WorldWideScience

Sample records for hvac energy requirements

  1. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  2. A review of different strategies for HVAC energy saving

    International Nuclear Information System (INIS)

    Vakiloroaya, Vahid; Samali, Bijan; Fakhar, Ahmad; Pishghadam, Kambiz

    2014-01-01

    Highlights: • Various strategies for HVAC energy saving are described and reviewed. • The influence of each strategy on the HVAC energy saving is investigated. • Combination of existing air conditioning technologies appears to be effective for the energy conservation and comfort. • A comparison study between these approaches is carried out. • Changing the HVAC configuration has the potential to increase or reduce energy savings, depending on several factors. - Abstract: Decreasing the energy consumption of heating, ventilation and air conditioning (HVAC) systems is becoming increasingly important due to rising cost of fossil fuels and environmental concerns. Therefore, finding novel ways to reduce energy consumption in buildings without compromising comfort and indoor air quality is an ongoing research challenge. One proven way of achieving energy efficiency in HVAC systems is to design systems that use novel configurations of existing system components. Each HVAC discipline has specific design requirements and each presents opportunities for energy savings. Energy efficient HVAC systems can be created by re-configuring traditional systems to make more strategic use of existing system parts. Recent research has demonstrated that a combination of existing air conditioning technologies can offer effective solutions for energy conservation and thermal comfort. This paper investigates and reviews the different technologies and approaches, and demonstrates their ability to improve the performance of HVAC systems in order to reduce energy consumption. For each strategy, a brief description is first presented and then by reviewing the previous studies, the influence of that method on the HVAC energy saving is investigated. Finally, a comparison study between these approaches is carried out

  3. The map of energy flow in HVAC systems

    International Nuclear Information System (INIS)

    Perez-Lombard, Luis; Ortiz, Jose; Maestre, Ismael R.

    2011-01-01

    Highlights: → Discussion of the four stages in the 'HVAC systems energy chain'. → Examination of HVAC systems as energy conversion devices. → Analysis of HVAC Sankey diagrams. → Discussion of HVAC loads and HVAC energy losses. -- Abstract: Heating, ventilation and air conditioning (HVAC) systems are the most energy consuming building services representing approximately half of the final energy use in the building sector and between one tenth and one fifth of the energy consumption in developed countries. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research and energy policies, mainly due to the complexity and variety of HVAC systems but also to insufficient rigour in their energy analysis. This paper reviews energy related aspects of HVAC systems with the aim of establishing a common ground for the analysis of their energy efficiency. The paper focuses on the map of energy flow to deliver thermal comfort: the HVAC energy chain. Our approach deals first with thermal comfort as the final service delivered to building occupants. Secondly, conditioned spaces are examined as the systems where useful heat (or coolth) is degraded to provide comfort. This is followed by the analysis of HVAC systems as complex energy conversion devices where energy carriers are transformed into useful heat and coolth, and finally, the impact of HVAC energy consumption on energy resources is discussed.

  4. Design Concepts for Optimum Energy Use in HVAC Systems.

    Science.gov (United States)

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  5. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-10-14

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

  6. An integrated control-oriented modelling for HVAC performance benchmarking

    NARCIS (Netherlands)

    Satyavada, Harish; Baldi, S.

    2016-01-01

    Energy efficiency in building heating, ventilating and air conditioning (HVAC) equipment requires the development of accurate models for testing HVAC control strategies and corresponding energy consumption. In order to make the HVAC control synthesis computationally affordable, such

  7. System solution to improve energy efficiency of HVAC systems

    Science.gov (United States)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  8. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  9. HVAC optimization as facility requirements change with corporate restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, R.R.; Sankey, M.S.

    1997-06-01

    The hyper-competitive, dynamic 1990`s forced many corporations to {open_quotes}Right-Size,{close_quotes} relocating resources and equipment -- even consolidating. These changes led to utility reduction if HVAC optimization was thoroughly addressed, and energy conservation opportunities were identified and properly designed. This is true particularly when the facility`s heating and cooling systems are matched to correspond with the load changes attributed to the reduction of staff and computers. Computers have been downsized and processing power per unit of energy input increased, thus, the need for large mainframe computer centers, and their associated high intensity energy usage, have been decreased or eliminated. Cooling, therefore, also has been reduced.

