WorldWideScience

Sample records for hyaline cartilage defects

  1. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  2. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.

    Science.gov (United States)

    de Mulder, Eric L W; Hannink, Gerjon; van Kuppevelt, Toin H; Daamen, Willeke F; Buma, Pieter

    2014-02-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular to the AC surface would result in qualitatively better tissue repair due to a guided cellular influx from the subchondral bone. By specific freezing protocols, type I collagen scaffolds with isotropic and anisotropic fiber architectures were produced. Rabbits were operated on bilaterally and two full thickness defects were created in each knee joint. The defects were filled with (1) an isotropic scaffold, (2) an anisotropic scaffold with pores parallel to the cartilage surface, and (3) an anisotropic scaffold with pores perpendicular to the cartilage surface. Empty defects served as controls. After 4 (n=13) and 12 (n=13) weeks, regeneration was scored qualitatively and quantitatively using histological analysis and a modified O'Driscoll score. After 4 weeks, all defects were completely filled with partially differentiated hyaline cartilage tissue. No differences in O'Driscoll scores were measured between empty defects and scaffold types. After 12 weeks, all treatments led to hyaline cartilage repair visualized by increased glycosaminoglycan staining. Total scores were significantly increased for parallel anisotropic and empty defects over time (phyaline-like cartilage repair. Fiber architecture had no effect on cartilage repair.

  3. Study of MR sequence in detecting hyaline cartilage defects of the knee joint

    International Nuclear Information System (INIS)

    Li Songbai; He Cuiju; Sun Wenge; Li Chunkui; Qi Xixun; Li Yanliang; Xu Ke; Bai Xizhuang; Wu Zhenhua

    2003-01-01

    Objective: To evaluate the value of various MR imaging sequences for detecting hyaline cartilage defects. Methods: Ten animal models of cartilage defect were established in 5 pig knees. 5 knees were examined with nine different MR sequences. The signal noise ratio of cartilage and contrast noise ratio were calculated and compared between cartilage and adjacent tissue. Measurement of the defect depth and width on the imaging was correlated with the actual measurement before imaging. 23 patients with hyaline cartilage defects of the knee were evaluated with MR imaging. All these patients underwent subsequent arthroscopy. MR imaging protocol included the selected sequences in the experimental study. Results: The cartilage SNR was better in FSE PD, FS 3D FSPGR, and FS FSE PD sequences. CNR between cartilage and subcartilaginous bone was best in FS 3D FSPGR and FS FSE PD sequences. CNR between cartilage and joint fluid was best in FS 3D FSPGR and FS FSE T 2 WI sequences. CNR between cartilage and meniscus and ligament was best in FS 3D FSPGR, FS FSE PD, SE T 1 WI, and IR TI700 sequences. CNR between cartilage and fat was best in FS 3D FSPGR and SE T 1 WI sequences. The width and depth correlation was best in IR TI700 sequence, which showed the statistical significance (P 2 WI sequence, 68%, 99%, and 0.74, respectively with IR TI700 sequence. Conclusion: The sensitivity of FS 3D FSPGR sequence in detecting hyaline cartilage defect is the highest. T 1 WI of spin echo sequence and T 2 WI/PDWI of fast spin-echo with fat saturation should be the standard sequence in the examination of knee joint. T 1 WI of IR sequence has potential clinical value for cartilage examination

  4. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    Science.gov (United States)

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  5. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Vyacheslav Alexandrovich Vinokurov

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  6. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  7. Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation.

    Science.gov (United States)

    Arakaki, Kazunobu; Kitamura, Nobuto; Kurokawa, Takayuki; Onodera, Shin; Kanaya, Fuminori; Gong, Jian-Ping; Yasuda, Kazunori

    2011-02-01

    We have recently discovered that spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect in the rabbit, when we implant a novel double-network (DN) gel plug at the bottom of the defect. To clarify whether joint immobilization inhibits the spontaneous hyaline cartilage regeneration, we conducted this study with 20 rabbits. At 4 or 12 weeks after surgery, the defect in the mobile knees was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen, while no cartilage tissues were observed in the defect in the immobilized knees. Type-2 collagen, Aggrecan, and SOX9 mRNAs were expressed only in the mobile knees at each period. This study demonstrated that joint immobilization significantly inhibits the spontaneous hyaline cartilage regeneration induced by the DN gel implantation. This fact suggested that the mechanical environment is one of the significant factors to induce this phenomenon.

  8. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    Science.gov (United States)

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (Phyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  9. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds

    NARCIS (Netherlands)

    Mulder, E.L.W. de; Hannink, G.J.; Kuppevelt, T.H. van; Daamen, W.F.; Buma, P.

    2014-01-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular

  10. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    Science.gov (United States)

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  11. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  12. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  13. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel.

    Science.gov (United States)

    Yokota, Masashi; Yasuda, Kazunori; Kitamura, Nobuto; Arakaki, Kazunobu; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian-Ping

    2011-02-22

    Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect. Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks. The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral condyle.

  14. Induction of spontaneous hyaline cartilage regeneration using a double-network gel: efficacy of a novel therapeutic strategy for an articular cartilage defect.

    Science.gov (United States)

    Kitamura, Nobuto; Yasuda, Kazunori; Ogawa, Munehiro; Arakaki, Kazunobu; Kai, Shuken; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian Ping

    2011-06-01

    A double-network (DN) gel, which was composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) and poly-(N,N'-dimetyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. To establish the efficacy of a therapeutic strategy for an articular cartilage defect using a DN gel. Controlled laboratory study. A 4.3-mm-diameter osteochondral defect was created in rabbit trochlea. A DN gel plug was implanted into the defect of the right knee so that a defect 2 mm in depth remained after surgery. An untreated defect of the left knee provided control data. The osteochondral defects created were examined by histological and immunohistochemical evaluations, surface assessment using confocal laser scanning microscopy, and real-time polymerase chain reaction (PCR) analysis at 4 and 12 weeks. Samples were quantitatively evaluated with 2 scoring systems reported by Wayne et al and O'Driscoll et al. The DN gel-implanted defect was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type 2 collagen. Quantitative evaluation using the grading scales revealed a significantly higher score in the DN gel-implanted defects compared with the untreated control at each period (P cartilage at 12 weeks (P = .0106), while there was no statistical difference between the DN gel-implanted and normal knees. This study using the mature rabbit femoral trochlea osteochondral defect model demonstrated that DN gel implantation is an effective treatment to induce cartilage regeneration in vivo without any cultured cells or mammalian-derived scaffolds. This study has prompted us to develop a potential innovative strategy to repair cartilage lesions in the field of joint surgery.

  15. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation

    OpenAIRE

    Boopalan, P. R. J. V. C.; Sathishkumar, Solomon; Kumar, Senthil; Chittaranjan, Samuel

    2006-01-01

    Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilag...

  16. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  17. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  18. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    Science.gov (United States)

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  19. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.

    Science.gov (United States)

    Marchand, Catherine; Chen, Gaoping; Tran-Khanh, Nicolas; Sun, Jun; Chen, Hongmei; Buschmann, Michael D; Hoemann, Caroline D

    2012-03-01

    This study analyzed the long-term cartilage and subchondral bone repair of microdrilled defects treated with chitosan glycerol-phosphate/blood implant, using thrombin (Factor IIa) to accelerate in situ solidification. We also evaluated the cartilage repair response to six smaller microdrill holes compared with two larger holes. Bilateral knee trochlear cartilage defects were created in n=8 skeletally mature rabbits, drilled with six proximal 0.5 mm and two distal 0.9 mm holes, then covered with in situ-solidified IIa-implants (treated) or with IIa-alone (control). After 6.5 months of repair, cartilage repair tissues were analyzed by histological scoring and histomorphometry for hyaline matrix characteristics and osseous integration. Subchondral repair bone was analyzed by 3D microcomputed tomography and compared to acute defects (n=6) and intact trochlea (n=8). Implant-treated cartilage repair tissues had higher structural integrity through the entire defect (p=0.02), twofold higher percent staining for glycosaminoglycan (p=0.0004), and ~24% more collagen type II staining over the smaller drill holes (p=0.008) compared with controls. Otherwise, hole diameter had no specific effect on cartilage repair. The subchondral bone plate was partially restored in treated and control defects but less dense than intact trochlea, with evidence of incomplete regeneration of the calcified cartilage layer. More residual drill holes (p=0.054) were detected in control versus treated defects, and control defects with more than 40% residual holes presented abnormally thicker trabeculae compared with treated defects. Low osteoclast numbers after 6.5 months repair suggested that bone was no longer remodeling. The subchondral bone plate surrounding the defects exhibited a significant thickening compared with age-matched intact trochlea. These data suggest that debridement and drilling can lead to long-term subchondral bone changes outside the cartilage defect. Compared with drilled

  20. Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.

    Science.gov (United States)

    Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A

    2016-07-01

    Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.

  1. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  2. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  3. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  4. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair.

    Science.gov (United States)

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei

    2014-10-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. ©AlphaMed Press.

  5. The junction between hyaline cartilage and engineered cartilage in rabbits.

    Science.gov (United States)

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model.

    Science.gov (United States)

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  7. Effect of low-dose irradiation on structural and mechanical properties of hyaline cartilage-like fibrocartilage.

    Science.gov (United States)

    Öncan, Tevfik; Demirağ, Burak; Ermutlu, Cenk; Yalçinkaya, Ulviye; Özkan, Lütfü

    2013-01-01

    The aim of this study was to analyze the effect of low-dose irradiation on fibrous cartilage and to obtain a hyaline cartilage-like fibrocartilage (HCLF) with similar structural and mechanical properties to hyaline cartilage. An osteochondral defect was created in 40 knees of 20 rabbits. At the 7th postoperative day, a single knee of each rabbit was irradiated with a total dose of 5.0 Gy in 1.0 Gy fractions for 5 days (radiotherapy group), while the other knee was not irradiated (control group). Rabbits were then divided into four groups of 5 rabbits each. The first three groups were sacrificed at the 4th, 8th and the 12th postoperative weeks and cartilage defects were macroscopically and microscopically evaluated. The remaining group of 5 rabbits was sacrificed at the 12th week and biomechanical compression tests were performed on the cartilage defects. There was no significant biomechanical difference between the radiotherapy and the control group (p=0.686). There was no significant macroscopic and microscopic difference between groups (p=0.300). Chondrocyte clustering was observed in the irradiated group. Low-dose irradiation does not affect the mechanical properties of HCLF in vivo. However, structural changes such as chondrocyte clustering were observed.

  8. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  9. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    Science.gov (United States)

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  10. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel.

    Science.gov (United States)

    Fukui, Takaaki; Kitamura, Nobuto; Kurokawa, Takayuki; Yokota, Masashi; Kondo, Eiji; Gong, Jian Ping; Yasuda, Kazunori

    2014-04-01

    Implantation of PAMPS/PDMAAm double-network (DN) gel can induce hyaline cartilage regeneration in the osteochondral defect. However, it is a problem that the volume of the regenerated cartilage tissue is gradually reduced at 12 weeks. This study investigated whether intra-articular administration of hyaluronic acid (HA) increases the volume of the cartilage regenerated with the DN gel at 12 weeks. A total of 48 rabbits were used in this study. A cylindrical osteochondral defect created in the bilateral femoral trochlea was treated with DN gel (Group DN) or left without any implantation (Group C). In both Groups, we injected 1.0 mL of HA in the left knee, and 1.0 mL of saline solution in the right knee. Quantitative histological evaluations were performed at 2, 4, and 12 weeks, and PCR analysis was performed at 2 and 4 weeks after surgery. In Group DN, the proteoglycan-rich area was significantly greater in the HA-injected knees than in the saline-injected knees at 12 weeks (P = 0.0247), and expression of type 2 collagen, aggrecan, and Sox9 mRNAs was significantly greater in the HA-injected knees than in the saline-injected knees at 2 weeks (P = 0.0475, P = 0.0257, P = 0.0222, respectively). The intra-articular administration of HA significantly enhanced these gene expression at 2 weeks and significantly increased the volume of the hyaline cartilage regenerated by implantation of a DN gel at 12 weeks. This information is important to develop an additional method to increase the volume of the hyaline cartilage tissue in a potential cartilage regeneration strategy using the DN gel.

  11. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.

    Science.gov (United States)

    Hoemann, Caroline D; Hurtig, Mark; Rossomacha, Evgeny; Sun, Jun; Chevrier, Anik; Shive, Matthew S; Buschmann, Michael D

    2005-12-01

    one hour postoperatively, chitosan-glycerol phosphate/blood clots showed increased adhesion to the walls of the defects as compared with the blood clots in the untreated microfracture defects. After histological processing, all blood clots in the control microfracture defects had been lost, whereas chitosanglycerol phosphate/blood clot adhered to and was partly retained on the surfaces of the defect. At six months, defects that had been treated with chitosan-glycerol phosphate/blood were filled with significantly more hyaline repair tissue (p cartilage repair compared with microfracture alone by increasing the amount of tissue and improving its biochemical composition and cellular organization.

  12. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: Short-term results

    Directory of Open Access Journals (Sweden)

    Matsuda Hidetoshi

    2013-01-01

    Full Text Available Abstract Background A double-network (DN gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid and poly(N,N’-dimethyl acrylamide, can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Methods Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control. Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface in the defect. The regenerated tissues were evaluated with the Wayne’s gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. Results According to the total Wayne’s score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p  Conclusions The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  13. 1. 5 MRT of the hyaline articular cartilage of the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G.; Bohndorf, K.; Krasny, R.; Guenther, R.W.; Prescher, A.

    1988-06-01

    MRI is a new method for imaging the knee joint. There is still some uncertainty regarding the extent and the signal from hyaline articular cartilage. MRI images were therefore compared with anatomical and histological preparations of the knee joint and the difference between MRI and the anatomical sections have been determined. It was shown that demonstration of hyaline cartilage was obscured by an artifact. Further investigations are required to determine the cause of this artifact and to achieve accurate imaging of hyaline cartilage by MRI.

  14. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  15. Priority of surgical treatment techniques of full cartilage defects of knee joint

    Directory of Open Access Journals (Sweden)

    Андрій Вікторович Літовченко

    2015-10-01

    Full Text Available Aim. Surgical treatment of chondromalacia of knee joint cartilage is an actual problem of the modern orthopedics because the means of conservative therapy can be realized at an initial stage only and almost exhausted at the further ones. Imperfections of palliative surgical techniques are the short-term clinical effect and pathogenetic baselessness because surgical procedure is not directed on reparation of cartilaginous tissue. For today there are a lot of transplantation techniques that are used for biological renewal of articular surface with formation of hyaline or at least hyaline-like cartilage. The deep forage of cartilage defect bottom to the medullary canal is a perspective and priority technique.Methods. The results of treatment of 61 patients with chondromalacia of knee joint of 3-4 degree according to R. Outerbridge are the base of the work. 20 patients of every group underwent microfracturization of cartilage defect bottom and subchondral forage of defect zone. 21 patients underwent the deep forage of defect zone of knee joint according to an offered technique.Result. The results of treatment with microfracturization, subchondral forage and deep forage of defect zone indicate the more strong clinical effect especially in the last clinical group where good and satisfactory results ratios in the term of observation 18 and 24 month remain stable.Conclusions. Deep forage of cartilage defects zone is the most adequate reparative technique of the surgical treatment of local knee joint cartilage defects. Owing to this procedure the number of cells of reparative chondrogenesis predecessors is realized

  16. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results.

    Science.gov (United States)

    Matsuda, Hidetoshi; Kitamura, Nobuto; Kurokawa, Takayuki; Arakaki, Kazunobu; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2013-01-31

    A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne's gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. According to the total Wayne's score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (phyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  17. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  18. Quasi-static elastography comparison of hyaline cartilage structures

    Science.gov (United States)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  19. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    Science.gov (United States)

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p hyaline cartilage in osteochondral lesions.

  20. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    OpenAIRE

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cart...

  1. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  2. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) of Cadaveric Shoulders: Comparison of Contrast Dynamics in Hyaline and Fibrous Cartilage after Intraarticular Gadolinium Injection

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, E. (Dept. of Radiology, Charite Universitaetsmedizin Berlin (Germany)); Hodler, J.; Pfirrmann, C.W.A. (Dept. of Radiology, Orthopedic Univ. Hospital Balgrist, Zuerich (Switzerland))

    2009-01-15

    Background: Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. Purpose: To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Material and Methods: Transverse T1 maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T1 maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. Results: T1 of unenhanced hyaline cartilage of the glenoid was 568+-34 ms. T1 of unenhanced fibrous cartilage of the labrum was 552+-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T1(Gd) values in fibrous cartilage. T1 and ?R1 values of hyaline and fibrous cartilage after 2.5 hours were 351+-16 ms and 1.1+-0.09/s, and 332+-31 ms and 1.2+-0.1/s, respectively. Conclusion: A significant decrease in T1(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium

  3. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    Science.gov (United States)

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  4. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    Science.gov (United States)

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666

  5. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF.

    Science.gov (United States)

    Cugat, Ramón; Alentorn-Geli, Eduard; Steinbacher, Gilbert; Álvarez-Díaz, Pedro; Cuscó, Xavier; Seijas, Roberto; Barastegui, David; Navarro, Jordi; Laiz, Patricia; García-Balletbó, Montserrat

    2017-01-01

    Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF). Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them). The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  6. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF

    Directory of Open Access Journals (Sweden)

    Ramón Cugat

    2017-01-01

    Full Text Available Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF. Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them. The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  7. Treatment of deep hyalin cartilage defects with autologous perichondrial grafts.

    Science.gov (United States)

    Bruns, J; Steinhagen, J

    2003-07-01

    Perichondrial transplantation was performed in 29 patients suffering from a deep chondral lesion with different etiologies. Only those patients with a cartilage lesion in the knee joint were included. Patients were initially and postoperatively examined using the Lysholm- and HSS-Score. In most of the patients (20/29) trauma and the recurrence of osteochondrosis dissecans (6/29) were the cause of the cartilage lesion. Most often the medial femoral condyle (19/29) and, secondly, the lateral femoral condyle (5/29) were involved. In six patients additional therapeutic measures (ACL-plasty, n = 2; high tibial osteotomy because of varus mal-alignment, n = 4) had to be adopted. Follow-up examination was possible in 26/29 patients after a minimum postoperative period of 12 months. All patients exhibited a distinct and significant increase in both the Lysholm and the HSS-score. A follow-up after a minimum of 24 months was possible in 13/29 patients. Even these patients exhibited a distinct and significant improvement. Multiple follow-up examinations in 9/29 patients demonstrated maintenance of the first postoperative results obtained after one postoperative year for a maximum of 49 months in most of the patients. Only in one female patient, implantation of a semi-constrained total knee replacement was necessary because of osteoarthrosis resulting from crystal arthropathy (chondrocalcinosis). It was possible to obtain biopsies from three patients at the time osteosynthetic material was removed. In all cases hyaline-like cartilage was histologically observed. In the treatment of selected patients suffering from a circumscript cartilaginous lesion resulting from trauma or the recurrence of osteochondritis dissecans with a concomitant cartilage lesion but without major signs of osteoarthritis, perichondrial grafting can achieve acceptable clinical results, after a short follow-up period. In order to achieve satisfying results a good selection of patients and additional

  8. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.

    OpenAIRE

    O'Connor, P; Brereton, J D; Gardner, D L

    1984-01-01

    Papain was used to digest the hyaline femoral condylar cartilages of 30 adult Wistar rats. Matrix proteoglycan degradation was assessed by the light microscopy of paraffin sections stained with toluidine blue. The extent of surface structural change was estimated by scanning electron microscopy, and the structural integrity of the hyaline cartilage tested by the controlled impact of a sharp pin. The results demonstrated an early loss of cartilage metachromasia, increasing with time of papain ...

  9. Is the T1ρ MRI profile of hyaline cartilage in the normal hip uniform?

    Science.gov (United States)

    Rakhra, Kawan S; Cárdenas-Blanco, Arturo; Melkus, Gerd; Schweitzer, Mark E; Cameron, Ian G; Beaulé, Paul E

    2015-04-01

    T1ρ MRI is an imaging technique sensitive to proteoglycan (PG) content of hyaline cartilage. However, normative T1ρ values have not been established for the weightbearing cartilage of the hip, and it is not known whether it is uniform or whether there is topographic variation. Knowledge of the T1ρ profile of hyaline cartilage in the normal hip is important for establishing a baseline against which comparisons can be made to experimental and clinical arthritic subjects. In this diagnostic study, we determined (1) the T1ρ MRI values of hyaline cartilage of the normal hip; and (2) whether the T1ρ MRI profile of the normal hip hyaline cartilage is uniform. Fourteen asymptomatic volunteers (11 men, three women; mean age, 35 years) prospectively underwent 1.5-T T1ρ MRI of a single hip. The weightbearing hyaline cartilage bilayer of the acetabulum and femoral head was evaluated on sagittal images and segmented into four zones: (1) anterior; (2) anterosuperior; (3) posterosuperior; and (4) and posterior. For the full region of interest and within each zone and each sagittal slice, we calculated the mean T1ρ relaxation value, a parameter that indirectly quantifies PG content, where T1ρ is inversely related to PG concentration. There was variation in the T1ρ relaxation values depending on zone (anterior to posterior) and slice (medial to lateral). When combining the most anterior quadrants (Zones 1 and 2), the T1ρ relaxation values were lower than those in the combined posterior quadrants (Zones 3 and 4) (30.4 msec versus 32.2 msec, respectively; p = 0.002), reflecting higher PG concentration. There was a difference between the T1ρ relaxation values of the sagittal slices (p = 0.038), most pronounced anteriorly in Zone 1 (26.6 msec, p = 0.001). With a selective combination of zones and slices, there were lower mean T1ρ values in the anterolateral-most region compared with the remainder of the weightbearing portion of the hip (28.6 msec versus 32.2 msec

  10. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    Science.gov (United States)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  11. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    Science.gov (United States)

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  12. Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs

    Directory of Open Access Journals (Sweden)

    Akihiro Yamashita

    2015-03-01

    Full Text Available Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs. We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1, and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects.

  13. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach.

    Science.gov (United States)

    Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M

    2012-11-01

    Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  15. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  16. One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments.

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-07-01

    To provide a comprehensive overview of the basic science rationale, surgical technique, and clinical outcomes of 1-step cartilage repair technique used as a treatment strategy for cartilage defects. A systematic review was performed in the main medical databases to evaluate the several studies concerning 1-step procedures for cartilage repair. The characteristics of cell-seed scaffolds, behavior of cells seeded into scaffolds, and surgical techniques were also discussed. Clinical outcomes and quality of repaired tissue were assessed using several standardized outcome assessment tools, magnetic resonance imaging scans, and biopsy histology. One-step cartilage repair could be divided into 2 types: chondrocyte-matrix complex (CMC) and autologous matrix-induced chondrogenesis (AMIC), both of which allow a simplified surgical approach. Studies with Level IV evidence have shown that 1-step cartilage repair techniques could significantly relieve symptoms and improve functional assessment (P studies clearly showed hyaline-like cartilage tissue in biopsy tissues by second-look arthroscopy. The 1-step cartilage repair technique, with its potential for effective, homogeneous distribution of chondrocytes and multipotent stem cells on the surface of the cartilage defect, is able to regenerate hyaline-like cartilage tissue, and it could be applied to cartilage repair by arthroscopy. Level IV, systematic review of Level II and IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Magnetic resonance tomography (MRT) of the knee joint: Meniscus, cruciate ligaments and hyaline cartilage. Magnetresonanztomographie (MRT) des Kniegelenks: Meniskus, Kreuzbaender und hyaliner Gelenkknorpel

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. (Radiologie, Universitaetsspital, Zurich (Switzerland) Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland). Radiologische Abt.); Buess, E. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Rodriguez, M. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Imhoff, A. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland))

    1993-08-01

    The use of MRT for diagnosing injury to the meniscus, the cruciate ligaments and hyaline cartilage was evaluated retrospectively in 82 knee joints without any knowledge of operative findings. In 49 cases the results were verified by arthroscopy and in 33 cases by arthrotomy. Sensitivity, specificity and diagnostic accuracy of MRT for meniscus lesions was 73.9%, 96.9%, and 94.6%. Corresponding values for lesions of the anterior cruciate ligament were 88.9%, 96.6%, and 94.7%, and for lesions of the hyaline cartilage 62.6%, 96.1%, and 87.9%, respectively. In addition to its high specificity, MRT proved accurate in excluding lesions of the meniscus (97.1%) of the anterior cruciate ligament (96.6%) and of hyaline cartilage (88.8%). A negative finding on MRT therefore makes the presence of a lesion of the meniscus, cruciate ligaments of cartilage unlikely. In such cases one is justified in delaying the use of arthroscopy or arthrotomy. (orig.)

  18. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs.

    Science.gov (United States)

    Yamashita, Akihiro; Morioka, Miho; Yahara, Yasuhito; Okada, Minoru; Kobayashi, Tomohito; Kuriyama, Shinichi; Matsuda, Shuichi; Tsumaki, Noriyuki

    2015-03-10

    Defects in articular cartilage ultimately result in loss of joint function. Repairing cartilage defects requires cell sources. We developed an approach to generate scaffoldless hyaline cartilage from human induced pluripotent stem cells (hiPSCs). We initially generated an hiPSC line that specifically expressed GFP in cartilage when teratoma was formed. We optimized the culture conditions and found BMP2, transforming growth factor β1 (TGF-β1), and GDF5 critical for GFP expression and thus chondrogenic differentiation of the hiPSCs. The subsequent use of scaffoldless suspension culture contributed to purification, producing homogenous cartilaginous particles. Subcutaneous transplantation of the hiPSC-derived particles generated hyaline cartilage that expressed type II collagen, but not type I collagen, in immunodeficiency mice. Transplantation of the particles into joint surface defects in immunodeficiency rats and immunosuppressed mini-pigs indicated that neocartilage survived and had potential for integration into native cartilage. The immunodeficiency mice and rats suffered from neither tumors nor ectopic tissue formation. The hiPSC-derived cartilaginous particles constitute a viable cell source for regenerating cartilage defects. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits.

    Science.gov (United States)

    Chang, Nai-Jen; Lin, Chih-Chan; Shie, Ming-You; Yeh, Ming-Long; Li, Chien-Feng; Liang, Peir-In; Lee, Kuan-Wei; Shen, Pei-Hsun; Chu, Chih-Jou

    2015-12-01

    The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full

  20. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    Science.gov (United States)

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  1. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  2. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  3. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  4. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  5. Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits.

    Science.gov (United States)

    Sancho-Tello, María; Forriol, Francisco; Martín de Llano, José J; Antolinos-Turpin, Carmen; Gómez-Tejedor, José A; Gómez Ribelles, José L; Carda, Carmen

    2017-07-05

    To study the influence of scaffold properties on the organization of in vivo cartilage regeneration. Our hypothesis was that stress transmission to the cells seeded inside the pores of the scaffold or surrounding it, which is highly dependent on the scaffold properties, determines the differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. 4 series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells, were implanted in cartilage defects in rabbits. Subchondral bone was injured during the surgery to allow blood to reach the implantation site and fill the scaffold pores. At 3 months after implantation, excellent tissue regeneration was obtained, with a well-organized layer of hyaline-like cartilage at the condylar surface in most cases of the hydrophobic or slightly hydrophilic series. The most hydrophilic material induced the poorest regeneration. However, no statistically significant difference was observed between preseeded and non-preseeded scaffolds. All of the materials used were biocompatible, biostable polymers, so, in contrast to some other studies, our results were not perturbed by possible effects attributable to material degradation products or to the loss of scaffold mechanical properties over time due to degradation. Cartilage regeneration depends mainly on the properties of the scaffold, such as stiffness and hydrophilicity, whereas little difference was observed between preseeded and non-preseeded scaffolds.

  6. MR imaging of hyaline cartilage in chondromalacia patellae and osteochondrosis dissecans: A comparison with CT-arthrography and arthroscopy

    International Nuclear Information System (INIS)

    Lehner, K.; Heuck, A.; Lukas, P.; Rodammer, G.; Allgayer, B.; Pasquay, E.

    1987-01-01

    Superior to spin-echo sequences, the articular hyaline cartilage was imaged with fast-field-echo sequences (FFE, Gyroscan 0.5-T, Philips) with an excitation pulse angle of 40 0 to 60 0 . Chondromalaceous lesions could be demonstrated in 30 patients with chondropathia patellae with the same sensitivity compared with CT arthrography. In a further 50 patients with osteochondrosis dissecans, discontinuities of the cartilage could be predicted using the deeply invading articular fluid as an indicator. The sensitivity of MR imaging, as controlled by arthroscopy, was very high in that respect. Separate from the nonhemorrhagic articular fluid, the cartilaginous defects could be imaged directly by variation of the FFE parameters

  7. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    Science.gov (United States)

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  8. In vitro uptake of 153gadolinium and gadolinium complexes by hyaline articular cartilage

    International Nuclear Information System (INIS)

    Engel, A.; Fleischmann, D.; Hamilton, G.; Hajek, P.

    1990-01-01

    This in vitro study evaluated whether Gadolinium (Gd) penetrates into hyaline cartilage and would be incorporated into vital chondrocytes. Hyaline joint cartilage of rabbits was exposed to radioactive 153 GdCl 3 and to a radioactive 153 Gd-DTPA-BSA-complex (DTPA, diethylene-triaminepentaacetic acid; BSA, bovine serum albumine). In addition an exchange experiment with radioactive 153 GdCl 3 versus Gd-DTPA-di-N-methylglucamine (Magnevist) was performed. Incorporation of 153 GdCl 3 into neuroblastoma cells, connective tissue cells and chondrocytes was tested. The results showed that the depth and extent of incorporation of Gd depends on the molecular mass and time of exposure. 153 Gd-DTPA-BSA complexes exhibited an incorporation rate of maximal 11 per cent ± 2.8 per cent up to the middle third of the cartilage within 24 h with almost no incorporation (2 ± 1.9 per cent) for the deep layer. The exchange experiment revealed no uptake of Gd for the deep layer. The maximal incorporation rate of 153 GdCl 3 into vital chondrocytes was 6.3 per cent. These data indicate that under the condition of MR-arthrography, Gd-DTPA-di-N-methylglucamine will not be absorbed into the deep layers of hyaline cartilage and will not be incorporated into vital chondrocytes. (author). 8 refs.; 3 tabs

  9. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit

    Directory of Open Access Journals (Sweden)

    Amir Sotoudeh

    2013-05-01

    Full Text Available PURPOSE: Articular Cartilage has limited potential for self-repair and tissue engineering approaches attempt to repair articular cartilage by scaffolds. We hypothesized that the combined hydroxyapatite and zirconia stabilized yttria would enhance the quality of cartilage healing. METHODS: In ten New Zealand white rabbits bilateral full-thickness osteochondral defect, 4 mm in diameter and 3 mm depth, was created on the articular cartilage of the patellar groove of the distal femur. In group I the scaffold was implanted into the right stifle and the same defect was created in the left stifle without any transplant (group II. Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. RESULTS: In group I the defect was filled with a white translucent cartilage tissue In contrast, the defects in the group II remained almost empty. In the group I, the defects were mostly filled with hyaline-like cartilage evidenced but defects in group II were filled with fibrous tissue with surface irregularities. Positive immunohistochemical staining of type-II collagen was observed in group I and it was absent in the control group. CONCLUSION: The hydroxyapatite/yttria stabilized zirconia scaffold would be an effective scaffold for cartilage tissue engineering.

  10. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  11. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Science.gov (United States)

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  12. MRI monitoring of autologous hyaline cartilage grafts in the knee joint: a follow-up study over 12 months; MRT-Monitoring autologer Chondrozytentransplantate im Kniegelenk: Eine Verlaufsstudie ueber 12 Monate

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Horvat, C.; Schick, F.; Claussen, C.D.; Groenewaeller, E. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany)

    2004-12-01

    Purpose: To evaluate the suitability of different MR sequences for monitoring the stage of maturation of hyaline cartilage grafts in the knee joint and the early detection of complications like hypertrophy. In addition, it was analyzed whether indirect MR arthrography can indicate debonding of the graft. Materials and Methods: MRI examinations were performed in 19 patients, aged 17-43 years, with autologous transplantation of a hyaline cartilage tissue graft after knee trauma. Examination dates were prior to transplantation to localize the defect, and 6 weeks, 3, 6 and 12 months after transplantation to control morphology and maturation of the autologous graft. Standard T2- and protondensity-weighted turbo spin echo (TSE) sequences and T1-weighted spin echo (SE) sequences were used, as well as gradient echo (GRE) sequences with and without magnetization transfer (MT) prepulses. In some cases, indirect MR arthrography was performed. Results: Cartilage defect and the hyaline cartilage graft could be detected in all 19 patients. Hypertrophy of the graft could be found early in 3 patients and debonding in 1 patient. For depicting the graft a short time after surgery. T2-weighted TSE-sequences showed the best results. Six and 12 months after transplantation, spoiled 3D-GRE-sequences like FLASH3D (fast low angle shot) showed reduced artifacts due to magnetic residues from the surgery. Difference images from GRE-sequences with and without MT pulse provided high contrast between cartilage and surrounding tissue. The quantification of the MT effect showed an assimilation of the graft to the original cartilage within 12 months. Indirect MR arthrography showed subchondral contrast medium even 12 months after transplantation in 3 patients. (orig.)

  13. Influence of Structure and Composition on Dynamic Viscoelastic Property of Cartilaginous Tissue: Criteria for Classification between Hyaline Cartilage and Fibrocartilage Based on Mechanical Function

    Science.gov (United States)

    Miyata, Shogo; Tateishi, Tetsuya; Furukawa, Katsuko; Ushida, Takashi

    Recently, many types of methodologies have been developed to regenerate articular cartilage. It is important to assess whether the reconstructed cartilaginous tissue has the appropriate mechanical functions to qualify as hyaline (articular) cartilage. In some cases, the reconstructed tissue may become fibrocartilage and not hyaline cartilage. In this study, we determined the dynamic viscoelastic properties of these two types of cartilage by using compression and shear tests, respectively. Hyaline cartilage specimens were harvested from the articular surface of bovine knee joints and fibrocartilage specimens were harvested from the meniscus tissue of the same. The results of this study revealed that the compressive energy dissipation of hyaline cartilage showed a strong dependence on testing frequency at low frequencies, while that of fibrocartilage did not. Therefore, the compressive energy dissipation that is indicated by the loss tangent could become the criterion for the in vitro assessment of the mechanical function of regenerated cartilage.

  14. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  15. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.

    Science.gov (United States)

    Daly, Andrew C; Critchley, Susan E; Rencsok, Emily M; Kelly, Daniel J

    2016-10-07

    Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro. Each hydrogel was seeded with MSCs, cultured for 28 days in the presence of TGF-β3 and then analysed for markers indicative of differentiation towards either a fibrocartilaginous or hyaline cartilage-like phenotype. Alginate and agarose hydrogels best supported the development of hyaline-like cartilage, as evident by the development of a tissue staining predominantly for type II collagen. In contrast, GelMA and BioINK ™ (a PEGMA based hydrogel) supported the development of a more fibrocartilage-like tissue, as evident by the development of a tissue containing both type I and type II collagen. GelMA demonstrated superior printability, generating structures with greater fidelity, followed by the alginate and agarose bioinks. High levels of MSC viability were observed in all bioinks post-printing (∼80%). Finally we demonstrate that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments, generating composites with bulk compressive moduli comparable to articular cartilage. This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications.

  16. Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Dolgushkin, D. A.; Volova, L. T.; Lazarev, V. A.; Tyumchenkova, A. S.; Markova, M. D.

    2017-08-01

    The paper presents the results of a comparative analysis by the method of Raman spectroscopy of the joint hyaline cartilage of adults and children. Differences in the spectral characteristics of the surface of articular cartilage are shown. New optical coefficients have been introduced, which make it possible to evaluate the age-related changes in cartilaginous tissue.

  17. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study.

    Science.gov (United States)

    Peck, Yvonne; He, Pengfei; Chilla, Geetha Soujanya V N; Poh, Chueh Loo; Wang, Dong-An

    2015-11-09

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG at endpoint. Microscopic inspection revealed that LhCG engraftment restored cartilage thickness, promoted integration with surrounding native cartilage, produced abundant cartilage-specific matrix molecules, and re-established an intact superficial tangential zone. Importantly, the repair efficacy of LhCG was quantitatively shown to be comparable to native, unaffected cartilage in terms of biochemical composition and biomechanical properties. There were no complications related to the donor site of cartilage biopsy. Collectively, these results imply that LhCG engraftment may be a viable approach for articular cartilage repair.

