycan (GAG), lipid, and pyridinoline contents (PYD). There were no significant differences between the glucocorticoid-treated patients and those who did not receive any. On the other hand, COPD patients sustaining fragility fractures had significantly lower nanoporosity and higher MM and PYD values compared with COPD patients without fragility fractures. To the best of our knowledge, this is the first study to discriminate between fracture and non-fracture COPD patients based on differences in the material properties of bone matrix. Given that these bone material compositional differences are evident close to the cement line (a major bone interface), they may contribute to the inferior bone toughness and coupled with the lower lumbar spine bone mineral density values result in the fragility fractures prevalent in these patients. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  14. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.

    Science.gov (United States)

    Hoemann, Caroline D; Hurtig, Mark; Rossomacha, Evgeny; Sun, Jun; Chevrier, Anik; Shive, Matthew S; Buschmann, Michael D

    2005-12-01

    one hour postoperatively, chitosan-glycerol phosphate/blood clots showed increased adhesion to the walls of the defects as compared with the blood clots in the untreated microfracture defects. After histological processing, all blood clots in the control microfracture defects had been lost, whereas chitosanglycerol phosphate/blood clot adhered to and was partly retained on the surfaces of the defect. At six months, defects that had been treated with chitosan-glycerol phosphate/blood were filled with significantly more hyaline repair tissue (p cartilage repair compared with microfracture alone by increasing the amount of tissue and improving its biochemical composition and cellular organization.

  15. Bone Response to Dietary Co-Enrichment with Powdered Whole Grape and Probiotics

    Directory of Open Access Journals (Sweden)

    Cynthia Blanton

    2018-01-01

    20% grape + 1% probiotic vs. most other diets for BV/TV, trabecular number, trabecular spacing and trabecular pattern factor (p < 0.05. Tibia and femur diaphysis cortical bone (cortical wall thickness and medullary area displayed neither aging nor diet effects (p > 0.05. Vertebrae bone showed age-related deterioration in trabecular thickness and trabecular spacing and a trend toward preservation of trabecular thickness by grape and/or probiotic enrichment (p < 0.05. These findings demonstrate no benefit to bone of combined compared to independent supplementation with probiotics or whole grape powder and even suggest an interference of co-ingestion.

  16. Long-term Risedronate Treatment Normalizes Mineralization and Continues to Preserve Trabecular Architecture: Sequential Triple Biopsy Studies with Micro-Computed Tomography

    International Nuclear Information System (INIS)

    Borah, B.; Dufresne, T.; Ritman, E.; Jorgensen, S.; Liu, S.; Chmielewski, P.; Phipps, R.; Zhou, X.; Sibonga, J.; Turner, R.

    2006-01-01

    The objective of the study was to assess the time course of changes in bone mineralization and architecture using sequential triple biopsies from women with postmenopausal osteoporosis (PMO) who received long-term treatment with risedronate. Transiliac biopsies were obtained from the same subjects (n = 7) at baseline and after 3 and 5 years of treatment with 5 mg daily risedronate. Mineralization was measured using 3-dimensional (3D) micro-computed tomography (CT) with synchrotron radiation and was compared to levels in healthy premenopausal women (n = 12). Compared to the untreated PMO women at baseline, the premenopausal women had higher average mineralization (Avg-MIN) and peak mineralization (Peak-MIN) by 5.8% (P = 0.003) and 8.0% (P = 0.003), respectively, and lower ratio of low to high-mineralized bone volume (BMR-V) and surface area (BMR-S) by 73.3% (P = 0.005) and 61.7% (P 0.003), respectively. Relative to baseline, 3 years of risedronate treatment significantly increased Avg-MIN (4.9 ± 1.1%, P = 0.016) and Peak-MIN (6.2 ± 1.5%, P = 0.016), and significantly decreased BMR-V (-68.4 ± 7.3%, P = 0.016) and BMR-S (-50.2 ± 5.7%, P = 0.016) in the PMO women. The changes were maintained at the same level when treatment was continued up to 5 years. These results are consistent with the significant reduction of turnover observed after 3 years of treatment and which was similarly maintained through 5 years of treatment. Risedronate restored the degree of mineralization and the ratios of low- to high-mineralized bone to premenopausal levels after 3 years of treatment, suggesting that treatment reduced bone turnover in PMO women to healthy premenopausal levels. Conventional micro-CT analysis further demonstrated that bone volume (BV/TV) and trabecular architecture did not change from baseline up to 5 years of treatment, suggesting that risedronate provided long-term preservation of trabecular architecture in the PMO women. Overall, risedronate provided sustained

  17. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Cheng, Alice; Boyan, Barbara D; Humayun, Aiza; Cohen, David J; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  18. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.

    Science.gov (United States)

    Cheng, Alice; Humayun, Aiza; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2014-10-07

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

  19. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Theofilos Tourtas

    Full Text Available Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H₂O₂, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H₂O₂ further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H₂O₂ stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H₂O₂ mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H₂O₂ induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side

  20. Trabecular bone score as an assessment tool to identify the risk of osteoporosis in axial spondyloarthritis: a case-control study.

    Science.gov (United States)

    Kang, Kwi Young; Goo, Hye Yeon; Park, Sung-Hwan; Hong, Yeon Sik

    2018-03-01

    To compare the trabecular bone score (TBS) between patients with axial spondyloarthritis (axSpA) and matched normal controls and identify risk factors associated with a low TBS. TBS and BMD were assessed in the two groups (axSpA and control) using DXA. Osteoporosis risk factors and inflammatory markers were also assessed. Disease activity and radiographic progression in the sacroiliac joint and spine were evaluated in the axSpA group. Multivariate linear regression analysis was performed to identify risk factors associated with TBS. In the axSpA group, 248 subjects were enrolled; an equal number of age- and sex-matched subjects comprised the control group. The mean TBS was 1.43 (0.08) and 1.38 (0.12) in the control and axSpA groups, respectively (P tool to identify the risk of osteoporosis in patients with axSpA.

  1. Evaluating two-dimensional skeletal structure parameters using radiological bone morphometric analysis

    International Nuclear Information System (INIS)

    Asa, Kensuke; Sakurai, Takashi; Kashima, Isamu; Kumasaka, Satsuki

    2005-01-01

    The objectives of this study was to investigate the reliability of two-dimensional (2D) skeletal structure parameters obtained using radiological bone morphometric analysis. The 2D skeletal parameters in the regions of interest (ROIs) were measured on computed radiography (CR) images of first phalanges from racehorses, using radiological bone morphometric analysis. Cancellous bone blocks were made from the phalanges in the same position as the ROI determined on CR images. Three-dimensional (3D) trabecular parameters were measured using micro-computed tomography (μCT). The correlations between the 2D skeletal parameters and 3D trabecular parameters were evaluated in relation to the measured bone strength. The following 2D skeletal structure parameters were correlated with bone strength (r=0.61-0.69): skeletal perimeter (Sk.Pm), skeletal number (Sk.N), skeletal separation (Sk.Sp), skeletal spacing (Sk.Spac), fractal dimension (FD), and skeletal pattern factor (SkPf). The 3D trabecular structure parameters were closely correlated with bone strength (r=0.74-0.86). The 2D skeletal parameters Sk.N, Sk.Pm, FD, SkPf, and Sk.Spac were correlated with the 3D trabecular parameters (r=0.61-0.70). The 2D skeletal parameters obtained using radiological bone morphometric analysis may be useful indicators of trabecular strength. (author)

  2. The bisphosphonate zoledronate prevents vertebral bone loss in mature estrogen-deficient rats as assessed by micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Glatt M.

    2001-01-01

    Full Text Available The effect of long-term treatment with the bisphosphonate zoledronate on vertebral bone architecture was investigated in estrogen-deficient mature rats. 4-month-old rats were ovariectomized and development of cancellous osteopenia was assessed after 1 year. The change of bone architectural parameters was determined with a microtomographic instrument of high resolution. After 1 year of estrogen-deficiency, animals lost 55% of vertebral trabecular bone in comparison to sham operated control animals. Trabecular number (Tb.N and trabecular thickness (Tb.Th were significantly reduced in ovariectomized animals, whereas trabecular separation (Tb.Sp, bone surface to volume fraction (BS/BV and trabecular bone pattern factor (TBPf were significantly increased, indicating a loss of architectural integrity throughout the vertebral body. 3 groups of animals were treated subcutaneously with zoledronate for 1 year with 0.3, 1.5 and 7.5 microgram/kg/week to inhibit osteoclastic bone degradation. Administration started immediately after ovariectomy and treatment dose-dependently prevented the architectural bone deterioration and completely suppressed the effects of estrogen deficiency at the higher doses. The results show that microtomographic determination of static morphometric parameters can be used to quantitate the effects of drugs on vertebral bone architecture in small laboratory animals and that zoledronate is highly effective in this rat model.

  3. Photochemical Targeting Of Phagocytic Trabecular Meshwork Cells Using Chlorin E6 Coupled Microspheres

    Science.gov (United States)

    Latina, M. A.; Kobsa, P. H.; Rakestraw, S. L.; Crean, E. A.; Hasan, T.; Yarmush, M. L.