  10. HVAC systems design handbook

    CERN Document Server

    Haines, Roger W

    2010-01-01

    Thoroughly updated with the latest codes, technologies, and practices, this all-in-one resource provides details, calculations, and specifications for designing efficient and effective residential, commercial, and industrial HVAC systems. HVAC Systems Design Handbook, Fifth Edition, features new information on energy conservation and computer usage for design and control, as well as the most recent International Code Council (ICC) Mechanical Code requirements. Detailed illustrations, tables, and essential HVAC equations are also included. This comprehensive guide contains everything you need to design, operate, and maintain peak-performing HVAC systems.

  11. 77 FR 72763 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-06

    ... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency...; commercial heating, ventilating, air-conditioning (HVAC) equipment; and commercial water heating equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...

  12. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC...; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers (June 30 Final Rule). 76...

  13. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Romberger, Jeff [SBW Consulting, Inc., Bellevue, WA (United States)

    2017-10-09

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions.

  14. Modeling and optimization of HVAC energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Kusiak, Andrew; Li, Mingyang; Tang, Fan [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 - 1527 (United States)

    2010-10-15

    A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%. (author)

  15. A comfort-based, energy-aware HVAC agent and its applications in the smart grid

    OpenAIRE

    Auffenberg, Frederik

    2017-01-01

    In this thesis, we introduce a novel heating, ventilation and air conditioning (HVAC) agent that maintains a comfortable thermal environmant for its users while minimising energy consumption of the HVAC system and incorporating demand side management (DSM) signals to shift HVAC loads towards achieving more desirable overall load profiles. To do so, the agent needs to be able to accurately predict user comfort, for example by using a thermal comfort model. Existing thermal comfort models are u...

  16. HVAC system operational strategies for reduced energy consumption in buildings with intermittent occupancy: The case of mosques

    International Nuclear Information System (INIS)

    Budaiwi, I.; Abdou, A.

    2013-01-01

    Highlights: • Proper operational zoning in the early design phase of mosques can lead to up to 30% reduction in the annual cooling energy. • Energy performance index of 71.0 kW h/m 2 yr for an insulated mosque can be realized with A/C proper intermitted operation. • 23% energy saving can be achieved when a properly oversized A/C is operated intermittently for 1 h during each prayer. • 13% reduction in cooling energy use can be achieved when A/C operation precedes worshippers’ occupancy in mosques. • Envelope insulation and A/C intermittent operation with proper operational zoning leads to more than 46% savings in energy. - Abstract: Mosques are places of worship for Muslims with unique functional requirements and operational characteristics. They are partially or fully occupied for about an hour for five intermittent periods during the day. In hot climates, maintaining indoor thermal comfort requires a considerable amount of energy that can be reduced by proper operational zoning and effective HVAC operation strategies. The objective of this paper is to investigate the impact of operational zoning and HVAC system intermittent operation strategies on the energy performance of mosques while thermal comfort is maintained. Energy simulation modeling is used for evaluating alternative zoning and HVAC operation strategies. Results indicate that up to 23% reduction in annual cooling energy is achieved by employing suitable HVAC operation strategy and system over-sizing, and 30% reduction is achieved by appropriate operational zoning. Comparing the cooling energy consumption of HVAC summer continuous operation of an un-insulated mosque with the consumption of the insulated mosque with properly oversized HVAC system operated for 1 h during each prayer, indicated that as much as 46% of cooling energy reduction can be achieved. Furthermore, utilizing proper operational zoning and HVAC operation strategies is expected to bring about an additional significant energy

  17. System optimization for HVAC energy management using the robust evolutionary algorithm

    International Nuclear Information System (INIS)

    Fong, K.F.; Hanby, V.I.; Chow, T.T.

    2009-01-01

    For an installed centralized heating, ventilating and air conditioning (HVAC) system, appropriate energy management measures would achieve energy conservation targets through the optimal control and operation. The performance optimization of conventional HVAC systems may be handled by operation experience, but it may not cover different optimization scenarios and parameters in response to a variety of load and weather conditions. In this regard, it is common to apply the suitable simulation-optimization technique to model the system then determine the required operation parameters. The particular plant simulation models can be built up by either using the available simulation programs or a system of mathematical expressions. To handle the simulation models, iterations would be involved in the numerical solution methods. Since the gradient information is not easily available due to the complex nature of equations, the traditional gradient-based optimization methods are not applicable for this kind of system models. For the heuristic optimization methods, the continual search is commonly necessary, and the system function call is required for each search. The frequency of simulation function calls would then be a time-determining step, and an efficient optimization method is crucial, in order to find the solution through a number of function calls in a reasonable computational period. In this paper, the robust evolutionary algorithm (REA) is presented to tackle this nature of the HVAC simulation models. REA is based on one of the paradigms of evolutionary algorithm, evolution strategy, which is a stochastic population-based searching technique emphasized on mutation. The REA, which incorporates the Cauchy deterministic mutation, tournament selection and arithmetic recombination, would provide a synergetic effect for optimal search. The REA is effective to cope with the complex simulation models, as well as those represented by explicit mathematical expressions of