  19. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    International Nuclear Information System (INIS)

    Freemont, Anthony J.; Hoyland, Judith

    2006-01-01

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed

  20. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  1. Stem Cells and Gene Therapy for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA. Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.

  2. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    Science.gov (United States)

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  3. Restoration of limited defects of the cartilage with the use of cell-engineered constructs

    Directory of Open Access Journals (Sweden)

    S. A. Gerasimov

    2017-01-01

    Full Text Available Aim: to develop a three-dimensional composite cell-engineered constructs (CEC for restoration of limited defects of the cartilage in experiment.Materials and methods. To create a cell-engineered constructs (CEC, were used collagenic carriers: «Chondro Gide» impermeable bilayer membrane and «Osteoplast» permeable matrix. A comparative study of their cytotoxic and adhesion properties was made in vitro. Chondroplastic potential of prepared CECs based on collagenous matrices with allogeneic mesenchymal stem cells (MSC of the rabbit bone marrow grown on their surface was assessed in vivo. A cylindrical defect of the cartilage of the medial femoral condyle 3.3 mm in diameter at a depth of 1.5 mm was formed on both rabbit feet. Laboratory animals were divided into 3 groups: control group; Experiment 1 group with Chondro Gide used as the MSC carrier within CEC; Experiment 2 group using Osteoplast matrix. Upon experiment completion, a morphometric and histomorphologic research of tissue specimens was made. For statistical evaluation of the results a defect region recovery factor (RF was offered and used. Results. After a 6-month observation period the control group showed partial recovery of the defect region with the recovery factor (RF of 0.62 ± 0.06. The RF in Experiment 1 group equalled to 0.79 ± 0.07, Experiment 2 group revealed RF at the level of 0.88 ± 0.02. Statistical analysis of the research results shows that the use of CEC used in Experiment 2 group reduces a relative risk of therapeutic failures by 92.9%, and absolute risk – by 43.3% as compared to Experiment 1 group. Histomorphologic research data are indicative of a hyaline cartilage formation in the central defect zone, which is partially close to the intact cartilage to the maximum with zonality marked.Conclusion. Results of the research of the developed three-dimension cell-engineered constructs consisting of mesenchymal stem cells of the bone marrow grown on the Osteoplast

  4. Articular cartilage defect detectability in human knees with MR-arthrography

    International Nuclear Information System (INIS)

    Engel, A.; Kramer, J.; Stiglbauer, R.; Hajek, P.C.; Imhof, H.

    1993-01-01

    One hundred and thirteen knee joints were examined, of which 48 showed damage of the hyaline cartilage in one or more locations. For the evaluation of the magnetic resonance (MR) arthrographic images we used the macroscopic staging according to Outerbridge, the defect staging according to Bauer, as well as a new MR-arthrographic staging. The results of the evaluation were compared with the surgical findings in 61 knee joints. This revealed a sensitivity of 86 %, a specificity of 100 % and accuracy of 90 %. All lesions that could not be classified on MR-arthrography were of stage-I chondromalacia. (orig.)

  5. Articular cartilage defect detectability in human knees with MR-arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Engel, A. [Orthopaedic Clinic, Univ. of Vienna (Austria); Kramer, J. [MR-Inst., Univ. of Vienna (Austria); Stiglbauer, R. [MR-Inst., Univ. of Vienna (Austria); Hajek, P.C. [MR-Inst., Univ. of Vienna (Austria); Imhof, H. [MR-Inst., Univ. of Vienna (Austria)

    1993-04-01

    One hundred and thirteen knee joints were examined, of which 48 showed damage of the hyaline cartilage in one or more locations. For the evaluation of the magnetic resonance (MR) arthrographic images we used the macroscopic staging according to Outerbridge, the defect staging according to Bauer, as well as a new MR-arthrographic staging. The results of the evaluation were compared with the surgical findings in 61 knee joints. This revealed a sensitivity of 86 %, a specificity of 100 % and accuracy of 90 %. All lesions that could not be classified on MR-arthrography were of stage-I chondromalacia. (orig.)

  6. Treatment of a Focal Articular Cartilage Defect of the Talus with Polymer-Based Autologous Chondrocyte Implantation: A 12-Year Follow-Up Period.

    Science.gov (United States)

    Kreuz, Peter Cornelius; Kalkreuth, Richard Horst; Niemeyer, Philipp; Uhl, Markus; Erggelet, Christoph

    Autologous chondrocyte implantation (ACI) is a first-line treatment option for large articular cartilage defects. Although well-established for cartilage defects in the knee, studies of the long-term outcomes of matrix-assisted ACI to treat cartilage defects in the ankle are rare. In the present report, we describe for the first time the long-term clinical and radiologic results 12 years after polymer-based matrix-assisted ACI treat a full-thickness talar cartilage defect in a 25-year-old male patient. The clinical outcome was assessed using the visual analog scale and Freiburg ankle score, magnetic resonance imaging evaluation using the Henderson-Kreuz scoring system and T2 mapping. Clinical assessment revealed improved visual analog scale and Freiburg ankle scores. The radiologic analysis and T2 relaxation time values indicated the formation of hyaline-like repair tissue. Polymer-based autologous chondrocytes has been shown to be a safe and clinically effective long-term treatment of articular cartilage defects in the talus. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Platelet-rich plasma loaded in situ-formed hydrogel enhances hyaline cartilage regeneration by CB1 upregulation.

    Science.gov (United States)

    Lee, Hye-Rim; Park, Kyung Min; Joung, Yoon Ki; Park, Ki Dong; Do, Sun Hee

    2012-11-01

    The efficacy of three-dimensional (3D) culture on the proliferation and maturation of chondrocytes seeded into a hydrogel scaffold was assessed. Three types of hydrogel were prepared for the 3D culture of primary isolated chondrocytes. Chondrocyte proliferation was assessed using a live/dead viability/cytotoxicity assay and semiquantitative RT-PCR after 3D culture in hydrogel. Cylindrical defects in the center of rat xyphoids were used for the implantation of platelet-rich plasma (PRP)/hydrogel composites. Rats were killed at day 7 postoperatively and evaluated histochemically and immunohistologically. Xyphoid chondrocytes proliferated well with time in hydrogels. In the PRP-containing hydrogels, xyphoid defects displayed early formation of chondroid matrix with massive peripheral infiltration of spindle cells. These results were consistent with Safranin-O staining for proteoglycans and immunohistochemistry for type II collagen. Gene expression analyses in vitro revealed aggrecan, type II collagen, and ChM-1 and CB1 upregulation by PRP/hydrogel. PRP/hydrogel provided a suitable environment for hyaline cartilaginous regeneration, leading to anti-inflammation by significant increase of CB1 and inhibiting vascular ingrowth via considerable upregulation of ChM-1. The results provide a valuable reference for the clinical application of hydrogel scaffolds for hyaline cartilage regeneration, as well as the use of autologous PRP to improve cellular proliferation and maturation of xyphoid repair. Copyright © 2012 Wiley Periodicals, Inc.

  8. Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi.

    Science.gov (United States)

    Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C

    2009-12-01

    OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.

  9. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    Science.gov (United States)

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic

  10. A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue

    Science.gov (United States)

    Nyengaard, Jens Randel; Lind, Martin; Spector, Myron

    2015-01-01

    Objective To implement stereological principles to develop an easy applicable algorithm for unbiased and quantitative evaluation of cartilage repair. Design Design-unbiased sampling was performed by systematically sectioning the defect perpendicular to the joint surface in parallel planes providing 7 to 10 hematoxylin–eosin stained histological sections. Counting windows were systematically selected and converted into image files (40-50 per defect). The quantification was performed by two-step point counting: (1) calculation of defect volume and (2) quantitative analysis of tissue composition. Step 2 was performed by assigning each point to one of the following categories based on validated and easy distinguishable morphological characteristics: (1) hyaline cartilage (rounded cells in lacunae in hyaline matrix), (2) fibrocartilage (rounded cells in lacunae in fibrous matrix), (3) fibrous tissue (elongated cells in fibrous tissue), (4) bone, (5) scaffold material, and (6) others. The ability to discriminate between the tissue types was determined using conventional or polarized light microscopy, and the interobserver variability was evaluated. Results We describe the application of the stereological method. In the example, we assessed the defect repair tissue volume to be 4.4 mm3 (CE = 0.01). The tissue fractions were subsequently evaluated. Polarized light illumination of the slides improved discrimination between hyaline cartilage and fibrocartilage and increased the interobserver agreement compared with conventional transmitted light. Conclusion We have applied a design-unbiased method for quantitative evaluation of cartilage repair, and we propose this algorithm as a natural supplement to existing descriptive semiquantitative scoring systems. We also propose that polarized light is effective for discrimination between hyaline cartilage and fibrocartilage. PMID:26069715

  11. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc.

    Science.gov (United States)

    Mwale, F; Roughley, P; Antoniou, J

    2004-12-15

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio) in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  12. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc

    Directory of Open Access Journals (Sweden)

    Mwale F.

    2004-12-01

    Full Text Available Tissue engineering of intervertebral discs (IVD using mesenchymal stem cells (MSCs induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  13. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Kuppevelt, T.H. van; Gonzales, V.K.; Buma, P.; Hout, J. in't; Vries, R.B.M. de; Daamen, W.F.

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline

  14. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrat...

  15. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study.

    Science.gov (United States)

    Filippucci, E; Riveros, M Gutierrez; Georgescu, D; Salaffi, F; Grassi, W

    2009-02-01

    The main aim of the present study was to determine the sensitivity, specificity and accuracy of ultrasonography (US) in detecting monosodium urate and calcium pyrophosphate dihydrate crystals deposits at knee cartilage level using clinical definite diagnosis as standard reference. A total of 32 patients with a diagnosis of gout and 48 patients with pyrophosphate arthropathy were included in the study. Fifty-two patients with rheumatoid arthritis (RA), psoriatic arthritis or osteoarthritis (OA) were recruited as disease controls. All diagnoses were made using an international clinical criterion. US examinations were performed by an experienced sonographer, blind to clinical and laboratory data. Hyaline cartilage was assessed to detect two US findings recently indicated as indicative of crystal deposits: hyperechoic enhancement of the superficial margin of the hyaline cartilage and hyperechoic spots within the cartilage layer not generating a posterior acoustic shadow. Hyperechoic enhancement of the chondrosynovial margin was found in at least one knee of 14 out of 32 (43.7%) patients with gout and in a single knee of only one patient affected by pyrophosphate arthropathy (specificity=99%). Intra-cartilaginous hyperechoic spots were detected in at least one knee of 33 out of 48 (68.7%) patients with pyrophosphate arthropathy and in two disease controls one with OA and the second with RA (specificity=97.6%). The results of the present study indicate that US may play a relevant role in distinguishing cartilage involvement in patients with crystal-related arthropathy. The selected US findings were found to be highly specific.

  16. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix.

    Science.gov (United States)

    Gigout, A; Guehring, H; Froemel, D; Meurer, A; Ladel, C; Reker, D; Bay-Jensen, A C; Karsdal, M A; Lindemann, S

    2017-11-01

    Fibroblast growth factor (FGF) 18 has been shown to increase cartilage volume when injected intra-articularly in animal models of osteoarthritis (OA) and in patients with knee OA (during clinical development of the recombinant human FGF18, sprifermin). However, the exact nature of this effect is still unknown. In this study, we aimed to investigate the effects of sprifermin at the cellular level. A combination of different chondrocyte culture systems was used and the effects of sprifermin on proliferation, the phenotype and matrix production were evaluated. The involvement of MAPKs in sprifermin signalling was also studied. In monolayer, we observed that sprifermin promoted a round cell morphology and stimulated both cellular proliferation and Sox9 expression while strongly decreasing type I collagen expression. In 3D culture, sprifermin increased the number of matrix-producing chondrocytes, improved the type II:I collagen ratio and enabled human OA chondrocytes to produce a hyaline extracellular matrix (ECM). Furthermore, we found that sprifermin displayed a 'hit and run' mode of action, with intermittent exposure required for the compound to fully exert its anabolic effect. Finally, sprifermin appeared to signal through activation of ERK. Our results indicate that intermittent exposure to sprifermin leads to expansion of hyaline cartilage-producing chondrocytes. These in vitro findings are consistent with the increased cartilage volume observed in the knees of OA patients after intra-articular injection with sprifermin in clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.

    Science.gov (United States)

    Chang, N-J; Lam, C-F; Lin, C-C; Chen, W-L; Li, C-F; Lin, Y-T; Yeh, M-L

    2013-10-01

    Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II (COLII) content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness (Tb.Th). The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Biochemical characterisation of navicular hyaline cartilage, navicular fibrocartilage and the deep digital flexor tendon in horses with navicular disease.

    Science.gov (United States)

    Viitanen, M; Bird, J; Smith, R; Tulamo, R-M; May, S A

    2003-10-01

    The study hypothesis was that navicular disease is a process analogous to degenerative joint disease, which leads to changes in navicular fibrocartilage and in deep digital flexor tendon (DDFT) matrix composition and that the process extends to the adjacent distal interphalangeal joint. The objectives were to compare the biochemical composition of the navicular articular and palmar cartilages from 18 horses with navicular disease with 49 horses with no history of front limb lameness, and to compare navicular fibrocartilage with medial meniscus of the stifle and collateral cartilage of the hoof. Cartilage oligomeric matrix protein (COMP), deoxyribonucleic acid (DNA), total glycosaminoglycan (GAG), metalloproteinases MMP-2 and MMP-9 and water content in tissues were measured. Hyaline cartilage had the highest content of COMP and COMP content in hyaline cartilage and tendon was higher in lame horses than in sound horses (phyaline cartilage was higher in lame horses than in sound horses. The MMP-2 amounts were significantly higher in tendons compared to other tissue types. Overall, 79% of the lame horses with lesions had MMP-9 in their tendons and the amount was higher than in sound horses (phyaline and fibrocartilage as well as the DDFT with potential implications for the pathogenesis and management of the condition.

  19. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  20. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  1. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  2. Ready-to-Use Tissue Construct for Military Bone and Cartilage Trauma

    Science.gov (United States)

    2012-10-01

    physiologic hyaline cartilage - osseous transition in massive osteochondral defects in large animals. We will conduct functional outcome analysis, X...10-1-0933 TITLE: Ready-to-Use Tissue Construct for Military Bone and Cartilage Trauma PRINCIPAL INVESTIGATOR: Francis Y. Lee... Cartilage Trauma” addresses the current limitations in treating complex, high-energy musculoskeletal wounds incurred in active combat. High-energy

  3. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study

    OpenAIRE

    Yvonne Peck; Pengfei He; Geetha Soujanya V. N. Chilla; Chueh Loo Poh; Dong-An Wang

    2015-01-01

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG...

  4. Articular Cartilage Repair Using Marrow Stimulation Augmented with a Viable Chondral Allograft: 9-Month Postoperative Histological Evaluation

    Directory of Open Access Journals (Sweden)

    James K. Hoffman

    2015-01-01

    Full Text Available Marrow stimulation is frequently employed to treat focal chondral defects of the knee. However, marrow stimulation typically results in fibrocartilage repair tissue rather than healthy hyaline cartilage, which, over time, predisposes the repair to failure. Recently, a cryopreserved viable chondral allograft was developed to augment marrow stimulation. The chondral allograft is comprised of native viable chondrocytes, chondrogenic growth factors, and extracellular matrix proteins within the superficial, transitional, and radial zones of hyaline cartilage. Therefore, host mesenchymal stem cells that infiltrate the graft from the underlying bone marrow following marrow stimulation are provided with the optimal microenvironment to undergo chondrogenesis. The present report describes treatment of a trochlear defect with marrow stimulation augmented with this novel chondral allograft, along with nine month postoperative histological results. At nine months, the patient demonstrated complete resolution of pain and improvement in function, and the repair tissue consisted of 85% hyaline cartilage. For comparison, a biopsy obtained from a patient 8.2 months after treatment with marrow stimulation alone contained only 5% hyaline cartilage. These outcomes suggest that augmenting marrow stimulation with the viable chondral allograft can eliminate pain and improve outcomes, compared with marrow stimulation alone.

  5. The effect of high-energy extracorporeal shock waves on hyaline cartilage of adult rats in vivo.

    Science.gov (United States)

    Mayer-Wagner, Susanne; Ernst, Judith; Maier, Markus; Chiquet, Matthias; Joos, Helga; Müller, Peter E; Jansson, Volkmar; Sievers, Birte; Hausdorf, Jörg

    2010-08-01

    The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model.

    Science.gov (United States)

    Elder, Steven H; Cooley, Avery J; Borazjani, Ali; Sowell, Brittany L; To, Harrison; Tran, Scott C

    2009-10-01

    A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.

  7. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  8. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Cao, Lei; Yang, Fei; Liu, Guangwang; Yu, Degang; Li, Huiwu; Fan, Qiming; Gan, Yaokai; Tang, Tingting; Dai, Kerong

    2011-06-01

    Although Sox9 is essential for chondrogenic differentiation and matrix production, its application in cartilage tissue engineering has been rarely reported. In this study, the chondrogenic effect of Sox9 on bone marrow mesenchymal stem cells (BMSCs) in vitro and its application in articular cartilage repair in vivo were evaluated. Rabbit BMSCs were transduced with adenoviral vector containing Sox9. Toluidine blue, safranin O staining and real-time PCR were performed to check chondrogenic differentiation. The results showed that Sox9 could induce chondrogenesis of BMSCs both in monolayer and on PGA scaffold effectively. The rabbit model with full-thickness cartilage defects was established and then repaired by PGA scaffold and rabbit BMSCs with or without Sox9 transduction. HE, safranin O staining and immunohistochemistry were used to assess the repair of defects by the complex. Better repair, including more newly-formed cartilage tissue and hyaline cartilage-specific extracellular matrix and greater expression of several chondrogenesis marker genes were observed in PGA scaffold and BMSCs with Sox9 transduction, compared to that without transduction. Our findings defined the important role of Sox9 in the repair of cartilage defects in vivo and provided evidence that Sox9 had the potential and advantage in the application of tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Release of transgenic progranulin from a living hyaline cartilage graft model: An in vitro evaluation on anti-inflammation.

    Science.gov (United States)

    Lau, Ting Ting; Zhang, Feng; Tang, Wei; Wang, Dong-An

    2016-12-01

    Osteoarthritis (OA) is a prevalent condition that compromises and even jeopardizes the life quality of millions of people. Common symptoms in OA includes joint stiffness and soreness, and they are often associated with inflammations to various extend. Due to the avascular and aneural nature of articular hyaline cartilage, it has limited self-repair capabilities; especially under inflammatory conditions, damages inflicted on cartilage are often irreversible. Hence, treatment approaches focus on anti-inflammation or articular cartilage replacement. In this study, an engineered, dual-functional living hyaline cartilage graft (LhCG), capable of releasing transgenic anti-inflammatory cytokine-progranulin (PGRN) is developed and envisioned to simultaneously fulfil both requirements. The therapeutic functionality of PGRN releasing LhCG is evaluated by co-culturing the constructs with tumor necrosis factor-alpha (TNFα) secreting THP-1 cells to simulate the inflammatory condition in arthritis. Non-transgenic LhCG constructs and non-coculture sample groups were set up as controls. Gene expression and ECM composition changes across samples were assessed to understand the effects of PGRN as well as inflammatory environment on the cartilage graft. Collectively, the results in this study suggest that in situ release of transgenic recombinant PGRN protects LhCG from induced inflammation in vitro; contrastively, in the absence of PGRN, cartilage grafts are at risk of being degraded and mineralized under exposure to TNFα signaling. This shows that cartilage graft itself can be at risk of degradation or calcification when implanted in arthritic microenvironment. Hence, the inflammatory microenvironment has to be considered in cartilage replacement therapy to increase chances of successful joint mobility restoration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2968-2977, 2016. © 2016 Wiley Periodicals, Inc.

  10. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    Science.gov (United States)

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  11. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension.

    Science.gov (United States)

    Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M

    2015-10-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.

  12. A retrospective analysis of two independent prospective cartilage repair studies : autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery

    NARCIS (Netherlands)

    Bouwmeester, PSJM; Homminga, GN; Bulstra, SK; Geesink, RGT; Kuijer, Roelof

    Background: Experimental data indicate that perichondrial grafting to restore articular cartilage defects will result in repair with hyaline-like cartilage, In contrast, debridement and drilling results in repair with fibro-cartilage. In this retrospective study the long-term clinical results of

  13. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.

    Science.gov (United States)

    Lee, W D; Hurtig, M B; Pilliar, R M; Stanford, W L; Kandel, R A

    2015-08-01

    In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees With Cartilage Defects.

    Science.gov (United States)

    Sekiya, Ichiro; Muneta, Takeshi; Horie, Masafumi; Koga, Hideyuki

    2015-07-01

    -look arthroscopy in four patients showed that the cartilage defect appeared to be qualitatively better in all cases. Histologic analyses showed hyaline cartilage in three patients and fibrous cartilage in one at the deep zone. The Lysholm score (median ± 95% CI) was 76 ± 7 before and 95 ± 3 after, and increased after treatment in each patient (p = 0.005). The Tegner Activity Level Scale did not decrease after treatment in each patient. For this small initial case series, transplantation of synovial MSCs was effective in terms of MRI score, qualitative histology, and Lysholm score. The use of synovial MSCs has an advantage in that the cells can be prepared at passage 0 in only 14 days. Transplantation of synovial MSCs may be less invasive than mosaicplasty and autologous chondrocyte implantation. To conclusively show the effectiveness of this treatment requires comparative studies, especially with more established arthroscopic procedures, such as marrow stimulation techniques. Level IV, therapeutic study.

  15. Autologous chondrocyte implantation: Is it likely to become a saviour of large-sized and full-thickness cartilage defect in young adult knee?

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-05-01

    A literature review of the first-, second- and third-generation autologous chondrocyte implantation (ACI) technique for the treatment of large-sized (>4 cm(2)) and full-thickness knee cartilage defects in young adults was conducted, examining the current literature on features, clinical scores, complications, magnetic resonance image (MRI) and histological outcomes, rehabilitation and cost-effectiveness. A literature review was carried out in the main medical databases to evaluate the several studies concerning ACI treatment of large-sized and full-thickness knee cartilage defects in young adults. ACI technique has been shown to relieve symptoms and improve functional assessment in large-sized (>4 cm(2)) and full-thickness knee articular cartilage defect of young adults in short- and medium-term follow-up. Besides, low level of evidence demonstrated its efficiency and durability at long-term follow-up after implantation. Furthermore, MRI and histological evaluations provided the evidence that graft can return back to the previous nearly normal cartilage via ACI techniques. Clinical outcomes tend to be similar in different ACI techniques, but with simplified procedure, low complication rate and better graft quality in the third-generation ACI technique. ACI based on the experience of cell-based therapy, with the high potential to regenerate hyaline-like tissue, represents clinical development in treatment of large-sized and full-thickness knee cartilage defects. IV.

  16. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.

    Science.gov (United States)

    Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan

    2018-04-01

    Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.

  17. Advances in cartilage tissue engineering : in vitro

    NARCIS (Netherlands)

    E.W. Mandl (Erik)

    2004-01-01

    textabstractWithin the body three subtypes of cartilage can be distinguished: hyaline cartilage, elastic cartilage and fibrocartilage. Hyaline cartilage is the predominant subtype and is mainly located in articular joints and in less extent in the nasal septum and cricoid. Elastic cartilage can be

  18. The cranial cartilages of teleosts and their classification.

    OpenAIRE

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage ...

  19. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    Science.gov (United States)

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  1. Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)

    1994-08-01

    In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    Science.gov (United States)

    Bagratashvili, Viktor N.; Bagratashvili, N. V.; Gapontsev, V. P.; Makhmutova, G. Sh; Minaev, V. P.; Omel'chenko, A. I.; Samartsev, I. E.; Sviridov, A. P.; Sobol', E. N.; Tsypina, S. I.

    2001-06-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues.

  3. Tissue engineering in the treatment of cartilage lesions

    Directory of Open Access Journals (Sweden)

    Jakob Naranđa

    2013-11-01

    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  4. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  5. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects.

    Science.gov (United States)

    Mehl, Julian; Feucht, Matthias J; Bode, Gerrit; Dovi-Akue, David; Südkamp, Norbert P; Niemeyer, Philipp

    2016-03-01

    To compare the geometry of the patellofemoral joint on magnetic resonance images (MRI) between patients with isolated cartilage defects of the patella and a gender- and age-matched control group of patients without patellar cartilage defects. A total of 43 patients (17 female, 26 male) with arthroscopically verified grade III and IV patellar cartilage defects (defect group) were compared with a matched-pair control group of patients with isolated traumatic rupture of the anterior cruciate ligament without cartilage defects of the patellofemoral joint. Preoperative MRI images were analysed retrospectively with regard to patellar geometry (width, thickness, facet angle), trochlear geometry (dysplasia according to Dejour, sulcus angle, sulcus depth, lateral condyle index, trochlea facet asymmetry, lateral trochlea inclination) and patellofemoral alignment (tibial tuberosity-trochlear groove distance, patella height, lateral patella displacement, lateral patellofemoral angle, patella tilt, congruence angle). In addition to the comparison of group values, the measured values were compared to normal values reported in the literature, and the frequency of patients with pathologic findings was compared between both groups. The defect group demonstrated a significantly higher proximal chondral sulcus angle (p patellofemoral joint. In particular, a flat and shallow trochlea, trochlea dysplasia and patella alta seem to contribute to the development of patellar cartilage defects, which must be taken into consideration when planning to do surgical cartilage repair at the patella. III.

  6. Development of large engineered cartilage constructs from a small population of cells.

    Science.gov (United States)

    Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D

    2013-01-01

    Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  7. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  8. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  9. Hyaline cartilage thickness in radiographically normal cadaveric hips: comparison of spiral CT arthrographic and macroscopic measurements.

    Science.gov (United States)

    Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis

    2007-02-01

    To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral multidetector CT arthrography depicts cartilage thickness gradients in radiographically normal cadaveric hips. (c) RSNA, 2007.

  10. Particulated articular cartilage: CAIS and DeNovo NT.

    Science.gov (United States)

    Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili

    2012-03-01

    Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.

  11. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  12. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  13. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Hansen, Ole Møller; Kristiansen, Asger Albæk; Le, Dang Quang Svend; Nielsen, Agnete Desirée; Nygaard, Jens Vinge; Bünger, Cody Erik; Lind, Martin

    2012-06-01

    To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide) scaffold. By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water-dioxane-PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT-PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O'Driscoll score. In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells. The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.

  14. [Treatment of acute full-thickness chondral defects with high molecular weight hyaluronic acid; an experimental model].

    Science.gov (United States)

    Figueroa, D; Espinosa, M; Calvo, R; Scheu, M; Valderrama, J J; Gallegos, M; Conget, P

    2014-01-01

    To evaluate the effect of 2 different protocols of intra-articular hyaluronic acid (HA, hylan G-F20) to articular cartilage regeneration in acute full-thickness chondral defects. Full-thickness chondral defects of 3 x 6 mm were performed into the lateral femoral condyles of New Zealand rabbits, treated with a single or three doses of HA. The animals were sacrified at 12 weeks and the regenerated tissue was evaluated by direct observation and histology with the ICRS scale. Macroscopically, in both groups treated with HA the defects were filled with irregular tissue with areas similar to hyaline cartilage and others in which depressed areas with exposed subchondral bone were observed. Histological analysis showed in both groups treated with HA a hyaline-like cartilage compared to control group. However, the score of the International Cartilage Repair Society (ICRS) scale did not show differences between the groups treated with HA. The use of single dose or 3 doses of AH in acute chondral lesions has a limited and similar benefit in articular cartilage regeneration. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  15. MR imaging of articular cartilage

    International Nuclear Information System (INIS)

    Schaefer, F.K.W.; Muhle, C.; Heller, M.; Brossmann, J.

    2001-01-01

    MR imaging has evolved to the best non-invasive method for the evaluation of articular cartilage. MR imaging helps to understand the structure and physiology of cartilage, and to diagnose cartilage lesions. Numerous studies have shown high accuracy and reliability concerning detection of cartilage lesions and early changes in both structure and biochemistry. High contrast-to-noise ratio and high spatial resolution are essential for analysis of articular cartilage. Fat-suppressed 3D-T 1 weighted gradient echo and T 2 -weighted fast spin echo sequences with or without fat suppression are recommended for clinical routine. In this article the anatomy and pathology of hyaline articular cartilage and the complex imaging characteristics of hyaline cartilage will be discussed. (orig.) [de

  16. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review

    OpenAIRE

    Goldberg, A.; Mitchell, K.; Soans, J.; Kim, L.; Zaidi, R.

    2017-01-01

    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue ...

  17. Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus

    2017-06-01

    Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.

  18. POSSIBILITIES OF CURRENT CELLULAR TECHNOLOGIES FOR ARTICULAR CARTILAGE REPAIR (ANALYTICAL REVIEW

    Directory of Open Access Journals (Sweden)

    M. S. Bozhokin

    2016-01-01

    to form a good hyaline cartilage resistant to high physical load in long term period.Thus, development of methods for articular cartilage repair has long ago went beyond the interests of clinical physicians, and only the close interdisciplinary cooperation of clinicians and specialists for cytology, molecular genetics and, probably, virology would enable replacement of a defect with a rigorous hyaline cartilage.

  19. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant.

    Science.gov (United States)

    Bartz, Christoph; Meixner, Miriam; Giesemann, Petra; Roël, Giulietta; Bulwin, Grit-Carsta; Smink, Jeske J

    2016-11-15

    Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don's chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany. Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential

  20. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant

    Directory of Open Access Journals (Sweden)

    Christoph Bartz

    2016-11-01

    Full Text Available Abstract Background Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids that is in clinical use in Germany. Methods Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. Results After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids

  1. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    Science.gov (United States)

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (Pcartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (Pcartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair

  2. MR Imaging of Articular Hyaline Cartilage

    OpenAIRE

    Uetani, Masataka

    2005-01-01

    MR imaging is still an evolving technique for the diagnosis of joint cartilage lesions. Early morphologic changes in the degenerative cartilage are not reliably diagnosed even with use of tailored MR imaging techniques. The detection of the biochemical changes of cartilage or high-resolution MRI will serve as an important tool for the early diagnosis of cartilage degeneration in near future. Further prospective studies are needed to establish the role of MR imaging in clinical use.

  3. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review

    OpenAIRE

    Goldberg, Andy; Mitchell, Katrina; Soans, Julian; Kim, Louise; Zaidi, Razi

    2017-01-01

    Background The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue e...

  4. Study of differential properties of fibrochondrocytes and hyaline chondrocytes in growing rabbits.

    Science.gov (United States)

    Huang, L; Li, M; Li, H; Yang, C; Cai, X

    2015-02-01

    We aimed to build a culture model of chondrocytes in vitro, and to study the differential properties between fibrochondrocytes and hyaline chondrocytes. Histological sections were stained with haematoxylin and eosin so that we could analyse the histological structure of the fibrocartilage and hyaline cartilage. Condylar fibrochondrocytes and femoral hyaline chondrocytes were cultured from four, 4-week-old, New Zealand white rabbits. The production of COL2A1, COL1OA1, SOX9 and aggrecan was detected by real time-q polymerase chain reaction (RT-qPCR) and immunoblotting and the differences between them were compared statistically. Histological structures obviously differed between fibrocartilage and hyaline cartilage. COL2A1 and SOX9 were highly expressed within cell passage 2 (P2) of both fibrochondrocytes and hyaline chondrocytes, and reduced significantly after cell passage 4 (P4). The mRNA expressions of COL2A1 (p=0.05), COL10A1 (p=0.04), SOX9 (p=0.03), and aggrecan (p=0.04) were significantly higher in hyaline chondrocytes than in fibrochondrocytes, whereas the expression of COL1A1 (p=0.02) was the opposite. Immunoblotting showed similar results. We have built a simple and effective culture model of chondrocytes in vitro, and the P2 of chondrocytes is recommended for further studies. Condylar fibrocartilage and femoral hyaline cartilage have unique biological properties, and the regulatory mechanisms of endochondral ossification for the condyle should be studied independently in the future. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. [Histologic assessment of tissue healing of hyaline cartilage by use of semiquantitative evaluation scale].

    Science.gov (United States)

    Vukasović, Andreja; Ivković, Alan; Jezek, Davor; Cerovecki, Ivan; Vnuk, Drazen; Kreszinger, Mario; Hudetz, Damir; Pećina, Marko

    2011-01-01

    Articular cartilage is an avascular and aneural tissue lacking lymph drainage, hence its inability of spontaneous repair following injury. Thus, it offers an interesting model for scientific research. A number of methods have been suggested to enhance cartilage repair, but none has yet produced significant success. The possible application of the aforementioned methods has brought about the necessity to evaluate their results. The objective of this study was to analyze results of a study of the effects of the use of TGF-beta gene transduced bone marrow clot on articular cartilage defects using ICRS visual histological assessment scale. The research was conducted on 28 skeletally mature sheep that were randomly assigned to four groups and surgically inflicted femoral chondral defects. The articular surfaces were then treated with TGF-beta1 gene transduced bone marrow clot (TGF group), GFP transduced bone marrow clot (GFP group), untransduced bone marrow clot (BM group) or left untreated (NC group). The analysis was performed by visual examination of cartilage samples and results were obtained using ICRS visual histological assessment scale. The results were subsequently subjected to statistical assessment using Kruskal-Wallis and Mann-Whitney tests. Kruskal-Wallis test yielded statistically significant difference with respect to cell distribution. Mann-Whitney test showed statistically significant difference between TGF and NC groups (P = 0.002), as well as between BM and NC groups (P = 0.002 with Bonferroni correction). Twenty-six of the twenty-eight samples were subjected to histologic and subsequent statistical analysis; two were discarded due to faulty histology technique. Our results indicated a level of certainty as to the positive effect of TGF-beta1 gene transduced bone marrow clot in restoration of articular cartilage defects. However, additional research is necessary in the field. One of the significant drawbacks on histologic assessment of cartilage

  6. Nd:YAG 1.44 laser ablation of human cartilage

    Science.gov (United States)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  7. Cartilage Integration: Evaluation of the reasons for failure of integration during cartilage repair. A review

    Directory of Open Access Journals (Sweden)

    IM Khan

    2008-09-01

    Full Text Available Articular cartilage is a challenging tissue to reconstruct or replace principally because of its avascular nature; large chondral lesions in the tissue do not spontaneously heal. Where lesions do penetrate the bony subchondral plate, formation of hematomas and the migration of mesenchymal stem cells provide an inferior and transient fibrocartilagenous replacement for hyaline cartilage. To circumvent the poor intrinsic reparative response of articular cartilage several surgical techniques based on tissue transplantation have emerged. One characteristic shared by intrinsic reparative processes and the new surgical therapies is an apparent lack of lateral integration of repair or graft tissue with the host cartilage that can lead to poor prognosis. Many factors have been cited as impeding cartilage:cartilage integration including; chondrocyte cell death, chondrocyte dedifferentiation, the nature of the collagenous and proteoglycan networks that constitute the extracellular matrix, the type of biomaterial scaffold employed in repair and the origin of the cells used to repopulate the defect or lesion. This review addresses the principal intrinsic and extrinsic factors that impede integration and describe how manipulation of these factors using a host of strategies can positively influence cartilage integration.

  8. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.

    Science.gov (United States)

    Yin, Heyong; Wang, Yu; Sun, Zhen; Sun, Xun; Xu, Yichi; Li, Pan; Meng, Haoye; Yu, Xiaoming; Xiao, Bo; Fan, Tian; Wang, Yiguo; Xu, Wenjing; Wang, Aiyuan; Guo, Quanyi; Peng, Jiang; Lu, Shibi

    2016-03-01

    We propose a method of preparing a novel cell carrier derived from natural cartilage extracellular matrix (ECM), designated cartilage ECM-derived particles (CEDPs). Through a series of processes involving pulverization, sieving, and decellularization, fresh cartilage was made into CEDPs with a median diameter of 263 ± 48 μm. Under microgravity culture conditions in a rotary cell culture system (RCCS), bone marrow stromal cells (BMSCs) can proliferate rapidly on the surface of CEDPs with high viability. Histological evaluation and gene expression analysis indicated that BMSCs were differentiated into mature chondrocytes after 21 days of culture without the use of exogenous growth factors. Functional cartilage microtissue aggregates of BMSC-laden CEDPs formed as time in culture increased. Further, the microtissue aggregates were directly implanted into trochlear cartilage defects in a rat model (CEDP+MSC group). Gait analysis and histological results indicated that the CEDP+MSC group obtained better and more rapid joint function recovery and superior cartilage repair compared to the control groups, in which defects were treated with CEDPs alone or only fibrin glue, at both 6 and 12 weeks after surgery. In conclusion, the innovative cell carrier derived from cartilage ECM could promote chondrogenic differentiation of BMSCs, and the direct use of functional cartilage microtissue facilitated cartilage regeneration. This strategy for cell culture, stem cell differentiation and one-step surgery using cartilage microtissue for cartilage repair provides novel prospects for cartilage tissue engineering and may have further broad clinical applications. We proposed a method to prepare a novel cell carrier derived from natural cartilage ECM, termed cartilage ECM-derived particles (CEDPs), which can support proliferation of MSCs and facilitate their chondrogenic differentiation. Further, the direct use of functional cartilage microtissue of MSC-laden CEDP aggregates for

  9. Repair of massively defected hemi-joints using demineralized osteoarticular allografts with protected cartilage.

    Science.gov (United States)

    Li, Siming; Yang, Xiaohong; Tang, Shenghui; Zhang, Xunmeng; Feng, Zhencheng; Cui, Shuliang

    2015-08-01

    Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints.