    1989-03-01

    We have investigated a novel and efficient delivery system utilizing photosensitizer-coupled-latex microspheres to photochemically target and kill phagocytic trabecular meshwork (TM) cells. TM cells are the most actively phagocytic cells within the anterior chamber of the eye and are located within an optically accessible discrete band. This delivery system, along with the property of cell photocytosis, will achieve double selectivity by combining preferential localization of the photosensitizer to the target cells with spatial localization of illumination on the target cells. All experiments were performed with preconfluent bovine TM cells, 3rd to 4th passage, plated in 15 mm wells. Chlorin e6 monoethylene diamine monoamide was conjugated to the surface of 1.0 Am MX Duke Scientific fluorescent latex microspheres. Spectroscopic analysis revealed an average of 1.3 x 10 -17 moles of chlorin e6 per microsphere. TM cells were incubated for 18 hours with 5 x 10 7 microspheres/ml in MEM with 10% FCS, washed with MEM, and irradiated through fresh media using an argon-pumped dye laser emitting .2 W at 660 nm. A dose-survival study indicated that energy doses of 10 J/cm2 or greater resulted in greater than 95% cell death as determined by ethidium bromide exclusion. Cell death could be demonstrated as early as 4 hours post-irradiation. TM cells incubated with a solution of chlorin e6 at a concentration equal to that conjugated to the microspheres showed no cell death. Unirradiated controls also showed no cell death.

  4. Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells.

    Science.gov (United States)

    Keller, Kate E; Bradley, John M; Sun, Ying Ying; Yang, Yong-Feng; Acott, Ted S

    2017-10-01

    The actin cytoskeleton of trabecular meshwork (TM) cells plays a role in regulating aqueous humor outflow. Many studies have investigated stress fibers, but F-actin also assembles into other supramolecular structures including filopodia. Recently, specialized filopodia called tunneling nanotubes (TNTs) have been described, which communicate molecular signals and organelles directly between cells. Here, we investigate TNT formation by TM cells. Human TM cells were labeled separately with the fluorescent dyes, DiO and DiD, or with mitochondrial dye. Fixed or live TM cells were imaged using confocal microscopy. Image analysis software was used to track fluorescent vesicles and count the number and length of filopodia. The number of fluorescently labeled vesicles transferred between cells was counted in response to specific inhibitors of the actin cytoskeleton. Human TM tissue was stained with phalloidin. Live-cell confocal imaging of cultured TM cells showed transfer of fluorescently labeled vesicles and mitochondria via TNTs. In TM tissue, a long (160 μm) actin-rich cell process bridged an intertrabecular space and did not adhere to the substratum. Treatment of TM cells with CK-666, an Arp2/3 inhibitor, significantly decreased the number and length of filopodia, decreased transfer of fluorescently labeled vesicles and induced thick stress fibers compared to vehicle control. Conversely, inhibiting stress fibers using Y27632 increased transfer of vesicles and induced long cell processes. Identification of TNTs provides a means by which TM cells can directly communicate with each other over long distances. This may be particularly important to overcome limitations of diffusion-based signaling in the aqueous humor fluid environment.

  5. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells

    Science.gov (United States)

    Yang, Wuchen; Guo, Dayong; Harris, Marie A.; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S.; Edwards, James R.; Mundy, Gregory R.; Lichtler, Alex; Kream, Barbara E.; Rowe, David W.; Kalajzic, Ivo; David, Val; Quarles, Darryl L.; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S.; Martin, James F.; Mishina, Yuji; Harris, Stephen E.

    2013-01-01

    Summary We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKOob) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKOob mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKOob osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA+ MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells. PMID:23843612

  6. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities

    Directory of Open Access Journals (Sweden)

    CJ Ley

    2014-03-01

    Full Text Available Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC, articular calcified cartilage (ACC, subchondral bone (SCB and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints.

  7. Age-related changes assessed by peripheral QCT in healthy Italian women

    International Nuclear Information System (INIS)

    Guglielmi, G.; Serio, A. de; Cammisa, M.; Fusilli, S.; Scillitani, A.; Chiodini, I.; Torlontano, M.

    2000-01-01

    The purpose of this study was to describe the normal cross-sectional pattern of radial bone loss associated with aging in healthy women and to generate a normative database using peripheral quantitative computed tomography (pQCT). Subjects with suspected conditions affecting bone metabolism or receiving any drugs affecting bone mineralization were excluded. The trabecular bone mineral density (BMD) and the total bone density of the ultradistal radius at the nondominant forearm was measured using the Norland-Stratec XCT-960 pQCT scanner in 386 healthy pre-, peri-, and postmenopausal females aged 15-81 years. The long-term in vivo precision error was 1.6% CV (coefficient of variation) for trabecular and 0.8% CV for total BMD measurements. The highest value of trabecular and total BMD measured was observed at the age group 15-39 years. Beyond these ages both trabecular and total BMD showed a linear decline with aging, decreasing by an overall slope of -1.28 and -0.55 mg/cm 3 per year for total and trabecular BMD measurements, respectively. The test of parallelism between the regression slopes of the peri- and postmenopausal women showed a statistically significant difference for total BMD measurement (p=0.003). Measurement of total and trabecular BMD was not influenced by weight, height or body mass index, but it was correlated with natural logarithm of years since menopause. We conclude that pQCT of the ultradistal radius is a precise method for measuring the true volumetric BMD and for detecting age-related bone loss in the trabecular and total bone of female subjects encompassing the adult age range and menopausal status. (orig.)

  8. Age-related changes assessed by peripheral QCT in healthy Italian women

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmi, G.; Serio, A. de; Cammisa, M. [Scientific Institute Hospital ' ' Casa Sollievo della Sofferenza' ' , San Giovanni Rotondo (Italy). Dept. of Radiology; Fusilli, S. [Scientific Institute Hospital ' ' Casa Sollievo della Sofferenza' ' , San Giovanni Rotondo (Italy). Dept. of Clinical Pathology; Scillitani, A.; Chiodini, I.; Torlontano, M. [Scientific Institute Hospital ' ' Casa Sollievo della Sofferenza' ' , San Giovanni Rotondo (Italy). Division of Endocrinology

    2000-04-01

    The purpose of this study was to describe the normal cross-sectional pattern of radial bone loss associated with aging in healthy women and to generate a normative database using peripheral quantitative computed tomography (pQCT). Subjects with suspected conditions affecting bone metabolism or receiving any drugs affecting bone mineralization were excluded. The trabecular bone mineral density (BMD) and the total bone density of the ultradistal radius at the nondominant forearm was measured using the Norland-Stratec XCT-960 pQCT scanner in 386 healthy pre-, peri-, and postmenopausal females aged 15-81 years. The long-term in vivo precision error was 1.6% CV (coefficient of variation) for trabecular and 0.8% CV for total BMD measurements. The highest value of trabecular and total BMD measured was observed at the age group 15-39 years. Beyond these ages both trabecular and total BMD showed a linear decline with aging, decreasing by an overall slope of -1.28 and -0.55 mg/cm{sup 3} per year for total and trabecular BMD measurements, respectively. The test of parallelism between the regression slopes of the peri- and postmenopausal women showed a statistically significant difference for total BMD measurement (p=0.003). Measurement of total and trabecular BMD was not influenced by weight, height or body mass index, but it was correlated with natural logarithm of years since menopause. We conclude that pQCT of the ultradistal radius is a precise method for measuring the true volumetric BMD and for detecting age-related bone loss in the trabecular and total bone of female subjects encompassing the adult age range and menopausal status. (orig.)

  9. The assessment of Trabecular bone score to improve the sensitivity of FRAX in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Tatiana O. Yalochkina

    2017-12-01

    Full Text Available Aim. To estimate the trabecular bone score (TBS for evaluation of fracture probability in order to make decisions about starting osteoporosis treatment in patients with type 2 diabetes mellitus (T2DM. Materials and methods. We obtained the bone mineral density (BMD and trabecular bone score (TBS using dual energy X-ray absorptiometry (iDXA in patients with T2DM (with and without a history of osteoporotic fractures versus the control group. Before and after TBS measurements we assessed the ten-year probability of fracture using the Fracture Risk Assessment Tool (FRAX. Results. We enrolled 48 patients with T2DM, including 17 with a history of low-traumatic fracture, 31 patients without fractures and 29 subjects of a control group. BMD was higher in patients with T2DM compared to the control group at L1–L4 (mean T-score 0.44, 95% CI -3.2 – 4.9 vs mean T-score 0.33, 95% CI -2.9 – 3.0 in a control group p=0.052 and Total Hip (mean T-score 0.51, 95% CI -2.1 – 3.0 vs mean T-score -0.03, 95% CI -1.4 – 1.2 in a control group p=0,025. The TBS and 10-year probability of fracture (FRAX was not different in patients with T2DM versus the control group. However, when the TBS was entered as an additional risk factor, the 10-year probability of fracture became higher in patients with T2DM (10-year probability of fracture in T2DM- 8.68, 95% CI 0.3-25.0 versus 6.68, 95% CI 0.4–15.0 in control group, p=0.04. Among patients with diabetes with and without fractures the FRAX score was higher in subjects with fractures, but no difference was found in regards to BMD or TBS. Entering BMD and TBS values into the FRAX tool in subjects with diabetes and fractures decreased the FRAX score. However, patients with low-traumatic fractures should be treated for osteoporosis without a BMD, TBS or FRAX assessment. Conclusion. TBS improves the results of FRAX assessment in patients with T2DM and should be entered while evaluating FRAX in patients with T2DM. However

  10. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I; Mueller, D; Matsuura, M; Lochmueller, E-M; Zysset, P; Eckstein, F

    2008-01-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  11. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.