  18. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Petritchenko, Oxana [Navigant Consulting, Burlington, MA (United States); Ringo, Decker [Navigant Consulting, Burlington, MA (United States); McClive, Sam [Navigant Consulting, Burlington, MA (United States)

    2017-12-01

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promising technology options.

  19. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency

    International Nuclear Information System (INIS)

    Yang, Zheng; Ghahramani, Ali; Becerik-Gerber, Burcin

    2016-01-01

    Approximately forty percent of total building energy consumption is attributed to HVAC (heating, ventilation, and air conditioning) systems that aim to maintain healthy and comfortable indoor environments. An HVAC system is a network with several subsystems, and there exist heat transfer and balance among the zones of a building, as well as heat gains and losses through a building's envelope. Diverse occupancy (diversity in terms of when and how occupants occupy a building) in spaces could result in increase of loads that are not actual demands for an HVAC system, leading into inefficiencies. This paper introduces a framework to quantitatively evaluate the energy implications of occupancy diversity at the building level, where building information modeling is integrated to provide building geometries, HVAC system layouts, and spatial information as inputs for computing potential energy implications if occupancy diversity were to be eliminated. An agglomerate hierarchical clustering-based iterative evaluation algorithm is designed for iteratively eliminating occupancy diversity. Whole building energy simulations for a real-world building, as well as virtual reference buildings demonstrate that the proposed framework could effectively quantify the HVAC system energy efficiency affected by occupancy diversity and the framework is generalizable to different building geometries, layouts, and occupancy diversities. - Highlights: • Analyze relationships between occupancy diversity and HVAC energy efficiency. • Integrate BIM for quantifying energy implications of occupancy diversity. • Demonstrate the effectiveness and generalizability of iterative evaluation algorithm. • Improve agglomerative hierarchical clustering process using heap data structure.

  20. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. HVAC systems and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.T. (Linford Air and Refrigeration Company, Oakland, CA (US))

    1990-02-01

    The author discusses the section of the ASHRAE Standard 90.1-1989 which addresses HVAC systems and equipment. New features of HVAC systems mandatory general requirements are described. New prescriptive requirements are detailed.

  2. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D [ORNL

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  3. Monitoring-based HVAC commissioning of an existing office building for energy efficiency

    International Nuclear Information System (INIS)

    Wang, Liping; Greenberg, Steve; Fiegel, John; Rubalcava, Alma; Earni, Shankar; Pang, Xiufeng; Yin, Rongxin; Woodworth, Spencer; Hernandez-Maldonado, Jorge

    2013-01-01

    Highlights: ► Demonstrated monitoring-based HVAC commissioning using an existing office building. ► Diagnosed various types of faulty operation in the HVAC system by trend data analyses. ► Identified a list of energy saving measures for the HVAC system. ► Quantified energy saving potential for each commissioning measure using calibrated energy simulation model. ► Achieved an actual energy saving of 10% after the implementations of cost-effective measures. -- Abstract: The performance of Heating, Ventilation and Air Conditioning (HVAC) systems may fail to satisfy design expectations due to improper equipment installation, equipment degradation, sensor failures, or incorrect control sequences. Commissioning identifies and implements cost-effective operational and maintenance measures in buildings to bring them up to the design intent or optimum operation. An existing office building is used as a case study to demonstrate the process of commissioning. Building energy benchmarking tools are applied to evaluate the energy performance for screening opportunities at the whole building level. A large natural gas saving potential was indicated by the building benchmarking results. Faulty operations in the HVAC systems, such as improper operations of air-side economizers, simultaneous heating and cooling, and ineffective optimal start, were identified through trend data analyses and functional testing. The energy saving potential for each commissioning measure is quantified with a calibrated building simulation model. An actual energy saving of 10% was realized after the implementations of cost-effective measures.