  10. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc

    OpenAIRE

    Mwale F.; Roughley P.; Antoniou J.

    2004-01-01

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to c...

  11. Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved.

    Science.gov (United States)

    Thiele, Ralf G; Schlesinger, Naomi

    2010-02-01

    This study aimed at determining whether lowering serum urate (SU) to less than 6 mg/dl in patients with gout affects ultrasonographic findings. Seven joints in five patients with monosodium urate (MSU) crystal proven gout and hyperuricemia were examined over time with serial ultrasonography. Four of the five patients were treated with urate lowering drugs (ULDs) (allopurinol, n = 3; probenecid, n = 1). One patient was treated with colchicine alone. Attention was given to changes in a hyperechoic, irregular coating of the hyaline cartilage in the examined joints (double contour sign or "urate icing"). This coating was considered to represent precipitate of MSU crystals. Index joints included metacarpophalangeal (MCP) joints (n = 2), knee joints (n = 3), and first metatarsophalangeal (MTP) joints (n = 2). The interval between baseline and follow-up images ranged from 7 to 18 months. Serial SU levels were obtained during the follow-up period. During the follow-up period, three patients treated with ULD (allopurinol, n = 2; probenecid, n = 1) achieved a SU level of or =7 mg/dl. In one patient treated with allopurinol, SU levels improved from 13 to 7 mg/dl during the follow-up period. Decrease, but not resolution of the hyperechoic coating was seen in this patient. In the patient treated with colchicine alone, SU levels remained >8 mg/dl, and no sonographic change was observed. In our patients, sonographic signs of deposition of MSU crystals on the surface of hyaline cartilage disappeared completely if sustained normouricemia was achieved. This is the first report showing that characteristic sonographic changes are influenced by ULDs once SU levels remain studies are needed to further assess these potentially important findings.

  12. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kurokawa Takayuki

    2011-09-01

    Full Text Available Abstract Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid and poly-(N, N'-Dimetyl acrylamide, at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.

  13. [Water-exchange processes in hyaline cartilage and its basic components in a normal state and in osteoarthritis].

    Science.gov (United States)

    Nikolaeva, S S; Chkhol, K Z; Bykov, V A; Roshchina, A A; Iakovleva, L V; Koroleva, O A; Omel'ianenko, N P; Rebrov, L B

    2000-01-01

    The content of different forms of tissue water was studied in the normal articular cartilage and osteoarthrosis cartilage and its structural components: collagen, potassium hyaluronate, sodium chondroitinsulphate and its complexes. In the components of cartilage matrix a few of fractions of bound water different in the strength of binding are present. At the maximal humidity, all water in collagen binds with the active groups of biopolymers and in the glycosaminoglycans, in addition to bound water, are present, two crystal forms of freezing water (free water) at least. The quantity of free water in the collagen-chondroitin sulphat membrane, is increased with the increase of chondroitin sulphate. In the collagen-hyaluronate complex, fraction of free water is found only at the low concentration of hyaluronate kalium. It was shown that in the hyalin cartilage, in different from the other connective tissue (skin, achilles tendon), the most part of water is free water and its quantity is increased in the osteoarthrosis. It is supposed that the rearrangement of binding and free-water fractions in the osteoarthrosis is the result of deficiency of hyaluronic acid and therefore this may be regarded in the improvement of methods of treatment. This scientific and methodical approach allow to receive information on the forms and binding energy of water in the biological tissues, which is absorbed from fluids and steam phase and determine characters of the pathological changes.

  14. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors

    Science.gov (United States)

    Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2011-01-01

    Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062

  15. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    Science.gov (United States)

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  16. MRI of the hyaline knee joint cartilage. Animal experimental and clinical studies; MRT des hyalinen Kniegelenkknorpels. Tierexperimentelle und klinische Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Prescher, A. [Technische Hochschule Aachen (Germany). Inst. fuer Anatomie; Nolte-Ernsting, C. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Buehne, M. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Scherer, K. [Technische Hochschule Aachen (Germany). Inst. fuer Versuchstierkunde; Kuepper, W. [Technische Hochschule Aachen (Germany). Inst. fuer Versuchstierkunde; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik

    1994-02-01

    The value of MR imaging for the detection of hyaline cartilage lesions using 2-D spin-echo and 3-D gradient-echo imaging was evaluated in an animal experiment in 10 dogs and in a clinical study in 30 patients. MR imaging findings were compared with histopathological and arthroscopy findings, respectively. Using MRI neither grade I nor grade II hyaline cartilage lesions were detectable. In the animal experiments 77% of grade III lesions and all the grade IV lesions were seen. However, in the clinical study only about the half of grade III and IV lesions were detected. 3-D gradient-echo MR imaging was superior to 2-D spin-echo imaging (p<0.001), while 3-D FLASH and 3-D FISP did not differ significantly in the detection rate (p<0.34). 3-D gradient-echo MR imaging seems to be the best method for the delineation of high grade cartilage lesions. However, early stages of cartilage degeneration are invisible even with this imaging modality. (orig.) [Deutsch] Die Wertigkeit der MRT in der Erfassung von Knorpellaesionen mit 2-D-Spin-Echo- und 3-D-Grafienten-Echo-Sequenzen wurde in einer tierexperimentellen Untersuchung an 10 Hunden sowie in einer klinischen Studie an 30 Patienten ueberprueft. Die kernspintomographischen Ergebnisse wurden mit dem pathologisch-anatomischen Befund bzw. der Arthroskopie verglichen. MR-tomographisch konnten weder Grad-I- noch Grad-II-Knorpellaesionen erfasst werden. Die Erkennbarkeitsrate der Grad-III- und -IV-Laesionen lag fuer die tierexperimentellen Untersuchungen bei 77 bzw. 100%, waehrend klinisch nur etwa 50% dieser Veraenderungen erkannt werden konnten. Dabei waren die 3-D-Gradienten-Echo-Sequenzen den 2-D-Spin-Echo-Sequenzen signifikant ueberlegen (p<0,001), waehrend sich die 3-D-Gradienten-Echo-Sequenzen FISP und FLASH nicht voneinander unterschieden (p<0,34). Derzeit muessen die 3-D-Gradienten-Echo-Sequenzen als die beste Methode zur Erfassung hoehergradiger Knorpellaesionen angesehen werden. Fruehe Stadien der Knorpelschaedigung sind

  17. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    Science.gov (United States)

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  18. Advances of human bone marrow-derived mesenchymal stem cells in the treatment of cartilage defects: a systematic review.

    Science.gov (United States)

    Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku

    2014-06-01

    Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.

  19. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and igf-1 gene transfer on articular cartilage defects in rabbits.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS. In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra combined with insulin-like growth factor-1 (IGF-1 in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.

  20. Mesenchymal stem cells in cartilage regeneration.

    Science.gov (United States)

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  1. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds

    Directory of Open Access Journals (Sweden)

    M B Gugjoo

    2016-01-01

    Full Text Available Articular cartilage injury poses a major challenge for both the patient and orthopaedician. Articular cartilage defects once formed do not regenerate spontaneously, rather replaced by fibrocartilage which is weaker in mechanical competence than the normal hyaline cartilage. Mesenchymal stem cells (MSCs along with different growth factors and scaffolds are currently incorporated in tissue engineering to overcome the deficiencies associated with currently available surgical methods and to facilitate cartilage healing. MSCs, being readily available with a potential to differentiate into chondrocytes which are enhanced by the application of different growth factors, are considered for effective repair of articular cartilage after injury. However, therapeutic application of MSCs and growth factors for cartilage repair remains in its infancy, with no comparative clinical study to that of the other surgical techniques. The present review covers the role of MSCs, growth factors and scaffolds for the repair of articular cartilage injury.

  3. [Conservative therapy of cartilage defects of the upper ankle joint].

    Science.gov (United States)

    Smolenski, U C; Best, N; Bocker, B

    2008-03-01

    Cartilage defects of the upper ankle joint reflect the problem that great force is transmitted and balanced out over a relatively small surface area. As a pathophysiological factor, cartilage-bone contusions play a significant role in the development of cartilage defects of the upper ankle joint. Physiotherapeutic procedures belong to the standard procedures of conservative therapy. The use and selection of the type of therapy is based on empirical considerations and experience and investigations on effectiveness of particular therapies are relatively rare. At present a symptom-oriented therapy of cartilage defects of the upper ankle joint seems to be the most sensible approach. It can be assumed that it makes sense that the symptomatic treatment of cartilage defects or initial stages of arthritis also includes the subsequent symptoms of pain, irritated condition and limited function. This leads to starting points for physiotherapy with respect to pain therapy, optimisation of pressure relationships, avoidance of pressure points, improvement of diffusion and pressure release. In addition to the differential physiotherapeutic findings, the determination of a curative, preventive or rehabilitative procedure is especially important. In physical therapy special importance is placed on a scheduled serial application corresponding to the findings, employing the necessary methods, such as physiotherapy, sport therapy, medical mechanics, manual therapy, massage, electrotherapy and warmth therapy. From this the findings-related therapy is proposed as a practical therapy concept: locomotive apparatus pain therapy, optimisation of pressure relationships, improvement of diffusion and decongestion therapy. Therapy options have been selected base on the current literature and are summarised in tabular form. The art of symptomatic therapy of cartilage defects of the upper ankle joint does not lie in the multitude of sometimes speculative procedures, but in the targeted selection

  4. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies.

    Science.gov (United States)

    Veronesi, Francesca; Maglio, Melania; Tschon, Matilde; Aldini, Nicolò Nicoli; Fini, Milena

    2014-07-01

    Several therapeutic approaches have been developed to address hyaline cartilage regeneration, but to date, there is no universal procedure to promote the restoration of mechanical and functional properties of native cartilage, which is one of the most important challenges in orthopedic surgery. For cartilage tissue engineering, adult mesenchymal stem cells (MSCs) are considered as an alternative cell source to chondrocytes. Since little is known about adipose-derived mesenchymal stem cell (ADSC) cartilage regeneration potential, the aim of this review was to give an overview of in vivo studies about the chondrogenic potential and regeneration ability of culture-expanded ADSCs when implanted in heterotopic sites or in osteoarthritic and osteochondral defects. The review compares the different studies in terms of number of implanted cells and animals, cell harvesting sites, in vitro expansion and chondrogenic induction conditions, length of experimental time, defect dimensions, used scaffolds and post-explant analyses of the cartilage regeneration. Despite variability of the in vivo protocols, it seems that good cartilage formation and regeneration were obtained with chondrogenically predifferentiated ADSCs (1 × 10(7) cells for heterotopic cartilage formation and 1 × 10(6) cells/scaffold for cartilage defect regeneration) and polymeric scaffolds, even if many other aspects need to be clarified in future studies. © 2013 Wiley Periodicals, Inc.

  5. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel.

    Science.gov (United States)

    Zhang, Yanbo; Zhang, Jin; Chang, Fei; Xu, Weiguo; Ding, Jianxun

    2018-07-01

    Cartilage defect repair by hydrogel-based tissue engineering is becoming one of the most potential treatment strategies. In this work, a thermogel of triblock copolymer poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) was prepared as scaffold of bone marrow mesenchymal stem cells (BMMSCs) for repair of full-thickness articular cartilage defect. At first, the copolymer solution showed a reversible sol-gel transition at physiological temperature range, and the mechanical properties of such thermogel were high enough to support the repair of cartilage. Additionally, excellent biodegradability and biocompatibility of the thermogel were demonstrated. By implanting the BMMSC-encapsulated thermogel into the full-thickness articular cartilage defect (5.0 mm in diameter and 4.0 mm in depth) in the rabbit, it was found that the regenerated cartilage integrated well with the surrounding normal cartilage and subchondral bone at 12 weeks post-surgery. The upregulated expression of glycosaminoglycan and type II collagen in the repaired cartilage, and the comparable biomechanical properties with normal cartilage suggested that the cell-encapsulated PLGA-PEG-PLGA thermogel had great potential in serving as the promising scaffold for cartilage regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site

    OpenAIRE

    M Doube; EC Firth; A Boyde; AJ Bushby

    2010-01-01

    Condylar fracture of the third metacarpal bone (Mc3) is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC) and subchondral bone (SCB) have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site tha...

  7. Polymers in cartilage defect repair of the knee : Current status and future prospects

    NARCIS (Netherlands)

    Jeuken, R.M.; Roth, A.K.; Peters, R.; van Donkelaar, C.C.; Thies, J.; van Rhijn, L.; Emans, P.

    2016-01-01

    Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using

  8. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  9. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  10. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    Science.gov (United States)

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration.

    Science.gov (United States)

    Zhang, Kunxi; Yan, Shifeng; Li, Guifei; Cui, Lei; Yin, Jingbo

    2015-12-01

    The success of mesenchymal stem cells (MSCs) based articular cartilage tissue engineering is limited by the presence of fibrous tissue in generated cartilage, which is associated with the current scaffold strategy that promotes cellular adhesion and spreading. Here we design a non-fouling scaffold based on amide bonded poly(l-glutamic acid) (PLGA) and chitosan (CS) to drive adipose stem cells (ASCs) to aggregate to form multicellular spheroids with diameter of 80-110 μm in-situ. To illustrate the advantage of the present scaffolds, a cellular adhesive scaffold based on the same amide bonded PLGA and CS was created through a combination of air-drying and freeze-drying to limit the hydration effect while also achieving porous structure. Compared to ASCs spreading along the surface of pores within scaffold, the dense mass of aggregated ASCs in PLGA/CS scaffold exhibited enhanced chondrogenic differentiation capacity, as determined by up-regulated GAGs and COL II expression, and greatly decreased COL I deposition during in vitro chondrogenesis. Furthermore, after 12 weeks of implantation, neo-cartilages generated by ASCs adhered on scaffold significantly presented fibrous matrix which was characterized by high levels of COL I deposition. However, neo-cartilage at 12 weeks post-implantation generated by PLGA/CS scaffold carrying ASC spheroids possessed similar high level of GAGs and COL II and low level of COL I as that in normal cartilage. The in vitro and in vivo results indicated the present strategy could not only promote chondrogenesis of ASCs, but also facilitate hyaline-like cartilage regeneration with reduced fibrous tissue formation which may attenuate cartilage degradation in future long-term follow-up. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. * Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair.

    Science.gov (United States)

    Muiños-López, Emma; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; de Toro-Santos, Javier; Blanco, Francisco Javier; Díaz-Prado, Silvia María

    2017-09-01

    Localized trauma-derived breakdown of the hyaline articular cartilage may progress toward osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most of the research in tissue engineering is focused on potential materials and structural cues, while little attention is directed to the most appropriate source of cells endowing these materials. In this study, using human amniotic membrane (HAM) as scaffold, we defined a novel static in vitro model for cartilage repair. In combination with HAM, four different cell types, human chondrocytes, human bone marrow-derived mesenchymal stromal cells (hBMSCs), human amniotic epithelial cells, and human amniotic mesenchymal stromal cells (hAMSCs) were assessed determining their therapeutic potential. A chondral lesion was drilled in human cartilage biopsies simulating a focal defect. A pellet of different cell types was implanted inside the lesion and covered with HAM. The biopsies were maintained for 8 weeks in culture. Chondrogenic differentiation in the defect was analyzed by histology and immunohistochemistry. HAM scaffold showed good integration and adhesion to the native cartilage in all groups. Although all cell types showed the capacity of filling the focal defect, hBMSCs and hAMSCs demonstrated higher levels of new matrix synthesis. However, only the hAMSCs-containing group presented a significant cytoplasmic content of type II collagen when compared with chondrocytes. More collagen type I was identified in the new synthesized tissue of hBMSCs. In accordance, hBMSCs and hAMSCs showed better International Cartilage Research Society scoring although without statistical significance. HAM is a useful material for articular cartilage repair in vitro when used as scaffold. In combination with hAMSCs, HAM showed better

  13. Effect of platelet-rich plasma on fibrocartilage, cartilage, and bone repair in temporomandibular joint.

    Science.gov (United States)

    Kütük, Nükhet; Baş, Burcu; Soylu, Emrah; Gönen, Zeynep Burçin; Yilmaz, Canay; Balcioğlu, Esra; Özdamar, Saim; Alkan, Alper

    2014-02-01

    The purpose of the present study was to explore the potential use of platelet-rich-plasma (PRP) in the treatment of temporomandibular joint osteoarthritis (TMJ-OA). Surgical defects were created bilaterally on the condylar fibrocartilage, hyaline cartilage, and bone to induce an osteoarthritic TMJ in rabbits. PRP was applied to the right joints of the rabbits (PRP group), and the left joints received physiologic saline (control group). After 4 weeks, the rabbits were sacrificed for histologic and scanning electron microscopy (SEM) examinations. The data were analyzed statistically. The new bone regeneration was significantly greater in the PRP group (P fibrocartilage and hyaline cartilage was greater in the PRP group, no statistically significant difference was found between the 2 groups. SEM showed better ultrastructural architecture of the collagen fibrils in the PRP group. PRP might enhance the regeneration of bone in TMJ-OA. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. First and second order stereology of hyaline cartilage: Application on mice femoral cartilage.

    Science.gov (United States)

    Noorafshan, Ali; Niazi, Behnam; Mohamadpour, Masoomeh; Hoseini, Leila; Hoseini, Najmeh; Owji, Ali Akbar; Rafati, Ali; Sadeghi, Yasaman; Karbalay-Doust, Saied

    2016-11-01

    Stereological techniques could be considered in research on cartilage to obtain quantitative data. The present study aimed to explain application of the first- and second-order stereological methods on articular cartilage of mice and the methods applied on the mice exposed to cadmium (Cd). The distal femoral articular cartilage of BALB/c mice (control and Cd-treated) was removed. Then, volume and surface area of the cartilage and number of chondrocytes were estimated using Cavalieri and optical dissector techniques on isotropic uniform random sections. Pair-correlation function [g(r)] and cross-correlation function were calculated to express the spatial arrangement of chondrocytes-chondrocytes and chondrocytes-matrix (chondrocyte clustering/dispersing), respectively. The mean±standard deviation of the cartilage volume, surface area, and thickness were 1.4±0.1mm 3 , 26.2±5.4mm 2 , and 52.8±6.7μm, respectively. Besides, the mean number of chondrocytes was 680±200 (×10 3 ). The cartilage volume, cartilage surface area, and number of chondrocytes were respectively reduced by 25%, 27%, and 27% in the Cd-treated mice in comparison to the control animals (pcartilage components carried potential advantages for investigating the cartilage in different joint conditions. Chondrocyte clustering/dispersing and cellularity can be evaluated in cartilage assessment in normal or abnormal situations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Joint homeostasis in tissue engineering for cartilage repair

    NARCIS (Netherlands)

    Saris, D.B.F.

    2002-01-01

    Traumatic joint damage, articular cartilage and the research into methods of restoring the articulation are not new topics of interest. For centuries, clinicians have recognized the importance of cartilage damage and sought ways of learning about the normal form and function of hyaline cartilage as

  16. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    Science.gov (United States)

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Measurements of surface layer of the articular cartilage using microscopic techniques

    International Nuclear Information System (INIS)

    Ryniewicz, A. M; Ryniewicz, W.; Ryniewicz, A.; Gaska, A.

    2010-01-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  18. Measurements of surface layer of the articular cartilage using microscopic techniques

    Science.gov (United States)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  19. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.

    Science.gov (United States)

    Legendre, Florence; Ollitrault, David; Hervieu, Magalie; Baugé, Catherine; Maneix, Laure; Goux, Didier; Chajra, Hanane; Mallein-Gerin, Frédéric; Boumediene, Karim; Galera, Philippe; Demoor, Magali

    2013-07-01

    Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.

  20. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  1. Repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Grande, D.A.; Pitman, M.I.; Peterson, L.; Menche, D.; Klein, M.

    1989-01-01

    Using the knee joints of New Zealand White rabbits, a baseline study was made to determine the intrinsic capability of cartilage for healing defects that do not fracture the subchondral plate. A second experiment examined the effect of autologous chondrocytes grown in vitro on the healing rate of these defects. To determine whether any of the reconstituted cartilage resulted from the chondrocyte graft, a third experiment was conducted involving grafts with chondrocytes that had been labeled prior to grafting with a nuclear tracer. Results were evaluated using both qualitative and quantitative light microscopy. Macroscopic results from grafted specimens displayed a marked decrease in synovitis and other degenerative changes. In defects that had received transplants, a significant amount of cartilage was reconstituted (82%) compared to ungrafted controls (18%). Autoradiography on reconstituted cartilage showed that there were labeled cells incorporated into the repair matrix

  2. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    International Nuclear Information System (INIS)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-01-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object

  3. Role of Cartilage Forming Cells in Regenerative Medicine for Cartilage Repair

    OpenAIRE

    Sun, Lin; Reagan, Michaela R.; Kaplan, David L.

    2010-01-01

    Lin Sun1, Michaela R Reagan2, David L Kaplan1,21Department of Chemical and Biological Engineering, 2Department of Biomedical Engineering, Tufts University, Medford, MA, USAAbstract: Currently, cartilage repair remains a major challenge for researchers and physicians due to its limited healing capacity. Cartilage regeneration requires suitable cells; these must be easily obtained and expanded, able to produce hyaline matrix with proper mechanical properties, and demonstrate sustained integrati...

  4. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    Science.gov (United States)

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  5. MR imaging of hyaline cartilage at 0.5 T: a quantitative and qualitative in vitro evaluation of three types of sequences

    International Nuclear Information System (INIS)

    Linden, E. van der; Kroon, H.M.; Doornbos, J.; Bloem, J.L.; Hermans, J.

    1998-01-01

    Objective. To identify an optimal pulse sequence for in vitro imaging of hyaline cartilage at 0.5 T. Materials and methods. Twelve holes of varying diameter and depth were drilled in cartilage of two pig knees. These were submerged in saline and scanned with a 0.5-T MR system. Sixteen T1-weighted gradient echo (GE), two T2-weighted GE, and 16 fast spin echo sequences were used, by varying repetition time (TR), echo time (TE), flip angle (FA), echo train length, profile order, and by use of fat saturation. Contrast-to-noise ratios (CNR) of cartilage versus saline solution and cartilage versus subchondral bone were measured. Cartilaginous lesions were evaluated separately by three independent observers. Interobserver variability and correlation between the quantitative and qualitative analyses were calculated. Results. The mean CNRs of two specimens of cartilage versus saline solution ranged from 6.3 (±2.1) to 27.7 (±2.5), and those of cartilage versus subchondral bone from 0.3 (±0.2) to 22.5 (±1.4). The highest CNR was obtained with a T1-weighted spoiled 3D-GE technique (TR 65 ms, TE 11.5 ms, FA 45 ). The number of lesions observed per sequence varied from 35 to 69. Observer agreement was fair to good. The T1-weighted spoiled GE sequences with a TR of 65 ms, TE of 11.5 ms and FA of 30 and 45 were significantly superior to the other 34 sequences in the qualitative analysis. Conclusion. T1-weighted spoiled 3D-GE sequences with a TR of 65 ms, a TE of 11.5 ms, and a FA of 30-45 were found to be optimal for in vitro imaging of cartilage at 0.5 T. (orig.)

  6. MR imaging of hyaline cartilage at 0.5 T: a quantitative and qualitative in vitro evaluation of three types of sequences

    Energy Technology Data Exchange (ETDEWEB)

    Linden, E. van der; Kroon, H.M.; Doornbos, J.; Bloem, J.L. [Department of Radiology C2-S, Albinusdreef 2, Leiden University Medical Center, Postbus 9600, NL-2300 RC Leiden (Netherlands); Hermans, J. [Department of Medical Statistics, Leiden University Medical Center, Leiden (Netherlands)

    1998-06-01

    Objective. To identify an optimal pulse sequence for in vitro imaging of hyaline cartilage at 0.5 T. Materials and methods. Twelve holes of varying diameter and depth were drilled in cartilage of two pig knees. These were submerged in saline and scanned with a 0.5-T MR system. Sixteen T1-weighted gradient echo (GE), two T2-weighted GE, and 16 fast spin echo sequences were used, by varying repetition time (TR), echo time (TE), flip angle (FA), echo train length, profile order, and by use of fat saturation. Contrast-to-noise ratios (CNR) of cartilage versus saline solution and cartilage versus subchondral bone were measured. Cartilaginous lesions were evaluated separately by three independent observers. Interobserver variability and correlation between the quantitative and qualitative analyses were calculated. Results. The mean CNRs of two specimens of cartilage versus saline solution ranged from 6.3 ({+-}2.1) to 27.7 ({+-}2.5), and those of cartilage versus subchondral bone from 0.3 ({+-}0.2) to 22.5 ({+-}1.4). The highest CNR was obtained with a T1-weighted spoiled 3D-GE technique (TR 65 ms, TE 11.5 ms, FA 45 ). The number of lesions observed per sequence varied from 35 to 69. Observer agreement was fair to good. The T1-weighted spoiled GE sequences with a TR of 65 ms, TE of 11.5 ms and FA of 30 and 45 were significantly superior to the other 34 sequences in the qualitative analysis. Conclusion. T1-weighted spoiled 3D-GE sequences with a TR of 65 ms, a TE of 11.5 ms, and a FA of 30-45 were found to be optimal for in vitro imaging of cartilage at 0.5 T. (orig.) With 8 figs., 1 tab., 31 refs.

  7. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.

    Directory of Open Access Journals (Sweden)

    Rebecca Williams

    Full Text Available BACKGROUND: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC, are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. METHODS AND FINDINGS: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. CONCLUSIONS: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell

  8. Professional ballet dancers have a similar prevalence of articular cartilage defects compared to age- and sex-matched non-dancing athletes.

    Science.gov (United States)

    Mayes, Susan; Ferris, April-Rose; Smith, Peter; Garnham, Andrew; Cook, Jill

    2016-12-01

    Ballet exposes the hip joint to repetitive loading in extreme ranges of movement and may predispose a dancer to pain and osteoarthritis (OA). The aims of this study were to compare the prevalence of cartilage defects in professional ballet dancers and athletes and to determine the relationship of clinical signs and symptoms. Forty-nine male and female, current and retired professional ballet dancers and 49 age- and sex-matched non-dancing athletes completed hip pain questionnaires, including the Copenhagen Hip and Groin Outcome Score (HAGOS), and underwent hip range of movement (ROM) testing and 3-Tesla magnetic resonance imaging to score cartilage defects (no defect, grade 1: focal partial defect and grade 2: diffuse or full thickness defect). Thirty (61 %) dancers and 27 (55 %) athletes had cartilage defects (p = 0.54). The frequency of grade 1 and 2 cartilage defects did not differ between dancers and athletes (p = 0.83). The frequency of cartilage defects was similar in male and female dancers (p = 0.34), and male and female athletes (p = 0.24). Cartilage defects were not related to history of hip pain (p = 0.34), HAGOS pain (p = 0.14), sports/rec (p = 0.15) scores or hip internal rotation ≤20° (p > 0.01). Cartilage defects were related to age in male dancers (p = 0.002). Ballet dancers do not appear to be at a greater risk of cartilage injury compared to non-dancing athletes. Male dancers develop cartilage defects at an earlier age than athletes and female dancers. Cartilage defects were not related to clinical signs and symptoms; thus, prospective studies are required to determine which cartilage defects progress to symptomatic hip OA.

  9. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    Science.gov (United States)

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  10. 308-nm excimer laser ablation of human cartilage

    Science.gov (United States)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  11. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  12. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Ralph M. Jeuken

    2016-06-01

    Full Text Available Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.

  13. A new solution in cartilage repair surgery of joint lesions

    Directory of Open Access Journals (Sweden)

    Patrascu JM¹,

    2016-12-01

    Full Text Available OBJECTIVES AND BACKGROUND The purpose of this study is to provide a simple, cost-effective, reproducible technology that is able to regenerate durable hyaline cartilage. Traumas and sports along with different diseases such as obesity or gradual degeneration over time of the joint surface determine cartilage defects resulting in pain and dysfunctionality. MATERIALS AND METHODS Since 2011 a number of 183 pacients were treated using Agili-C, out of which 40 pacients were operated in the IInd Clinic of Orthopaedics of the Timișoara Emergency County Hospital. The implant is a biphasic, porous, resorbable tissue regeneration scaffold used in the treatment of osteochondral defects. The surgical procedure is performed through minimal arthrotomy, with a good exposure of the cartilage defect. The implant is inserted so that the articular surface of the implant is parallel with the surrounding healthy cartilage. When in place, it facilitates vascularization thus allowing tissue formation to commence from the periphery towards the center of the defect. RESULTS Until now, results are promising, showing obvious improvements in pain and function in both degenerative and post-traumatic joint lesions in the knee, ankle and first MP joint. CONCLUSIONS Agili-C is a cell free, single stage, off the shelf implant that will hopefully meet market demands and become a reliable procedure in joint repair surgery in the future. Figure 1: Intra-operative aspect after the implant is in place. REFERENCES 1. Mehdi Kazemzadeh-Narbat et al. Biomaterials.2010. p.31. 2. Scaglione et al. Tissue engineering: Part A. 2009;15:1. FOOTNOTE Agili-C is a product of CartiHeal Company

  14. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  15. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  16. Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs with low molecular weight hyaluronic acid (HA could promote regeneration of massive cartilage in rabbits. Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek. The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml were suspended in 0.5% low molecular weight HA (0.15 ml and injected into the left knee, and HA solution (0.30 ml alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.

  17. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.

    Science.gov (United States)

    Higa, Kotaro; Kitamura, Nobuto; Goto, Keiko; Kurokawa, Takayuki; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2017-05-22

    There has been increased interest in one-step cell-free procedures to avoid the problems related to cell manipulation and its inherent disadvantages. We have studied the chondrogenic induction ability of a PAMPS/PDMAAm double-network (DN) gel and found it to induce chondrogenesis in animal osteochondral defect models. The purpose of this study was to investigate whether the healing process and the degree of cartilage regeneration induced by the cell-free method using DN gel are influenced by the size of osteochondral defects. A total of 63 mature female Japanese white rabbits were used in this study, randomly divided into 3 groups of 21 rabbits each. A 2.5-mm diameter osteochondral defect was created in the femoral trochlea of the patellofemoral joint of bilateral knees in Group I, a 4.3-mm osteochondral defect in Group II, and a 5.8-mm osteochondral defect in Group III. In the right knee of each animal, a DN gel plug was implanted so that a vacant space of 2-mm depth was left above the plug. In the left knee, we did not conduct any treatment to obtain control data. Animals were sacrificed at 2, 4, and 12 weeks after surgery, and gross and histological evaluations were made. The present study demonstrated that all sizes of the DN gel implanted defects as well as the 2.5mm untreated defects showed cartilage regeneration at 4 and 12 weeks. The 4.3-mm and 5.8-mm untreated defects did not show cartilage regeneration during the 12-week period. The quantitative score reported by O'Driscoll et al. was significantly higher in the 4.3-mm and 5.8-mm DN gel-implanted defects than the untreated defects at 4 and 12 weeks (p regeneration in defects between 2.5 and 5.8 mm, offering a promising device to establish a cell-free cartilage regeneration therapy and applicable to various sizes of osteochondral defects.

  18. Cartilage Morphological and Histological Findings After Reconstruction of the Glenoid With an Iliac Crest Bone Graft.

    Science.gov (United States)

    Auffarth, Alexander; Resch, Herbert; Matis, Nicholas; Hudelmaier, Martin; Wirth, Wolfgang; Forstner, Rosemarie; Neureiter, Daniel; Traweger, Andreas; Moroder, Philipp

    2018-04-01

    The J-bone graft is presumably representative of iliac crest bone grafts in general and allows anatomic glenoid reconstruction in cases of bone defects due to recurrent traumatic anterior shoulder dislocations. As a side effect, these grafts have been observed to be covered by some soft, cartilage-like tissue when arthroscopy has been indicated after such procedures. To evaluate the soft tissue covering of J-bone grafts by use of magnetic resonance imaging (MRI) and histological analysis. Case series; Level of evidence, 4. Patients underwent MRI at 1 year after the J-bone graft procedures. Radiological data were digitally processed and evaluated by segmentation of axial images. Independent from the MRI analysis, 2 biopsy specimens of J-bone grafts were harvested for descriptive histological analysis. Segmentation of the images revealed that all grafts were covered by soft tissue. This layer had an average thickness of 0.87 mm compared with 1.96 mm at the adjacent native glenoid. Of the 2 biopsy specimens, one exhibited evident hyaline-like cartilage and the other presented patches of chondrocytes embedded in a glycosaminoglycan-rich extracellular matrix. J-bone grafts are covered by soft tissue that can differentiate into fibrous and potentially hyaline cartilage. This feature may prove beneficial for delaying the onset of dislocation arthropathy of the shoulder.

  19. MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis

    International Nuclear Information System (INIS)

    Berg, B.C. vande; Lecouvet, F.E.; Maldague, B.; Malghem, J.

    2004-01-01

    The aim of this study was to determine signal intensity patterns of cartilage defects at MR imaging. The MR imaging (3-mm-thick fat-suppressed intermediate-weighted fast spin-echo images) was obtained in 31 knees (21 male and 10 female patients; mean age 45.5 years) blindly selected from a series of 252 consecutive knees investigated by dual-detector spiral CT arthrography. Two radiologists determined in consensus the MR signal intensity of the cartilage areas where cartilage defects had been demonstrated on the corresponding reformatted CT arthrographic images. There were 83 cartilage defects at spiral CT arthrography. In 52 (63%) lesion areas, the MR signal intensity was higher than that of adjacent normal cartilage with signal intensity equivalent to (n=31) or lower than (n=21) that of articular fluid. The MR signal intensity was equivalent to that of adjacent normal cartilage in 17 (20%) lesion areas and lower than that of adjacent cartilage in 8 (10%) lesion areas. In 6 (7%) lesion areas, mixed low and high signal intensity was observed. The MR signal intensity of cartilage defects demonstrated on spiral CT arthrographic images varies from low to high on fat-suppressed intermediate-weighted fast spin-echo MR images obtained with our equipment and MR parameters. (orig.)

  20. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    Science.gov (United States)

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  1. Cartilage immunoprivilege depends on donor source and lesion location.

    Science.gov (United States)

    Arzi, B; DuRaine, G D; Lee, C A; Huey, D J; Borjesson, D L; Murphy, B G; Hu, J C Y; Baumgarth, N; Athanasiou, K A

    2015-09-01

    The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the

  2. The use of PLDLA/PCL-T scaffold to repair osteochondral defects in vivo

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Esposito

    2012-01-01

    Full Text Available The physiological repair of osteochondral lesions requires the development of a scaffold that is compatible with the structure of the damaged tissue, cartilage and bone. The aim of this study was to evaluate the biological performance of a PLDLA/PCL-T (90/10 scaffold for repairing osteochondral defects in rabbits. Polymeric scaffolds containing saccharose (75% w/v were obtained by solvent casting and then implanted in the medial knee condyles of 12 New Zealand rabbits after osteochondral damage with a trephine metallic drill (diameter: 3.3 mm in both medial femoral condyles. Each rabbit received the same treatment, i.e., the polymeric scaffold was implanted on the right side while no material was implanted on the left side (control. Four and 12 weeks later histological examination revealed bone neoformation in the implant group, with the presence of hyaline cartilage and mesenchymal tissue. In contrast, the control group showed bone neoformation with necrosis, exacerbated superficial fibrosis, inflammation and cracks in the neoformed tissue. These findings indicate that the PLDLA/PCL-T scaffold was biocompatible and protected the condyles by stabilizing the lesion and allowing subchondral bone tissue and hyaline cartilage formation.