    Science.gov (United States)

    Abdalrahman, T; Scheiner, S; Hellmich, C

    2015-01-21

    It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Inhibition of Rho Kinase Induces Antioxidative Molecules and Suppresses Reactive Oxidative Species in Trabecular Meshwork Cells

    Directory of Open Access Journals (Sweden)

    Tomokazu Fujimoto

    2017-01-01

    Full Text Available Purpose. To investigate the effect of rho kinase inhibitors on oxidative stress in trabecular meshwork (TM cells. Methods. TM cells were isolated from the eyes of cynomolgus monkeys. Y-27632 and menadione were used to inhibit rho kinase and induce production of reactive oxygen species (ROS, respectively. The cynomolgus monkey array and 12,613 probes were used in DNA microarray analysis, and the affected genes were categorized using gene ontology analysis. The mRNA levels of the target genes were confirmed by real-time RT-PCR. Intracellular oxidative stress was detected using a fluorescent reagent sensitive to ROS. Cell viability was assessed by the WST-8 assay. Results. Gene ontology analysis revealed upregulation of genes involved in antioxidant activity, and upregulation of catalase was confirmed by real-time RT-PCR after 30 min treatment with Y-27632. Production of ROS was increased by menadione, and the effect was partly suppressed by pretreatment with Y-27632. At a lower dose of menadione, Y-27632 stimulated TM cells and significantly increased their viability following menadione treatment compared to control cells. Conclusion. Using microarray analysis, Y-27632 was shown to upregulate antioxidative genes including catalase and partially reduce ROS production and cell death by oxidative stress caused by menadione.

  13. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  14. Analysis of Long Bone and Vertebral Failure Patterns.

    Science.gov (United States)

    1983-03-01

    apophyseal joints, lumbar spondylosis and low back pain in Jayson, M.I.V. (ed) The Lumbar Spine and Back Pain, Pitman Medical, pp. 83-114. PUBLICATIONS...NOTES Material in this report was presented at the International Society for the Study of the Lumbar Spine, Toronto, Canada, June 6-10, 1982. 19. KEY...intervertebral disc and end plate fragments were observed in the vertebral bodies (G84 L2 -3 ) of the upper lumbar levels. Also fragments of trabecular bone

  15. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  16. Directional fractal signature methods for trabecular bone texture in hand radiographs: Data from the Osteoarthritis Initiative

    International Nuclear Information System (INIS)

    Wolski, M.; Podsiadlo, P.; Stachowiak, G. W.

    2014-01-01

    Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS Sta ), vertical (FS V ) and horizontal (FS H ) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis

  17. Biomechanical properties of 3D-printed bone scaffolds are improved by treatment with CRFP.

    Science.gov (United States)

    Helguero, Carlos G; Mustahsan, Vamiq M; Parmar, Sunjit; Pentyala, Sahana; Pfail, John L; Kao, Imin; Komatsu, David E; Pentyala, Srinivas

    2017-12-22

    One of the major challenges in orthopedics is to develop implants that overcome current postoperative problems such as osteointegration, proper load bearing, and stress shielding. Current implant techniques such as allografts or endoprostheses never reach full bone integration, and the risk of fracture due to stress shielding is a major concern. To overcome this, a novel technique of reverse engineering to create artificial scaffolds was designed and tested. The purpose of the study is to create a new generation of implants that are both biocompatible and biomimetic. 3D-printed scaffolds based on physiological trabecular bone patterning were printed. MC3T3 cells were cultured on these scaffolds in osteogenic media, with and without the addition of Calcitonin Receptor Fragment Peptide (CRFP) in order to assess bone formation on the surfaces of the scaffolds. Integrity of these cell-seeded bone-coated scaffolds was tested for their mechanical strength. The results show that cellular proliferation and bone matrix formation are both supported by our 3D-printed scaffolds. The mechanical strength of the scaffolds was enhanced by trabecular patterning in the order of 20% for compression strength and 60% for compressive modulus. Furthermore, cell-seeded trabecular scaffolds modulus increased fourfold when treated with CRFP. Upon mineralization, the cell-seeded trabecular implants treated with osteo-inductive agents and pretreated with CRFP showed a significant increase in the compressive modulus. This work will lead to creating 3D structures that can be used in the replacement of not only bone segments, but entire bones.

  18. In Vivo Over-expression of Circulating Dlk1/Pref-1 Protein Using Hydrodynamic-based Gene Transfer Leads to Lower Bone mass With Marked Effects on Trabecular Bone Micro-architecture

    DEFF Research Database (Denmark)

    Ding, Ming

    determined by PIXImus (LunarR) and micro-CT (ScancoR) respectively. We could only localize the plasmid in the liver and no complications were detected due to transgene expression. Serum levels of FA1 in Dlk1 injected mice (Dlk1+mice) was elevated by more than 15 folds compared to control saline injected mice...... and BMD was negatively correlated with the circulating levels of FA1. Micro-CT analysis revealed significantly decreased micro-architectural parameters of trabecular bone in the distal femur and proximal tibia of the Dlk1+mice compared to controls (see table). Naked DNA delivery by hydrodynamic injection...

  19. A novel method for quantifying the amount of trabecular meshwork pigment in glaucomatous and nonglaucomatous eyes.

    Science.gov (United States)

    Kinori, Michael; Hostovsky, Avner; Skaat, Alon; Schwartsman, Jonathan; Melamed, Shlomo

    2014-01-01

    To assess the use of a computerized program for evaluating the amount of trabecular meshwork (TM) pigmentation in normal (control), primary open-angle glaucoma (POAG), and pseudoexfoliation glaucoma/pigmentary dispersion glaucoma (PXFG/PDG) patients. All included patients were from the Goldschleger Eye Institute glaucoma clinic. After signing an informed consent, each patient's anterior chamber angle was photographed using a single photo-slit under the same conditions. Only one eye per patient was photographed. The superior TM and the inferior TM were documented. Then, the degree of "blackness" (representing melanin pigment) was assessed using the ImageJ program. Of the 43 eyes photographed, 8 were excluded because of low-quality images. Of the remaining 35 patients, 14 were normal, 10 had POAG, and 11 had PXFG/PDG. The amount of pigment was the same in the control and the POAG patients whether the inferior TM (P=0.24), superior TM (P=0.58), or the sum inferior TM+superior TM (P=0.85) was measured. The pigment level was significantly higher in the PXFG/PDG group than in the control group (inferior TM, Ppigment levels was found to be statistically insignificant in all the groups (normal, P=0.86; POAG, P=0.10; PXFG/PDG, P=0.22). The use of ImageJ software might play a role in the quantification of pigment evaluation of the TM.

  20. Microdistribution and local dosimetry of 226Ra in trabecular bone of the beagle

    International Nuclear Information System (INIS)

    Polig, E.; Jee, W.S.; Dell, R.B.; Johnson, F.

    1988-01-01

    Sections of lumbar vertebral bodies of young adult beagle dogs have been analyzed autoradiographically to characterize and quantify the local distribution of 226Ra by means of a scanning microscope photometer. The animals received a single injection of 355 kBq/kg body weight and were serially sacrificed at 5 to 1381 days postinjection. Hotspot concentrations decreased from about 51 kBq/g bone at 5 days to 20 kBq/g at 1381 days postinjection. The diffuse concentration changed from 8.3 to 1.9 kBq/g. The mean 226Ra concentration in the trabecular areas scanned was initially higher and at the end of the observation period lower than the average calculated for the whole lumbar vertebral column. Density and area of, and fraction of bone activity in, hotspots virtually remained constant. With time hotspots tended to become translocated into bone volume. Mean dose rates to lining cells from both hotspots and diffuse labels decreased from about 210 mGy/d at early postinjection times to 105 mGy/d. This corresponds to 2.5 to 1.1 times the average skeletal dose rate. A discussion of the level of irradiation in terms of hit frequencies shows that osteoblasts in the initial phase of hotspot formation receive about 60 hits to their nucleus for the duration of bone formation. After about 6 months, however, the 226Ra concentration in new bone and the corresponding hit frequency appears to be low enough that interference with bone formation is unlikely. Morphometric measurements showed that abnormal bone accretion and thickening of trabeculae occurred. This was interpreted as an imbalance between bone formation and resorption. Both formation and resorption seem to be substantially lowered compared to control animals