  4. Application of optimization techniques on lumped HVAC models for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoff, A.P. [Department of Mechanical Engineering, Villanova University, Villanova, PA 19085 (United States)

    2010-12-15

    Heating, ventilating, and air conditioning (HVAC) systems comprise nearly one third of annual household energy consumption in the United States. HVAC energy use can be reduced by applying controls. This study applies a novel control method on a system with arbitrary steady-state and transient load distributions. The new method uses multi-dimensional interpolation between optimized control configurations for various steady-state load distributions. Demonstration of the new method on a two-room HVAC system predicts power savings for an arbitrary steady load that is nearly equivalent to that using a Variable-Air-Volume (VAV) with chiller modulation. However, the new method provides better energy savings for arbitrary transient loads: 19% energy savings over an uncontrolled system compared to energy savings of 6% for a VAV with chiller modulation. The average transient temperature deviation from setpoint using the new method is slightly better than that using VAV with chiller modulation. (author)

  5. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  6. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D [ORNL

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  7. Energy Renovations: Volume 14: HVAC - A Guide for Contractors to Share with Homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Gilbride, Theresa L.; Baechler, Michael C.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-29

    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various energy-efficient options for heating, cooling, and ventilating existing homes. The report provides descriptions of many common and not-so-common HVAC systems, including their advantages and disadvantages, efficiency ranges and characteristics of high-performance models, typical costs, and climate considerations. The report also provides decision trees and tables of useful information for homeowners who are making decisions about adding, replacing, or upgrading existing HVAC equipment in their homes. Information regarding home energy performance assessments (audits) and combustion safety issues when replacing HVAC equipment are also provided.

  8. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  9. Basic Energy Conservation and Management--Part 2: HVAC

    Science.gov (United States)

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…

  10. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  11. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document

  12. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun

    2014-01-01

    Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models

  13. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    Directory of Open Access Journals (Sweden)

    Jordi Serra

    2014-01-01

    of heating, ventilation, and air conditioning (HVAC systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  14. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  15. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  16. Warming impact on energy use of HVAC system in buildings of different thermal qualities and in different climates

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Altorkmany, Lobna; Al-Khawaj, Mohammed; Hassani, Ferri

    2014-01-01

    Highlights: • Improving TQBE reduces heating load, while it might increase cooling load. • Warming impact on energy use of HVAC varies from one climate to another. • Warming impact on energy use of HVAC depends on building’s thermal quality. • In mild climate, warming does not have a significant impact on energy use of HVAC. - Abstract: In order to combat climate change, energy use in the building must be further reduced. Heating ventilation and air conditioning (HVAC) systems in residential buildings account for considerable fraction of global energy consumption. The potential contribution the domestic sector can make in reducing energy consumption is recognized worldwide. The driving energy of HVACs depends on the thermal quality of the building envelope (TQBE) and outside temperature. Definitely, building regulations are changing with the time toward reduce the thermal loads of buildings. However, most of the existing residential buildings were built to lower TQBE. For instant, 72% of residential dwellings in the 15-EU were built before 1972. To investigate the impact of warming on driving energy of HVACs of a residential building a computer model was developed. Three climate categories/cities were considered, i.e. Stockholm (cold), Istanbul (mild), and Doha (hot). In each city, two buildings were modeled: one was assumed to be built according to the current local buildings regulations (standard TQBE), while the anther was built to lower TQBE. The simulations were run for present and future (in 2050) outdoor designing conditions. The calculations show that the impact of the warming on annual driving energy of HVACs (reduction or increase) depends very much on the climate category and on the TQBE. Based on the climate and TQBE, the change in annual HVACs energy varies from −7.4% (in cold climate) to 12.7% (in hot climate). In mild climate, it was shown that the warming does not have significant impact on annual HVACs energy. Improving the TQBE can

  17. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  18. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study; TOPICAL

    International Nuclear Information System (INIS)

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-01-01

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions

  19. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  20. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J -M

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  1. 78 FR 15653 - Notice of Intent To Form the Commercial HVAC, WH, and Refrigeration Certification Working Group...

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 429 Notice of Intent To Form the Commercial HVAC, WH, and... Requirements for Commercial HVAC, WH, and Refrigeration Equipment AGENCY: Office of Energy Efficiency and... commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration equipment...

  2. Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption

    Science.gov (United States)

    Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.

    2018-02-01

    The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.