  3. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    Science.gov (United States)

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  4. Correlation between histological outcome and surgical cartilage repair technique in the knee: A meta-analysis.

    Science.gov (United States)

    DiBartola, Alex C; Everhart, Joshua S; Magnussen, Robert A; Carey, James L; Brophy, Robert H; Schmitt, Laura C; Flanigan, David C

    2016-06-01

    Compare histological outcomes after microfracture (MF), autologous chondrocyte implantation (ACI), and osteochondral autograft transfer (OATS). Literature review using PubMed MEDLINE, SCOPUS, Cumulative Index for Nursing and Allied Health Literature (CINAHL), and Cochrane Collaboration Library. Inclusion criteria limited to English language studies International Cartilage Repair Society (ICRS) grading criteria for cartilage analysis after ACI (autologous chondrocyte implantation), MF (microfracture), or OATS (osteochondral autografting) repair techniques. Thirty-three studies investigating 1511 patients were identified. Thirty evaluated ACI or one of its subtypes, six evaluated MF, and seven evaluated OATS. There was no evidence of publication bias (Begg's p=0.48). No statistically significant correlation was found between percent change in clinical outcome and percent biopsies showing ICRS Excellent scores (R(2)=0.05, p=0.38). Percent change in clinical outcome and percent of biopsies showing only hyaline cartilage were significantly associated (R(2)=0.24, p=0.024). Mean lesion size and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Most common lesion location and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Microfracture has poorer histologic outcomes than other cartilage repair techniques. OATS repairs primarily are comprised of hyaline cartilage, followed closely by cell-based techniques, but no significant difference was found cartilage quality using ICRS grading criteria among OATS, ACI-C, MACI, and ACI-P. IV, meta-analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  6. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-06-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. © 2014 Anatomical Society.

  7. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-01-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  8. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  9. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  10. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Energy Technology Data Exchange (ETDEWEB)

    Sobol, Emil [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Baum, Olga [Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Shekhter, Anatoly [Sechenov First Medical University of Moscow, Institute of Regenerative Medicine, Moscow, Russia; Wachsmann-Hogiu, Sebastian [University of California, Center for Biophotonics, Department of Pathology and Laboratory Medicine, Sacramento, California, United StateseMcGill University, Department of Bioengineering, Montreal, Canada; Shnirelman, Alexander [Concordia University, Department of Mathematics and Statistics, Montreal, Canada; Alexandrovskaya, Yulia [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Sadovskyy, Ivan [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States; Vinokur, Valerii [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States

    2017-05-31

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  11. CARTILAGE CONSTRUCTS ENGINEERED FROM CHONDROCYTES OVEREXPRESSING IGF-I IMPROVE THE REPAIR OF OSTEOCHONDRAL DEFECTS IN A RABBIT MODEL

    Science.gov (United States)

    Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali

    2015-01-01

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785

  12. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model

    Directory of Open Access Journals (Sweden)

    H Madry

    2013-04-01

    Full Text Available Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.

  13. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note.

    Science.gov (United States)

    Benthien, Jan P; Behrens, Peter

    2013-11-01

    The potential of subchondral mesenchymal stem cell stimulation (MSS) for cartilage repair has led to the widespread use of microfracture as a first line treatment for full thickness articular cartilage defects. Recent focus on the effects of subchondral bone during cartilage injury and repair has expanded the understanding of the strengths and limitations in MSS and opened new pathways for potential improvement. Comparative studies have shown that bone marrow access has positive implications for pluripotential cell recruitment, repair quality and quantity, i.e. deeper channels elicited better cartilage fill, more hyaline cartilage character with higher type II collagen content and lower type I collagen content compared to shallow marrow access. A subchondral needling procedure using standardised and thin subchondral perforations deep into the subarticular bone marrow making the MSS more consistent with the latest developments in subchondral cartilage remodelling is proposed. As this is a novel method clinical studies have been initiated to evaluate the procedure especially compared to microfracturing. However, the first case studies and follow-ups indicate that specific drills facilitate reaching the subchondral bone marrow while the needle size makes perforation of the subchondral bone easier and more predictable. Clinical results of the first group of patients seem to compare well to microfracturing. The authors suggest a new method for a standardised procedure using a new perforating device. Advances in MSS by subchondral bone marrow perforation are discussed. It remains to be determined by clinical studies how this method compares to microfracturing. The subchondral needling offers the surgeon and the investigator a method that facilitates comparison studies because of its defined depth of subchondral penetration and needle size.

  14. Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model

    NARCIS (Netherlands)

    Tsuchida, Anika I.; Beekhuizen, Michiel; Rutgers, Marijn; van Osch, Gerjo J.V.M.; Bekkers, Joris E.J.; Bot, Arjan G.J.; Geurts, Bernd; Dhert, Wouter J.A.; Saris, Daniël B.F.; Creemers, Laura B.

    2012-01-01

    Introduction This study aimed to determine whether, as in osteoarthritis, increased levels of interleukin-6 (IL-6) are present in the synovial fluid of patients with symptomatic cartilage defects and whether this IL-6 affects cartilage regeneration as well as the cartilage in the degenerated knee.

  15. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives

    Directory of Open Access Journals (Sweden)

    Wayne Yuk-wai Lee

    2017-04-01

    The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.

  16. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  17. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  18. In-vivo study and histological examination of laser reshaping of cartilage

    Science.gov (United States)

    Sviridov, Alexander P.; Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Svistushkin, Valeriy M.; Shinaev, Andrei A.; Nikiforova, G.; Jones, Nicholas

    1999-06-01

    The results of recent study of cartilage reshaping in vivo are reported. The ear cartilage of piglets of 8-12 weeks old have been reshaped in vivo using the radiation of a holmium laser. The stability of the shape and possible side effects have been examined during four months. Histological investigation shown that the healing of irradiated are could accompany by the regeneration of ear cartilage. Finally, elastic type cartilage has been transformed into fibrous cartilage or cartilage of hyaline type.

  19. Orientation-dependent changes in MR signal intensity of articular cartilage: a manifestation of the ``magic angle`` effect

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, F.K.; Bolze, X.; Felsenberg, D.; Wolf, K.J. [Department of Radiology, Benjamin Franklin University Hospital, Free University Berlin, D-12200 Berlin (Germany)

    1998-06-01

    Objective: To study magnetic resonance (MR) imaging pattern of normal hyaline articular cartilage in the knee joint with regard to the contribution of the ``magic angle`` effect to the MR signal. Design. Thirty-two healthy volunteers were imaged in a standard supine position in a 1.5-T unit using spin echo and gradient echo sequences. Nine volunteers were reimaged with the knee flexed. The signal behavior of the hyaline cartilage of the femoral condyles was evaluated qualitatively and quantitatively. The extended and flexed positions of the nine volunteers were compared. Results. A superficial and a deep hyperintense layer and a hypointense middle cartilage layer were observed. Segments of increased signal intensity were visible along the condyles; a magic angle effect on signal intensity was evident in the hypointense middle layer with both gradient echo and spin echo images. Conclusion. The MR signal behavior of hyaline cartilage is influenced by the alignment of the collagen fibers within the cartilage in relation to the magnetic field. Failure to recognize this effect may lead to inaccurate diagnosis. (orig.) With 4 figs., 17 refs.

  20. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

    Science.gov (United States)

    2013-01-01

    Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures

  1. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone

    Directory of Open Access Journals (Sweden)

    A Boyde

    2011-05-01

    Full Text Available Arthropathy of the distal articular surfaces of the third metacarpal (Mc3 and metatarsal (Mt3 bones in the Thoroughbred racehorse (Tb is a natural model of repetitive overload arthrosis. We describe a novel pathology that affects the articular calcified cartilage (ACC and subchondral bone (SCB and which is associated with hyaline articular cartilage degeneration. Parasagittal slices cut from the palmar quadrant of the distal condyles of the left Mc3/Mt3 of 39 trained Tbs euthanased for welfare reasons were imaged by point projection microradiography, and backscattered electron (BSE scanning electron microscopy (SEM, light microscopy, and confocal scanning light microscopy. Mechanical properties were studied by nanoindentation. Data on the horses' training and racing career were also collected. Highly mineralised projections were observed extending from cracks in the ACC mineralising front into the hyaline articular cartilage (HAC up to two-thirds the thickness of the HAC, and were associated with focal HAC surface fibrillation directly overlying their site. Nanoindentation identified this extruded matrix to be stiffer than any other mineralised phase in the specimen by a factor of two. The presence of projections was associated with a higher cartilage Mankin histology score (P < 0.02 and increased amounts of gross cartilage loss pathologically on the condyle (P < 0.02. Presence of projections was not significantly associated with: total number of racing seasons, age of horse, amount of earnings, number of days in training, total distance galloped in career, or presence of wear lines.

  2. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

    Science.gov (United States)

    Ha, Chul-Won; Park, Yong-Beom; Chung, Jun-Young; Park, Yong-Geun

    2015-09-01

    The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5×10(7) cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been attained. (These

  3. Gremlin 1, Frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Emons, J.; Sticht, C.; van Gool, S.; Decker, E.; Uitterlinden, A.; Rappold, G.; Hofman, A.; Rivadeneira, F.; Scherjon, S.; Wit, J.M.; van Meurs, J.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Objective The development of osteoarthritis (OA) may be caused by activation of hypertrophic differentiation of articular chondrocytes. Healthy articular cartilage is highly resistant to hypertrophic differentiation, in contrast to other hyaline cartilage subtypes, such as growth plate cartilage.

  4. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Kuo-Hwa Wang

    Full Text Available Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage and neoRAT (neo-rat cartilage constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

  5. Acute and chronic response of articular cartilage to Ho:YAG laser irradiation

    Science.gov (United States)

    Trauner, Kenneth B.; Nishioka, Norman S.; Flotte, Thomas J.; Patel, Dinesh K.

    1992-06-01

    A Ho:YAG laser system operating at a wavelength of 2.1 microns has recently been introduced for use in arthroscopic surgery. The acceptability of this new tool will be determined not only by its ability to resect tissue, but also by its long term effects on articular surfaces. In order to investigate these issues further, we performed two studies to evaluate the acute and chronic effects of the laser on cartilaginous tissue. We evaluated the acute, in vitro effects of 2.1 micron laser irradiation on articular and fibrocartilage. This included the measurement of ablation efficiency, ablation threshold and thermal damage in both meniscus and articular cartilage. To document the chronic effects on articular cartilage in vivo, we next performed a ten week healing study. Eight sheep weighing 30 - 40 kg underwent bilateral arthrotomy procedures. Multiple full thickness and partial thickness defects were created. Animals were sacrificed at 0, 2, 4, and 10 weeks. The healing study demonstrated: (1) no healing of full or partial thickness defects at 10 weeks with hyaline cartilage; (2) fibrocartilaginous granulation tissue filling full thickness defects at two and four weeks, but no longer evident at ten weeks; (3) chondrocyte necrosis extending to greater than 900 microns distal to ablation craters at four weeks with no evidence of repair at later dates; and (4) chondrocyte hyperplasia at the borders of the damage zone at two weeks but no longer evident at later sacrifice dates.

  6. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  7. New Frontiers for Cartilage Repair and Protection.

    Science.gov (United States)

    Zaslav, Kenneth; McAdams, Timothy; Scopp, Jason; Theosadakis, Jason; Mahajan, Vivek; Gobbi, Alberto

    2012-01-01

    Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and biochemically true articular surfaces once an athlete injures this surface. This goal should include reproducing hyaline cartilage with a well-integrated and flexible subchondral base and the normal zonal variability in the articular matrix. A number of nonoperative interventions have shown early promise in mitigating cartilage symptoms and in preclinical studies have shown evidence of chondroprotection. These include the use of glucosamine, chondroitin, and other neutraceuticals, viscosupplementation with hyaluronic acid, platelet-rich plasma, and pulsed electromagnetic fields. Newer surgical techniques, some already in clinical study, and others on the horizon offer opportunities to improve the surgical restoration of the hyaline matrix often disrupted in athletic injury. These include new scaffolds, single-stage cell techniques, the use of mesenchymal stem cells, and gene therapy. Although many of these treatments are in the preclinical and early clinical study phase, they offer the promise of better options to mitigate the sequelae of athletically induced cartilage.

  8. Cartilage Regeneration in Full-Thickness Patellar Chondral Defects Treated with Particulated Juvenile Articular Allograft Cartilage: An MRI Analysis.

    Science.gov (United States)

    Grawe, Brian; Burge, Alissa; Nguyen, Joseph; Strickland, Sabrina; Warren, Russell; Rodeo, Scott; Shubin Stein, Beth

    2017-10-01

    Background Full-thickness cartilage lesions of the patella represent a common source of pain and dysfunction. Previously reported surgical treatment options include marrow stimulation, cell-based treatments, and osteochondral transfer. Minced juvenile allograft cartilage is a novel treatment option that allows for a single stage approach for these lesions. Hypothesis Particulated juvenile allograft cartilage (PJAC) for the treatment of chondral defects of the patella would offer acceptable lesion fill rates, mature over time, and not be associated with any negative biologic effects on the surrounding tissue. Methods A retrospective chart review of prospectively collected data was conducted to identify consecutive patients who were treated with PJAC for a full thickness symptomatic cartilage lesion. Qualitative (fast spin echo) and quantitative (T2 mapping) magnetic resonance imaging (MRI) was undertaken at the 6-, 12-, and 24-month postoperative mark. Numerous patient, lesion, and graft specific factors were assessed against MRI scores and percent defect fill of the graft. Graft maturation over time was also assessed. Results Forty-five patients total were included in the study. Average age at the time of surgery was 26.5 years (range 13-45 years), average lesion size was 208 mm 2 (range 4-500 mm 2 ), and average donor age was 49.5 months (range 3-120 months). Sixty percent of the patients were female, while 93% of all patients underwent a concomitant procedure at the time of the index operation. Six-month MRI findings revealed that no patient-, graft-, or donor-specific factors correlated with MR scores, and 82% of the knees demonstrated good to excellent fill. Twelve-month MRI findings revealed that T2 relaxation times of deep graft demonstrated negative correlation with patient age ( P = 0.049) and donor age ( P = 0.006), the integration zone showed a negative correlation with donor age ( P = 0.026). In all, 85% of patients at 12 months displayed good to

  9. INJURED ARTICULAR CARTILAGE REPAIR

    Directory of Open Access Journals (Sweden)

    Ariana Barlič

    2008-02-01

    Surveys show that the most frequently used surgical methods are mosaicplasty and bonemarrow stimulation with microfracturing. The efficacy of the autologous chondrocyte implantationmethod should be superior to microfracturing on a long run. Especially when(regeneration of the hyaline cartilage instead of fibrous tissue (fibrocartilage is concerned.However, it has not been scientifically proved yet

  10. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    Full Text Available Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found. For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies was assessed and outcome data were collected for meta-analysis (151 studies. Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular

  11. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  12. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits

    Directory of Open Access Journals (Sweden)

    Soghra Bahmanpour

    2016-11-01

    Full Text Available Background: The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP and platelet-rich fibrin (PRF containing stromal cell-derived factor-1 (SDF1 as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. Methods: We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1. After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05. Results: Macroscopic evaluations revealed that international cartilage repair society (ICRS scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05. Conclusion: Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits.

  13. In situ repair of bone and cartilage defects using 3D scanning and 3D printing.

    Science.gov (United States)

    Li, Lan; Yu, Fei; Shi, Jianping; Shen, Sheng; Teng, Huajian; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-08-25

    Three-dimensional (3D) printing is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. However, the use of robotic bioprinters alone is not sufficient for disease treatment. This study aimed to report the combined application of 3D scanning and 3D printing for treating bone and cartilage defects. Three different kinds of defect models were created to mimic three orthopedic diseases: large segmental defects of long bones, free-form fracture of femoral condyle, and International Cartilage Repair Society grade IV chondral lesion. Feasibility of in situ 3D bioprinting for these diseases was explored. The 3D digital models of samples with defects and corresponding healthy parts were obtained using high-resolution 3D scanning. The Boolean operation was used to achieve the shape of the defects, and then the target geometries were imported in a 3D bioprinter. Two kinds of photopolymerized hydrogels were synthesized as bioinks. Finally, the defects of bone and cartilage were restored perfectly in situ using 3D bioprinting. The results of this study suggested that 3D scanning and 3D bioprinting could provide another strategy for tissue engineering and regenerative medicine.

  14. Near infrared spectroscopic evaluation of water in hyaline cartilage.

    Science.gov (United States)

    Padalkar, M V; Spencer, R G; Pleshko, N

    2013-11-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

  15. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment.

    Science.gov (United States)

    Fernandes, Tiago Lazzaretti; Shimomura, Kazunori; Asperti, Andre; Pinheiro, Carla Cristina Gomes; Caetano, Heloísa Vasconcellos Amaral; Oliveira, Claudia Regina G C M; Nakamura, Norimasa; Hernandez, Arnaldo José; Bueno, Daniela Franco

    2018-05-04

    Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. The ability of human Dental Pulp Stem Cells (DPSCs) to differentiate into chondroblasts in vitro suggests that this stem cell type may be useful for tissue bioengineering. However, we have yet to identify a study of large animal models in which DPSCs were used to repair articular cartilage. Therefore, this study aimed to describe a novel treatment for cartilage lesion with DPSCs on a large animal model. Mesenchymal stem cells (MSC) were obtained from deciduous teeth and characterized by flow cytometry. DPSCs were cultured and added to a collagen type I/III biomaterial composite scaffold. Brazilian miniature pig (BR-1) was used. A 6-mm diameter, full-thickness chondral defect was created in each posterior medial condyle. The defects were covered with scaffold alone or scaffold + DPSCs on the contralateral side. Animals were euthanized 6 weeks post-surgery. Cartilage defects were analyzed macroscopically and histology according to modified O'Driscoll scoring system. Flow cytometry confirmed characterization of DPSCs as MSCs. Macroscopic and histological findings suggested that this time period was reasonable for evaluating cartilage repair. To our knowledge, this study provides the first description of an animal model using DPSCs to study the differentiation of hyaline articular cartilage in vivo. The animals tolerated the procedure well and did not show clinical or histological rejection of the DPSCs, reinforcing the feasibility of this descriptive miniature pig model for pre-clinical studies.

  16. Computer-aided cartilage tissue-engineering : a numerical evaluation of the influence of inhomogeneities, collagen architecture and temporal culture effects

    NARCIS (Netherlands)

    Khoshgoftar, M.

    2012-01-01

    Hyaline articular cartilage has a crucial role in the distribution of joint mechanical loads and smooth movement of bones. Because of its poor healing capacity, cartilage damage is progressive and may lead to osteoarthritis (OA). Replacing damaged cartilage with tissue engineered (TE) cartilage is

  17. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  18. Effects of microcurrent stimulation on Hyaline cartilage repair in immature male rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    de Campos Ciccone Carla

    2013-01-01

    Full Text Available Abstract Background In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. Methods Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. Results Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. Conclusion We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.

  19. Effects of microcurrent stimulation on hyaline cartilage repair in immature male rats (Rattus norvegicus).

    Science.gov (United States)

    de Campos Ciccone, Carla; Zuzzi, Denise Cristina; Neves, Lia Mara Grosso; Mendonça, Josué Sampaio; Joazeiro, Paulo Pinto; Esquisatto, Marcelo Augusto Marretto

    2013-01-19

    In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.

  20. Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience.

    Science.gov (United States)

    Zbýň, S; Stelzeneder, D; Welsch, G H; Negrin, L L; Juras, V; Mayerhoefer, M E; Szomolanyi, P; Bogner, W; Domayer, S E; Weber, M; Trattnig, S

    2012-08-01

    To compare the sodium normalized mean signal intensity (NMSI) values between patients after bone marrow stimulation (BMS) and matrix-associated autologous chondrocyte transplantation (MACT) cartilage repair procedures. Nine BMS and nine MACT patients were included. Each BMS patient was matched with one MACT patient according to age [BMS 36.7 ± 10.7 (mean ± standard deviation) years; MACT 36.9 ± 10.0 years], postoperative interval (BMS 33.5 ± 25.3 months; MACT 33.2 ± 25.7 months), and defect location. All magnetic resonance imaging (MRI) measurements were performed on a 7 T system. Proton images served for morphological evaluation of repair tissue using the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system. Sodium NMSI values in the repair area and morphologically normal cartilage were calculated. Clinical outcome was assessed right after MRI. Analysis of covariance, t-tests, and Pearson correlation coefficients were evaluated. Sodium NMSI was significantly lower in BMS (P = 0.004) and MACT (P = 0.006) repair tissue, compared to reference cartilage. Sodium NMSI was not different between the reference cartilage in MACT and BMS patients (P = 0.664), however it was significantly higher in MACT than in BMS repair tissue (P = 0.028). Better clinical outcome was observed in BMS than in MACT patients. There was no difference between MOCART scores for MACT and BMS patients (P = 0.915). We did not observe any significant correlation between MOCART score and sodium repair tissue NMSI (r = -0.001; P = 0.996). Our results suggest higher glycosaminoglycan (GAG) content, and therefore, repair tissue of better quality in MACT than in BMS patients. Sodium imaging might be beneficial in non-invasive evaluation of cartilage repair surgery efficacy. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible.

    Science.gov (United States)

    Biosse Duplan, Martin; Komla-Ebri, Davide; Heuzé, Yann; Estibals, Valentin; Gaudas, Emilie; Kaci, Nabil; Benoist-Lasselin, Catherine; Zerah, Michel; Kramer, Ina; Kneissel, Michaela; Porta, Diana Grauss; Di Rocco, Federico; Legeai-Mallet, Laurence

    2016-07-15

    Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3 Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel's) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel's and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3 Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders. © The Author 2016. Published by Oxford University Press.

  2. Matrix-induced autologous chondrocyte implantation for a large chondral defect in a professional football player: a case report

    Directory of Open Access Journals (Sweden)

    Beyzadeoglu Tahsin

    2012-06-01

    Full Text Available Abstract Introduction Matrix-assisted autologous chondrocyte implantation is a well-known procedure for the treatment of cartilage defects, which aims to establish a regenerative milieu and restore hyaline cartilage. However, much less is known about third-generation autologous chondrocyte implantation application in high-level athletes. We report on the two-year follow-up outcome after matrix-assisted autologous chondrocyte implantation to treat a large cartilage lesion of the lateral femoral condyle in a male Caucasian professional football player. Case presentation A 27-year-old male Caucasian professional football player was previously treated for cartilage problems of his left knee with two failed microfracture procedures resulting in a 9 cm2 Outerbridge Grade 4 chondral lesion at his lateral femoral condyle. Preoperative Tegner-Lysholm and Brittberg-Peterson scores were 64 and 58, and by the second year they were 91 and 6. An evaluation with magnetic resonance imaging demonstrated filling of the defect with the signal intensity of the repair tissue resembling healthy cartilage. Second-look arthroscopy revealed robust, smooth cartilage covering his lateral femoral condyle. He returned to his former competitive level without restrictions or complaints one year after the procedure. Conclusions This case illustrates that robust cartilage tissue can be obtained with a matrix-assisted autologous chondrocyte implantation procedure even after two failed microfracture procedures in a large (9 cm2 cartilage defect. To the best of our knowledge, this is the first case report on the application of the third-generation cell therapy treatment technique, matrix-assisted autologous chondrocyte implantation, in a professional football player.

  3. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible

    Science.gov (United States)

    Biosse Duplan, Martin; Komla-Ebri, Davide; Heuzé, Yann; Estibals, Valentin; Gaudas, Emilie; Kaci, Nabil; Benoist-Lasselin, Catherine; Zerah, Michel; Kramer, Ina; Kneissel, Michaela; Porta, Diana Grauss; Di Rocco, Federico; Legeai-Mallet, Laurence

    2016-01-01

    Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders. PMID:27260401

  4. Hyaline cartilage calcification of the first metatarsophalangeal joint is associated with osteoarthritis but independent of age and BMI.

    Science.gov (United States)

    Hubert, Jan; Hawellek, Thelonius; Hischke, Sandra; Bertrand, Jessica; Krause, Matthias; Püschel, Klaus; Rüther, Wolfgang; Niemeier, Andreas

    2016-11-15

    Hyaline cartilage calcification (CC) is associated with osteoarthritis (OA) in hip and knee joints. The first metatarsophalangeal joint (1 st MTPJ) is frequently affected by OA, but it is unclear if CC occurs in the 1 st MTPJ. The aim of the present study was to analyze the prevalence of CC of the 1 st MTPJ in the general population by high-resolution digital contact radiography (DCR) and to determine its association with histological OA severity, age and body mass index (BMI). 168 metatarsal heads of 84 donors (n = 47 male, n = 37 female; mean age 62.73 years, SD ±18.8, range 20-93) were analyzed by DCR for the presence of CC. Histological OA grade (hOA) by OARSI was analyzed in the central load-bearing zone of the first metatarsal head (1 st MH). Structural equation modeling (SEM) was performed to analyze the interrelationship between CC, hOA, age and BMI. The prevalence of CC of 1 st MH was 48.8 % (41/84) (95 %-CI [37.7 %, 60.0 %]), independent of the affected side (p = 0.42), gender (p = 0.41) and BMI (p = 0.51). The mean amount of CC of one MH correlated significantly with that of the contralateral side (r s  = 0.4, 95 %-CI [0.26, 0.52], p cartilage area) of the MH correlated significantly with the severity of hOA (r s  = 0.51, 95 %-CI [0.32, 0.65], p studies.

  5. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities.

    Science.gov (United States)

    Ley, C J; Ekman, S; Hansson, K; Björnsdóttir, S; Boyde, A

    2014-03-25

    Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA) in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining) and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC), articular calcified cartilage (ACC), subchondral bone (SCB) and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints.

  6. Cartilage Repair With Autologous Bone Marrow Mesenchymal Stem Cell Transplantation: Review of Preclinical and Clinical Studies.

    Science.gov (United States)

    Yamasaki, Shinya; Mera, Hisashi; Itokazu, Maki; Hashimoto, Yusuke; Wakitani, Shigeyuki

    2014-10-01

    Clinical trials of various procedures, including bone marrow stimulation, mosaicplasty, and autologous chondrocyte implantation, have been explored to treat articular cartilage defects. However, all of them have some demerits. We focused on autologous culture-expanded bone marrow mesenchymal stem cells (BMSC), which can proliferate without losing their capacity for differentiation. First, we transplanted BMSC into the defective articular cartilage of rabbit and succeeded in regenerating osteochondral tissue. We then applied this transplantation in humans. Our previous reports showed that treatment with BMSC relieves the clinical symptoms of chondral defects in the knee and elbow joint. We investigated the efficacy of BMSC for osteoarthritic knee treated with high tibial osteotomy, by comparing 12 BMSC-transplanted patients with 12 cell-free patients. At 16-month follow-up, although the difference in clinical improvement between both groups was not significant, the arthroscopic and histological grading score was better in the cell-transplanted group. At the over 10-year follow-up, Hospital for Special Surgery knee scores improved to 76 and 73 in the BMSC-transplanted and cell-free groups, respectively, which were better than preoperative scores. Additionally, neither tumors nor infections were observed in all patients, and in the clinical study, we have never observed hypertrophy of repaired tissue, thereby guaranteeing the clinical safety of this therapy. Although we have never observed calcification above the tidemark in rabbit model and human histologically, the repair cartilage was not completely hyaline cartilage. To elucidate the optimum conditions for cell therapy, other stem cells, culture conditions, growth factors, and gene transfection methods should be explored.

  7. A comparison between platelet-rich plasma (PRP and hyaluronate acid on the healing of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available Platelet-rich plasma (PRP has offered great promise for the treatment of cartilage degradation, and has been proved to have positive effects on the restoration of cartilage lesions. But no comparative work has been done between PRP and hyaluronate acid (HA concerning their restoring effect on cartilage defect, especially by means of animal experiments and histologic assessments. The purpose of the study was to compare the therapeutic effects of P-PRP and HA on osteoarthritis in rabbit knees. Thirty rabbits were used to establish the animal models by creating a cartilage defect of 5 mm in diameter on the condyles of the femurs, and were randomly divided into three groups: the P-PRP group, HA group and the control group. Then each group was treated with P-PRP, HA or saline solution, respectively. Six and twelve weeks later the rabbits were sacrificed and the samples were collected. The platelet number, the concentrations of growth factors of P-PRP and whole blood, and the IL-1β concentration in the joint fluid were investigated, and the histological assessment of the cartilage were performed according to Mankin's scoring system. Micro-CT was also used to evaluate the restoration of subchondral bone. The platelet concentration in P-PRP is 6.8 fold of that in the whole blood. The IL-1β level in the P-PRP group was lower than in the HA group (p<0.01 and in the control group (p<0.01. The restoration of the defected cartilage as well as the subchondral bone was better in the P-PRP group than in the HA group or the control group (P<0.05. Our data showed that P-PRP is better than HA in promoting the restoration of the cartilage and alleviating the arthritis caused by cartilage damage.

  8. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    Science.gov (United States)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  9. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model.

    Science.gov (United States)

    Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J

    2007-05-01

    Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and

  10. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits.

    Science.gov (United States)

    Gupta, Ankur; Bhat, Sumrita; Chaudhari, Bhushan P; Gupta, Kailash C; Tägil, Magnus; Zheng, Ming Hao; Kumar, Ashok; Lidgren, Lars

    2017-06-01

    We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  12. MR imaging of articular cartilage; Gelenkknorpel in der MR-Tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, F.K.W.; Muhle, C.; Heller, M.; Brossmann, J. [Kiel Univ. (Germany). Klinik fuer Diagnostische Radiologie

    2001-04-01

    MR imaging has evolved to the best non-invasive method for the evaluation of articular cartilage. MR imaging helps to understand the structure and physiology of cartilage, and to diagnose cartilage lesions. Numerous studies have shown high accuracy and reliability concerning detection of cartilage lesions and early changes in both structure and biochemistry. High contrast-to-noise ratio and high spatial resolution are essential for analysis of articular cartilage. Fat-suppressed 3D-T{sub 1} weighted gradient echo and T{sub 2}-weighted fast spin echo sequences with or without fat suppression are recommended for clinical routine. In this article the anatomy and pathology of hyaline articular cartilage and the complex imaging characteristics of hyaline cartilage will be discussed. (orig.) [German] Die MR-Tomographie hat sich zur besten nichtinvasiven bildgebenden Methode fuer die Untersuchung von Gelenkknorpel entwickelt. Die MR-Tomographie liefert einen Beitrag zum Verstaendnis der Knorpelstruktur und der Physiologie sowie zur Diagnostik von Knorpelschaeden. Zahlreiche MR-Studien konnten eine hohe Genauigkeit und Zuverlaessigkeit bei der Detektion chondraler Laesionen sowie frueher Veraenderungen struktureller und biochemischer Natur zeigen. Neben einem hohen Kontrast/Rausch-Verhaeltnis ist fuer die Gelenkknorpelanalyse eine hohe raeumliche Aufloesung erforderlich. Im klinischen Routinebetrieb empfehlen sich fuer die Erkennung von Knorpellaesionen besonders fettunterdrueckte 3D-T{sub 1}-gewichtete Gradientenecho- und T{sub 2}-gewichtete Fastspinecho-Sequenzen mit oder ohne Fettunterdrueckung. Die vorliegende Arbeit geht auf die Anatomie und Pathologie des hyalinen Gelenkknorpels ein und diskutiert das komplexe MR-Signalverhalten. (orig.)

  13. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model

    Science.gov (United States)

    Bell, Angela D.; Hurtig, Mark B.; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D.

    2016-01-01

    Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan–NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro–computed tomography after 1 day (n = 1) and 6 months (n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage. PMID:28934884

  14. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model.

    Science.gov (United States)

    Bell, Angela D; Hurtig, Mark B; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D

    2017-10-01

    Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan-NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro-computed tomography after 1 day ( n = 1) and 6 months ( n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage.

  15. Histological evaluation of calcaneal tuberosity cartilage--A proposed donor site for osteochondral autologous transplant for talar dome osteochondral lesions.

    Science.gov (United States)

    Calder, James D F; Ballal, Moez S; Deol, Rupinderbir S; Pearce, Christopher J; Hamilton, Paul; Lutz, Michael

    2015-09-01

    Osteochondral Autologous Transplant (OATs) as a treatment option for Osteochondral lesions (OCLs) of the talar dome frequently uses the distal femur as the donor site which is associated with donor site morbidity in up to 50%. Some studies have described the presence of hyaline cartilage in the posterior superior calcaneal tuberosity. The aim of this study was to evaluate the posterior superior calcaneal tuberosity to determine if it can be a suitable donor site for OATs of the talus In this cadaveric study, we histologically evaluated 12 osteochondral plugs taken from the posterior superior calcaneal tuberosity and compared them to 12 osteochondral plugs taken from the talar dome. In the talar dome group, all samples had evidence of hyaline cartilage with varying degrees of GAG staining. The average hyaline cartilage thickness in the samples was 1.33 mm. There was no evidence of fibrocartilage, fibrous tissue or fatty tissue in this group. In contrast, the Calcaneal tuberosity samples had no evidence of hyaline cartilage. Fibrocartilage was noted in 3 samples only. We believe that the structural differences between the talus and calcanium grafts render the posterior superior clancaneal tuberosity an unsuitable donor site for OATs in the treatment of OCL of the talus. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  16. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Amilton M Fernandes

    Full Text Available Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM derived mesenchymal stem cells (MSCs from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin, ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  17. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities

    Directory of Open Access Journals (Sweden)

    CJ Ley

    2014-03-01

    Full Text Available Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC, articular calcified cartilage (ACC, subchondral bone (SCB and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints.

  19. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  20. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  1. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    Science.gov (United States)

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  2. Adipose, Bone Marrow and Synovial Joint-derived Mesenchymal Stem Cells for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Christopher Fellows

    2016-12-01

    Full Text Available Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple ‘one size fits all’, but more likely an array of solutions that need to applied systematically to achieve regeneration of a biomechanically competent repair tissue.

  3. MR imaging of chondramalacia patella

    International Nuclear Information System (INIS)

    Yulish, B.S.; Montanez, J.; Mulopulos, G.P.; Goodfellow, D.; Dollinger, B.; Bryan, P.J.; Modic, M.T.

    1986-01-01

    Because of its inherent soft-tissue contrast, MR imaging can distinguish hyaline articular cartilage, fibrocartilage, and cortical and medullary bone, and thus seems a method ideally suited to examine the posterior patellar hyaline articular cartilage. The authors studied the knees of people with suspected chondromalacia patella using MR imagine and compared our findings to normal knees and, where available, results of surgery. They find that we can distinguish swollen cartilage, irregular cartilage, absent cartilage, and bony patellar defects. Joint fluid and meniscal injuries could also be identified. MR imaging is a useful method for evaluation of chondromalacia patella and may reduce the need for arthroscopy and arthrography for diagnosis

  4. Healing of Osteochondral Defects Implanted with Biomimetic Scaffolds of Poly(ε-Caprolactone)/Hydroxyapatite and Glycidyl-Methacrylate-Modified Hyaluronic Acid in a Minipig.

    Science.gov (United States)

    Hsieh, Yi-Ho; Shen, Bo-Yuan; Wang, Yao-Horng; Lin, Bojain; Lee, Hung-Maan; Hsieh, Ming-Fa

    2018-04-09

    Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM) layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-β1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT). The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-β1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.

  5. Healing of Osteochondral Defects Implanted with Biomimetic Scaffolds of Poly(ε-Caprolactone/Hydroxyapatite and Glycidyl-Methacrylate-Modified Hyaluronic Acid in a Minipig

    Directory of Open Access Journals (Sweden)

    Yi-Ho Hsieh

    2018-04-01

    Full Text Available Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol-block-poly(ε-caprolactone (mPEG-PCL and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-β1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT. The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-β1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.