  1. A prospective 3-year follow-up trial of implantation of two trabecular microbypass stents in open-angle glaucoma

    Directory of Open Access Journals (Sweden)

    Donnenfeld ED

    2015-11-01

    Full Text Available Eric D Donnenfeld,1 Kerry D Solomon,2 Lilit Voskanyan,3 David F Chang,4 Thomas W Samuelson,5 Iqbal Ike K Ahmed,6 L Jay Katz7 1Ophthalmic Consultants of Long Island, Rockville Centre, NY, 2Carolina Eyecare Physicians, Mt Pleasant, SC, USA; 3S.V. Malayan Ophthalmology Centre, Yerevan, Armenia; 4Altos Eye Physicians, Los Altos, CA, 5Minnesota Eye Consultants, Minneapolis, MN, USA; 6University of Toronto, Toronto, ON, Canada; 7Wills Eye Hospital, Jefferson Medical College, Philadelphia, PA, USA Purpose: To evaluate 3-year safety and intraocular pressure (IOP following two trabecular microbypass stents in phakic and pseudophakic subjects with open-angle glaucoma (OAG not controlled on preoperative medication. Patients and methods: In this prospective pilot study, phakic or pseudophakic subjects with OAG and IOP between 18 mmHg and 30 mmHg on one preoperative topical ocular hypotensive medication underwent medication washout. Thirty-nine qualified subjects with preoperative unmedicated IOP ≥22 mmHg and ≤38 mmHg received two stents. Postoperative examinations were scheduled at Day 1, Week 1, Months 1, 3, 6, and 12, and semiannually through Month 60. Ocular hypotensive medication was considered if postoperative IOP exceeded 21 mmHg. IOP, medication use, and safety were assessed at each visit. Subject follow-up through Month 36 was completed. Results: Thirty-six eyes (92.3%; 95% confidence interval [CI] 79.1%, 98.4% achieved the primary efficacy end point of Month 12 reduction in IOP ≥20% from baseline (unmedicated IOP without ocular hypotensive medication. Four subjects required medication during the Month 36 follow-up period. Mean IOP at 36 months for subjects not taking medication was 15.2 mmHg. At 36 months, subjects sustained mean IOP decrease of 9.1±2.7 mmHg (95% CI 8.0 mmHg, 10.14 mmHg, or 37% IOP reduction, from unmedicated baseline IOP. Compared to preoperative medicated IOP, subjects had mean reduction at Month 36 of 5.5±2

  2. Directional fractal signature methods for trabecular bone texture in hand radiographs: Data from the Osteoarthritis Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Wolski, M., E-mail: marcin.wolski@curtin.edu.au; Podsiadlo, P.; Stachowiak, G. W. [Tribology Laboratory, School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia 6102 (Australia)

    2014-08-15

    Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early

  3. Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage.

    Science.gov (United States)

    Hilton, Matthew J; Tu, Xiaolin; Long, Fanxin

    2007-08-01

    Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development by signaling to both chondrocytes and perichondrial cells. Previous efforts to delineate direct effects of Ihh on chondrocytes by Col2-Cre-mediated ablation of Smoothened (Smo, encoding a transmembrane protein indispensable for Ihh signaling) has been only partially successful, due to the inability to discriminate between chondrocytes and perichondrial cells. Here we report a transgenic line (Col2-Cre) expressing under the control of the Colalpha1(II) promoter an inert form of Cre that is activatable by exogenous tamoxifen (TM); TM administration at proper times during embryogenesis induced Cre activity in chondrocytes but not in the perichondrium. By using this mouse line, we deleted Smo within subsets of chondrocytes without affecting the perichondrium and found that Smo removal led to localized disruption of the expression of parathyroid hormone-related protein (PTHrP) and the morphology of chondrocytes. Unexpectedly, TM invariably induced Cre activity in a subset of cells associated with the trabecular bone surface of long bones. These cells, when genetically marked and cultured in vitro, were capable of producing bone nodules. Expression of the Col2-Cre transgene in these cells likely reflected the endogenous Colalpha1(II) promoter activity as similar cells were found to express the IIA isoform of Colalpha1(II) mRNA endogenously. In summary, the present study has not only provided evidence that Ihh signaling directly controls PTHrP expression and chondrocyte morphology in the growth region cartilage, but has also uncovered a distinct cell type associated with the trabecular bone that appears to possess osteogenic potential.

  4. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration.

    Science.gov (United States)

    Zhang, Kunxi; Yan, Shifeng; Li, Guifei; Cui, Lei; Yin, Jingbo

    2015-12-01

    The success of mesenchymal stem cells (MSCs) based articular cartilage tissue engineering is limited by the presence of fibrous tissue in generated cartilage, which is associated with the current scaffold strategy that promotes cellular adhesion and spreading. Here we design a non-fouling scaffold based on amide bonded poly(l-glutamic acid) (PLGA) and chitosan (CS) to drive adipose stem cells (ASCs) to aggregate to form multicellular spheroids with diameter of 80-110 μm in-situ. To illustrate the advantage of the present scaffolds, a cellular adhesive scaffold based on the same amide bonded PLGA and CS was created through a combination of air-drying and freeze-drying to limit the hydration effect while also achieving porous structure. Compared to ASCs spreading along the surface of pores within scaffold, the dense mass of aggregated ASCs in PLGA/CS scaffold exhibited enhanced chondrogenic differentiation capacity, as determined by up-regulated GAGs and COL II expression, and greatly decreased COL I deposition during in vitro chondrogenesis. Furthermore, after 12 weeks of implantation, neo-cartilages generated by ASCs adhered on scaffold significantly presented fibrous matrix which was characterized by high levels of COL I deposition. However, neo-cartilage at 12 weeks post-implantation generated by PLGA/CS scaffold carrying ASC spheroids possessed similar high level of GAGs and COL II and low level of COL I as that in normal cartilage. The in vitro and in vivo results indicated the present strategy could not only promote chondrogenesis of ASCs, but also facilitate hyaline-like cartilage regeneration with reduced fibrous tissue formation which may attenuate cartilage degradation in future long-term follow-up. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Robust Multifunctional Sandwich Panel Design with Trabecular Structures by the Use of Additive Manufacturing Technology for a New De-Icing System

    Directory of Open Access Journals (Sweden)

    Carlo Giovanni Ferro

    2017-06-01

    Full Text Available Anti-ice systems assure a vital on-board function in most aircraft: ice prevention or de-icing is mandatory for all aerodynamic surfaces to preserve their performance, and for all the movable surfaces to allow the proper control of the plane. In this work, a novel multi-functional panel concept which integrates anti-icing directly inside the primary structure is presented. In fact, constructing the core of the sandwich with trabecular non-stochastic cells allows the presence of a heat exchanger directly inside the structure with a savings in weight and an improvement in thermal efficiency. This solution can be realized easily in a single-piece component using Additive Manufacturing (AM technology without the need for joints, gluing, or welding. The objective of this study is to preliminarily investigate the mechanical properties of the core constructed with Selective Laser Melting (SLM; through the Design of Experiment (DOE, different design parameters were varied to understand how they affect the compression behaviour.

  6. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  7. Anterior chamber gas bubble emergence pattern during femtosecond LASIK-flap creation.

    Science.gov (United States)

    Robert, Marie-Claude; Khreim, Nour; Todani, Amit; Melki, Samir A

    2015-09-01

    To characterise the emergence pattern of cavitation bubbles into the anterior chamber (AC) following femtosecond laser-assisted in situ keratomileusis (LASIK)-flap creation Retrospective review of patients undergoing femtosecond LASIK surgery at Boston Laser, a private refractive surgery practice in Boston, Massachusetts, between December 2008 and February 2014. Patient charts were reviewed to identify all cases with gas bubble migration into the AC. Surgical videos were examined and the location of bubble entry was recorded separately for right and left eyes. Five thousand one hundred and fifty-eight patients underwent femtosecond LASIK surgery. Air bubble migration into the AC, presumably via the Schlemm's canal and trabecular meshwork, occurred in 1% of cases. Patients with AC bubbles had an average age of 33±8 years with a measured LASIK flap thickness of 96±21 μm. The occurrence of gas bubbles impaired iris registration in 64% of cases. Gas bubbles appeared preferentially in the nasal or inferior quadrants for right (92% of cases) and left (100% of cases) eyes. This bubble emergence pattern is significantly different from that expected with a random distribution (p<0.0001) and did not seem associated with decentration of the femtosecond laser docking system. The migration of gas bubbles into the AC is a rare occurrence during femtosecond laser flap creation. The preferential emergence of gas bubbles into the nasal and inferior quadrants of the AC may indicate a distinctive anatomy of the nasal Schlemm's canal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  9. Nephrogenic adenoma of the ureter

    Directory of Open Access Journals (Sweden)

    Mustafa Burak Hoscan

    2012-04-01

    Full Text Available Nephrogenic adenoma (NA is an uncommon benign lesion of the urothelial tract. The diagnostic features that are useful in the recognition of this benign entity are: the characteristic mixture of various architectural patterns, associated stromal edema and inflammation, hyaline sheath around tubules, and lack of mitotic activity. Although NA appears with hematuria or obstruction, frequently found incidentally in endoscopy or imaging modalities.