  6. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Science.gov (United States)

    Liu, Ji; Nie, Huarong; Xu, Zhengliang; Niu, Xin; Guo, Shangchun; Yin, Junhui; Guo, Fei; Li, Gang; Wang, Yang; Zhang, Changqing

    2014-01-01

    The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  7. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM, the Cell Counting Kit-8 (CCK-8, histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  8. Optical methods for diagnostics and feedback control in laser-induced regeneration of spine disc and joint cartilages

    Science.gov (United States)

    Sobol, Emil; Sviridov, Alexander; Omeltchenko, Alexander; Baum, Olga; Baskov, Andrey; Borchshenko, Igor; Golubev, Vladimir; Baskov, Vladimir

    2011-03-01

    In 1999 we have introduced a new approach for treatment of spine diseases based on the mechanical effect of nondestructive laser radiation on the nucleus pulposus of the intervertebral disc. Laser reconstruction of spine discs (LRD) involves puncture of the disc and non-destructive laser irradiation of the nucleus pulposus to activate reparative processes in the disc tissues. In vivo animal study has shown that LRD allows activate the growth of hyaline type cartilage in laser affected zone. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reparation in cartilages of spine and joints. The results of laser reconstruction of intervertebral discs for 510 patients have shown substantial relief of back pain for 90% of patients. Laser technology has been experimentally tested for reparation of traumatic and degenerative diseases in joint cartilage of 20 minipigs. It is shown that laser regeneration of cartilage allows feeling large (more than 5 mm) defects which usually never repair on one's own. Optical techniques have been used to promote safety and efficacy of the laser procedures.

  9. A comparative Study between the Structure of Cartilage Tissue Produced from Murine MSCs Differentiation and Hyaline Costal Cartilage

    OpenAIRE

    M.R. Baghban Eslaminezhad, Ph.D.;  L. Taghiyar, M.Sc; A. Piryaee, M.Sc

    2007-01-01

    Background and purpose: Vitro cartilage differentiation of mesenchymal stem cells (MSCs) has been noticed in several investigations. In this regard, almost always molecular differentiation of the cells has been examined, while structural and morphological differentiation of them has been ignored. Therefore, the present study examines the structure and ultrastructure of the cartilage differentiated from murine MSCs compared with that of costal cartilage.Materials and Methods: 2× 105 MSCs isola...

  10. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites.

    Science.gov (United States)

    Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G

    2015-12-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.

  11. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    International Nuclear Information System (INIS)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S.; Steiner, G.; Aparisi, F.; Padron, M.

    1998-01-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with r[iographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. R[iographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. [ditionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with r[iography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gr[ient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. R[iographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the r[iographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.)

  12. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S. [Department of Radiology, Hospital for Joint Diseases, New York, NY (United States); Steiner, G. [Department of Pathology, Hospital for Joint Diseases, New York, NY (United States); Aparisi, F. [Department of Radiology, Residencia Sanitaria ``La Fe``, Valencia (Spain); Padron, M. [Clinica San Camilo, Madrid (Spain)

    1998-07-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.) With 4 figs., 14 refs.

  13. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Kreuz, Peter C

    2008-01-01

    BACKGROUND: Although autologous chondrocyte implantation (ACI) is a well-established therapy for the treatment of isolated cartilage defects of the knee joint, little is known about typical complications and their treatment after ACI. HYPOTHESIS: Unsatisfactory outcome after ACI is associated...

  14. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    Science.gov (United States)

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. [Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extra- cellular matrix].

    Science.gov (United States)

    Linyi, Cai; Xiangli, Kong; Jing, Xie

    2016-06-01

    This study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM). Enzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities. After continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.

  16. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  17. Allogeneic MSCs and Recycled Autologous Chondrons Mixed in a One-Stage Cartilage Cell Transplantion: A First-in-Man Trial in 35 Patients.

    Science.gov (United States)

    de Windt, Tommy S; Vonk, Lucienne A; Slaper-Cortenbach, Ineke C M; Nizak, Razmara; van Rijen, Mattie H P; Saris, Daniel B F

    2017-08-01

    MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Association of childhood adiposity measures with adulthood knee cartilage defects and bone marrow lesions: a 25-year cohort study.

    Science.gov (United States)

    Meng, Tao; Thayer, Shaun; Venn, Alison; Wu, Feitong; Cicuttini, Flavia; March, Lyn; Dwyer, Terence; Halliday, Andrew; Cross, Marita; Laslett, Laura L; Jones, Graeme; Ding, Changhai; Antony, Benny

    2018-05-15

    To describe the associations between childhood adiposity measures and adulthood knee cartilage defects and bone marrow lesions (BMLs) measured 25 years later. 327 participants from the Australian Schools Health and Fitness Survey of 1985 (aged 7-15 years) were followed up 25 years later (aged 31-41 years). Childhood measures (weight, height and skinfolds) were collected in 1985. Body mass index (BMI), overweight status and fat mass were calculated. Participants underwent 1.5T knee magnetic resonance imaging (MRI) during 2008-2010, and cartilage defects and BMLs were scored from knee MRI scans. Log binomial regressions were used to examine the associations. Among 327 participants (47.1% females), 21 (6.4%) were overweight in childhood. Childhood adiposity measures were associated with the increased risk of adulthood patellar cartilage defects (Weight relative risk (RR) 1.05/kg, 95% confidence interval (CI) 1.01 to 1.09; BMI 1.10/kg/m 2 , 1.01 to 1.19; Overweight 2.22/yes, 1.21 to 4.08; fat mass 1.11/kg, 1.01 to 1.22), but not tibiofemoral cartilage defects. Childhood adiposity measures were not significantly associated with adulthood knee BMLs except for the association between childhood overweight status and adulthood patellar BMLs (RR 2.87/yes, 95% CI 1.10 to 7.53). These significant associations persisted after adjustment for corresponding adulthood adiposity measure. Childhood adiposity measures were associated with the increased risk of adulthood patellar cartilage defects and, to a lesser extent, BMLs, independent of adulthood adiposity measures. These results suggest that adiposity in childhood has long-term effects on patellar structural abnormalities in young adults. Copyright © 2018. Published by Elsevier Ltd.

  19. Tissue engineering applications: cartilage lesions repair by the use of autologous chondrocytes

    Directory of Open Access Journals (Sweden)

    L. De Franceschi

    2011-09-01

    Full Text Available Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells and stimulate the phenotype of transplanted cells. Hyaff®-11 is a hyaluronic-acid based biodegradable polymer, that has been shown to provide successful cell carrier for tissue-engineered repair. From our findings we can state that human chondrocytes seeded on Hyaff®-11 are able to maintain in vitro the characteristic of differentiated cells, expressing and producing collagen type II and aggrecan which are the main markers of cartilage phenotype, down-regulating collagen type I. Moreover, it seems to be a useful scaffold for cartilage repair both in animal models and clinical trials in humans, favouring the formation of a hyaline-like tissue. In the light of these data, we can hypothesise, for the future, the use of autologous chondrocyte transplantation together with gene therapy as a treatment for rheumatic diseases such as osteoarthritis.

  20. Cartilage of the Intervertebral Disc Eng-Plate, A Histological, Histochemical, Fine Structure Study.

    Science.gov (United States)

    1982-08-01

    degeneration (Nachemson et al., 1970). These and related studies consider the end-plates to be composed of hyaline cartilage and thus homologues of articular...results of this study in rhesus indicate, that while present, the cartilage of the end-plate is quite different in structure and presumably...HZSTOLO6ZCAL,-ETCfU) I AUG 82 N 5 NUSSBAUM IUNCLASSIFDATRL8R-1222NL.rnximommmB~iIEND2 AFAMRL-TR-81 - 122 " CARTILAGE OF THE INTERVERTEBRAL DISC END-PLATE A

  1. Effects of Er:YAG laser irradiation on human cartilage

    Science.gov (United States)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  2. Calcineurin Inhibition at Physiological Osmolarity: Toward improving cartilage regeneration

    NARCIS (Netherlands)

    A.E. van der Windt (Anna)

    2017-01-01

    markdownabstractArticular hyaline cartilage is a white, smooth structure covering the ends of bones in synovial joints, like in the hip and knee. Because of its unique stiff yet flexible properties, it distributes the loads, as a consequence of weight bearing and locomotion, over the surface of the

  3. [Current overview of cartilage regeneration procedures].

    Science.gov (United States)

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  4. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  5. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep

    Science.gov (United States)

    Mohan, Neethu; Gupta, Vineet; Sridharan, Banu Priya; Mellott, Adam J; Easley, Jeremiah T; Palmer, Ross H; Galbraith, Richard A; Key, Vincent H; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Background: The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. Aim: The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. Materials & methods: The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. Results: The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. Conclusion: This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture. PMID:26418471

  6. Tissue Engineering Based Therapy for Articular Cartilage Defects - A New Approach

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    -PCR study of the cells of group I were positive for TGF beta 3 (Proliferation, differentiation, and other functions, GR beta, GR alpha (Development, metabolism and immune Response (glucocorticoid receptor alpha, AGGF (Apoptosis, VDR (Vitamin D3 Receptor, Col II (Type II Collagen. Conclusion: We have established a methodology by which Human chondrocytes could be cultured in vitro without any growth factors for a period of 16 weeks in a polymer-hydrogel scaffold. Upon further confirmation of their characteristics, the TGP grown chondrocytes can be used for autologous implantation to repair damaged cartilage area as the Collagen Type II which grows better without growth factors in the scaffold, eventually will become Hyaline cartilage is expected to give a longer disease free duration than the present method of ACI.

  7. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; Beucken, J.J.J.P van den; Tabata, Y.; Kasper, F.K.; Scott, D.W.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.

    2015-01-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and

  8. MR imaging of articular cartilage in the knee. Evaluation of cadaver knee by 3D FLASH sequence with fat saturation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsuhiko; Hachiya, Junichi; Matsumura, Joji [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-06-01

    MR imaging of the articular cartilage of the 24 cadever knees was performed using 3D FLASH sequence with fat saturation. Good correlation was noted between MR findings and either macroscopic or microscopic appearances of the hyaline cartilage. Low signal intensity area without significant thinning of the cartilage was considered to represent the degenerative changes due to relatively early process of osteoarthritis. (author)

  9. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    Science.gov (United States)

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.

  10. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  11. A Human Amnion-Derived Extracellular Matrix-Coated Cell-Free Scaffold for Cartilage Repair: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Nogami, Makiko; Kimura, Tomoatsu; Seki, Shoji; Matsui, Yoshito; Yoshida, Toshiko; Koike-Soko, Chika; Okabe, Motonori; Motomura, Hiraku; Gejo, Ryuichi; Nikaido, Toshio

    2016-04-01

    Extracellular matrix (ECM) derived from human amniotic mesenchymal cells (HAMs) has various biological activities. In this study, we developed a novel HAM-derived ECM-coated polylactic-co-glycolic acid (ECM-PLGA) scaffold, examined its property on mesenchymal cells, and investigated its potential as a cell-free scaffold for cartilage repair. ECM-PLGA scaffolds were developed by inoculating HAM on a PLGA. After decellularization by irradiation, accumulated ECM was examined. Exogenous cell growth and differentiation of rat mesenchymal stem cells (MSCs) on the ECM-PLGA were analyzed in vitro by cell attachment/proliferation assay and reverse transcription-polymerase chain reaction. The cell-free ECM-PLGA scaffolds were implanted into osteochondral defects in the trochlear groove of rat knees. After 4, 12, or 24 weeks, the animals were sacrificed and the harvested tissues were examined histologically. The ECM-PLGA contained ECM that mimicked natural amniotic stroma that contains type I collagen, fibronectin, hyaluronic acid, and chondroitin sulfates. The ECM-PLGA showed excellent properties of cell attachment and proliferation. MSCs inoculated on the ECM-PLGA scaffold showed accelerated type II collagen mRNA expression after 3 weeks in culture. The ECM-PLGA implanted into an osteochondral defect in rat knees induced gradual tissue regeneration and resulted in hyaline cartilage repair, which was better than that in the empty control group. These in vitro and in vivo experiments show that the cell-free scaffold composed of HAM-derived ECM and PLGA provides a favorable growth environment for MSCs and facilitates the cartilage repair process. The ECM-PLGA may become a "ready-made" biomaterial for cartilage repair therapy.

  12. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... in investigating alternative treatments such as tissue engineering, which combines stem cells with scaffolds to produce cartilage in vitro for subsequent transplant. Previous studies have shown that chondrogenesis of induced stem cells is influenced by various growth factors, oxygen tensions and mechanical...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  13. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  14. MR arthrography of the knee

    International Nuclear Information System (INIS)

    Kramer, J. Jr.; Engel, A. Jr.; Stiglbauer, R.; Prayer, L. Jr.; Hajek, P. Jr.; Imhof, H.

    1991-01-01

    This paper reports on MR imaging which has gained increasing importance as a diagnostic instrument in orthopedics. The key to joint diagnostics - the evaluation of hyaline articular cartilage - however, has not been touched sufficiently by this development. Fundamental studies were done and 140 patients were examined with MR imaging after intraarticular administration of contrast agent. Hyaline cartilage, cruciate ligaments, and menisci were assessed before and after injection of a 2-mmol/L Gd-DTPA solution, and the results were compared with those of arthroscopy/arthrotomy. MR arthrography provided superior image quality compared with plain MR imaging. This resulted in an improved delineation of intraarticular structures, especially of cartilage defects

  15. In situ repair of bone and cartilage defects using 3D scanning and 3D printing

    OpenAIRE

    Li, Lan; Yu, Fei; Shi, Jianping; Shen, Sheng; Teng, Huajian; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-01-01

    Three-dimensional (3D) printing is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. However, the use of robotic bioprinters alone is not sufficient for disease treatment. This study aimed to report the combined application of 3D scanning and 3D printing for treating bone and cartilage defects. Three different kinds of defect models were created to mimic three orthopedic diseases: large segmental defects of long bon...

  16. Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit.

    Science.gov (United States)

    Harada, Yohei; Nakasa, Tomoyuki; Mahmoud, Elhussein Elbadry; Kamei, Goki; Adachi, Nobuo; Deie, Masataka; Ochi, Mitsuo

    2015-10-01

    The present study investigated intra-articular injection of bone-marrow-derived mesenchymal stem cells (MSCs) combined with articulated joint distraction as treatment for osteochondral defects. Large osteochondral defects were created in the weight-bearing area of the medial femoral condyle in rabbit knees. Four weeks after defect creation, rabbits were divided into six groups: control group, MSC group, distraction group, distraction + MSC group, temporary distraction group, and temporary distraction + MSC group. Groups with MSC received intra-articular injection of MSCs. Groups with distraction underwent articulated distraction arthroplasty. Groups with temporary distraction discontinued the distraction after 4 weeks. The rabbits were euthanized at 4, 8, and 12 weeks after treatment except temporary distraction groups which were euthanized at only 12 weeks. Histological scores in the distraction + MSC group were significantly better than in the control, MSC group or distraction group at 4 and 8 weeks, but showed no further improvement. At 12 weeks, the temporary distraction + MSC group showed the best results, demonstrating hyaline cartilage repair with regeneration of the osteochondral junction. In conclusion, joint distraction with intra-articular injection of MSCs promotes early cartilage repair, and compressive loading of the repair tissue after temporary distraction stimulates articular cartilage regeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    Science.gov (United States)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  18. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    Science.gov (United States)

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  19. Morphometric evaluation of condylar cartilage of growing rats in response to mandibular retractive forces

    Directory of Open Access Journals (Sweden)

    Milena Peixoto Nogueira de Sá

    2013-08-01

    Full Text Available INTRODUCTION: The mandibular condylar surface is made up of four layers, i.e., an external layer composed of dense connective tissue, followed by a layer of undifferentiated cells, hyaline cartilage and bone. Few studies have demonstrated the behavior of the condylar cartilage when the mandible is positioned posteriorly, as in treatments for correcting functional Class III malocclusion. OBJECTIVE: The aim of this study was to assess the morphologic and histological aspects of rat condyles in response to posterior positioning of the mandible. METHODS: Thirty five-week-old male Wistar rats were selected and randomly divided into two groups: A control group (C and an experimental group (E which received devices for inducing mandibular retrusion. The animals were euthanized at time intervals of 7, 21 and 30 days after the experiment had began. For histological analysis, total condylar thickness was measured, including the proliferative, hyaline and hypertrophic layers, as well as each layer separately, totaling 30 measurements for each parameter of each animal. RESULTS: The greatest difference in cartilage thickness was observed in 21 days, although different levels were observed in the other periods. Group E showed an increase of 39.46% in the total layer, reflected by increases in the thickness of the hypertrophic (42.24%, hyaline (46.92% and proliferative (17.70% layers. CONCLUSIONS: Posteriorly repositioning the mandible produced a series of histological and morphological responses in the condyle, suggesting condylar and mandibular adaptation in rats.

  20. Morphometric evaluation of condylar cartilage of growing rats in response to mandibular retractive forces.

    Science.gov (United States)

    de Sá, Milena Peixoto Nogueira; Zanoni, Jacqueline Nelisis; de Salles, Carlos Luiz Fernandes; de Souza, Fabrício Dias; Suga, Uhana Seifert Guimarães; Terada, Raquel Sano Suga

    2013-01-01

    The mandibular condylar surface is made up of four layers, i.e., an external layer composed of dense connective tissue, followed by a layer of undifferentiated cells, hyaline cartilage and bone. Few studies have demonstrated the behavior of the condylar cartilage when the mandible is positioned posteriorly, as in treatments for correcting functional Class III malocclusion. The aim of this study was to assess the morphologic and histological aspects of rat condyles in response to posterior positioning of the mandible. Thirty five-week-old male Wistar rats were selected and randomly divided into two groups: A control group (C) and an experimental group (E) which received devices for inducing mandibular retrusion. The animals were euthanized at time intervals of 7, 21 and 30 days after the experiment had began. For histological analysis, total condylar thickness was measured, including the proliferative, hyaline and hypertrophic layers, as well as each layer separately, totaling 30 measurements for each parameter of each animal. The greatest difference in cartilage thickness was observed in 21 days, although different levels were observed in the other periods. Group E showed an increase of 39.46% in the total layer, reflected by increases in the thickness of the hypertrophic (42.24%), hyaline (46.92%) and proliferative (17.70%) layers. Posteriorly repositioning the mandible produced a series of histological and morphological responses in the condyle, suggesting condylar and mandibular adaptation in rats.

  1. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, Siegfried; Pinker, Katja; Welsch, Goetz H. [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Mamisch, Tallal C. [Inselspital Bern, Orthopedic Surgery Department, Bern (Switzerland); Domayer, Stephan [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Orthopaedics, Vienna (Austria); Szomolanyi, Pavol [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); Marlovits, Stefan; Kutscha-Lissberg, Florian [Medical University of Vienna, Department of Traumatology, Center for Joints and Cartilage, Vienna (Austria)

    2008-06-15

    The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 {+-} 16.3 years; MACT: 37.4 {+-} 8.2 years) and postoperative interval (MFX: 33.0 {+-} 17.3 months; MACT: 32.0 {+-} 17.2 months). The {delta} relaxation rate ({delta}R1) for repair tissue and normal hyaline cartilage and the relative {delta}R1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean {delta}R1 for MFX was 1.07 {+-} 0.34 versus 0.32 {+-} 0.20 at the intact control site, and for MACT, 1.90 {+-} 0.49 compared to 0.87 {+-} 0.44, which resulted in a relative {delta}R1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min. (orig.)

  2. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Fusarium and other opportunistic hyaline fungi

    Science.gov (United States)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  4. Is the repair of articular cartilage lesion by costal chondrocyte transplantation donor age-dependent? An experimental study in rabbits.

    Directory of Open Access Journals (Sweden)

    Janusz Popko

    2006-09-01

    Full Text Available The repair of chondral injuries is a very important problem and a subject of many experimental and clinical studies. Different techniques to induce articular cartilage repair are under investigation. In the present study, we have investigated whether the repair of articular cartilage folowing costal chondrocyte transplantation is donor age-dependent. Transplantation of costal chondrocytes from 4- and 24-week old donors, with artificially induced femoral cartilage lesion, was performed on fourteen 20-week-old New Zealand White male rabbits. In the control group, the lesion was left without chondrocyte transplantation. The evaluation of the cartilage repair was performed after 12 weeks of transplantation. We analyzed the macroscopic and histological appearance of the newly formed tissue. Immunohistochemistry was also performed using monoclonal antibodies against rabbit collagen type II. The newly formed tissue had a hyaline-like appearance in most of the lesions after chondrocyte transplantation. Positive immunohistochemical reaction for collagen II was also observed in both groups with transplanted chondrocytes. Cartilage from adult donors required longer isolation time and induced slightly poorer repair. However, hyaline-like cartilage was observed in most specimens from this group, in contrast to the control group, where fibrous connective tissue filled the lesions. Rabbit costal chondrocytes seem to be a potentially useful material for inducing articular cartilage repair and, even more important, they can also be derived from adult, sexually mature animals.

  5. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  6. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair: Histological and Molecular Study in the Sheep Animal Model.

    Science.gov (United States)

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo; López-Alcorocho, Juan Manuel

    2014-04-01

    We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage.

  7. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.

    Science.gov (United States)

    Huang, Brian J; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-08-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Science.gov (United States)

    Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218

  9. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site.

    Science.gov (United States)

    Doube, M; Firth, E C; Boyde, A; Bushby, A J

    2010-06-03

    Condylar fracture of the third metacarpal bone (Mc3) is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC) and subchondral bone (SCB) have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site that linear defects and condylar fracture occur in older Thoroughbreds and questioned whether this tissue had altered mechanical properties. We embedded bone slices in PMMA, prepared flat surfaces normal to the articular surface and studied ACC and SCB using combined quantitative backscattered electron scanning electron microscopy (qBSE) and nanoindentation testing: this allowed correlation of mineralisation density and tissue stiffness (E) at the micron scale. We studied both normal and affected grooves, and also normal condylar regions. Large arrays of indentations could be visualised as 2-dimensional maps of E with a limit to resolution of indentation spacing, which is much larger than qBSE pixel spacing. ACC was more highly mineralised but less stiff in early linear defects than in control regions, while subchondral bone was more highly mineralised and stiffer in specimens with early linear defects than those without. Thus both ACC and SCB mineralisation may be abnormal in a class of early linear defect in 18-month-old Thoroughbred horses, and this may possibly contribute to later fracture of the Mc3 condyle.

  10. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site

    Directory of Open Access Journals (Sweden)

    M Doube

    2010-06-01

    Full Text Available Condylar fracture of the third metacarpal bone (Mc3 is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC and subchondral bone (SCB have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site that linear defects and condylar fracture occur in older Thoroughbreds and questioned whether this tissue had altered mechanical properties. We embedded bone slices in PMMA, prepared flat surfaces normal to the articular surface and studied ACC and SCB using combined quantitative backscattered electron scanning electron microscopy (qBSE and nanoindentation testing: this allowed correlation of mineralisation density and tissue stiffness (E at the micron scale. We studied both normal and affected grooves, and also normal condylar regions. Large arrays of indentations could be visualised as 2-dimensional maps of E with a limit to resolution of indentation spacing, which is much larger than qBSE pixel spacing. ACC was more highly mineralised but less stiff in early linear defects than in control regions, while subchondral bone was more highly mineralised and stiffer in specimens with early linear defects than those without. Thus both ACC and SCB mineralisation may be abnormal in a class of early linear defect in 18-month-old Thoroughbred horses, and this may possibly contribute to later fracture of the Mc3 condyle.

  11. From gristle to chondrocyte transplantation: treatment of cartilage injuries.

    Science.gov (United States)

    Lindahl, Anders

    2015-10-19

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. © 2015 The Author(s).

  12. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    Science.gov (United States)

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  13. Stem Cells and Gene Therapy for Cartilage Repair

    OpenAIRE

    Longo, Umile Giuseppe; Petrillo, Stefano; Franceschetti, Edoardo; Berton, Alessandra; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, sur...

  14. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  15. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    Science.gov (United States)

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  16. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Nehrer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.nehrer@meduniwien.ac.at; Domayer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Schatz, K. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bindreiter, U. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kotz, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Repair of articular cartilage represents a significant clinical problem and although various new techniques - including the use of autologous chondrocytes - have been developed within the last century the clinical efficacy of these procedures is still discussed controversially. Although autologous chondrocyte transplantation (ACT) has been widely used with success, it has several inherent limitations, including its invasive nature and problems related to the use of the periosteal flap. To overcome these problems autologous chondrocytes transplantation combined with the use of biodegradable scaffolds has received wide attention. Among these, a hyaluronan-based scaffold has been found useful for inducing hyaline cartilage regeneration. In the present study, we have investigated the mid-term efficacy and safety of Hyalograft[reg] C grafts in a group of 36 patients undergoing surgery for chronic cartilage lesions of the knee. Clinical Outcome was assessed prospectively before and at 12, 24, and 36 months after surgery. No major adverse events have been reported during the 3-year follow-up. Significant improvements of the evaluated scores were observed (P < 0.02) at 1 year and a continued increase of clinical performance was evident at 2 and 3 years follow-up. Patients under 30 years of age with single lesions showed statistically significant improvements at all follow-up visits compared to those over 30 with multiple defects (P < 0.01). Hyalograft[reg] C compares favorably with classic ACT and is particularly indicated in younger patients with single lesions. The graft can be implanted through a miniarthrotomy and needs no additional fixation with sutures except optional fibrin gluing at the defect borders. These results suggest that Hyalograft[reg] C is a valid alternative to ACT.

  17. Elasticity measurement of nasal cartilage as a function of temperature using optical coherence elastography

    Science.gov (United States)

    Liu, Chih Hao; Skryabina, M. N.; Singh, Manmohan; Li, Jiasong; Wu, Chen; Sobol, E.; Larin, Kirill V.

    2015-03-01

    Current clinical methods of reconstruction surgery involve laser reshaping of nasal cartilage. The process of stress relaxation caused by laser heating is the primary method to achieve nasal cartilage reshaping. Based on this, a rapid, non-destructive and accurate elasticity measurement would allow for a more robust reshaping procedure. In this work, we have utilized a phase-stabilized swept source optical coherence elastography (PhSSSOCE) to quantify the Young's modulus of porcine nasal septal cartilage during the relaxation process induced by heating. The results show that PhS-SSOCE was able to monitor changes in elasticity of hyaline cartilage, and this method could potentially be applied in vivo during laser reshaping therapies.

  18. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Science.gov (United States)

    Goldberg, Andy; Mitchell, Katrina; Soans, Julian; Kim, Louise; Zaidi, Razi

    2017-03-09

    The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre

  19. Nanopolymers Delivery of the Bone Morphogenetic Protein-4 Plasmid to Mesenchymal Stem Cells Promotes Articular Cartilage Repair In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2012-01-01

    Full Text Available The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid (PLGA nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone. In vivo study, twelve rabbits (24 knees with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers and the control group (MSCs being transfected with naked BMP-4 plasmid. The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.

  20. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria.

    Science.gov (United States)

    Taylor, A M; Boyde, A; Wilson, P J M; Jarvis, J C; Davidson, J S; Hunt, J A; Ranganath, L R; Gallagher, J A

    2011-12-01

    Alkaptonuria is a genetic disorder of tyrosine metabolism, resulting in elevated circulating concentrations of homogentisic acid. Homogentisic acid is deposited as a polymer, termed ochronotic pigment, in collagenous tissues, especially cartilages of weight-bearing joints, leading to a severe osteoarthropathy. We undertook this study to investigate the initiation and progression of ochronosis from the earliest detection of pigment through complete joint failure. Nine joint samples with varying severities of ochronosis were obtained from alkaptonuria patients undergoing surgery and compared to joint samples obtained from osteoarthritis (OA) patients. Samples were analyzed by light and fluorescence microscopy, 3-dimensional scanning electron microscopy (SEM), and the quantitative backscattered electron mode of SEM. Cartilage samples were mechanically tested by compression to determine Young's modulus of pigmented, nonpigmented, and OA cartilage samples. In alkaptonuria samples with the least advanced ochronosis, pigment was observed intracellularly and in the territorial matrix of individual chondrocytes at the boundary of the subchondral bone and calcified cartilage. In more advanced ochronosis, pigmentation was widespread throughout the hyaline cartilage in either granular composition or as blanket pigmentation in which there is complete and homogenous pigmentation of cartilage matrix. Once hyaline cartilage was extensively pigmented, there was aggressive osteoclastic resorption of the subchondral plate. Pigmented cartilage became impacted on less highly mineralized trabeculae and embedded in the marrow space. Pigmented cartilage samples were much stiffer than nonpigmented or OA cartilage as revealed by a significant difference in Young's modulus. Using alkaptonuria cartilage specimens with a wide spectrum of pigmentation, we have characterized the progression of ochronosis. Intact cartilage appears to be resistant to pigmentation but becomes susceptible following

  1. Chondroitin sulfate and glucosamine in the cartilage and subchondral bone repair of dogs - Histological findings

    Directory of Open Access Journals (Sweden)

    R.B. Eleotério

    2015-04-01

    Full Text Available Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24, compared with animals that did not receive the product (control group, CG, n=24. Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.

  2. Successful conservative management of symptomatic bilateral dorsal patellar defects presenting with cartilage involvement and bone marrow edema: MRI findings.

    Science.gov (United States)

    Kwee, Thomas C; Sonneveld, Heleen; Nix, Maarten

    2016-05-01

    The dorsal patellar defect is a relatively rare entity that involves the superolateral quadrant of the patella. It is usually considered to represent a delayed ossification process, although its exact origin remains unclear. Because of its usually innocuous nature and clinical course, invasive interventions are generally deemed unnecessary, although curretage has been successfully performed on symptomatic cases. This case report presents a rather unusual case of symptomatic bilateral dorsal patellar defects with cartilage involvement and widespread surrounding bone marrow edema as demonstrated by magnetic resonance imaging (MRI). Both cartilage involvement and bone marrow edema should be considered part of the spectrum of associated MRI findings that can be encountered in this entity. Furthermore, the presented case shows that symptomatic dorsal patellar defects can be treated conservatively with success and that (decrease of) pain symptoms are likely related to (decrease of) bone marrow edema.

  3. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  4. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    Energy Technology Data Exchange (ETDEWEB)

    Tan, T.C.F. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)]|[Department of Radiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan (Taiwan, Province of China); Wilcox, D.M. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Frank, L. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Shih, C. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)]|[Department of Radiology, Veterans General Hospital-Taipei (Taiwan, Province of China); Trudell, D.J. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Sartoris, D.J. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Resnick, D. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)

    1996-11-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs.

  5. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    International Nuclear Information System (INIS)

    Tan, T.C.F.; Wilcox, D.M.; Frank, L.; Shih, C.; Trudell, D.J.; Sartoris, D.J.; Resnick, D.

    1996-01-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs

  6. Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II

    Directory of Open Access Journals (Sweden)

    Aaron C. Petrey

    2012-03-01

    The severe pediatric disorder mucolipidosis II (ML-II; also known as I-cell disease is caused by defects in mannose 6-phosphate (Man-6-P biosynthesis. Patients with ML-II exhibit multiple developmental defects, including skeletal, craniofacial and joint abnormalities. To date, the molecular mechanisms that underlie these clinical manifestations are poorly understood. Taking advantage of a zebrafish model of ML-II, we previously showed that the cartilage morphogenesis defects in this model are associated with altered chondrocyte differentiation and excessive deposition of type II collagen, indicating that aspects of development that rely on proper extracellular matrix homeostasis are sensitive to decreases in Man-6-P biosynthesis. To further investigate the molecular bases for the cartilage phenotypes, we analyzed the transcript abundance of several genes in chondrocyte-enriched cell populations isolated from wild-type and ML-II zebrafish embryos. Increased levels of cathepsin and matrix metalloproteinase (MMP transcripts were noted in ML-II cell populations. This increase in transcript abundance corresponded with elevated and sustained activity of several cathepsins (K, L and S and MMP-13 during early development. Unlike MMP-13, for which higher levels of protein were detected, the sustained activity of cathepsin K at later stages seemed to result from its abnormal processing and activation. Inhibition of cathepsin K activity by pharmacological or genetic means not only reduced the activity of this enzyme but led to a broad reduction in additional protease activity, significant correction of the cartilage morphogenesis phenotype and reduced type II collagen staining in ML-II embryos. Our findings suggest a central role for excessive cathepsin K activity in the developmental aspects of ML-II cartilage pathogenesis and highlight the utility of the zebrafish system to address the biochemical underpinnings of metabolic disease.

  7. In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Whu, Shu Wen [Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Hung, Kun-Che; Hsieh, Kuo-Huang [Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Chen, Chih-Hwa [Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Tsai, Ching-Lin, E-mail: tsaicl@ntuh.gov.tw [Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan (China); Hsu, Shan-hui, E-mail: shhsu@ntu.edu.tw [Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan (China)

    2013-07-01

    Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1{sub WSC}) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1{sub WSC} promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1{sub WSC} constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1{sub WSC} constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1{sub WSC} scaffolds may enhance the cartilage regeneration in vitro and in vivo. - Highlights: • We developed a chitosan–gelatin scaffold crosslinked with carbodiimide. • Neocartilage formation was more evident in crosslinked vs. non-crosslinked scaffolds. • Histological features of tide line and lacunae were observed in vivo at 6.5 months. • Compressive

  8. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    Science.gov (United States)

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.

  9. Polymer Formulations for Cartilage Repair

    Energy Technology Data Exchange (ETDEWEB)

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.; Chrisler, William B.; An, Yuehuei H.; Mironov, V.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis of aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.

  10. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    Science.gov (United States)

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-04-09

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  11. Successful conservative management of symptomatic bilateral dorsal patellar defects presenting with cartilage involvement and bone marrow edema: MRI findings

    International Nuclear Information System (INIS)

    Kwee, Thomas C.; Sonneveld, Heleen; Nix, Maarten

    2016-01-01

    The dorsal patellar defect is a relatively rare entity that involves the superolateral quadrant of the patella. It is usually considered to represent a delayed ossification process, although its exact origin remains unclear. Because of its usually innocuous nature and clinical course, invasive interventions are generally deemed unnecessary, although curretage has been successfully performed on symptomatic cases. This case report presents a rather unusual case of symptomatic bilateral dorsal patellar defects with cartilage involvement and widespread surrounding bone marrow edema as demonstrated by magnetic resonance imaging (MRI). Both cartilage involvement and bone marrow edema should be considered part of the spectrum of associated MRI findings that can be encountered in this entity. Furthermore, the presented case shows that symptomatic dorsal patellar defects can be treated conservatively with success and that (decrease of) pain symptoms are likely related to (decrease of) bone marrow edema. (orig.)

  12. Successful conservative management of symptomatic bilateral dorsal patellar defects presenting with cartilage involvement and bone marrow edema: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kwee, Thomas C. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Meander Medical Center, Department of Radiology, Amersfoort (Netherlands); Sonneveld, Heleen [Meander Medical Center, Department of Orthopaedics, Amersfoort (Netherlands); Nix, Maarten [Meander Medical Center, Department of Radiology, Amersfoort (Netherlands)

    2016-05-15

    The dorsal patellar defect is a relatively rare entity that involves the superolateral quadrant of the patella. It is usually considered to represent a delayed ossification process, although its exact origin remains unclear. Because of its usually innocuous nature and clinical course, invasive interventions are generally deemed unnecessary, although curretage has been successfully performed on symptomatic cases. This case report presents a rather unusual case of symptomatic bilateral dorsal patellar defects with cartilage involvement and widespread surrounding bone marrow edema as demonstrated by magnetic resonance imaging (MRI). Both cartilage involvement and bone marrow edema should be considered part of the spectrum of associated MRI findings that can be encountered in this entity. Furthermore, the presented case shows that symptomatic dorsal patellar defects can be treated conservatively with success and that (decrease of) pain symptoms are likely related to (decrease of) bone marrow edema. (orig.)

  13. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  14. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  15. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes

  16. Animal models used for testing hydrogels in cartilage regeneration.

    Science.gov (United States)

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  18. Allogenic lyophilized cartilage grafts for craniomaxillofacial reconstruction

    International Nuclear Information System (INIS)

    Pill Hoon Choung

    1999-01-01

    Allogenic lyophilized cartilages were made in our clinic after Sailer methods and some modification. In our clinic, we have used allogenic cartilage grafts on 102 defects of craniomaxillofacial area; 1) for defects from cyst or ameloblastoma, 2) for lack of continuity of the mandible, 3) for rhinoplasty, 4) for paranasal augmentation, 5) for augmentation genioplasty, 6) for reconstruction of orbital floor, 7) for oroantral fistula, 8) for temporal augmentation, 9) for TMJ surgery 10) for condyle defect as a costochondral graft, 11) for filling of tooth socket and alveolus augmentation,12) for correction or orbital height and 13) for guided bone regeneration in peripheral implant. The types of lyophilized cartilage used were chip, sheet and block types developed by freeze-dried methods. Some grafts showed change of ossification, in which case we could perform implant on it. We have good results on reconstruction of craniomaxillofacial defects. Allogenic cartilage have advantages such as 1) it has no immune reaction clinically, 2) it is more tolerable to infection than that of autogenous cartilage, 3) it has character of less resorption which require no over correction, 4) it is easy to manipulate contouring, and 5) it has possibility of undergoing ossification. Allogenic cartilage has been considered as good substitutes for bone. The author would like to report the results on 102 allogenic cartilage have

  19. Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration

    Science.gov (United States)

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun

    2014-01-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841

  20. Small subchondral drill holes improve marrow stimulation of articular cartilage defects.

    Science.gov (United States)

    Eldracher, Mona; Orth, Patrick; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-11-01

    Subchondral drilling is an established marrow stimulation technique. Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. Controlled laboratory study. A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro-computed tomography. The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational

  1. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU)].

    Science.gov (United States)

    Niemeyer, P; Andereya, S; Angele, P; Ateschrang, A; Aurich, M; Baumann, M; Behrens, P; Bosch, U; Erggelet, C; Fickert, S; Fritz, J; Gebhard, H; Gelse, K; Günther, D; Hoburg, A; Kasten, P; Kolombe, T; Madry, H; Marlovits, S; Meenen, N M; Müller, P E; Nöth, U; Petersen, J P; Pietschmann, M; Richter, W; Rolauffs, B; Rhunau, K; Schewe, B; Steinert, A; Steinwachs, M R; Welsch, G H; Zinser, W; Albrecht, D

    2013-02-01

    Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3-4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI. Georg Thieme Verlag KG Stuttgart · New York.

  2. Talocalcaneal Joint Middle Facet Coalition Resection With Interposition of a Juvenile Hyaline Cartilage Graft.

    Science.gov (United States)

    Tower, Dyane E; Wood, Ryan W; Vaardahl, Michael D

    2015-01-01

    Talocalcaneal joint middle facet coalition is the most common tarsal coalition, occurring in ≤2% of the population. Fewer than 50% of involved feet obtain lasting relief of symptoms after nonoperative treatment, and surgical intervention is commonly used to relieve symptoms, increase the range of motion, improve function, reconstruct concomitant pes planovalgus, and prevent future arthrosis from occurring at the surrounding joints. Several approaches to surgical intervention are available for patients with middle facet coalitions, ranging from resection to hindfoot arthrodesis. We present a series of 4 cases, in 3 adolescent patients, of talocalcaneal joint middle facet coalition resection with interposition of a particulate juvenile hyaline cartilaginous allograft (DeNovo(®) NT Natural Tissue Graft, Zimmer, Inc., Warsaw, IN). With a mean follow-up period of 42.8 ± 2.9 (range 41 to 47) months, the 3 adolescent patients in the present series were doing well with improved subtalar joint motion and decreased pain, and 1 foot showed no bony regrowth on a follow-up computed tomography scan. The use of a particulate juvenile hyaline cartilaginous allograft as interposition material after talocalcaneal middle facet coalition resection combined with adjunct procedures to address concomitant pes planovalgus resulted in good short-term outcomes in 4 feet in 3 adolescent patients. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. In vivo outcomes of tissue-engineered osteochondral grafts.

    Science.gov (United States)

    Bal, B Sonny; Rahaman, Mohamed N; Jayabalan, Prakash; Kuroki, Keiichi; Cockrell, Mary K; Yao, Jian Q; Cook, James L

    2010-04-01

    Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.

  4. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  5. Cell compaction influences the regenerative potential of passaged bovine articular chondrocytes in an ex vivo cartilage defect model.

    Science.gov (United States)

    Schmutzer, Michael; Aszodi, Attila

    2017-04-01

    The loss and degradation of articular cartilage tissue matrix play central roles in the process of osteoarthritis (OA). New models for evaluating cartilage repair/regeneration are thus of great value for transferring various culture systems into clinically relevant situations. The repair process can be better monitored in ex vivo systems than in in vitro cell cultures. I have therefore established an ex vivo defect model prepared from bovine femoral condyles for evaluating cartilage repair by the implantation of cells cultured in various ways, e.g., monolayer-cultured cells or suspension or pellet cultures of articular bovine chondrocytes representing different cell compactions with variable densities of chondrocytes. I report that the integrin subunit α10 was significantly upregulated in suspension-cultured bovine chondrocytes at passage P2 compared with monolayer-cultured cells at P1 (p = 0.0083) and P2 (p innovation of this system over in vitro differentiation (e.g., micromass, pellet) assays is the possibility of examining and evaluating cartilage regeneration in an environment in which implanted cells are embedded within native surrounding tissue at the defect site. Such ex vivo explants might serve as a better model system to mimic clinical situations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Aging histological changes in the cartilages of the cricoarytenoid joint

    Directory of Open Access Journals (Sweden)

    Dedivitis Rogério Aparecido

    2004-01-01

    Full Text Available PURPOSE: Analysis of ossification, bone marrow formation, perichondrium thickness, muscle fibers, collagen fibers and elastic fibers quantities of cricoid and arytenoid cartilages. Design: Correlation morphologic study. METHODS: Twenty-four cricoarytenoid joints were obtained from Caucasian male fresh cadavers divided into three groups with eight specimens in each: group I - adolescents, from 15 to 20; group II - adults, from 25 to 35; and group III - elderly, from 60 to 75. The specimens were stained with H-E; trichrome; Picrosirius; and elastic stain. Histometry was performed for quantitative analysis. Bonferroni Test, Fisher Test and the Variance Analysis were used. RESULTS: At the microscopic analysis, the group I specimens presented typical hyaline cartilage, thin perichondrium, bulky muscle fibers and were surrounded by collagen fibers. In group II, there were ossification in small well defined central areas of four specimens, with lamellar bone tissue. In two of these cases there were central bone cavity full of fat tissue. The other parameters were similar to group I. In group III, most part of hyaline cartilage was replaced by typical lamellar bone tissue with poorly outlined haversian systems. Hematopoietic tissue was noted in six cases and fat tissue in the other two. Perichondrium was thicker. Small muscle fibers were smaller and surrounded by collagen in great quantity. Elastic fibers were present in small quantity in the outer portion of perichondrium in all the groups. CONCLUSIONS: In spite of its lack in adolescence, ossification occurs in cricoid and arytenoid cartilages during adulthood and intensifies with age; bone marrow is formed in ossification tissue with hematopoietic tissue in group III; perichondrium becomes thicker in group III; muscle tissue atrophies in group III and is replaced by collagen fibers; these fibers thicken with age; and elastic fibers is always present in the perichondrium in low quantity.

  7. Laser-induced modification of structure and shape of cartilage in otolaryngology and orthopaedics

    Science.gov (United States)

    Sobol', E. N.; Baum, O. I.; Omel'chenko, A. I.; Soshnikova, Yu. M.; Yuzhakov, A. V.; Kas'yanenko, E. M.; Tokareva, A. V.; Baskov, A. V.; Svistushkin, V. M.; Selezneva, L. V.; Shekhter, A. B.

    2017-11-01

    We present the results of basic research in laser modification of tissues in otolaryngology (correcting the shape of nasal septum and larynx cartilages), cosmetology (correcting ear and nose shape), orthopaedics and spinal surgery (treatment of diseases of spine disc and joints). The physical processes and mechanisms of laser-induced relaxation of stresses and regeneration of tissues are considered. New results of studies in this fast-developing field of laser surgery are presented, in particular, the results of laser correction of costal cartilage shape in the process of making implants for the treatment of larynx stenosis and controlled regeneration of the hyaline articular cartilage. Presented at the Fundamentals of Laser Assisted Micro- and Nanotechnologies (FLAMN-2016) International Symposium (Pushkin, Leningrad oblast, 27 June to 1 July 2016).

  8. Cartilage repair in the degenerative ageing knee

    Science.gov (United States)

    Brittberg, Mats; Gomoll, Andreas H; Canseco, José A; Far, Jack; Lind, Martin; Hui, James

    2016-01-01

    Background and purpose Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints. PMID:27910738

  9. A retinaculum-sparing surgical approach preserves porcine stifle joint cartilage in an experimental animal model of cartilage repair.

    Science.gov (United States)

    Bonadio, Marcelo B; Friedman, James M; Sennett, Mackenzie L; Mauck, Robert L; Dodge, George R; Madry, Henning

    2017-12-01

    This study compares a traditional parapatellar retinaculum-sacrificing arthrotomy to a retinaculum-sparing arthrotomy in a porcine stifle joint as a cartilage repair model. Surgical exposure of the femoral trochlea of ten Yucatan pigs stifle joint was performed using either a traditional medial parapatellar approach with retinaculum incision and luxation of the patella (n = 5) or a minimally invasive (MIS) approach which spared the patellar retinaculum (n = 5). Both classical and MIS approaches provided adequate access to the trochlea, enabling the creation of cartilage defects without difficulties. Four full thickness, 4 mm circular full-thickness cartilage defects were created in each trochlea. There were no intraoperative complications observed in either surgical approach. All pigs were allowed full weight-bearing and full range of motion immediately postoperatively and were euthanized between 2 and 3 weeks. The traditional approach was associated with increased cartilage wear compared to the MIS approach. Two blinded raters performed gross evaluation of the trochlea cartilage surrounding the defects according to the modified ICRS cartilage injury classification. The traditional approach cartilage received a significantly worse score than the MIS approach group from both scorers (3.2 vs 0.8, p = 0.01 and 2.8 vs 0, p = 0.005 respectively). The MIS approach results in less damage to the trochlear cartilage and faster return to load bearing activities. As an arthrotomy approach in the porcine model, MIS is superior to the traditional approach.

  10. Photoshop-based image analysis of canine articular cartilage after subchondral damage.

    Science.gov (United States)

    Lahm, A; Uhl, M; Lehr, H A; Ihling, C; Kreuz, P C; Haberstroh, J

    2004-09-01

    The validity of histopathological grading is a major problem in the assessment of articular cartilage. Calculating the cumulative strength of signal intensity of different stains gives information regarding the amount of proteoglycan, glycoproteins, etc. Using this system, we examined the medium-term effect of subchondral lesions on initially healthy articular cartilage. After cadaver studies, an animal model was created to produce pure subchondral damage without affecting the articular cartilage in 12 beagle dogs under MRI control. Quantification of the different stains was provided using a Photoshop-based image analysis (pixel analysis) with the histogram command 6 months after subchondral trauma. FLASH 3D sequences revealed intact cartilage after impact in all cases. The best detection of subchondral fractures was achieved with fat-suppressed TIRM sequences. Semiquantitative image analysis showed changes in proteoglycan and glycoprotein quantities in 9 of 12 samples that had not shown any evidence of damage during the initial examination. Correlation analysis showed a loss of the physiological distribution of proteoglycans and glycoproteins in the different zones of articular cartilage. Currently available software programs can be applied for comparative analysis of histologic stains of hyaline cartilage. After subchondral fractures, significant changes in the cartilage itself occur after 6 months.

  11. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea Arthroscopic correlation and clinical significance

    International Nuclear Information System (INIS)

    Huegli, Rolf W.; Moelleken, Sonja M.C.; Stork, Alexander; Bonel, Harald M.; Bredella, Miriam A.; Meckel, Stephan; Genant, Harry K.; Tirman, Phillip F.J.

    2005-01-01

    Objective: To assess and describe post-traumatic articular cartilage injuries isolated to the trochlear groove and provide insight into potential mechanism of injury. Materials and methods: We retrospectively evaluated MR imaging findings of all knee MRIs performed at our institution over the last 2 years (2450). Thirty patients met the criteria of a cartilage injury confined to the trochlear groove. In 15 cases, which were included in our study, arthroscopic correlation was available. Each plane was evaluated and graded for the presence and appearance of articular cartilage defects using a standard arthroscopic grading scheme adapted to MR imaging. Any additional pathological derangement was documented and information about the mechanism of injury was retrieved by chart review. Results: In all cases the cartilaginous injury was well demonstrated on MRI. In 13 patients additional pathological findings could be observed. The most frequently associated injury was a meniscal tear in nine patients. In eight cases, the arthroscopic grading of the trochlear injury matched exactly with the MRI findings. In the remaining seven cases, the discrepancy between MRI and arthroscopy was never higher than one grade. In 13 out of 15 of patients trauma mechanism could be evaluated. Twelve patients suffered an indirect twisting injury and one suffered a direct trauma to their knee. Conclusion: The findings of this study demonstrate that MR imaging allows reliable grading of isolated injury to the trochlear groove cartilage and assists in directing surgical diagnosis and treatment. These injuries may be the only hyaline cartilage injury in the knee and meniscal tears are a frequently associated finding. Therefore, it is important to search specifically for cartilage injuries of the trochlear groove in patients with anterior knee pain, even if other coexistent pathology could potentially explain the patient's symptoms

  12. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea Arthroscopic correlation and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Huegli, Rolf W. E-mail: rhuegli@uhbs.ch; Moelleken, Sonja M.C.; Stork, Alexander; Bonel, Harald M.; Bredella, Miriam A.; Meckel, Stephan; Genant, Harry K.; Tirman, Phillip F.J

    2005-01-01

    Objective: To assess and describe post-traumatic articular cartilage injuries isolated to the trochlear groove and provide insight into potential mechanism of injury. Materials and methods: We retrospectively evaluated MR imaging findings of all knee MRIs performed at our institution over the last 2 years (2450). Thirty patients met the criteria of a cartilage injury confined to the trochlear groove. In 15 cases, which were included in our study, arthroscopic correlation was available. Each plane was evaluated and graded for the presence and appearance of articular cartilage defects using a standard arthroscopic grading scheme adapted to MR imaging. Any additional pathological derangement was documented and information about the mechanism of injury was retrieved by chart review. Results: In all cases the cartilaginous injury was well demonstrated on MRI. In 13 patients additional pathological findings could be observed. The most frequently associated injury was a meniscal tear in nine patients. In eight cases, the arthroscopic grading of the trochlear injury matched exactly with the MRI findings. In the remaining seven cases, the discrepancy between MRI and arthroscopy was never higher than one grade. In 13 out of 15 of patients trauma mechanism could be evaluated. Twelve patients suffered an indirect twisting injury and one suffered a direct trauma to their knee. Conclusion: The findings of this study demonstrate that MR imaging allows reliable grading of isolated injury to the trochlear groove cartilage and assists in directing surgical diagnosis and treatment. These injuries may be the only hyaline cartilage injury in the knee and meniscal tears are a frequently associated finding. Therefore, it is important to search specifically for cartilage injuries of the trochlear groove in patients with anterior knee pain, even if other coexistent pathology could potentially explain the patient's symptoms.

  13. 2-photon laser scanning microscopy on native human cartilage

    Science.gov (United States)

    Martini, Joerg; Toensing, Katja; Dickob, Michael; Anselmetti, Dario

    2005-08-01

    Native hyaline cartilage from a human knee joint was directly investigated with laser scanning microscopy via 2-photon autofluorescence excitation with no additional staining or labelling protocols in a nondestructive and sterile manner. Using a femtosecond, near-infrared (NIR) Ti:Sa laser for 2-photon excitation and a dedicated NIR long distance objective, autofluorescence imaging and measurements of the extracellular matrix (ECM) tissue with incorporated chondrocytes were possible with a penetration depth of up to 460 μm inside the sample. Via spectral autofluorescence separation these experiments allowed the discrimination of chondrocytes from the ECM and therefore an estimate of chondrocytic cell density within the cartilage tissue to approximately 0.2-2•107cm3. Furthermore, a comparison of the relative autofluorescence signals between nonarthritic and arthritic cartilage tissue exhibited distinct differences in tissue morphology. As these morphological findings are in keeping with the macroscopic diagnosis, our measurement has the potential of being used in future diagnostic applications.

  14. Evaluation of laryngeal cartilage calcification in computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Serafin, Z.; Lasek, W.; Maciejewski, M.; Wieczor, W.; Wisniewski, S.

    2008-01-01

    Computed tomography (CT) is one of the basic methods used for laryngeal carcinoma diagnostics. Osteosclerotic and osteolytic changes of the cartilages are considered as a common radiologic symptom of laryngeal neoplasms. The aim of this paper was to evaluate the prevalence of both osteosclerotic changes and focal calcification defects, which may be suggestive of osteolysis. Calcification was assessed in the thyroid, the cricoid and the arytenoids cartilages on CT images of the neck. We have retrospectively analyzed neck CT examinations of 50 patients without any laryngeal pathology in anamnesis. The grade and symmetry of calcifications was assessed in the thyroid, the cricoid and the arytenoids cartilages. Calcification of the laryngeal cartilages was present in 83% of the patients. Osteosclerotic lesions of the thyroid cartilage were seen in 70% of the patients (asymmetric in 60% of them), of the cricoid catrilage in 50% (asymmetric in 60%), and of the arytenoid cartilages in 24% (asymmetric in 67%). Focal calcification defects were present in the thyroid cartilage in 56% of the patients (asymmetric in 67% of them), in the cricoid catrilage in 8% (asymmetric in all cases), and in the arytenoid cartilages in 20% (asymmetric in 90%). Osteosclerotic changes and focal calcification defects, which may suggest osteolysis, were found in most of the patients. Therefore, they cannot be used as crucial radiological criteria of neoplastic invasion of laryngeal cartilages. (authors)

  15. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  16. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  17. Chondrocytic Potential of Allogenic Mesenchymal Stem Cells Transplanted without Immunosuppression to Regenerate Physeal Defect in Rabbits

    Directory of Open Access Journals (Sweden)

    P. Gál

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are multipotent cells capable of forming cartilage, bone, and other connective tissues. The objective of this study was to determine whether the use of allogenic mesenchymal stem cells could functionally heal a defect in the distal femoral physis in rabbits without the use of immunosuppressive therapy. A iatrogenic defect was created in the lateral femoral condyle of thirty-two New Zealand white rabbits, 7 weeks old, weighing 2.25 ± 0.24 kg. Each defect, 3.5 mm in width and 12 mm in length, in the right distal femoral physis was treated with allogenic mesenchymal stem cells in new composite hyaluronate/collagen type I/fibrin scaffold. The healing response was evaluated radiographically, by MRI (three weeks and four months after implantation and also histologically, by Pearl’s reaction and with immunofluorescence (four months after implantation. The results were compared with the data for the control defects (without stem cell implantation in left distal femoral physes. On average, right femurs with a damaged distal physis and transplanted MSCs grew more in length (0.55 ± 0.21 cm compared with left femurs with a physeal defect without stem cell transplantation (0.46 ± 0.23 cm. Valgus deformity of right femurs with a physeal defect and transplanted MSCs was mild (0.2 ± 0.1 °. On the contrary, left femurs with a physeal defect without transplanted MSCs showed a significant valgus deformity (2.7 ± 1.6 °. For defects treated with allogenic mesenchymal stem cell implants, no adverse immune response and implant rejection were detected in this model. Histologically, no lymphocytic infiltration occurred. At four months after transplantation, hyaline cartilage had formed throughout the defects treated with allogenic MSCs. Labelled mesenchymal stem cells/differentiated chondrocytes were detected in the physeal defects based on magnetic resonance imaging and immunofluorescence. The results of this study

  18. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  19. MR microscopy of articular cartilage at 1.5 T: orientation and site dependence of laminar structures

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Anno, Izumi; Echigo, Junko; Itai, Yuji; Haishi, Tomoyuki; Uematsu, Takaaki; Matsuda, Yoshimasa; Kose, Katsumi; Lang, Philipp

    2002-01-01

    Abstract Objective. To evaluate MR microscopic images of normal-appearing porcine hyaline cartilage (n=15) in vitro obtained with an MR microscope using an independent console system (MRMICS) at 1.5 T.Design and results. The MRMICS is a portable imaging system consisting of a radiofrequency system, gradient power supplies and a personal computer. The images from the MRMICS showed a laminar structure of porcine cartilage similar to the structure demonstrated with other MR imaging techniques. The laminar structures of the articular cartilage, were, however heterogeneous in respect of signal intensity and thickness, which varied according to the site resected. The MR laminar appearance was most comparable to the staining with Masson's trichrome for collagen.Conclusion. MRMICS is a useful add-on system for obtaining microscopic MR images of articular cartilage in vitro. (orig.)

  20. MR imaging of autologous chondrocyte implantation of the knee

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J.; Connell, D.A.; Saifuddin, A.; Skinner, J.A.; Briggs, T.W.R. [RNOH Stanmore, Department of Radiology, Stanmore, Middlesex (United Kingdom)

    2006-05-15

    Autologous chondrocyte implantation (ACI) is a surgical technique that is increasingly being used in the treatment of full-thickness defects of articular cartilage in the knee. It involves the arthroscopic harvesting and in vitro culture of chondrocytes that are subsequently implanted into a previously identified chondral defect. The aim is to produce a repair tissue that closely resembles hyaline articular cartilage that gradually becomes incorporated, restoring joint congruity. Over the long term, it is hoped that this will prevent the progression of full-thickness articular cartilage defects to osteoarthritis. This article reviews the indications and operative procedure performed in ACI. Magnetic resonance imaging (MRI) sequences that provide optimal visualization of articular cartilage in the post-operative period are discussed. Normal appearances of ACI on MRI are presented along with common complications that are encountered with this technique. (orig.)

  1. Wavelength-dependent penetration depth of near infrared radiation into cartilage.

    Science.gov (United States)

    Padalkar, M V; Pleshko, N

    2015-04-07

    Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).

  2. The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects.

    Science.gov (United States)

    Bird, Ian M; Kim, Susie H; Schweppe, Devin K; Caetano-Lopes, Joana; Robling, Alexander G; Charles, Julia F; Gygi, Steven P; Warman, Matthew L; Smits, Patrick J

    2018-01-08

    Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11 ) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells. © 2018. Published by The Company of Biologists Ltd.

  3. 3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines.

    Science.gov (United States)

    Di Bella, Claudia; Fosang, Amanda; Donati, Davide M; Wallace, Gordon G; Choong, Peter F M

    2015-01-01

    Chondral and osteochondral lesions represent one of the most challenging and frustrating scenarios for the orthopedic surgeon and for the patient. The lack of therapeutic strategies capable to reconstitute the function and structure of hyaline cartilage and to halt the progression toward osteoarthritis has brought clinicians and scientists together, to investigate the potential role of tissue engineering as a viable alternative to current treatment modalities. In particular, the role of bioprinting is emerging as an innovative technology that allows for the creation of organized 3D tissue constructs via a "layer-by-layer" deposition process. This process also has the capability to combine cells and biomaterials in an ordered and predetermined way. Here, we review the recent advances in cartilage bioprinting and we identify the current challenges and the directions for future developments in cartilage regeneration.

  4. 3D-BIOPRINTING OF CARTILAGE FOR ORTHOPAEDIC SURGEONS.READING BETWEEN THE LINES

    Directory of Open Access Journals (Sweden)

    Claudia eDi Bella

    2015-08-01

    Full Text Available Chondral and Osteochondral lesions represent one of the most challenging and frustrating scenarios for the orthopaedic surgeon and for the patient. The lack of therapeutic strategies capable to reconstitute the function and structure of hyaline cartilage and to halt the progression towards osteoarthritis has brought clinicians and scientists together, to investigate the potential role of tissue engineering as a viable alternative to current treatment modalities. In particular, the role of bioprinting is emerging as an innovative technology that allows for the creation of organized 3D tissue constructs via a layer-by-layer deposition process. This process also has the capability to combine cells and biomaterials in an ordered and predetermined way. Here we review the recent advances in cartilage bioprinting and we identify the current challenges and the directions for future developments in cartilage regeneration.

  5. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  6. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    Science.gov (United States)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  7. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  8. POROUS POLYMER IMPLANTS FOR REPAIR OF FULL-THICKNESS DEFECTS OF ARTICULAR-CARTILAGE - AN EXPERIMENTAL-STUDY IN RABBIT AND DOG

    NARCIS (Netherlands)

    JANSEN, HWB; VETH, RPH; NIELSEN, HKL; DEGROOT, JH; PENNINGS, AJ

    1992-01-01

    Full-thickness defects of articular cartilage were repaired by implantation of porous polymer implants in rabbits and dogs. The quality of the repair tissue was determined by collagen typing with antibodies. Implants with varying pore sizes and chemical composition were used. The effect of loading

  9. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    Science.gov (United States)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  10. MR microscopy of articular cartilage at 1.5 T: orientation and site dependence of laminar structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi; Anno, Izumi; Echigo, Junko; Itai, Yuji [Department of Radiology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 (Japan); Haishi, Tomoyuki; Uematsu, Takaaki; Matsuda, Yoshimasa; Kose, Katsumi [Institute of Applied Physics, University of Tsukuba, Tsukuba (Japan); Lang, Philipp [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2002-09-01

    Abstract Objective. To evaluate MR microscopic images of normal-appearing porcine hyaline cartilage (n=15) in vitro obtained with an MR microscope using an independent console system (MRMICS) at 1.5 T.Design and results. The MRMICS is a portable imaging system consisting of a radiofrequency system, gradient power supplies and a personal computer. The images from the MRMICS showed a laminar structure of porcine cartilage similar to the structure demonstrated with other MR imaging techniques. The laminar structures of the articular cartilage, were, however heterogeneous in respect of signal intensity and thickness, which varied according to the site resected. The MR laminar appearance was most comparable to the staining with Masson's trichrome for collagen.Conclusion. MRMICS is a useful add-on system for obtaining microscopic MR images of articular cartilage in vitro. (orig.)

  11. MR imaging of articular cartilage disorders: Specificity of fast imaging and CHESS

    International Nuclear Information System (INIS)

    Konig, H.; Sauter, R.; Kueper, K.; Deimling, M.; Vogt, M.

    1986-01-01

    MR imaging is the first imaging method that allows visualization of cartilage tissues. The authors compared standard spin-echo sequences and selective water images obtained using the CHESS method as well as fast sequences in patients with inflammatory, degenerative, and traumatic alterations of the hip, knee, and radiocarpal joint. Measurements were carried out using Magnetom imaging systems operating at 1.0 and 1.5 T. With the use of different types of surface coils high spatial resolution (pixel size, 0.5-1.0 mm; section thickness, 3-8 mm) could be obtained. Pure water images are superior for showing changes of the hyaline cartilage, whereas spin-echo sequences remain the basic procedure, especially for imaging fibrocartilage disorders

  12. Prevention of Bone Bridge Formation Using Transplantation of the Autogenous Mesenchymal Stem Cells to Physeal Defects: An Experimental Study in Rabbits

    Directory of Open Access Journals (Sweden)

    L. Plánka

    2007-01-01

    Full Text Available Physeal cartilage is known to have poor self-repair capacity after injury. Evaluation of the ability of cultured mesenchymal stem cells to repair damaged physis is the topic of current research. In 10 immature New Zealand white rabbits autogenous mesenchymal stem cells were transplanted into a iatrogenic physeal defect in a lateral portion of the distal growth plate of the right femur. The same defect without stem cells transplantation in the left femoral distal physis served as a control. In our study, we used our own technique of implantation of MSCs with a newly modified gel scaffold (New Composite Hyaluronate/Collagen Type I/Fibrin Scaffold. The rabbits were euthanized 4 months after transplantation. Bone length discrepancy and valgus deformity were measured from femoral radiographs. Healing of the defect was investigated histologically. The ability of mesenchymal stem cells to survive and promote cartilage healing in the physeal defect was assessed by immunofluorescence. Average difference in femur length measured from surgery to euthanasia (4 months was 0.61 ± 0.19 cm after preventive transplantation of MSCs in the right femur, but only 0.11 ± 0.07 cm in the left femur. Average angular (valgus deformity of the right femur with MSCs preventively transplanted to iatrogenically damaged distal femoral physis was 1.2 ± 0.72 °. Valgus deformity in the left femur was 5.4 ± 2.5 °. Prophylactic transplantation of autogenous mesenchymal stem cells to iatrogenically damaged distal growth plate of the rabbit femur prevented a bone bridge formation and resulted in healing of the physeal defect with hyaline cartilage. Immunofluorescence examination showed that the chondrocytes newly formed in growth zone are the result of implanted MSCs differentiation. Femur growth in traumatized physis was maintained even after transplantation of autogenous MSCs. As compared with the opposite femur (with physeal defect but without transplanted MSCs, the bone

  13. Evaluation of chondromalacia of the patellofemoral compartment with axial magnetic resonance imaging.

    Science.gov (United States)

    Brown, T R; Quinn, S F

    1993-01-01

    Axial magnetic resonance (MR) imaging of the patellofemoral compartment was performed in 75 patients with arthroscopic correlation. Proton density and T2(2500/20/80) weighted images were obtained in all patients. Chondromalacia in stages I and II could not be reliably identified with MR imaging. For the evaluation of stage III and IV chondromalacia, the accuracy of MR was 89%. Focal or diffuse areas of increased or decreased signal alterations of the hyaline cartilage without a contour deformity or cartilaginous thinning do not correlate reliably with arthroscopic staging of chondromalacia. A normal signal intensity is no assurance that softening of the cartilage is not present. The most reliable indicators of chondromalacia are focal contour irregularities of the hyaline cartilage and/or thinning of the hyaline cartilage associated with high signal intensity changes within frank defects or contour irregularities with T2-weighted images. The poor MR-arthroscopic correlation in earlier stages of chondromalacia may be due in part to the subjective basis of the arthroscopic diagnosis. In conclusion, stage I and II chondromalacia of the patellofemoral compartment cannot be reliably evaluated with MR imaging. Stage III and IV chondromalacia is reliably evaluated with MR using the combination of proton density and T2-weighted images.

  14. Evaluation of chondromalacia of the patellofemoral compartment with axial magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.R. (Dept. of Radiology, Oregon Health Sciences Univ., Portland, OR (United States)); Quinn, S.F. (Dept. of Radiology, Good Samaritan Hospital and Medical Center, Portland, OR (United States))

    1993-01-01

    Axial magnetic resonance (MR) imaging of the patellofemoral compartment was performed in 75 patients with arthroscopic correlation. Proton density and T2(2500/20/80) weighted images were obtained in all patients. Chondromalacia in stages I and II could not be reliably identified with MR imaging. For the evaluation of stage III and IV chondromalacia, the accuracy of MR was 89%. Focal or diffuse areas of increased or decreased signal alterations of the hyaline cartilage without a contour deformity or cartilaginous thinning do not correlate reliably with arthrosopic staging of chondromalacia. A normal signal intensity is no assurance that softening of the cartilage is not present. The most reliable indicators of chondromalacia are focal contour irregularities of the hyaline cartilage and/or thinning of the hyaline cartilage associated with high signal intensity changes within frank defects or contour irregularities with T2-weighted images. The poor MR-arthroscopic correlation in earlier stages of chondromalacia may be due in part to the subjective basis of the arthroscopic diagnosis. In conclusion, stage I and II chondromalacia of the patellofemoral compartment cannot be reliably evaluated with MR imaging. Stage III and IV chondromalacia is reliably evaluated with MR using the combination of proton density and T2-weighted images. (orig.)

  15. Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage.

    Directory of Open Access Journals (Sweden)

    Riccardo Gottardi

    Full Text Available Cartilage matrix is a composite of discrete, but interacting suprastructures, i.e. cartilage fibers with microfibrillar or network-like aggregates and penetrating extrafibrillar proteoglycan matrix. The biomechanical function of the proteoglycan matrix and the collagen fibers are to absorb compressive and tensional loads, respectively. Here, we are focusing on the suprastructural organization of collagen fibrils and the degradation process of their hierarchical organized fiber architecture studied at high resolution at the authentic location within cartilage. We present electron micrographs of the collagenous cores of such fibers obtained by an improved protocol for scanning electron microscopy (SEM. Articular cartilages are permeated by small prototypic fibrils with a homogeneous diameter of 18 ± 5 nm that can align in their D-periodic pattern and merge into larger fibers by lateral association. Interestingly, these fibers have tissue-specific organizations in cartilage. They are twisted ropes in superficial regions of knee joints or assemble into parallel aligned cable-like structures in deeper regions of knee joint- or throughout hip joints articular cartilage. These novel observations contribute to an improved understanding of collagen fiber biogenesis, function, and homeostasis in hyaline cartilage.

  16. Advances in the Surgical Management of Articular Cartilage Defects: Autologous Chondrocyte Implantation Techniques in the Pipeline.

    Science.gov (United States)

    Stein, Spencer; Strauss, Eric; Bosco, Joseph

    2013-01-01

    The purpose of this review is to gain insight into the latest methods of articular cartilage implantation (ACI) and to detail where they are in the Food and Drug Administration approval and regulatory process. A PubMed search was performed using the phrase "Autologous Chondrocyte Implantation" alone and with the words second generation and third generation. Additionally, clinicaltrials.gov was searched for the names of the seven specific procedures and the parent company websites were referenced. Two-Stage Techniques: BioCart II uses a FGF2v1 culture and a fibrinogen, thrombin matrix, whereas Hyalograft-C uses a Hyaff 11 matrix. MACI uses a collagen I/III matrix. Cartipatch consists of an agarose-alginate hydrogel. Neocart uses a high-pressure bioreactor for culturing with a type I collagen matrix. ChondroCelect makes use of a gene expression analysis to predict chondrocyte proliferation and has demonstrated significant clinical improvement, but failed to show superiority to microfracture in a phase III trial. One Step Technique: CAIS is an ACI procedure where harvested cartilage is minced and implanted into a matrix for defect filling. As full thickness defects in articular cartilage continue to pose a challenge to treat, new methods of repair are being researched. Later generation ACI has been developed to address the prevalence of fibrocartilage with microfracture and the complications associated with the periosteal flap of first generation ACI such as periosteal hypertrophy. The procedures and products reviewed here represent advances in tissue engineering, scaffolds and autologous chondrocyte culturing that may hold promise in our quest to alter the natural history of symptomatic chondral disease.

  17. Peculiarities in Ankle Cartilage.

    Science.gov (United States)

    Kraeutler, Matthew J; Kaenkumchorn, Tanyaporn; Pascual-Garrido, Cecilia; Wimmer, Markus A; Chubinskaya, Susanna

    2017-01-01

    Posttraumatic osteoarthritis (PTOA) is the most common form of osteoarthritis (OA) of the ankle joint. PTOA occurs as a result of several factors, including the poor regenerative capacity of hyaline articular cartilage as well as increased contact stresses following trauma. The purpose of this article is to review the epidemiology, pathogenesis, and potential targets for treatment of PTOA in the ankle joint. Previous reviews primarily addressed clinical approaches to ankle PTOA, while the focus of the current article will be specifically on the newly acquired knowledge of the cellular mechanisms that drive PTOA in the ankle joint and means for potential targeted therapeutics that might halt the progression of cartilage degeneration and/or improve the outcome of surgical interventions. Three experimental treatment strategies are discussed in this review: (1) increasing the anabolic potential of chondrocytes through treatment with growth factors such as bone morphogenetic protein-7; (2) limiting chondrocyte cell death either through the protection of cell membrane with poloxamer 188 or inhibiting activity of intracellular proteases, caspases, which are responsible for cell death by apoptosis; and (3) inhibiting catabolic/inflammatory responses of chondrocytes by treating them with anti-inflammatory agents such as tumor necrosis factor-α antagonists. Future studies should focus on identifying the appropriate timing for treatment and an appropriate combination of anti-inflammatory, chondro- and matrix-protective biologics to limit the progression of trauma-induced cartilage degeneration and prevent the development of PTOA in the ankle joint.

  18. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  19. Adipose-Derived Mesenchymal Stem Cells for the Treatment of Articular Cartilage: A Systematic Review on Preclinical and Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Francesco Perdisa

    2015-01-01

    Full Text Available Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview of in vivo studies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.

  20. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  1. MRI of the cartilages of the knee, 3-D imaging with a rapid computer system

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G.; Bohndorf, K.; Prescher, A.; Drobnitzky, M.; Guenther, R.W.

    1989-01-01

    2-D spin-echo sequences were compared with 3-D gradient-echo sequences using normal and cadaver knee joints. The important advantages of 3-D-imaging are: sections of less than 1 mm, reconstruction in any required plane, which can be related to the complex anatomy of the knee joint, and very good distinction between intra-articular fluid, fibrocartilage and hyaline cartilage. (orig./GDG).

  2. Effects of Hydrostatic Loading on a Self-Aggregating, Suspension Culture–Derived Cartilage Tissue Analog

    Science.gov (United States)

    Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.

    2011-01-01

    Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584

  3. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  4. [Cartilage regeneration surgery on the hip : What is feasible?

    Science.gov (United States)

    Landgraeber, Stefan; Jäger, Marcus; Fickert, Stefan

    2017-11-01

    Localized cartilage defects at the hip are mainly caused by pre-arthritic deformities, particularly by cam-type femoroacetabular impingement (FAI). Timely elimination of symptomatic deformities can prevent further progression such as cartilage defects. As the defects mostly occur in the anterolateral part of the acetabulum, they can be easily treated either by open surgery or by arthroscopy. To date the most effective methods of treatment are bone marrow stimulation, with or without a covering of biomaterials, and autologous chondrocyte transplantation. In selected cases, readaptation of the damaged cartilage can be attempted by biological procedures. In the present article, the findings reported in current studies on these procedures are summarized and discussed in detail. An outlook is given regarding possible future treatment concepts.