  10. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge.

    Directory of Open Access Journals (Sweden)

    Kristine Porter

    Full Text Available Cells in the trabecular meshwork (TM, a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment. Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB. Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  11. Association of Trabecular Bone Score with Inflammation and Adiposity in Patients with Psoriasis: Effect of Adalimumab Therapy

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2016-01-01

    Full Text Available Studies on trabecular bone score (TBS in psoriasis are lacking. We aim to assess the association between TBS and inflammation, metabolic syndrome features, and serum adipokines in 29 nondiabetic patients with psoriasis without arthritis, before and after 6-month adalimumab therapy. For that purpose, adjusted partial correlations and stepwise multivariable linear regression analysis were performed. No correlation was found between TBS and disease severity. TBS was negatively associated with weight, BMI, waist perimeter, fat percentage, and systolic and diastolic blood pressure before and after adalimumab. After 6 months of therapy, a negative correlation between TBS and insulin resistance (p=0.02 and leptin (p=0.01 and a positive correlation with adiponectin were found (p=0.01. The best set of predictors for TBS values at baseline were female sex (p=0.015, age (p=0.05, and BMI (p=0.001. The best set of predictors for TBS following 6 months of biologic therapy were age (p=0.001, BMI (p<0.0001, and serum adiponectin levels (p=0.027. In conclusion, in nondiabetic patients with moderate-to-severe psoriasis, TBS correlates with metabolic syndrome features and inflammation. This association is still present after 6 months of adalimumab therapy. Moreover, serum adiponectin levels seem to be an independent variable related to TBS values, after adalimumab therapy.

  12. Study on human chondrocyte culture viability for autologous transplantation in clinical application

    Directory of Open Access Journals (Sweden)

    Christiane Lombello

    2003-06-01

    Full Text Available Objective: The limited regenerative capacity of the cartilage tissuemakes the treatment of chondral lesions difficult. The techniquescurrently available to treat cartilage lesions may relieve symptoms,but do not regenerate the injured tissue. Autologous chondrocytetransplantation uses cell biology and cell culture techniques toregenerate the hyaline cartilage. Methods: In this study, we analyzechondrocyte biopsy collection and culture for autologoustransplantation. Ultrastructural analyses of hyaline cartilage biopsieswere performed 0, 6, 24 and 48 hours after collection. The tissue evenafter 48 hours. Eleven cell culture assays were performed to evaluateisolation, viability, morphology, proliferation and absence ofcontaminants. Results: The cell culture techniques used allowedchondrocyte proliferation. Rates on cell viability were maintained abovethe acceptable patterns (above 90. Control of cell culture laboratoryconditions showed absence of contaminants, assuring safety of theprocess. The chondrocytes obtained presented the morphology typicalof cultured cell monolayers. Conclusion: The results indicate viabilityof chondrocyte culture technique for clinical application in autologoustransplantation.

  13. Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis.

    Science.gov (United States)

    Konno, Norifumi; Fujii, Yuya; Imae, Haruka; Kaiya, Hiroyuki; Mukuda, Takao; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2013-05-01

    Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  15. Outcome of revision total knee arthroplasty with the use of trabecular metal cone for reconstruction of severe bone loss at the proximal tibia

    DEFF Research Database (Denmark)

    Jensen, Claus L; Olsen, Nikolaj Winther; Schrøder, Henrik M

    2014-01-01

    technology (TMT) cones for the reconstruction of tibial bone loss at the time of rTKA. METHODS: Thirty-six patients had rTKA with the use of a TMT Cone. Bone loss was classified according to the AORI classification and 25% of the patients suffered from T3 AORI defects and 75% of the patients from T2 AORI...... defects. Implants used were from the NexGen series. At follow-up, radiographs were evaluated according to the Knee Society Roentgenographic Scoring System. Knee and function score was calculated using the Knee Society Clinical Rating System. Average follow-up time was 47 months (range 3-84 months......BACKGROUND: The relative effectiveness of different methods for reconstructing large bone loss at the proximal tibia in revision total knee arthroplasty (rTKA) has not been established. The aim of this study was to evaluate the clinical and radiological outcome after the use of trabecular metal...

  16. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    Science.gov (United States)

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  17. A transduced living hyaline cartilage graft releasing transgenic stromal cell-derived factor-1 inducing endogenous stem cell homing in vivo.

    Science.gov (United States)

    Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An

    2013-05-01

    Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.

  18. Fibroadenomas of the breast: histopathological/dynamic contrast-enhanced MR correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, R. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Garnier, C. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Meingan, P. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Zemoura, L. [Dept. of Histopathology C, Inst. Gustave Roussy, 94 - Villejuif (France); Lucidarme, O. [Dept. of Radiology, Hopital Salpetriere, 75 - Paris (France); Guinebretiere, J.M. [Dept. of Histopathology C, Inst. Gustave Roussy, 94 - Villejuif (France); Tardivon, A.A. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Arriagada, R. [Breast Cancer Study Group, Inst. Gustave Roussy, 94 - Villejuif, (France)

    1995-12-31

    A total of 22 women with fibroadenomas had preoperative dynamic MR study (T1-weighted images every 47 s after injection of Gd-DOTA). Their age, hormonal status, breast MR studies and histopathological slides were retrospectively reviewed. Eleven pre- (n = 2) or post-menopausal (n = 9) women showed no early contrast enhancement. The absence of early contrast enhancement correlated with hyalin stromal component. Eleven pre- (n = 7) or post-menopausal (n = 4) women showed focal (n = 9) or diffuse (n = 2) early contrast enhancement. Early focal contrast enhancement correlated with myxoid (n = 9), mixed hyalin/myxoid (n = 1) or hyalin (n = 1) fibroadenomas. Early diffuse contrast enhancement of the breast correlated with myxoid (n = 1) or hyalin (n = 1) stromal component associated with proliferative fibrocystic disease of the breast parenchyma. The presence of contrast enhancement correlated with myxoid fibroadenomas, whereas absence of contrast enhancement correlated with hyalin fibroadenomas. As hyalin fibroadenomas occurs in post-menopausal women, the diagnostic accuracy of dynamic MRI may be improved in this age group. (orig.)

  19. Fibroadenomas of the breast: histopathological/dynamic contrast-enhanced MR correlation

    International Nuclear Information System (INIS)

    Gilles, R.; Garnier, C.; Meingan, P.; Zemoura, L.; Lucidarme, O.; Guinebretiere, J.M.; Tardivon, A.A.; Arriagada, R.

    1995-01-01

    A total of 22 women with fibroadenomas had preoperative dynamic MR study (T1-weighted images every 47 s after injection of Gd-DOTA). Their age, hormonal status, breast MR studies and histopathological slides were retrospectively reviewed. Eleven pre- (n = 2) or post-menopausal (n = 9) women showed no early contrast enhancement. The absence of early contrast enhancement correlated with hyalin stromal component. Eleven pre- (n = 7) or post-menopausal (n = 4) women showed focal (n = 9) or diffuse (n = 2) early contrast enhancement. Early focal contrast enhancement correlated with myxoid (n = 9), mixed hyalin/myxoid (n 1) or hyalin (n = 1) fibroadenomas. Early diffuse contrast enhancement of the breast correlated with myxoid (n = 1) or hyalin (n = 1) stromal component associated with proliferative fibrocystic disease of the breast parenchyma. The presence of contrast enhancement correlated with myxoid fibroadenomas, whereas absence of contrast enhancement correlated with hyalin fibroadenomas. As hyalin fibroadenomas occurs in post-menopausal women, the diagnostic accuracy of dynamic MRI may be improved in this age group. (orig.)

  20. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, Siegfried; Pinker, Katja; Welsch, Goetz H. [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Mamisch, Tallal C. [Inselspital Bern, Orthopedic Surgery Department, Bern (Switzerland); Domayer, Stephan [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Orthopaedics, Vienna (Austria); Szomolanyi, Pavol [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); Marlovits, Stefan; Kutscha-Lissberg, Florian [Medical University of Vienna, Department of Traumatology, Center for Joints and Cartilage, Vienna (Austria)

    2008-06-15

    The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 {+-} 16.3 years; MACT: 37.4 {+-} 8.2 years) and postoperative interval (MFX: 33.0 {+-} 17.3 months; MACT: 32.0 {+-} 17.2 months). The {delta} relaxation rate ({delta}R1) for repair tissue and normal hyaline cartilage and the relative {delta}R1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean {delta}R1 for MFX was 1.07 {+-} 0.34 versus 0.32 {+-} 0.20 at the intact control site, and for MACT, 1.90 {+-} 0.49 compared to 0.87 {+-} 0.44, which resulted in a relative {delta}R1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min. (orig.)

  1. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.