  5. MR imaging and histopathology of cartilage tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Hirokazu; Ohba, Satoru; Ohtsuka, Takanobu; Matui, Norio; Nakamura, Takaaki (Nagoya City Univ. (Japan). Faculty of Medicine)

    1994-05-01

    The MR imaging-pathologic correlation of cartilaginous bone tumors and the value of intravenously administered Gd-DTPA enhanced MR imaging was studied. The MR studies were retrospectively reviewed. Thirty-seven cases were examined with 0.5 T and 1.0 T scanner and all cases were pathologically proved. We discussed the following MR findings: signal intensities of tumors, Gd-DTPA features, morphological findings, and associated findings. Hyaline cartilage tumors showed low signal intensity on T[sub 1]-weighted images and very high signal intensity on T[sub 2]-weighted images. Lobulated marginal enhancements were recognized in chondrosarcomas. This may be an important finding to suspect chondrosarcoma. (author).

  6. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    International Nuclear Information System (INIS)

    Sato, Katsuhiko

    1996-01-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  7. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsuhiko [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1996-07-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  8. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  9. Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition.

    Science.gov (United States)

    Fu, J Y; Lim, S Y; He, P F; Fan, C J; Wang, D A

    2016-10-01

    Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.

  10. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  11. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  12. A transduced living hyaline cartilage graft releasing transgenic stromal cell-derived factor-1 inducing endogenous stem cell homing in vivo.

    Science.gov (United States)

    Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An

    2013-05-01

    Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.

  13. Repair of osteochondral defects in rabbits with ectopically produced cartilage

    NARCIS (Netherlands)

    Emans, PJ; Hulsbosch, M; Wetzels, GMR; Bulstra, SK; Kuijer, R

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal

  14. Subchondral drilling for articular cartilage repair: a systematic review of translational research.

    Science.gov (United States)

    Gao, Liang; Goebel, Lars K H; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2018-05-03

    Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed, however, a robust systematic analysis of its translational evidence has been still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals were identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling was superior to defects untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling. © 2018. Published by The Company of Biologists Ltd.

  15. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  16. Low‑dose halofuginone inhibits the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes.

    Science.gov (United States)

    Li, Zeng; Fei, Hao; Wang, Zhen; Zhu, Tianyi

    2017-09-01

    Full‑thickness and large area defects of articular cartilage are unable to completely repair themselves and require surgical intervention, including microfracture, autologous or allogeneic osteochondral grafts, and autologous chondrocyte implantation. A large proportion of regenerative cartilage exists as fibrocartilage, which is unable to withstand impacts in the same way as native hyaline cartilage, owing to excess synthesis of type I collagen in the matrix. The present study demonstrated that low‑dose halofuginone (HF), a plant alkaloid isolated from Dichroa febrifuga, may inhibit the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. In addition, HF was revealed to inhibit the phosphorylation of mothers against decapentaplegic homolog (Smad)2/3 and promoted Smad7 expression, as well as decrease the synthesis of type I collagen synthesis. Results from the present study indicated that HF treatment suppressed the synthesis of type I collagen by inhibiting the transforming growth factor‑β signaling pathway in chondrocytes. These results may provide an alternative solution to the problems associated with fibrocartilage, and convert fibrocartilage into hyaline cartilage at the mid‑early stages of cartilage regeneration. HF may additionally be used to improve monolayer expansion or 3D cultures of seed cells for the tissue engineering of cartilage.

  17. One-stage vs two-stage cartilage repair: a current review

    Directory of Open Access Journals (Sweden)

    Daniel Meyerkort

    2010-10-01

    Full Text Available Daniel Meyerkort, David Wood, Ming-Hao ZhengCenter for Orthopaedic Research, School of Surgery and Pathology, University of Western Australia, Perth, AustraliaIntroduction: Articular cartilage has a poor capacity for regeneration if damaged. Various methods have been used to restore the articular surface, improve pain, function, and slow progression to osteoarthritis.Method: A PubMed review was performed on 18 March, 2010. Search terms included “autologous chondrocyte implantation (ACI” and “microfracture” or “mosaicplasty”. The aim of this review was to determine if 1-stage or 2-stage procedures for cartilage repair produced different functional outcomes.Results: The main procedures currently used are ACI and microfracture. Both first-generation ACI and microfracture result in clinical and functional improvement with no significant differences. A significant increase in functional outcome has been observed in second-generation procedures such as Hyalograft C, matrix-induced ACI, and ChondroCelect compared with microfracture. ACI results in a higher percentage of patients with clinical improvement than mosaicplasty; however, these results may take longer to achieve.Conclusion: Clinical and functional improvements have been demonstrated with ACI, microfracture, mosaicplasty, and synthetic cartilage constructs. Heterogeneous products and lack of good-quality randomized-control trials make product comparison difficult. Future developments involve scaffolds, gene therapy, growth factors, and stem cells to create a single-stage procedure that results in hyaline articular cartilage.Keywords: autologous chondrocyte implantation, microfracture, cartilage repair

  18. Quantitative evaluation of hyaline articular cartilage T2 maps of knee and determine the relationship of cartilage T2 values with age, gender, articular changes.

    Science.gov (United States)

    Cağlar, E; Şahin, G; Oğur, T; Aktaş, E

    2014-11-01

    To identify changes in knee joint cartilage transverse relaxation values depending on the patient's age and gender and to investigate the relationship between knee joint pathologies and the transverse relaxation time. Knee MRI images of 107 symptomatic patients with various pathologic knee conditions were analyzed retrospectively. T2 values were measured at patellar cartilage, posteromedial and posterolateral femoral cartilage adjacent to the central horn of posterior meniscus. 963 measurements were done for 107 knees MRI. Relationship of T2 values with seven features including subarticular bone marrow edema, subarticular cysts, marginal osteophytes, anterior-posterior cruciate and collateral ligament tears, posterior medial and posterior lateral meniscal tears, synovial thickening and effusion were analyzed. T2 values in all three compartments were evaluated according to age and gender. A T2 value increase correlated with age was present in all three compartments measured in the subgroup with no knee joint pathology and in all patient groups. According to the ROC curve, an increase showing a statistically significant difference was present in the patient group aged over 40 compared to the patient group aged 40 and below in all patient groups. There is a statistically difference at T2 values with and without subarticular cysts, marginal osteophytes, synovial thickening and effusion. T2 relaxation time showed a statistically significant increase in the patients with a medial meniscus tear compared to those without a tear and no statistically significant difference was found in T2 relaxation times of patients with and without a posterior lateral meniscus tear. T2 cartilage mapping on MRI provides opportunity to exhibit biochemical and structural changes related with cartilage extracellular matrix without using invasive diagnostic methods.

  19. Cartilage Regeneration in the Head and Neck Area: Combination of Ear or Nasal Chondrocytes and Mesenchymal Stem Cells Improves Cartilage Production

    NARCIS (Netherlands)

    Pleumeekers, M.M.; Nimeskern, L.M.; Koevoet, W.L.M.; Karperien, Hermanus Bernardus Johannes; Stok, K.S.; van Osch, G.J.V.M.

    2015-01-01

    Background: Cartilage tissue engineering can offer promising solutions for restoring cartilage defects in the head and neck area and has the potential to overcome limitations of current treatments. However, to generate a construct of reasonable size, large numbers of chondrocytes are required, which

  20. Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis). Whole-body MR findings in two siblings with different subcutaneous nodules distribution

    International Nuclear Information System (INIS)

    Castiglione, Davide; Terranova, Maria Chiara; Picone, Dario; Lo Re, Giuseppe; Salerno, Sergio

    2018-01-01

    Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis) is a rare, progressive, autosomal recessive disorder whose main hallmark is the deposition of amorphous hyaline material in soft tissues, with an evolutionary course and health impairment. It may present involvement of subcutaneous or periskeletal soft tissue, or may develop as a visceral infiltration entity with poor prognosis. Very few radiological data about this inherited condition have been reported, due to the extreme rarity of disease. We herein present a case of two siblings, affected by different severity of the disease, with different clinical features. They were examined by whole-body MR (WBMR) in order to assess different lesions localization, to rule out any visceral involvement and any other associated anomalies and to define patients' management. (orig.)

  1. Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis). Whole-body MR findings in two siblings with different subcutaneous nodules distribution

    Energy Technology Data Exchange (ETDEWEB)

    Castiglione, Davide; Terranova, Maria Chiara; Picone, Dario; Lo Re, Giuseppe; Salerno, Sergio [Policlinico, Universita degli Studi di Palermo, Dipartimento di Biopatologia e Biotecnologie Mediche, Palermo (Italy)

    2018-03-15

    Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis) is a rare, progressive, autosomal recessive disorder whose main hallmark is the deposition of amorphous hyaline material in soft tissues, with an evolutionary course and health impairment. It may present involvement of subcutaneous or periskeletal soft tissue, or may develop as a visceral infiltration entity with poor prognosis. Very few radiological data about this inherited condition have been reported, due to the extreme rarity of disease. We herein present a case of two siblings, affected by different severity of the disease, with different clinical features. They were examined by whole-body MR (WBMR) in order to assess different lesions localization, to rule out any visceral involvement and any other associated anomalies and to define patients' management. (orig.)

  2. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    OpenAIRE

    Hellingman, Catharine

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better control...

  3. Hyaline fibromatosis of Hoffa's fat pad in a patient with a mild type of hyaline fibromatosis syndrome

    International Nuclear Information System (INIS)

    Raak, Sjoerd M. van; Meuffels, Duncan E.; Leenders, Geert J.L.H. van; Oei, Edwin H.G.

    2014-01-01

    Hyaline fibromatosis syndrome (HFS) is a rare, homozygous, autosomal recessive disease, characterized by deposition of hyaline material in skin and other organs, resulting in esthetic problems, disability, and potential life-threatening complications. Most patients become clinically apparent in the first few years of life, and the disorder typically progresses with the appearance of new lesions. We describe a rare case of a 20-year-old patient with juvenile-onset mild HFS who presented with a history of progressive anterior knee pain. Detailed magnetic resonance (MR) imaging findings with histopathological correlation are presented of hyaline fibromatosis of Hoffa's fat pad, including differential diagnosis. The diagnosis of HFS is generally made on basis of clinical and histopathological findings. Imaging findings, however, may contribute to the correct diagnosis in patients who present with a less typical clinical course of HFS. (orig.)

  4. Some Comparative Anatomical and Histological Studies on the Laryngeal Cartilages of Buffaloes, Camels and Donkeys

    Directory of Open Access Journals (Sweden)

    Eman A. Eshra

    2016-01-01

    Full Text Available Comparative studies concerned the upper air ways of domestic animals are few. So this study was carried out to compare between the larynx of buffaloes, camels and donkeys. The present investigation was carried out on 39 larynxes, 13 larynxes (7 males, 6 females of each species. Ten heads from each species were used for gross anatomical study; the remained three heads were used for the histological study. Results revealed that, the laryngeal cartilages of the three species were consisted of three single cartilages; the thyroid, the cricoid and the epiglottis, and two paired cartilages; the arytenoid and the corniculate. The cuneiform cartilages were paired cartilages present only in the larynx of the donkey. Thyroid, arytenoid and cricoid cartilages were of hyaline type, while the epiglottis, cuniform and corniculate cartilages and the vocal process of the arytenoid cartilage were of elastic type. The laryngeal epithelium of aditus laryngis, greater part of epiglottis and vocal folds was lined by non-keratinized stratified squamous epithelium. The remained parts of laryngeal epithelium from base of epiglottis and entire parts caudal to vocal folds were lined by pseudostratified columnar ciliated epithelium with goblet cells. The laryngeal glands of lamina propria were of mixed types in buffaloes and donkeys but in camels it was pure mucous glands. This study will fill a gap in the field of comparative anatomy and help other clinical investigation applied on these animals.

  5. Quantitative Assessment of Hyaline Cartilage Elasticity During Optical Clearing Using Optical Coherence Elastography

    OpenAIRE

    Chih-Hao Liu; Manmohan Singh; Jiasong Li; Zhaolong Han; Chen Wu; Shang Wang; Rita Idugboe; Raksha Raghunathan; Emil N. Sobol; Valery V. Tuchin; Michael Twa; Kirill V. Larin

    2015-01-01

    Tissue optical clearing is an emerging technique for dynamically modifying tissue optical properties to increase imaging depth, which is useful in applications such as imaging and functional diagnostics of many diseases. For example, optical clearing of cartilage allowed imaging of subchondral bone that is used to assess orthopedic diseases. However, the effect of the clearing processes on tissue elastic properties has not been investigated yet. In this study we report the first use of phase-...

  6. Laser-assisted cartilage reshaping: in vitro and in vivo animal studies

    Science.gov (United States)

    Wang, Zhi; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.

    1995-05-01

    Correction of cartilaginous defects in the head and neck area remains a challenge for the surgeon. This study investigated a new technique for laser-assisted cartilage reshaping. The pulsed 1.44 micrometers Nd:YAG laser was used in vitro and in vivo experiments to irradiate cartilage to change it's shape without carbonization or vaporization of tissue. Two watts of average power in non contact manner was used to irradiate and reshape the cartilage. The extracted reshaped cartilage specimens underwent testing of elastic force with a computer assisted measurement system that recorded the changes in elastic force in the specimens from 1 hr to 11 days post-irradiation. An animal model of defective tracheal cartilage (collapsed tracheal wall) was created, allowed to heal for 6 weeks and then corrected endoscopically with the laser-assisted technique. The results of the in vitro and in vivo investigations demonstrated that it was possible to alter the cartilage and that cartilage would retain its new shape. The clinical significance of the technique is evident and warrants further animal studies and clinical trials.

  7. Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee: Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results.

    Science.gov (United States)

    Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P; Niemeyer, Philipp

    2017-05-01

    Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Cross-sectional study; Level of evidence, 3. To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m 2 ) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm 2 ). Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm 2 ) were of no importance regarding the

  8. Principles of cartilage repair

    CERN Document Server

    Erggelet, Christoph; Mandelbaum, Bert R

    2008-01-01

    Cartilage defects affect patients of all age groups. Surgeons, teamdoctors, general practitioners and physiotherapists alike are expected to provide adequate care. Only individual treatment plans combining a well balanced choice of various options will be successful. Background knowledge, operative and non-operative therapies are described in concise chapters: Articular cartilage biology - Diagnostics - Surgical techniques - Symptomatic and alternative medications - Physiotherapy. Diagnostic findings and surgical procedures are generously illustrated by aquarelles and colour photographs. Recommendations for additional reading, description of important clinical scoring systems and a listing of analytic tools are added for further information.

  9. Animal experimental research on microstructural behavior on the hyaline arthroidal cartilage after immobilization and remobilization

    Science.gov (United States)

    Refior, H. J.

    1980-01-01

    The degeneration of the articular cartilage after a period of immobilization was investigated. The experiment was carried out by the immobilization of the knee joints of rabbits. Even after remobilization there was an increase in the alterations. These changes did not prove to be reversible.

  10. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.

    Science.gov (United States)

    White, Jamie L; Walker, Naomi J; Hu, Jerry C; Borjesson, Dori L; Athanasiou, Kyriacos A

    2018-04-02

    Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.

  11. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  12. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    Science.gov (United States)

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This

  13. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    International Nuclear Information System (INIS)

    Nakanishi, Katsuyuki; Tanaka, Hisashi; Nakamura, Hironobu; Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi; Ueguchi, Takashi

    2001-01-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  14. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Katsuyuki [Dept. of Radiology, Osaka Seamen' s Insurance Hospital (Japan); Tanaka, Hisashi; Nakamura, Hironobu [Osaka Univ. (Japan). Dept. of Radiology; Sugano, Nobuhiko [Dept. of Orthopedic Surgery, Osaka University Medical School (Japan); Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi [Div. of Functional Imaging, Osaka University Medical School (Japan); Ueguchi, Takashi [Dept. of Radiology, Osaka University Medical Hospital (Japan)

    2001-11-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  15. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Hyaline fibromatosis of Hoffa's fat pad in a patient with a mild type of hyaline fibromatosis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Raak, Sjoerd M. van [Albert Schweitzer Hospital, Department of Radiology, Dordrecht (Netherlands); Meuffels, Duncan E. [Erasmus MC - University Medical Center, Department of Orthopaedic Surgery, Rotterdam (Netherlands); Leenders, Geert J.L.H. van [Erasmus MC - University Medical Center, Department of Pathology, Rotterdam (Netherlands); Oei, Edwin H.G. [Erasmus MC - University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2014-04-15

    Hyaline fibromatosis syndrome (HFS) is a rare, homozygous, autosomal recessive disease, characterized by deposition of hyaline material in skin and other organs, resulting in esthetic problems, disability, and potential life-threatening complications. Most patients become clinically apparent in the first few years of life, and the disorder typically progresses with the appearance of new lesions. We describe a rare case of a 20-year-old patient with juvenile-onset mild HFS who presented with a history of progressive anterior knee pain. Detailed magnetic resonance (MR) imaging findings with histopathological correlation are presented of hyaline fibromatosis of Hoffa's fat pad, including differential diagnosis. The diagnosis of HFS is generally made on basis of clinical and histopathological findings. Imaging findings, however, may contribute to the correct diagnosis in patients who present with a less typical clinical course of HFS. (orig.)

  17. Imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts

  18. Laser-induced activation of regeneration processes in spine disc cartilage

    Science.gov (United States)

    Sobol, Emil N.; Vorobjeva, Natalia N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Baskov, Andrey V.; Shekhter, Anatoliy B.; Baskov, Vladimir A.; Feldchtein, Felix I.; Kamensky, Vladislav A.; Kuranov, Roman V.

    2000-05-01

    The effect of laser radiation on the regeneration processes in spine disk cartilage has been studied in-vivo. We used rabbits as a model and a Holmium (2.09 micrometer) and an Erbium fiber (1.56 micrometer) lasers for irradiation the discs which were preliminary opened to remove annulus fibrosus and the nucleus pulposus of the intervertebral disc. The irradiated zone has been examined using an optical coherent tomography in one month after the operation and conventional histological technique in two months after the laser operation. It has been shown that laser radiation promotes the growth of the new cartilaginous tissue of fibrous and hyaline types.

  19. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. © 2013.

  20. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    International Nuclear Information System (INIS)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang; Li, Hong; Hua, Yinghui; Chen, Zhongqing

    2015-01-01

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r s = 0.745, P s = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r s = -0.715, P = 0.002; joint debridement: r s = -0.826, P < 0.001). Significant improvement over time after microfracture can be expected on the basis of the quantitative MRI finding and

  1. Matrix-induced autologous chondrocyte implantation for the treatment of chondral defects of the knees in Chinese patients

    Directory of Open Access Journals (Sweden)

    Zhang ZW

    2014-12-01

    -to-excellent filling of the chondral defect. Most (95% of the MACI grafts were isointense and 5% were slightly hyperintense. Histologic evaluation at 15 and 24 months showed predominantly hyaline cartilage in newly generated tissue. There were no postoperative complications in any patients and no adverse events related to the MACI operation. This 2-year study has confirmed that MACI is safe and effective with the advantages of a simple technique and significant clinical improvements. Further functional and mechanistic studies with longer follow-up are needed to validate the efficacy and safety of MACI in patients with articular cartilage injuries. Keywords: articular cartilage lesion, Knee Injury and Osteoarthritis Outcome Score, KOOS, magnetic resonance imaging, MRI

  2. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  3. Review on patents for mechanical stimulation of articular cartilage tissue engineering

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Schulz, R.M.

    2008-01-01

    To repair articular cartilage defects in osteoarthritic patients with three-dimensional tissue engineered chondrocyte grafts, requires the formation of new cartilage with sufficient mechanical properties. The premise is that mechanical stimulation during the culturing process is necessary to reach

  4. Magnetization transfer contrast (MTC) and MTC-subtraction: enhancement of cartilage lesions and intracartilaginous degeneration in vitro

    International Nuclear Information System (INIS)

    Vahlensieck, M.; Dombrowski, F.; Leutner, C.; Wagner, U.; Reiser, M.

    1994-01-01

    Human articular cartilage from 16 cadaveric or amputated knees was studied using standard magnetic resonance imaging (MRI), on-resonance magnetization transfer contrast (MTC) and MTC-subtraction MRI. Results were compared with subsequent macroscopic and histopathological findings. MTC-subtraction and T2-weighted spin-echo images visualized cartilaginous surface defects with high sensitivity and specificity. MTC and T2-weighted spin-echo images revealed intra-cartilaginous signal loss without surface defects in 80% of the cases, corresponding to an increased collagen concentration. It is concluded that MTC is sensitive to early cartilage degeneration and MTC-subtraction can be helpful in detecting cartilage defects. (orig.)

  5. Pulmonary hyalinizing granuloma presenting with dysphagia: a rare presentation.

    Science.gov (United States)

    Khan, Fazal; Hamid, Arsalan; Fatima, Benish; Hashmi, Shiraz; Fatimi, Saulat

    2017-01-01

    A 25-year-old man presented with a 2-month history of dysphagia and past history of pulmonary and intestinal tuberculosis. A barium swallow showed a point of constriction 42 mm above the gastroesophageal junction. Computed tomography revealed large opacities in bilateral lung fields, encroaching more on the esophagus. The lesion progressively compressed the esophagus as it moved inferiorly. A right posterolateral thoracotomy was performed for sub-anatomical resection of the mass. A biopsy revealed homogenous whirling hyalinized collagen fibers, highly suggestive of pulmonary hyalinizing granuloma, with no evidence of malignancy. Pulmonary hyalinizing granuloma should be considered in the differential diagnosis of longstanding dysphagia.

  6. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Dai, Linghui; Zhu, Jingxian; Man, Zhentao; Ao, Yingfang; Chen, Haifeng; Zhou, Chunyan

    2014-01-01

    Hydrogels are attractive for cartilage tissue engineering because of their high plasticity and similarity with the native cartilage matrix. However, one critical drawback of hydrogels for osteochondral repair is their inadequate mechanical strength. To address this limitation, we constructed a solid-supported thermogel comprising a chitosan hydrogel system and demineralized bone matrix. Scanning electron microscopy, the equilibrium scanning ratio, the biodegradation rate, biomechanical tests, biochemical assays, metabolic activity tests, immunostaining and cartilage-specific gene expression analysis were used to evaluate the solid-supported thermogel. Compared with pure hydrogel or demineralized matrix, the hybrid biomaterial showed superior porosity, equilibrium swelling and degradation rate. The hybrid scaffolds exhibited an increased mechanical strength: 75% and 30% higher compared with pure hydrogels and demineralized matrix, respectively. After three days culture, bone-derived mesenchymal stem cells (BMSCs) maintained viability above 90% in all three materials; however, the cell retention of the hybrid scaffolds was more efficient and uniform than the other materials. Matrix production and chondrogenic differentiation of BMSCs in the hybrid scaffolds were superior to its precursors, based on glycosaminoglycan quantification and hyaline cartilage marker expression after three weeks in culture. Its easy preparation, favourable biophysical properties and chondrogenic capacity indicated that this solid-supported thermogel could be an attractive biomaterial framework for cartilage tissue engineering. (paper)

  7. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

    Science.gov (United States)

    Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei

    2017-11-01

    The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature

  8. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  9. Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lecouvet, Frederic E.; Dorzee, Benjamin; Berg, Bruno C. vande; Malghem, Jacques [Cliniques Universitaires St Luc, Universite Catholique de Louvain, Department of Radiology, Brussels (Belgium); Dubuc, Jean E. [Cliniques Universitaires St Luc, Universite Catholique de Louvain, Department of Orthopaedic Surgery, Brussels (Belgium); Jamart, Jacques [Mont Godinne University Hospital, Center of Biostatistics, Yvoir (Belgium)

    2007-07-15

    This study assessed the diagnostic effectiveness of multidetector spiral CT arthrography (MDCTa) in detecting hyaline cartilage abnormalities of the shoulder joint, with correlation to arthroscopy. Shoulder MDCTa images prospectively obtained in 22 consecutive patients (mean age, 50 years; age range, 23-74 years; 12 female, 10 male) were evaluated for glenohumeral cartilage lesions. Two musculoskeletal radiologists independently analysed the cartilage surfaces of the humeral head and of the glenoid fossa in nine anatomical surface areas. Observations of MDCTa were compared to arthroscopic findings. The sensitivity and specificity of MDCTa for grade 2 (substance loss <50%) or higher and grade 3 (substance loss {>=}50%) or higher cartilage lesions, the Spearman correlation coefficient between arthrographic and arthroscopic grading, and K statistics for assessing Intra and Interobserver reproducibility were determined. At MDCTa, sensitivities and specificities ranged between 80% and 94% for the detection of grade 2 or higher cartilage lesions, and between 88% and 98% for the detection of grade 3 or higher cartilage lesions. Spearman correlation coefficients between MDCTa and arthroscopic grading of articular surfaces ranged between 0.532 and 0.651. Interobserver agreement was moderate for grading all articular surfaces ({kappa} = 0.457), but substantial to almost perfect for detecting lesions with substance loss ({kappa}, 0.618-0.876). In conclusion, MDCTa is accurate for the study of cartilage surface in the entire shoulder joint. This technique may beneficially impact patient's management by means of selecting the proper treatment approach. (orig.)

  10. Radiological, computertomographic, pathoanatomical and histological examination of the rib cartilage of the dog

    International Nuclear Information System (INIS)

    Lorber, B.

    2000-06-01

    This study was concerned with the representation and description of the rib cartilage of the dog and the abnormalities of such by means of radiological, computer tomographic, pathoanatomical and histological examinations and the comparison of the results of the various examination methods. The study material consisted of 100 ventral thorax walls of dogs of different ages and breeds. In 39 of the subjects, no abnormalities of rib cartilage other than unremarkable calcification were observed. Among the subjects, there were 11 puppies (0-3 months), whose rib cartilage appeared soft tissue dense due to the absence of calcification, 14 juvenile animals (4-18 months), the rib cartilage of which showed a typical finely granulated structure, and 14 adult dogs (over 18 months), whose rib cartilage exhibited a homogeneous to net-like calcified appearance. In the calcified rib cartilage, the histological section showed a centrally located spongiosa rod surrounded by a hyaline cartilage shell. The calcification tendency of the first pair of rib cartilage was remarkable: in 70 dogs, the first pair of rib cartilage remained uncalcified despite calcification of the other rib cartilage. Sixty-one dogs exhibited rib cartilage abnormalities. According to the radiological appearance of the abnormalities, they were divided into groups and their incidence was calculated. Abnormalities seen included interruption in the continuity of the calcified rib cartilage with and without callus formation, enlargement of rib cartilage, cuff formation, and abnormalities on the Articulationes sternocostales (projections in or around articulations, calcified and fractured joint surfaces). In addition, remarkable calcification patterns were observed. By means of CT examination the densities of the tissue forming the various abnormalities was determined. In the course of the pathoanatomical examination, it was shown that the interruptions in continuity with callus and the various enlarged areas of the

  11. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  12. Computed tomography findings in patients with pulmonary hyalinizing granulomas: a case report

    International Nuclear Information System (INIS)

    Marchiori, Edson; Valiante, Paulo Marcos; Correia, Ana Helena Pereira; Carneiro, Leonardo Hoehl; Caldas, Carolina Rodrigues; Souza Junior, Arthur Soares

    2003-01-01

    Hyalinizing granulomas are benign fibrotic lesions that generally present multiple nodules seen on radiological examinations, which are frequently cavitary and/or calcified lesions. We report a case of a 28 year-old-woman with hyalinizing granulomas probably secondary to a previous tuberculosis infection. Hyalinizing granulomas should be included in the differential diagnosis of patients with multiple pulmonary nodules. (author)

  13. Patient Profiling in Cartilage Regeneration Prognostic Factors Determining Success of Treatment for Cartilage Defects

    NARCIS (Netherlands)

    de Windt, Tommy S.; Bekkers, Joris E. J.; Creemers, Laura B.; Dhert, Wouter J. A.; Saris, Daniel B. F.

    2009-01-01

    Background: Cartilage therapy for focal articular lesions has been implemented for more than a decade, and it is becoming increasingly available. What is still lacking, however, is analysis of patient characteristics to help improve outcome or select patients for specific treatment. Purpose: To

  14. Human articular cartilage: in vitro correlation of MRI and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M. [Department of Diagnostic Radiology, University Hospital of Freiburg (Germany); Ihling, C.; Tauer, U.; Adler, C.P. [Department of Pathology, University Hospital of Freiburg (Germany)

    1998-09-01

    zone correlated weakly to the accumulation of proteoglycans in the radial zone. The trilaminar MRI appearance of the cartilage was only visible when the cartilage was thicker than 2 mm. In cartilage degeneration, we found either a diffuse thinning of all layers or circumscribed lesions (``cartilage ulcer``) of these cartilage layers in the MR images. Early cartilage degeneration was indicated by a signal loss in the superficial zone, correlating to the histologically proven damage of proteoglycans in the transitional and radial zone along with destruction of the superficial zone. We found a strong effect of cartilage rotation in the main magnetic field, too. A rotation of the cartilage structures caused considerable variation in the signal intensity of the second lamina. Cartilage segments in a 55 angle to the magnetic main field had a homogeneous appearance, not a trilaminar appearance. The signal behavior of hyaline articular cartilage does not reflect the laminar histologic structure. Osteoarthrosis and cartilage degeneration are visible on MR images as intracartilaginous signal changes, superficial erosions, diffuse cartilage thinning, and cartilage ulceration. (orig.) With 6 figs., 19 refs.

  15. Human articular cartilage: in vitro correlation of MRI and histologic findings

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M.; Ihling, C.; Tauer, U.; Adler, C.P.

    1998-01-01

    zone correlated weakly to the accumulation of proteoglycans in the radial zone. The trilaminar MRI appearance of the cartilage was only visible when the cartilage was thicker than 2 mm. In cartilage degeneration, we found either a diffuse thinning of all layers or circumscribed lesions (''cartilage ulcer'') of these cartilage layers in the MR images. Early cartilage degeneration was indicated by a signal loss in the superficial zone, correlating to the histologically proven damage of proteoglycans in the transitional and radial zone along with destruction of the superficial zone. We found a strong effect of cartilage rotation in the main magnetic field, too. A rotation of the cartilage structures caused considerable variation in the signal intensity of the second lamina. Cartilage segments in a 55 angle to the magnetic main field had a homogeneous appearance, not a trilaminar appearance. The signal behavior of hyaline articular cartilage does not reflect the laminar histologic structure. Osteoarthrosis and cartilage degeneration are visible on MR images as intracartilaginous signal changes, superficial erosions, diffuse cartilage thinning, and cartilage ulceration. (orig.)

  16. [Evidence-based therapy for cartilage lesions in the knee - regenerative treatment options].

    Science.gov (United States)

    Proffen, B; von Keudell, A; Vavken, P

    2012-06-01

    The treatment of cartilage defects has seen a shift from replacement to regeneration in the last few years. The rationale behind this development is the improvement in the quality-of-care for the growing segment of young patients who are prone to arthroplasty complications because of their specific characteristics - young age, high level of activity, high demand for functionality. These days, two of the most popular regenerative treatments are microfracture and autologous chondrocyte implantation (ACI). Although these new options show promising results, no final algorithm for the treatment of cartilage lesions has been established as yet. The objective of this review is to describe and compare these two treatment options and to present an evidence-based treatment algorithm for focal cartilage defects. Microfracture is a cost-effective, arthroscopic one-stage procedure, in which by drilling of the subchondral plate, mesenchymal stem cells from the bone marrow migrate into the defect and rebuild the cartilage. ACI is a two-stage procedure in which first chondrocytes are harvested, expanded in cell culture and in a second open procedure reimplanted into the cartilage defect. Microfracture is usually used for focal cartilage defects osteophyte, and for the ACI patient, periosteal hypertrophy and the need for two procedures in ACI. Only a few studies provide detailed and evidence-based information on a comparative assessment. These studies, however, are showing widely similar clinical outcomes but better histological results for ACI, which are likely to translate into better long-term outcomes. Although evidence-based studies comparing microfracture and ACI have not found significant differences in the clinical outcome, the literature does show that choosing the treatment based on the size and characteristics of the osteochondral lesion might be beneficial. The American Association of Orthopedic Surgeons suggest that contained lesions < 4 cm2 should be treated by

  17. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  18. Preclinical Studies for Cartilage Repair

    Science.gov (United States)

    Hurtig, Mark B.; Buschmann, Michael D.; Fortier, Lisa A.; Hoemann, Caroline D.; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral defects in immature laboratory species, particularly the rabbit, was considered adequate; however, if successful and timely translation from animal models to regulatory approval and clinical use is the goal, a step-wise development using laboratory animals for screening and early development work followed by larger species such as the goat, sheep and horse for late development and pivotal studies is recommended. Such animals must have fully organized and mature cartilage. Both acute and chronic chondral defects can be used but the later are more like the lesions found in patients and may be more predictive. Quantitative and qualitative outcome measures such as macroscopic appearance, histology, biochemistry, functional imaging, and biomechanical testing of cartilage, provide reliable data to support investment decisions and subsequent applications to regulatory bodies for clinical trials. No one model or species can be considered ideal for pivotal studies, but the larger animal species are recommended for pivotal studies. Larger species such as the horse, goat and pig also allow arthroscopic delivery, and press-fit or sutured implant fixation in thick cartilage as well as second look arthroscopies and biopsy procedures. PMID:26069576

  19. Relationship between the internal laryngeal nerve and the triticeal cartilage: a potentially unrecognized compression site during anterior cervical spine and carotid endarterectomy operations.

    Science.gov (United States)

    Tubbs, R Shane; Dixon, Joshua F; Loukas, Marios; Shoja, Mohammadali M; Cohen-Gadol, Aaron A

    2010-06-01

    The triticeal cartilage has received scant attention in the literature. To date, its relationship to the nearby internal laryngeal nerve has not been studied. Therefore, to elucidate further this anatomic relationship and its potential surgical implications, this study was performed. Eighty-six adult cadaveric sides underwent dissection of the internal laryngeal nerve near its penetration of the thyrohyoid membrane. The relationship of this nerve to the triticeal cartilage was documented. Measurements and histological analysis were performed on all cartilage specimens. We identified triticeal cartilage in 51% of the specimens and found it to be hyaline in nature. The triticeal cartilage was located in the upper, middle, and lower thirds of the thyrohyoid membrane in 14%, 66%, and 20% of sides, respectively. Regardless of the position of the triticeal cartilage within the thyrohyoid membrane, the internal laryngeal nerve crossed directly over the triticeal cartilage on 59% of sides. When present, the internal laryngeal nerve will cross over the triticeal cartilage in the majority of individuals. This relationship should be borne in mind during surgical manipulation in this area and when placing retractors during anterior neck operations including cervical discectomy/fusion and carotid endarterectomy. Compression of the internal laryngeal nerve against the solid triticeal cartilage can cause laryngeal nerve palsy and increase the risk of resultant postoperative aspiration.

  20. High-resolution MR imaging of wrist cartilage

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bernreuter, W.K.; Listinsky, J.J.; Lee, D.H.; Kenney, P.J.; Colgin, S.L.

    1991-01-01

    This paper reports that cartilage is an important prognostic factor in arthritis. MR imaging can demonstrate both articular cartilage and subchondral bone. Our purpose was to compare various sequences, for wrist cartilage imaging and determine how extensive damage must be before it is detectable with MR imaging. Six cadaver wrists were imaged before and after arthroscopic cartilage injury (coronal and axial T1- and T2-weighted SE sequences, 3-mm sections; SPGR 45 degrees flip angle volume images with fat saturation. 1.2-mm sections; plus T1-weighted coronal images with fat saturation after injury; General Electric Signa, 1.5 T, with transmit-receive extremity coil). Twenty-two defects were created arthroscopically. Five normal volunteers were imaged for comparison. The greatest contrast among bone, cartilage, and synovial fluid was achieved with T1-weighted fat-suppressed SE image and SPGR. Gradient-recalled volume sequences generated very thin sections but were susceptible to artifact

  1. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Shuaijun Jia

    Full Text Available Tissue engineering (TE has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS technology, we have fabricated an oriented cartilage extracellular matrix (ECM-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC-scaffold constructs (cell-oriented and random in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.