    Science.gov (United States)

    Schildhauer, T A; Peter, E; Muhr, G; Köller, M

    2009-02-01

    We analyzed leukocyte functions and cytokine response of human leukocytes toward porous tantalum foam biomaterial (Trabecular Metaltrade mark, TM) in comparison to equally sized solid orthopedic metal implant materials (pure titanium, titanium alloy, stainless steel, pure tantalum, and tantalum coated stainless steel). Isolated peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) were cocultured with equally sized metallic test discs for 24 h. Supernatants were analyzed for cytokine content by enzyme-linked immunosorbent assay. Compared to the other used test materials there was a significant increase in the release of IL (interleukin)-1ra and IL-8 from PMN, and of IL-1ra, IL-6, and TNF-alpha from PBMC in response to the TM material. The cytokine release correlated with surface roughness of the materials. In contrast, the release of IL-2 was not induced showing that mainly myeloid leukocytes were activated. In addition, supernatants of these leukocyte/material interaction (conditioned media, CM) were subjected to whole blood cell function assays (phagocytosis, chemotaxis, bacterial killing). There was a significant increase in the phagocytotic capacity of leukocytes in the presence of TM-conditioned media. The chemotactic response of leukocytes toward TM-conditioned media was significantly higher compared to CM obtained from other test materials. Furthermore, the bactericidal capacity of whole blood was enhanced in the presence of TM-conditioned media. These results indicate that leukocyte activation at the surface of TM material induces a microenvironment, which may enhance local host defense mechanisms.

  2. Induction of spontaneous hyaline cartilage regeneration using a double-network gel: efficacy of a novel therapeutic strategy for an articular cartilage defect.

    Science.gov (United States)

    Kitamura, Nobuto; Yasuda, Kazunori; Ogawa, Munehiro; Arakaki, Kazunobu; Kai, Shuken; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian Ping

    2011-06-01

    A double-network (DN) gel, which was composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) and poly-(N,N'-dimetyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. To establish the efficacy of a therapeutic strategy for an articular cartilage defect using a DN gel. Controlled laboratory study. A 4.3-mm-diameter osteochondral defect was created in rabbit trochlea. A DN gel plug was implanted into the defect of the right knee so that a defect 2 mm in depth remained after surgery. An untreated defect of the left knee provided control data. The osteochondral defects created were examined by histological and immunohistochemical evaluations, surface assessment using confocal laser scanning microscopy, and real-time polymerase chain reaction (PCR) analysis at 4 and 12 weeks. Samples were quantitatively evaluated with 2 scoring systems reported by Wayne et al and O'Driscoll et al. The DN gel-implanted defect was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type 2 collagen. Quantitative evaluation using the grading scales revealed a significantly higher score in the DN gel-implanted defects compared with the untreated control at each period (P cartilage at 12 weeks (P = .0106), while there was no statistical difference between the DN gel-implanted and normal knees. This study using the mature rabbit femoral trochlea osteochondral defect model demonstrated that DN gel implantation is an effective treatment to induce cartilage regeneration in vivo without any cultured cells or mammalian-derived scaffolds. This study has prompted us to develop a potential innovative strategy to repair cartilage lesions in the field of joint surgery.

  3. MR imaging of hyaline cartilage at 0.5 T: a quantitative and qualitative in vitro evaluation of three types of sequences

    International Nuclear Information System (INIS)

    Linden, E. van der; Kroon, H.M.; Doornbos, J.; Bloem, J.L.; Hermans, J.

    1998-01-01

    Objective. To identify an optimal pulse sequence for in vitro imaging of hyaline cartilage at 0.5 T. Materials and methods. Twelve holes of varying diameter and depth were drilled in cartilage of two pig knees. These were submerged in saline and scanned with a 0.5-T MR system. Sixteen T1-weighted gradient echo (GE), two T2-weighted GE, and 16 fast spin echo sequences were used, by varying repetition time (TR), echo time (TE), flip angle (FA), echo train length, profile order, and by use of fat saturation. Contrast-to-noise ratios (CNR) of cartilage versus saline solution and cartilage versus subchondral bone were measured. Cartilaginous lesions were evaluated separately by three independent observers. Interobserver variability and correlation between the quantitative and qualitative analyses were calculated. Results. The mean CNRs of two specimens of cartilage versus saline solution ranged from 6.3 (±2.1) to 27.7 (±2.5), and those of cartilage versus subchondral bone from 0.3 (±0.2) to 22.5 (±1.4). The highest CNR was obtained with a T1-weighted spoiled 3D-GE technique (TR 65 ms, TE 11.5 ms, FA 45 ). The number of lesions observed per sequence varied from 35 to 69. Observer agreement was fair to good. The T1-weighted spoiled GE sequences with a TR of 65 ms, TE of 11.5 ms and FA of 30 and 45 were significantly superior to the other 34 sequences in the qualitative analysis. Conclusion. T1-weighted spoiled 3D-GE sequences with a TR of 65 ms, a TE of 11.5 ms, and a FA of 30-45 were found to be optimal for in vitro imaging of cartilage at 0.5 T. (orig.)

  4. MR imaging of hyaline cartilage at 0.5 T: a quantitative and qualitative in vitro evaluation of three types of sequences

    Energy Technology Data Exchange (ETDEWEB)

    Linden, E. van der; Kroon, H.M.; Doornbos, J.; Bloem, J.L. [Department of Radiology C2-S, Albinusdreef 2, Leiden University Medical Center, Postbus 9600, NL-2300 RC Leiden (Netherlands); Hermans, J. [Department of Medical Statistics, Leiden University Medical Center, Leiden (Netherlands)

    1998-06-01

    Objective. To identify an optimal pulse sequence for in vitro imaging of hyaline cartilage at 0.5 T. Materials and methods. Twelve holes of varying diameter and depth were drilled in cartilage of two pig knees. These were submerged in saline and scanned with a 0.5-T MR system. Sixteen T1-weighted gradient echo (GE), two T2-weighted GE, and 16 fast spin echo sequences were used, by varying repetition time (TR), echo time (TE), flip angle (FA), echo train length, profile order, and by use of fat saturation. Contrast-to-noise ratios (CNR) of cartilage versus saline solution and cartilage versus subchondral bone were measured. Cartilaginous lesions were evaluated separately by three independent observers. Interobserver variability and correlation between the quantitative and qualitative analyses were calculated. Results. The mean CNRs of two specimens of cartilage versus saline solution ranged from 6.3 ({+-}2.1) to 27.7 ({+-}2.5), and those of cartilage versus subchondral bone from 0.3 ({+-}0.2) to 22.5 ({+-}1.4). The highest CNR was obtained with a T1-weighted spoiled 3D-GE technique (TR 65 ms, TE 11.5 ms, FA 45 ). The number of lesions observed per sequence varied from 35 to 69. Observer agreement was fair to good. The T1-weighted spoiled GE sequences with a TR of 65 ms, TE of 11.5 ms and FA of 30 and 45 were significantly superior to the other 34 sequences in the qualitative analysis. Conclusion. T1-weighted spoiled 3D-GE sequences with a TR of 65 ms, a TE of 11.5 ms, and a FA of 30-45 were found to be optimal for in vitro imaging of cartilage at 0.5 T. (orig.) With 8 figs., 1 tab., 31 refs.

  5. Beta-particle dosimetry of the trabecular skeleton using Monte Carlo transport within 3D digital images

    International Nuclear Information System (INIS)

    Jokisch, D.W.; Bouchet, L.G.; Patton, P.W.; Rajon, D.A.; Bolch, W.E.

    2001-01-01

    Presently, skeletal dosimetry models utilized in clinical medicine simulate electron path lengths through skeletal regions based upon distributions of linear chords measured across bone trabeculae and marrow cavities. In this work, a human thoracic vertebra has been imaged via nuclear magnetic resonance (NMR) spectroscopy yielding a three-dimensional voxelized representation of this skeletal site. The image was then coupled to the radiation transport code EGS4 allowing for 3D tracing of electron paths within its true 3D structure. The macroscopic boundaries of the trabecular regions, as well as the cortex of cortical bone surrounding the bone site, were explicitly considered in the voxelized transport model. For the case of a thoracic vertebra, energy escape to the cortical bone became significant at source energies exceeding ∼2 MeV. Chord-length distributions were acquired from the same NMR image, and subsequently used as input for a chord-based dosimetry model. Differences were observed in the absorbed fractions given by the chord-based model and the voxel transport model, suggesting that some of the input chord distributions for the chord-based models may not be accurate. Finally, this work shows that skeletal mass estimates can be made from the same NMR image in which particle transport is performed. This feature allows one to determine a skeletal S-value using absorbed fraction and mass data taken from the same anatomical tissue sample. The techniques developed in this work may be applied to a variety of skeletal sites, thus allowing for the development of skeletal dosimetry models at all skeletal sites for both males and females and as a function of subject age

  6. [Channelography and mechanism of action in canaloplasty].