  2. The value of MDCT in diagnosis of hyaline-vascular Castleman's disease

    International Nuclear Information System (INIS)

    Sun, Xiaoli; Liu, Cheng; Wang, Rengui; Zhu, Xuejun; Gao, Li; Chen, Jiuhong

    2012-01-01

    Purpose: Castleman's disease (CD) is an uncommon entity characterized by a massive growth of lymphoid tissue. There are two types: the hyaline-vascular (HV) type and the plasma cell (PC) type. The purpose of this study was to evaluate the clinical value of multiple detector computed tomography (MDCT) in the diagnosis and planning of treatment for hyaline-vascular CD. Materials and methods: Fifty-two cases of confirmed hyaline-vascular CD were retrospectively reviewed. Unenhanced and contrast-enhanced MDCT scans had been performed in all patients, followed by surgery and pathological analysis of the lesion. Original MDCT transverse and reconstructed images were used for image interpretation. Features of the lesion and its adjacent structures were identified. Results: The lesion was present in the thorax of 24 patients and the abdomen in 28. Obvious features of hyaline-vascular CD (especially feeding vessels and draining veins) and its adjacent structures were demonstrated on 52 patients. Conclusion: On MDCT imaging, original MDCT transverse and reconstructed images provide an excellent tool for diagnosis of hyaline-vascular CD and have high value in the determination of a treatment plan

  3. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M.; Ihling, C.; Conca, W.

    1998-01-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.)

  4. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M. [Department of Diagnostic Radiology, University Hospital Freiburg (Germany); Ihling, C. [Department of Pathology, University Hospital Freiburg, Freiburg (Germany); Conca, W. [Department of Rheumatology, University Hospital Freiburg (Germany)

    1998-12-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.) With 5 figs., 19 refs.

  5. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China); Chen, Zhongqing [Fudan University, Department of Pathology, Huashan Hospital, Shanghai (China)

    2014-11-26

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = 0.745, P < 0.001; joint debridement: r{sub s} = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = -0.715, P = 0.002; joint debridement: r{sub s} = -0.826, P < 0.001). Significant improvement over time after

  6. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ligong, E-mail: ligong.wang@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States); Chang, Gregory, E-mail: gregory.chang@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States); Xu, Jian, E-mail: jian.xu.sz@siemens.com [Siemens HealthCare, New York, NY (United States); Vieira, Renata L.R., E-mail: Renata.Vieira@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States); Krasnokutsky, Svetlana, E-mail: Svetlana.Krasnokutsky@nyumc.org [Division of Rheumatology, New York University Langone Medical Center, New York, NY (United States); Abramson, Steven, E-mail: StevenB.Abramson@nyumc.org [Division of Rheumatology, New York University Langone Medical Center, New York, NY (United States); Regatte, Ravinder R., E-mail: Ravinder.Regatte@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States)

    2012-09-15

    Objective: To assess and compare subregional and whole T1rho values (median ± interquartile range) of femorotibial cartilage and menisci in patients with doubtful (Kellgren–Lawrence (KL) grade 1) to severe (KL4) osteoarthritis (OA) at 3T. Materials and methods: 30 subjects with varying degrees of OA (KL1–4, 13 females, 17 males, mean age ± SD = 63.9 ± 13.1 years) were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echo (FSE) images in sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage and meniscus Whole-organ MR imaging score (WORMS) grading. Wilcoxon rank sum test was performed to determine whether there were any statistically significant differences between subregional and whole T1rho values of femorotibial cartilage and menisci in subjects with doubtful to severe OA. Results: Lateral (72 ± 10 ms, median ± interquartile range) and medial (65 ± 10 ms) femoral anterior cartilage subregions in moderate–severe OA subjects had significantly higher T1rho values (P < 0.05) than cartilage subregions and whole femorotibial cartilage in doubtful–minimal OA subjects. There were statistically significant differences in meniscus T1rho values of the medial posterior subregion of subjects with moderate–severe OA and T1rho values of all subregions and the whole meniscus in subjects with doubtful–minimal OA. When evaluated based on WORMS, statistically significant differences were identified in T1rho values between the lateral femoral anterior cartilage subregion in patients with WORMS5–6 (advanced degeneration) and whole femorotibial cartilage and all cartilage subregions in patients with WORMS0–1 (normal). Conclusion: T1rho values are higher in specific meniscus and femorotibial cartilage subregions. These findings suggest that regional damage of both femorotibial hyaline cartilage and menisci may be associated with

  7. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T

    International Nuclear Information System (INIS)

    Wang, Ligong; Chang, Gregory; Xu, Jian; Vieira, Renata L.R.; Krasnokutsky, Svetlana; Abramson, Steven; Regatte, Ravinder R.

    2012-01-01

    Objective: To assess and compare subregional and whole T1rho values (median ± interquartile range) of femorotibial cartilage and menisci in patients with doubtful (Kellgren–Lawrence (KL) grade 1) to severe (KL4) osteoarthritis (OA) at 3T. Materials and methods: 30 subjects with varying degrees of OA (KL1–4, 13 females, 17 males, mean age ± SD = 63.9 ± 13.1 years) were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echo (FSE) images in sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage and meniscus Whole-organ MR imaging score (WORMS) grading. Wilcoxon rank sum test was performed to determine whether there were any statistically significant differences between subregional and whole T1rho values of femorotibial cartilage and menisci in subjects with doubtful to severe OA. Results: Lateral (72 ± 10 ms, median ± interquartile range) and medial (65 ± 10 ms) femoral anterior cartilage subregions in moderate–severe OA subjects had significantly higher T1rho values (P < 0.05) than cartilage subregions and whole femorotibial cartilage in doubtful–minimal OA subjects. There were statistically significant differences in meniscus T1rho values of the medial posterior subregion of subjects with moderate–severe OA and T1rho values of all subregions and the whole meniscus in subjects with doubtful–minimal OA. When evaluated based on WORMS, statistically significant differences were identified in T1rho values between the lateral femoral anterior cartilage subregion in patients with WORMS5–6 (advanced degeneration) and whole femorotibial cartilage and all cartilage subregions in patients with WORMS0–1 (normal). Conclusion: T1rho values are higher in specific meniscus and femorotibial cartilage subregions. These findings suggest that regional damage of both femorotibial hyaline cartilage and menisci may be associated with

  8. β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions

    NARCIS (Netherlands)

    D. Zwolanek (Daniela); M. Flicker (Magdalena); E. Kirstätter (Elisabeth); F. Zaucke (Frank); G.J.V.M. van Osch (Gerjo); R.G. Erben (Reinhold)

    2015-01-01

    textabstractMesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC

  9. Experimental Study on 3D Chi - Hap Scaffolds for Thyroid Cartilage Repairing

    Science.gov (United States)

    Sun, Nannan; Shi, Tingchun; Fan, Yuan; Hu, Binbin

    2018-01-01

    Due to the limitation of self-repairing capability for cartilage injury, the construction of tissue engineering in vitro has been an ideal treatment to repair tissue injury. In this paper, hydroxyapatite (Hap) and chitosan (Chi) were selected to fabricate the scaffold through low temperature deposition manufacturing (LDM) technique. The scaffold was characterized with interconnected structure and high porosity, as well as lower toxicity to cells (TDC-5-EGPE). Animal experiment was performed, Twelve white New Zealand rabbits were randomly divided into two groups, the side of the thyroid cartilage was removed, Chi-HAP composite scaffold was implanted into the cartilage defect as the experimental group A. Group B was treated for thyroid cartilage defects without any treatment. After 10 weeks, hematoxylin-eosin (HE) staining and S-O staining were carried out on the injured tissues. The result showed that newborn chondrocytes were found in repaired areas for group A, and there are no new cells found for group B. Therefore, Chi-HAP composite scaffolds formed by LDM possess biological activity for repairing injury cartilage.

  10. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  11. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  12. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    Science.gov (United States)

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  13. Small-Diameter Awls Improve Articular Cartilage Repair After Microfracture Treatment in a Translational Animal Model.

    Science.gov (United States)

    Orth, Patrick; Duffner, Julia; Zurakowski, David; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Microfracture is the most commonly applied arthroscopic marrow stimulation procedure. Articular cartilage repair is improved when the subchondral bone is perforated by small-diameter microfracture awls compared with larger awls. Controlled laboratory study. Standardized rectangular (4 × 8 mm) full-thickness chondral defects (N = 24) were created in the medial femoral condyle of 16 adult sheep and debrided down to the subchondral bone plate. Three treatment groups (n = 8 defects each) were tested: 6 microfracture perforations using small-diameter awls (1.0 mm; group 1), large-diameter awls (1.2 mm; group 2), or without perforations (debridement control; group 3). Osteochondral repair was assessed at 6 months in vivo using established macroscopic, histological, immunohistochemical, biochemical, and micro-computed tomography analyses. Compared with control defects, histological cartilage repair was always improved after both microfracture techniques (P Subchondral bone cysts and intralesional osteophytes were frequently observed after either microfracture treatment. Macroscopic grading, DNA, proteoglycan, and type I and type II collagen contents as well as degenerative changes within the adjacent cartilage remained unaffected by the awl diameter. Small-diameter microfracture awls improve articular cartilage repair in the translational sheep model more effectively than do larger awls. These data support the use of small microfracture instruments for the surgical treatment of cartilage defects and warrant prolonged clinical investigations. © 2015 The Author(s).

  14. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells

    Directory of Open Access Journals (Sweden)

    W Ando

    2012-09-01

    Full Text Available The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  15. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.

    Science.gov (United States)

    Ando, Wataru; Fujie, Hiromichi; Moriguchi, Yu; Nansai, Ryosuke; Shimomura, Kazunori; Hart, David A; Yoshikawa, Hideki; Nakamura, Norimasa

    2012-09-28

    The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  16. Serum Metabonomics of Articular Cartilage Destruction Induced by T-2 Toxin in Wistar Rats.

    Science.gov (United States)

    Zhu, Lei; Zhao, Zhi Jun; Ren, Xiao Bin; Li, Qiang; Ding, Hua; Sun, Zhou; Kao, Qing Jun; Wang, Li Hua

    2018-01-01

    The molecular pathogenesis of T-2 toxin-induced cartilage destruction has not been fully unraveled yet. The aim of this study was to detect changes in serum metabolites in a rat anomaly model with articular cartilage destruction. Thirty healthy male Wistar rats were fed a diet containing T-2 toxin (300 ng/kg chow) for 3 months. Histopathological changes in femorotibial cartilage were characterized in terms of chondrocyte degeneration/necrosis and superficial cartilage defect, and the endogenous metabolite profile of serum was determined by UPLC/Q-TOF MS. Treated rats showed extensive areas of chondrocyte necrosis and superficial cartilage defect in the articular cartilage. In addition, 8 metabolites were found to change significantly in these rats compared to the control group, including lysoPE (18:0/0:0), lysoPC(14:0), lysoPC[18:4 (6Z,9Z,12Z,15Z)], lysoPC[(16:1(9Z)], lysoPC(16:0), L-valine, hippuric acid, and asparaginyl-glycine. These 8 metabolites associated with cartilage injury are mainly involved in phospholipid and amino acid metabolic pathways. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    Science.gov (United States)

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  18. Cartilage Injuries in the Adult Knee

    Science.gov (United States)

    Moyad, Thomas F.

    2011-01-01

    Cartilage injuries are frequently recognized as a source of significant morbidity and pain in patients with previous knee injuries. The majority of patients who undergo routine knee arthroscopy have evidence of a chondral defect. These injuries represent a continuum of pathology from small, asymptomatic lesions to large, disabling defects affecting a major portion of one or more compartments within the knee joint. In comparison to patients with osteoarthritis, individuals with isolated chondral surface damage are often younger, significantly more active, and usually less willing to accept limitations in activities that require higher impact. At the present time, a variety of surgical procedures exist, each with their unique indications. This heterogeneity of treatment options frequently leads to uncertainty regarding which techniques, if any, are most appropriate for patients. The purpose of this review is to describe the workup and discuss the management techniques for cartilage injuries within the adult knee. PMID:26069581

  19. Pulmonary Hyalinizing Granuloma Associated with Idiopathic Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Christopher Coleman

    2014-01-01

    Full Text Available Pulmonary hyalinizing granuloma (PHG is a rare, benign lung disease of unknown etiology. It manifests as discrete, rounded nodules within the lung parenchyma. A 39-year-old woman presented for investigation after pulmonary nodules were found incidentally. Chest computed tomography showed multiple, discrete, non-enhancing pulmonary nodules bilaterally. Positron emission tomography (PET was negative. Biopsy demonstrated a non-specific lymphoplasmacytic infiltrate. Open resection yielded two nodules consistent with hyalinizing granulomas. The differential for multiple pulmonary nodules is broad. PET scan can help rule out metastatic disease, although some cancers are not hypermetabolic on PET. Furthermore, some non-malignant conditions, including hyalinizing granuloma, can show increased activity on PET. PHG should be included in the differential of multiple pulmonary nodules, especially if nodule stability can be demonstrated and/or needle biopsies are non-diagnostic. Associated immune-mediated conditions, such as idiopathic thrombocytopenic purpura (ITP in our patient, may also favor HG. In this case report we find an association between PHG and ITP.

  20. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2010-02-01

    Full Text Available Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs, bone morphogenetic proteins (BMPs and fibroblastic growth factors (FGFs are known to play important roles in skeletal development and endochondral bone formation and remodeling. In order to investigate whether these molecules are aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

  1. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage.

    Science.gov (United States)

    Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M

    2016-04-01

    The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200 kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6 kDa), 3-fold (PEG 10 kDa) and 13-fold (PEG 35 kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200 kDa was found in the acceptor in detectable amounts after 48 h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233 kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200 kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cartilage and bone neoformation in rabbit carotid bifurcation aneurysms after endovascular coil embolization

    Directory of Open Access Journals (Sweden)

    H Plenk

    2008-11-01

    Full Text Available Occurrence and histomorphology of cartilage and bone neoformations was retrospectively evaluated in rabbit experimental aneurysms after endovascular coil embolization. During product development, 115 carotid bifurcation aneurysms were treated with hydrogel-containing devices (HydroCoil®, n=77; HydroSoft®, n=28; prototype Hydrogel-only, n=10; MicroVentionTerumo, Aliso Viejo, CA. Additional 29 aneurysms were treated with standard (n=22 or with degradable polymer-covered (n=7 platinum coils. After 4 to 52 weeks, the retrieved aneurysms were methylmethacrylate embedded, and ground sections were surface-stained with Rapid Bone Stain and Giemsa solution. Cartilage and/or bone tissue was assessed by light microscopy; respective tissue areas in the aneurysms were determined by computerized histomorphometry. Cartilage neoformation was observed from 26 to 52 weeks. Single chondrocytes to hyaline or fibrous cartilage areas, occupying up to 29% of the aneurysm cavity, were found in 6 aneurysms, treated with HydroCoil (n=4, Hydrogel-only (n=1, and resorbable polymer (n=1 devices. Chondral ossification associated cartilage neoformation in 2 of these 4 HydroCoil-treated aneurysms. Membranous woven and lamellar bone ossicles were observed from 13 to 52 weeks in 7 aneurysms, treated with HydroCoil (n=3 and platinum coil (n=4 devices. Altogether, cartilage and/or bone neoformation was observed in 13 (9% of 144 rabbit bifurcation aneurysms treated with various embolic devices. Incidence was low until 26 weeks, but increased at 52 weeks in both, HydroCoil and standard platinum coil treated aneurysms. As the neoformations were predominantly located in proximity to the aneurysm neck, they could be related to the long-term mechanobiology of cell differentiation during fibrovascular healing of blood flow-exposed embolized aneurysms.

  3. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-01-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds

  4. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  5. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold.

    Science.gov (United States)

    Lv, Y M; Yu, Q S

    2015-04-01

    The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. The bone-cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid-hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56-64. ©2015 The British Editorial Society of Bone & Joint Surgery.

  6. Radiological evaluation of cartilage after microfracture treatment: A long-term follow-up study

    International Nuclear Information System (INIS)

    Von Keudell, A.; Atzwanger, J.; Forstner, R.; Resch, H.; Hoffelner, T.; Mayer, M.

    2012-01-01

    Introduction: Recent literature revealed good short-term results after microfracturing (MFX) of isolated focal cartilage defects in the knee joint. Study purpose was a long-term evaluation of patients who received MFX through a multimodal approach, correlating clinical scores and morphological pre- and postoperative MRI-scans. Materials and methods: Between 2000 and 2007 158 patients were treated with MFX for focal femoral or tibial defects at our department. Patients with instabilities, secondary surgical intervention, patellofemoral lesions, a plica mediopatellaris or more than one cartilage defect site and age >55 were excluded. 15 patients were included. Minimum postoperative follow-up (FU) was 18 months (18–78 m). Mean age at surgery was 45 years (27–54), mean FU-interval 48 months (18–78 m). Male to female ratio was 9:6. For clinical assessment the Knee Osteoarthritis Outcome Score (KOOS) and Lysholm Score were used, radiological evaluation was performed with radiographs and 3Tesla-MRI. Results: Clinical knee function was rated good to excellent in 1 patient, fair in 2 and poor in 10 patients. 2/15 patients received full knee replacement due to insufficient cartilage repair through MFX during FU period. Evaluation of pre- and postoperative MRI showed good cartilage repair tissue in 1 (7.7%), moderate repair in 2 (15.4%) and poor fill in 10 patients (76.9%). In these 10 patients the defect size increased. Average defect size preoperatively was 187 mm 2 (range 12–800 mm 2 ) and postoperatively 294 mm 2 (40–800 mm 2 ). The KOOS-Pain averaged 60 (39–94), KOOS-Symptoms 60.6 (21–100), KOOS-ADL 69 (21–91), KOOS-Sports 35.7 (5–60) and KOOS-QUL 37.2 (6–81). The average Lysholm Score was 73.9 (58–94). 10 patients showed a varus leg axis deviation (Ø 5.9°), 3 had a neutral alignment. The alignment correlated positively with KOOS and especially with the Lysholm Score. Conclusion: Our study demonstrated that MFX as a treatment option for cartilage

  7. Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep

    Directory of Open Access Journals (Sweden)

    Altug Yucekul

    2017-04-01

    Full Text Available Cartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of using autografts, allografts, or xenografts further add to this complexity. Autologous chondrocyte implantation or matrix-assisted chondrocyte implantation techniques attempt to introduce cultured cartilage cells to defect areas in the patient, but clinical success with these are impeded by the avascularity of cartilage tissue. Biodegradable, synthetic scaffolds capable of supporting local cells and overcoming the issue of poor vascularization would bypass the issues of current cartilage treatment options. In this study, we propose a biodegradable, tri-layered (poly(glycolic acid mesh/poly(l-lactic acid-colorant tidemark layer/collagen Type I and ceramic microparticle-coated poly(l-lactic acid-poly(ϵ-caprolactone monolith osteochondral plug indicated for the repair of cartilage defects. The porous plug allows the continual transport of bone marrow constituents from the subchondral layer to the cartilage defect site for a more effective repair of the area. Assessment of the in vivo performance of the implant was conducted in an ovine model (n = 13. In addition to a control group (no implant, one group received the implant alone (Group A, while another group was supplemented with hyaluronic acid (0.8 mL at 10 mg/mL solution; Group B. Analyses performed on specimens from the in vivo study revealed that the implant achieves cartilage formation within 6 months. No adverse tissue reactions or other complications were reported. Our findings indicate that the porous biocompatible implant seems to be a promising treatment option for the cartilage repair.

  8. Sonographic anatomy of the newborn hip and high-resolution US equipments: internal capsular stripe and perichondral gap

    International Nuclear Information System (INIS)

    Ortore, P.; Fodor, G.; Psenner, F.; Stuefert, S.; Scherer, M.

    1991-01-01

    The use of high-resolution US equipments in the examination of the newborn hip allowed the evaluation of a thin echogenic stripe (the internal capsule stripe), which defines laterally the acetabular hyaline cartilage. By means of an anatomo-histological preparation the echogenic stripe can be related to either the capsular circular fibres or the interface between the latter and the hyaline cartilage. The internal capsular stripe, together with the echogenic synovial stripe, precisely delimit the whole acetabular hyaline cartilage. Further-more, in many babies high-resolution US sometimes fails to demonstrate Graft's 'perichondral gap', so that an accurate anatomic knowledge of the hip becomes necessary in the evaluation of acetabular labrum

  9. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo

    Science.gov (United States)

    Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro

    2016-01-01

    Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and

  10. When is cartilage repair successful?; Wann ist eine Knorpelreparatur erfolgreich

    Energy Technology Data Exchange (ETDEWEB)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S. [Medizinische Universitaet Wien, Exzellenzzentrum Hochfeld-MR, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Schreiner, M.M. [Medizinische Universitaet Wien, Universitaetsklinik fuer Orthopaedie, Wien (Austria)

    2017-11-15

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [German] Die Therapie fokaler Knorpelschaeden ist weiterhin eine klinische Herausforderung. Nach erfolgter Sanierung gilt es daher besonders, Erfolg und Misserfolg zu evaluieren und den Verlauf standardisiert und somit reproduzierbar zu beurteilen. Dieser Artikel bietet einen Ueberblick ueber gaengige Reparaturverfahren und deren Charakteristika in der Magnetresonanztomographie. Nach einer erfolgreichen Knorpelreparatur ist eine vollstaendige, aber nicht hypertrophe Fuellung des Knorpeldefekts das primaere Kriterium. Zum umgebenden Nativknorpel ist ausserdem eine durchgehende Integration des Transplantats vordergruendig. Im weiteren postoperativen Verlauf sollte das Transplantat ausserdem ein im Vergleich zu nativem Knorpel isointenses Signalverhalten zeigen. Haeufig beobachtete Komplikationen sind zentrale Osteophyten, subchondrale Defekte, Zysten, chronifizierte Knochenmarksoedeme, Gelenkserguesse oder Adhaesionen. Die radiologische Beurteilung dieser

  11. Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    M. Lehmann

    2013-11-01

    Full Text Available Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2 and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.

  12. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Gonzales, V.K.; Buma, P.; Hout, J. in't; Kuppevelt, T.H. van; Vries, R.B. de; Daamen, W.F.

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of

  13. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: Results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus

    International Nuclear Information System (INIS)

    Wiewiorski, M.; Miska, M.; Kretzschmar, M.; Studler, U.; Bieri, O.; Valderrabano, V.

    2013-01-01

    Aim: To assess cartilage quality using delayed gadolinium-enhanced magnetic resonance imaging after repair of osteochondral lesions of the talus using autologous matrix-induced chondrogenesis (AMIC). Materials and methods: A three-dimensional (3D) spoiled gradient-echo (SGE) sequence at 3 T was used to obtain quantitative T1 relaxation times before and after Gd-DTPA2 (Magnevist, 0.2 mM/kg bod weight) administration to assess 23 cases of AMIC-aided repair of osteochondral lesions of the talus. Delta relaxation rates (ΔR1) for reference cartilage (RC) and repair tissue (RT), and the relative delta relaxation rate (rΔR1) were calculated. The morphological appearance of the cartilage RT was graded on sagittal dual-echo steady-state (DESS) views according to the “magnetic resonance observation of cartilage repair tissue” (MOCART) protocol. The study was approved by the institutional review board and written consent from each patient was obtained. Results: The AMIC cases had a mean T1 relaxation time of 1.194 s (SD 0.207 s) in RC and 1.470 s (SD 0.384 s) in RT before contrast medium administration. The contrast-enhanced T1 relaxation time decreased to 0.480 s (SD 0.114 s) in RC and 0.411 s (SD 0.096 s) in RT. There was a significant difference (p > 0.05) between the ΔR1 in RC (1.372 × 10 −3 /s, range 0.526–3.201 × 10 −3 /s, SD 0.666 × 10 −3 /s) and RT (1.856 × 10 −3 /s, range 0.93–3.336 × 10 −3 /s, SD 0.609 × 10 −3 /s). The mean rΔR1 was 1.49, SD 0.45). The mean MOCART score at follow-up was 62.6 points (range 30–95, SD 15.3). Conclusion: The results of the present study suggest that repair cartilage resulting from AMIC-aided repair of osteochondral lesions of the talus has a significantly lower glycosaminoglycan (GAG) content than normal hyaline cartilage, but can be regarded as having hyaline-like properties

  14. Use of the second harmonic generation microscopy to evaluate chondrogenic differentiation of mesenchymal stem cells for cartilage repair

    Science.gov (United States)

    Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.

    2012-03-01

    Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.

  15. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  16. Gross, histologic, and computed tomographic characterization of nonpathological intrascleral cartilage and bone in the domestic goat (Capra aegagrus hircus).

    Science.gov (United States)

    Tusler, Charlotte A; Good, Kathryn L; Maggs, David J; Zwingenberger, Allison L; Reilly, Christopher M

    2017-05-01

    To characterize grossly, histologically, and via computed tomography (CT) the appearance of intrascleral cartilage, bone, or both in domestic goats with otherwise normal eyes and to correlate this with age, sex, and breed. Sixty-eight domestic goats (89 eyes). Forty-nine formalin-fixed globes from 38 goats underwent high-resolution CT, and gross and light microscopic examination. An additional 40 eyes from 30 goats underwent light microscopy only. Age, breed, and sex of affected goats were retrieved from medical records. Considering all methods of evaluation collectively, cartilage was detected in 42% of eyes (44% of goats) and bone in 11% of eyes (12% of goats); bone was never seen without cartilage. Goats in which bone, cartilage, or both were detected ranged from 0.25 to 13 (median = 3.5) years of age, represented 11 of 12 breeds of the study population, and had a male:female ratio of 11:19. Bone was detected in the eyes of significantly more males (n = 8) than females (n = 2). No sex predilection was noted for cartilage alone. Histology revealed intrascleral chondrocyte-like cells, hyaline cartilage, and islands of lamellar bone. Some regions of bone had central, adipose-rich, marrow-like cavities. CT localized mineralized tissue as adjacent to or partially surrounding the optic nerve head. This is the first report of intrascleral bone or cartilage in a normal goat and of intrascleral bone in an otherwise normal mammal. The high prevalence of intrascleral cartilage and bone in this study suggests that this finding is normal and likely represents an adaptation in goats. © 2016 American College of Veterinary Ophthalmologists.

  17. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Ryo [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Department of Orthodontics, School of Dentistry, Showa University, Tokyo (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Tanaka, Junichi [Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo (Japan); Aizawa, Ryo [Department of Periodontology, School of Dentistry, Showa University, Tokyo (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Kassai, Hidetoshi [Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, Tokyo (Japan); Mishima, Kenji [Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo (Japan); Aiba, Atsu [Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Maki, Koutaro [Department of Orthodontics, School of Dentistry, Showa University, Tokyo (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan)

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.

  18. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    Science.gov (United States)

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  19. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  20. Pathology of articular cartilage and synovial membrane from elbow joints with and without degenerative joint disease in domestic cats.

    Science.gov (United States)

    Freire, M; Meuten, D; Lascelles, D

    2014-09-01

    The elbow joint is one of the feline appendicular joints most commonly and severely affected by degenerative joint disease. The macroscopic and histopathological lesions of the elbow joints of 30 adult cats were evaluated immediately after euthanasia. Macroscopic evidence of degenerative joint disease was found in 22 of 30 cats (39 elbow joints) (73.33% cats; 65% elbow joints), and macroscopic cartilage erosion ranged from mild fibrillation to complete ulceration of the hyaline cartilage with exposure of the subchondral bone. Distribution of the lesions in the cartilage indicated the presence of medial compartment joint disease (most severe lesions located in the medial coronoid process of the ulna and medial humeral epicondyle). Synovitis scores were mild overall and correlated only weakly with macroscopic cartilage damage. Intra-articular osteochondral fragments either free or attached to the synovium were found in 10 joints. Macroscopic or histologic evidence of a fragmented coronoid process was not found even in those cases with intra-articular osteochondral fragments. Lesions observed in these animals are most consistent with synovial osteochondromatosis secondary to degenerative joint disease. The pathogenesis for the medial compartmentalization of these lesions has not been established, but a fragmented medial coronoid process or osteochondritis dissecans does not appear to play a role. © The Author(s) 2014.

  1. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Silvia Lopa

    2018-01-01

    Full Text Available Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.

  2. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Science.gov (United States)

    Mondadori, Carlotta; Mainardi, Valerio Luca; Talò, Giuseppe; Candrian, Christian; Święszkowski, Wojciech

    2018-01-01

    Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects. PMID:29535776

  3. Fabrication of custom-shaped grafts for cartilage regeneration.

    Science.gov (United States)

    Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L

    2010-10-01

    to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet

  4. Modern cartilage imaging of the ankle

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Wuennemann, Felix; Rehnitz, Christoph; Jungmann, Pia M.; Kuni, Benita

    2017-01-01

    Talar osteochondral lesions are an important risk factor for the development of talar osteoarthritis. Furthermore, osteochondral lesions might explain persistent ankle pain. Early diagnosis of accompanying chondral defects is important to establish the optimal therapy strategy and thereby delaying or preventing the onset of osteoarthritis. The purpose of this review is to explain modern cartilage imaging with emphasis of MR imaging as well as the discussion of more sophisticated imaging studies like CT-arthrography or functional MR imaging. Pubmed literature search concerning: osteochondral lesions, cartilage damage, ankle joint, talus, 2 D MR imaging, 3 D MR imaging, cartilage MR imaging, CT-arthrography, cartilage repair, microfracture, OATS, MACT. Dedicated MR imaging protocols to delineate talar cartilage and the appearance of acute and chronic osteochondral lesions were discussed. Recent developments of MR imaging, such as isotropic 3 D imaging that has a higher signal-to noise ratio when compared to 2 D imaging, and specialized imaging methods such as CT-arthrography as well as functional MR imaging were introduced. Several classifications schemes and imaging findings of osteochondral lesions that influence the conservative or surgical therapy strategy were discussed. MRI enables after surgery the non-invasive assessment of the repair tissue and the success of implantation. Key points: Modern MRI allows for highly resolved visualization of the articular cartilage of the ankle joint and of subchondral pathologies. Recent advances in MRI include 3 D isotropic ankle joint imaging, which deliver higher signal-to-noise ratios of the cartilage and less partial volume artifacts when compared with standard 2 D sequences. In case of osteochondral lesions MRI is beneficial for assessing the stability of the osteochondral fragment and for this discontinuity of the cartilage layer is an important factor. CT-arthrography can be used in case of contraindications of MRI and

  5. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  6. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  7. Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair

    NARCIS (Netherlands)

    Mouser, Vivian H M; Dautzenberg, Noël M M; Levato, Riccardo; van Rijen, Mattie H P; Dhert, Wouter J A; Malda, Jos; Gawlitta, Debby

    2018-01-01

    The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell-therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect

  8. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    International Nuclear Information System (INIS)

    Nagahama, Ryo; Yamada, Atsushi; Tanaka, Junichi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Yamamoto, Matsuo; Mishima, Kenji; Aiba, Atsu; Maki, Koutaro; Kamijo, Ryutaro

    2016-01-01

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 "f"l"/"f"l; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 "f"l"/"f"l) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.

  9. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  10. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  11. The Potential for Synovium-derived Stem Cells in Cartilage Repair

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Lang, Gernot Michael; Fürst, David

    2018-01-01

    for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. OBJECTIVE: Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells......, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current...... knowledge on the chondrogenic potential for synovial stem cells in regard to cartilage repair purposes. RESULTS: A literature search was carried out identifying 260 articles in the databases up to January 2017. Several in vitro and initial animal in vivo studies of cartilage repair using synovia stem cell...

  12. Overview of existing cartilage repair technology.

    Science.gov (United States)

    McNickle, Allison G; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.

  13. Effect of thiram on chicken growth plate cartilage

    Science.gov (United States)

    Thiram is a general use dithiocarbamate pesticide. It causes tibial dyschondroplasia, a growth plate cartilage defect in poultry characterized by growth plate broadening due to the accumulation of nonviable chondrocytes which lead to lameness. Since proteins play significant roles in all aspects cel...

  14. Evaluation of degenerative changes in articular cartilage of osteoarthritis by Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Ishimaru, Yasumitsu; Kiyomatsu, Hiroshi; Hino, Kazunori; Miura, Hiromasa

    2018-02-01

    Osteoarthritis (OA) is a very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this proposal, we aim to develop Raman spectroscopic system for the quality assessment of articular cartilage during arthroscopic surgery. Toward this goal, we are focusing on the proteoglycan content and collagen fiber alignment in cartilage matrix which may be associated with degenerative changes in OA, and we designed an original Raman device for remote sensing during arthroscopic surgery. In this project, we define the grading system for cartilage defect based on Raman spectroscopy, and we complete the evaluation of the Raman probing system which makes it possible to detect early stage of degenerative cartilage as a novel tool for OA diagnosis using human subject.

  15. Role of magnetic resonance imaging in the evaluation of articular cartilage in painful knee joint

    Directory of Open Access Journals (Sweden)

    Digish Shah

    2014-01-01

    Full Text Available Aim: The aim of this study was to determine the role of the magnetic resonance imaging (MRI in patients with atraumatic knee pain. Background and Objectives: Knee pain is one of the most common problems faced by people from time immemorial. There is a wide range of disease ranging from traumatic to degenerative causing knee pain in which articular cartilage is involved. Over the past 15 years, MRI has become the premier, first-line imaging study that should be performed in the evaluation of the painful knee in particular in tears of menisci, cruciate and collateral ligaments, osteochondral abnormalities (chondromalacia, osteoarthritis and osteochondral defects, synovial cysts and bone bruises. MRI, by virtue of its superior soft-tissue contrast, lack of ionizing radiation and multiplanar capabilities, is superior to more conventional techniques for the evaluation of articular cartilage. Materials and Methods: A prospective study was carried out on 150 patients in the Department of Radio-diagnosis, Padmashree Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune over a period of 2 years from June 2011 to May 2013. Patients having fracture or dislocations of the knee joint were also excluded from the study. Detailed clinical history, physical and systemic examination findings of all patients were noted in addition to the laboratory investigations. All patients were subjected to radiograph of knee anterior-posterior and lateral view. MRI was performed with Siemens 1.5 Tesla MAGNETOM Avanto machine. Results: In our study of 150 patients with knee pain, articular cartilage defect was found in 90 patients (60%. Out of 90 patients with articular cartilage defect, 30 patients (20% had full thickness cartilage defects. Subchondral marrow edema was seen beneath 30 patients (20% with articular cartilage defects. 32 patients (21.1% had a complex or macerated meniscal tear. Complete anterior cruciate ligament tear was found in seven

  16. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow–Derived Cells for Large Osteochondral Defects in Rabbit Knees

    Science.gov (United States)

    Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-01-01

    Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated. PMID:26069678

  17. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    Science.gov (United States)

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  18. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1.

    Science.gov (United States)

    Branly, Thomas; Bertoni, Lélia; Contentin, Romain; Rakic, Rodolphe; Gomez-Leduc, Tangni; Desancé, Mélanie; Hervieu, Magalie; Legendre, Florence; Jacquet, Sandrine; Audigié, Fabrice; Denoix, Jean-Marie; Demoor, Magali; Galéra, Philippe

    2017-10-01

    Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-β 1 ) and siRNA to knockdown collagen I and HtrA1. Horse BM-MSCs were characterized before being cultured in chondrogenic conditions to find the best combination to enhance, stabilize, the chondrocyte phenotype. Our results show a very high proliferation of MSCs and these cells satisfy the criteria defining stem cells (pluripotency-surface markers expression). The combination of BMP-2 + TGF-β 1 strongly induces the chondrogenic differentiation of MSCs and prevents HtrA1 expression. siRNAs targeting Col1a1 and Htra1 were functionally validated. Ultimately, the combined use of specific culture conditions defined here with specific growth factors and a Col1a1 siRNAs (50 nM) association leads to the in vitro synthesis of a hyaline-type neocartilage whose chondrocytes present an optimal phenotypic index similar to that of healthy, differentiated chondrocytes. Our results lead the way to setting up pre-clinical trials in horses to better understand the reaction of neocartilage substitute and to carry out a proof-of-concept of this therapeutic strategy on a large animal model.

  19. Magnetization transfer analysis of cartilage repair tissue: a preliminary study

    International Nuclear Information System (INIS)

    Palmieri, F.; Keyzer, F. de; Maes, F.; Breuseghem, I. van

    2006-01-01

    To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31±0.07) was not significantly different from normal cartilage MTR (0.34±0.05). The MTR of MFR repaired cartilage (0.28±0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)

  20. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Manigandan, Amrutha; Chinnaswamy, Prabu; Subramanian, Anuradha; Sethuraman, Swaminathan

    2018-04-01

    Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration. Copyright © 2018 Elsevier Ltd. All rights reserved.