    Science.gov (United States)

    Grieshaber, M C

    2015-04-01

    Canaloplasty lowers the intraocular pressure (IOP) by restoring the natural outflow system. The success of canaloplasty depends on the function of this system. To evaluate the natural outflow system regarding canaloplasty by two clinical tests, provocative gonioscopy and channelography and to describe the mechanism of action of canaloplasty. Provocative gonioscopy evaluates the pattern of blood reflux which is induced by ocular hypotension as the result of a reversed pressure gradient between the episcleral venous pressure and IOP following paracentesis. In channelography the transtrabecular diffusion and the filling properties of the episcleral venous system are assessed by a microcatheter and a fluorescein tracer. Blood reflux varied greatly in glaucomatous eyes and showed an inverse correlation with the preoperative IOP. The higher the IOP, the poorer the blood reflux. The filling qualities of the episcleral venous system and diffusion through the trabecular meshwork were different. Poor trabecular passage and good episcleral fluorescein outflow indicates patent distal outflow pathways, poor trabecular passage and poor episcleral fluorescein outflow indicates obstructed trabecular meshwork and closed collector channels and good trabecular passage together with poor episcleral fluorescein outflow suggests that the site of impairment is mainly in the distal outflow system. The quality of blood reflux and the characteristics of the episcleral filling and the transtrabecular diffusion by fluorescein represent the clinical state of the outflow pathway and help in the prediction of the surgical outcome in canaloplasty. The mechanism for canaloplasty is not yet completely clarified; currently under discussion are circumferential viscodilation, permanent distension of the inner wall of Schlemm's canal using a suture and a Stegmann canal expander.

  7. Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.

    Science.gov (United States)

    Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu

    2016-04-01

    The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM

  8. Assessment of lumbar trabecular bone density by means of single energy quantitative CT in hospital control children and bone metabolic disorders, 1

    International Nuclear Information System (INIS)

    Nakano, Kazutoshi; Miyamoto, Akie; Imai, Kaoru; Mochizuki, Yumiko; Hayashi, Kitami; Mitsuishi, Yoichi; Fukuyama, Yukio; Kohno, Atsushi; Shigeta, Teiko

    1990-01-01

    We studied the 3rd lumbar vertebral trabecular bone mineral density in 59 cross-sectional pictures of quantitative computed tomography (QCT) with CaCO 3 phantom for 28 hospital control children and 30 cases of suspected bone metabolic disorders. The QCT value of bone mineral density of control children showed neither age dependency nor sexual difference before puberty: for males was 221.8±30.2 mg CaCO 3 /cm 3 (Mean±SD) under 4 years, 218.1±39.7 at 5∼9 years and 217.2±30.9 at 10∼15 years; and for females 220.9±18.3 under 4 years and 240.0±29.4 at 5∼9 years. The QCT values of bone mineral density in bed-ridden patients, children receiving glucocorticoids, and children receiving anticonvulsants were significantly lower than that in control children (p<0.005). The QCT value of bone mineral density of bed-ridden patients was significantly lower than that of children receiving glucocorticoids and of children receiving anticonvulsants (p<0.05, p<0.005 respectively). Our study confirmed that single energy quantitative CT was very useful in pediatric clinical application. (author)

  9. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    Science.gov (United States)

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (Pcartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (Pcartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair

  10. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium.

    Science.gov (United States)

    Marin, E; Fusi, S; Pressacco, M; Paussa, L; Fedrizzi, L

    2010-07-01

    EBM (Electron Beam Melting) technology can be used successfully to obtain cellular solids in metallic biomaterials that can greatly increase osseointegration in arthroprothesis and at the same time maintain good mechanical properties. The investigated structures, called Trabecular Titanium, usually cannot be obtained by traditional machining. Two samples: (A) with a smaller single cell area and, (B) with a bigger single cell area, were produced and studied in this project. They have been completely characterized and compared with the results in similar literature pertinent to Ti6Al4V EBM structures. Relative density was evaluated using different methods, the mean diameter of the open porosities was calculated by Scanning Electron Microscope images; the composition was evaluated using Energy-Dispersive X-Ray Spectroscopy; the microstructure (alpha-beta) was investigated using chemical etching and, the mechanical proprieties were investigated using UMTS. The mean porosity values resulted comparable with spongy bone (63% for A and 72% for B). The mean diameter of the single porosity (650 mum for A and 1400 mum for B) resulted compatible with the osseointegration data from the literature, in particular for sample A. The Vickers micro-hardness tests and the chemical etching demonstrated that the structure is fine, uniform and well distributed. The mechanical test proved that sample (A) was more resistant than sample (B), but sample (B) showed an elastic modulus almost equal to the value of spongy bone. The results of this study suggest that the two Ti6Al4V cellular solids can be used in biomedical applications to promote osseointegration demonstrating that they maybe successfully used in prosthetic implants. Additional implant results will be published in the near future. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level.

    Science.gov (United States)

    Doherty, Joni K; Linthicum, Fred H

    2004-07-01

    To investigate the effect of changes within the spiral ligament and stria vascularis on hearing in cochlear otosclerosis, we examined spiral ligament hyalinization, stria vascularis atrophy, and sensory hearing loss in cochlear otosclerosis and described changes in ion transport molecule expression. Retrospective. Tertiary referral center. Thirty-two cochleae from 24 temporal bone donors with histologic evidence of cochlear otosclerosis, including spiral ligament hyalinization. Audiography. Measurements of spiral ligament width, stria vascularis, and bone-conduction thresholds were compared by the amount of hyalinization. Expression of the ion transport molecules Na,K-ATPase, connexin 26, and carbonic anhydrase II were assessed by immunohistochemical techniques. Hyalinization most often involved the posterior basal turn (88%) and the posterior middle turn (27%). Spiral ligament hyalinization correlated significantly with stria vascularis atrophy in the posterior middle turn of the cochlea (rho = -0.63, p Bone-conduction thresholds at 2,000 and 4,000 Hz were significantly associated with the amount of stria vascularis atrophy (rho = -0.44, -0.40, p recycling, resulting in loss of endocochlear potential and sensory hearing loss.

  12. Structure of Clavicle In Relation to Weight Transmission

    Science.gov (United States)

    Routatal, Rohini V

    2015-01-01

    Aims and Objectives It is a known fact that weight of upper limb is transmitted to the axial skeleton through clavicle. The present study is an attempt to correlate pattern of compact and trabecular bone of clavicle as a weight transmitting bone. Materials and Methods Sixty clavicles were studied from right and left sides of 30 cadavers donated to the Anatomy department, Pramukhswami Medical College, Karamsad, India. The study was focused on the thickness of compact bone of clavicle and trabecular pattern of this bone. Results Cancellous bone: Cancellous bone near both ends of clavicle presented meshwork of thin bony plates. Between the conoid tubercle and area for attachment of costo-clavicular ligament, cancellous bone showed a definite pattern. Thickness of compact bone The compact bone was thicker between conoid tubercle and area for attachment of costo-clavicular ligament. At midshaft point thickness of compact bone was maximum. Conclusion The structure of clavicle between conoid tubercle and area for costoclavicular ligament showed thick compact bone and definite pattern of cancellous bone. This structure of clavicle between conoid tubercle and area for attachment of costo-clavicular ligament transmits weight from lateral to medial direction and this knowledge of clavicular structure will also be useful to orthopedic surgeons to deal with clavicular fractures and other abnormalities. PMID:26393112

  13. The cranial cartilages of teleosts and their classification.

    OpenAIRE

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage ...

  14. Effects of glaucoma medications and preservatives on cultured human trabecular meshwork and non-pigmented ciliary epithelial cell lines.

    Science.gov (United States)

    Ammar, David A; Kahook, Malik Y

    2011-10-01

    We investigated the potential cytotoxicity of various topical ophthalmic glaucoma formulations containing different preservatives in cultured human trabecular meshwork (TM) and non-pigmented ciliary epithelial (NPCE) cell lines. We tested 0.004% travoprost preserved with either 0.015% benzalkonium chloride (BAK), sofZia or 0.001% Polyquad (PQ); and 0.005% latanoprost preserved with 0.020% BAK. We also tested a range of BAK concentrations in balanced salt solution (BSS). TM cells were treated for 10 min at 37°C with solutions diluted 1:10 to mimic the reduced penetration of topical preparations to the anterior chamber. Viability was determined by the uptake of the fluorescent vital dye calcein-AM (n = 6). BAK solutions (diluted 1:10) demonstrated a dose-dependent reduction in cell viability in both cell types (TM and NPCE). With a 1:10 dilution of 0.020% BAK, there were significantly more living NPCE cells (89 ± 6%) than TM cells (57 ± 6%; p < 0.001). In TM cells, travoprost + BAK had statistically fewer live cells (83 ± 5%) than both travoprost + sofZia (97 ± 5%) and travoprost + PQ (97 ± 6%; p < 0.05). Compared with BSS-treated NPCE cells, travoprost had statistically fewer live cells (p < 0.05) when preserved with BAK (85 ± 16%), sofZia (91 ± 6%) or PQ (94 ± 2%). These results demonstrate that substitution of BAK from topical ophthalmic drugs results in greater viability of cultured TM cells, the cells involved in the conventional outflow pathway. Cultured NPCE, responsible for aqueous inflow, appear more resilient to BAK.

  15. Taxonomic notes of Hemixantha (Diptera: Richardiidae with description of a new species from the Amazon Region

    Directory of Open Access Journals (Sweden)

    Lisiane Dilli Wentd

    2014-02-01

    Full Text Available Richardiidae is represented by ca. 180 species in 33 genera. A new species of Hemixantha, now totaling 20 species, is described from the Amazon Region, state of Pará, Brazil, and from Teoponte, Bolivia. Hemixantha maculosa sp. nov., H. picta Hennig, 1937 and H. pulchripennis Hendel, 1911 are richardiids known to have an extensively banded wing pattern. Hemixantha maculosa sp. nov. represents the first record of Hemixantha from the state of Pará and this species can be distinguished from H. picta and H. pulchripennis by anepisternum and dorsal half of anepimeron bright yellow and vein R2+3 slightly sinuous. Besides the hyaline areas on the wing of H. maculosa are very distinct from these other species, as follows: (1 subtrapezoidal median area in cell cua1 extended anteriorly to vein M1, separated from hyaline area in cell dm; (2 two oblique areas from costal margin almost to or beyond vein R4+5, one proximal to and one distal to level of crossvein r-m; (3 a circular area on basal part of cell r4+5 and (4 a triangular area on basal region of cell m1. An identification key, diagnoses, description and redescriptions, and illustrations to the species of Hemixantha with an extensively banded wing pattern are provided.

  16. Pathologic correlation to internal echogenicity of atypical breast fibroadenoma

    International Nuclear Information System (INIS)

    Cho, Nariya; Oh, Ki Keun; Kwon, Ryang; Han, Jae Ho; Jung, Woo Hee; Lee, Hy De

    1998-01-01

    To understand the cause of a typical sonographic findings by analyzing their pathologic correlation to internal echogenicity of breast fibroadenoma. Materials and Methods : Between January 1995 and April 1997, the presence of 91 fibroadenomas in 81 patients was histopathologically proven. These mass lesions were sonographically interpreted and their descriptive criteria-internal echo content (both strength and homogeneity),the presence of septum, bilateral shadowing, and posterior echo pattern-were tabulated. A pathologist reviewed each case and independently recorded the following data : cell type, the presence of septum, duct dilatation,calcification, fibrosis, hyalinization, and vascularity. We analyzed the correlation of sonographic with pathologic findings. Results : There was significant correlation between increased vascularity and increased internal echo strength and between increased fibrosis and decreased internal echo strength. There was no significant correlation between internal echo homogeneity or posterior shadowing and vascularity or stromal fibrosis, nor between hyalinization or cell type and internal echo strength, homogeneity or posterior shadowing.There was correlation between absent or thin capsule and the absence of bilateral shadowing. Conclusion :Increased vascularity or decreased stromal fibrosis might be the cause of atypical fibroadenoma

  17. Pathologic correlation to internal echogenicity of atypical breast fibroadenoma

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nariya; Oh, Ki Keun; Kwon, Ryang; Han, Jae Ho; Jung, Woo Hee; Lee, Hy De [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1998-07-01

    To understand the cause of a typical sonographic findings by analyzing their pathologic correlation to internal echogenicity of breast fibroadenoma. Materials and Methods : Between January 1995 and April 1997, the presence of 91 fibroadenomas in 81 patients was histopathologically proven. These mass lesions were sonographically interpreted and their descriptive criteria-internal echo content (both strength and homogeneity),the presence of septum, bilateral shadowing, and posterior echo pattern-were tabulated. A pathologist reviewed each case and independently recorded the following data : cell type, the presence of septum, duct dilatation,calcification, fibrosis, hyalinization, and vascularity. We analyzed the correlation of sonographic with pathologic findings. Results : There was significant correlation between increased vascularity and increased internal echo strength and between increased fibrosis and decreased internal echo strength. There was no significant correlation between internal echo homogeneity or posterior shadowing and vascularity or stromal fibrosis, nor between hyalinization or cell type and internal echo strength, homogeneity or posterior shadowing.There was correlation between absent or thin capsule and the absence of bilateral shadowing. Conclusion :Increased vascularity or decreased stromal fibrosis might be the cause of atypical fibroadenoma.

  18. Atypical presentation of multicentric Castleman disease in a pediatric patient: pleural and pericardial effusion.

    Science.gov (United States)

    Akman, Alkim Oden; Basaran, Ozge; Ozyoruk, Derya; Han, Unsal; Sayli, Tulin; Cakar, Nilgun

    2016-06-01

    Castleman disease (CD) is a rare poorly understood lymphoproliferative disorder. Pediatric onset CD has been reported before. However, most of them have benign unicentric pattern. Multicentric CD (MCD) is quite rare in children. Herein, we report a 13-year-old adolescent boy with MCD of the hyaline vascular variant presenting with pleural and pericardial effusion, which is an uncommon presentation. MCD should be considered in the differential diagnosis of pleural and/or pericardial effusion with unexplained lymph nodes in children. What is Known •Pediatric Castleman disease (CD) most commonly occurs in the unicentric form, which typically is asymptomatic and cured by lymph node excision. •The diagnosis of MCD can be difficult owing to the heterogeneity of presentation and potential for nonspecific multisystem involvement. What is New •A 13-year-old adolescent boy was diagnosed with MCD of the hyaline vascular variant presenting with pleural and pericardial effusion, which is an uncommon presentation. •In a pediatric patient with fever, pleural-pericardial effusion and multiple lymph nodes, MCD should be considered in differantial diagnosis.

  19. Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon.

    Science.gov (United States)

    Handoo, Zafar A; Carta, Lynn K; Skantar, Andrea M; Chitwood, David J

    2012-03-01

    A new species of cyst nematode, Globodera ellingtonae, is described from soil collected from a field in Oregon. Second-stage juveniles (J2) of the species are characterized by body length of 365-515 μm, stylet length of 19-22.5 μm, basal knobs rounded posteriorly and pointed anteriorly, tail 39-55 μm, hyaline tail terminus 20-32.5 μm, and tail tapering uniformly but abruptly narrowing and constricted near the posterior third of the hyaline portion, ending with a peg-like, finely rounded to pointed terminus. Cysts are spherical to sub-spherical, dark to light brown and circumfenestrate and cyst wall pattern is ridge-like with heavy punctations. Males have a stylet length of 21-25 μm and spicule length of 30-37 μm with a pointed thorn-like tip. Females have a stylet length of 20-22.5 μm, one head annule and labial disc, heavy punctations on the cuticle, and short vulval slit 7.5-8 μm long. Morphologically this new, round-cyst species differs from the related species G. pallida, G. rostochiensis, G. tabacum complex and G. mexicana by its distinctive J2 tail, and by one or another of the following: shorter mean stylet length in J2, females and males; number of refractive bodies in the hyaline tail terminus of J2; cyst morphology including Granek's ratio; number of cuticular ridges between the anus and vulva; and in the shape and length of spicules in males. Its relationship to these closely related species are discussed. Based upon analysis of ribosomal internal transcribed spacer (ITS) sequences, G. ellingtonae n. sp. is distinct from G. pallida, G. rostochiensis, G. tabacum and G. mexicana. Bayesian and Maximum Parsimony analysis of cloned ITS rRNA gene sequences indicated three clades, with intraspecific variability as high as 2.8%. In silico analysis revealed ITS restriction fragment length polymorphisms for enzymes Bsh 1236I, Hinf I, and Rsa I that overlap patterns for other Globodera species.

  20. Assessment of lumbar trabecular bone density by means of single energy quantitative CT in hospital control children and bone metabolic disorders, 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Kazutoshi; Miyamoto, Akie; Imai, Kaoru; Mochizuki, Yumiko; Hayashi, Kitami; Mitsuishi, Yoichi; Fukuyama, Yukio; Kohno, Atsushi; Shigeta, Teiko (Tokyo Women' s Medical Coll. (Japan))

    1990-03-01

    We studied the 3rd lumbar vertebral trabecular bone mineral density in 59 cross-sectional pictures of quantitative computed tomography (QCT) with CaCO{sub 3} phantom for 28 hospital control children and 30 cases of suspected bone metabolic disorders. The QCT value of bone mineral density of control children showed neither age dependency nor sexual difference before puberty: for males was 221.8{plus minus}30.2 mg CaCO{sub 3}/cm{sup 3} (Mean{plus minus}SD) under 4 years, 218.1{plus minus}39.7 at 5{approx}9 years and 217.2{plus minus}30.9 at 10{approx}15 years; and for females 220.9{plus minus}18.3 under 4 years and 240.0{plus minus}29.4 at 5{approx}9 years. The QCT values of bone mineral density in bed-ridden patients, children receiving glucocorticoids, and children receiving anticonvulsants were significantly lower than that in control children (p<0.005). The QCT value of bone mineral density of bed-ridden patients was significantly lower than that of children receiving glucocorticoids and of children receiving anticonvulsants (p<0.05, p<0.005 respectively). Our study confirmed that single energy quantitative CT was very useful in pediatric clinical application. (author).