  3. Analysis on energy saving potential of integrated supermarket HVAC and refrigeration systems using multiple subcoolers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)

    2010-02-15

    The paper presents a model-based analysis on the energy saving potential of supermarket HVAC (heating, ventilating, and air-conditioning) and refrigeration systems using multiple subcoolers among the high-temperature HVAC system, the medium-temperature refrigeration system, and the low-temperature refrigeration system. The principle of energy reduction is to have the higher COP (coefficient of performance) system generate more cooling capacity to increase the cooling capacity or reduce the power consumption of the lower COP system. The subcooler could be placed between the medium-temperature and low-temperature systems, between the high-temperature and medium-temperature systems, and between the high-temperature and low-temperature systems. All integration scenarios of adding one, two and three subcoolers have been investigated. The energy saving potential varies with the load ratio between high-, medium- and low-temperature systems, COP of three systems, and the ''on-off'' duty time of HVAC system. The optimal sequence of adding subcoolers is also proposed. (author)

  4. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    Science.gov (United States)

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  5. Energy consumption reduction in existing HVAC-R systems via a power law controlling kit

    International Nuclear Information System (INIS)

    Pinnola, C.F.; Vargas, J.V.C.; Buiar, C.L.; Ordonez, J.C.

    2015-01-01

    This paper presents an alternative solution for reducing energy consumption in heating, ventilation, air conditioning and refrigeration (HVAC-R) systems. For that, an existing typical commercial refrigeration system was equipped with a novel control system based on a power law, using a frequency inverter and a programmable logic controller (PLC). Hence, it was possible to compare the operation and energy consumption of the system with the power law control and with the on-off system, quantifying the obtained gains. The experimental unit consisted of a cooling chamber, an enclosing chamber (antechamber), and a vapor compression refrigeration system, i.e., an example of a practical commercial cooling system. A set of graphs shows the experimental measurements performed with the two systems. In this way, the measured temperatures in some selected points of the two systems, as well as the consumption in kWh for a period of 6 h and 10 min were compared in the tests. The main conclusions of this work are: i) The system operating with the power law control with respect to the conventional on-off control, showed energy consumption savings of up to 31% in a test period of 6 h and 10 min, and ii) The system compressor cycling frequency in the system operating with the power law control is smaller than with the traditional on-off system. Therefore, the study shows that the developed power law control kit has potential to be installed in any existing system with immediate significant energy savings with no need for HVAC-R hardware changes. - Highlights: • An energy consumption reduction strategy for HVAC-R systems is presented. • Power law and on-off control actions are experimentally compared. • Energy savings of 31% were obtained with power law control. • Compressor cycling frequency is smaller with power law control. • Power law control kit has potential to be installed in any existing system

  6. A Comfort-Aware Energy Efficient HVAC System Based on the Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    O. Tsakiridis

    2016-01-01

    Full Text Available A proactive heating method is presented aiming at reducing the energy consumption in a HVAC system while maintaining the thermal comfort of the occupants. The proposed technique fuses time predictions for the zones’ temperatures, based on a deterministic subspace identification method, and zones’ occupancy predictions, based on a mobility model, in a decision scheme that is capable of regulating the balance between the total energy consumed and the total discomfort cost. Simulation results for various occupation-mobility models demonstrate the efficiency of the proposed technique.

  7. Development and analysis of sustainable energy systems for building HVAC applications

    International Nuclear Information System (INIS)

    Khalid, F.; Dincer, I.; Rosen, M.A.

    2015-01-01

    The main HVAC applications considered in this paper are heating and cooling. Three newly developed systems for heating and cooling applications in buildings are proposed and assessed. Energy and exergy analyses are performed to assess the performance of heating, cooling and overall systems for each case, and the effects of various parameters on the energy and exergy efficiencies are examined. Also, the effect of changing the energy input for each system is also found in terms of overall efficiency. The overall system energy efficiency is found to be highest for the natural gas operated system with a vapour absorption chiller (system 1) at 27.5% and lowest for the photovoltaic (PV) and solar thermal operated system with vapour compression chiller (system 3) at 19.9%. The overall system exergy efficiency is found to be highest for the PV and solar thermal operated system with vapour compression chiller (system 3) at 3.9% and lowest for the PV and solar thermal operated system with heat pump (system 2) at 1.2%, respectively. - Highlights: • Three HVAC systems for buildings using renewable energy sources are proposed and assessed. • A performance improvement study is undertaken. • Parametric studies are carried out to determine the effects of various parameters on energy and exergy efficiencies

  8. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  9. Comparison of Energy Performance of Different HVAC Systems for a Typical Office Room and a Typical Classroom

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per; Pomianowski, Michal Zbigniew

    the energy consumption for buildings with cooling demand in cold seasons. In this way, the building system can operate at a very low energy use all the year round. The main purpose of this task is to investigate the energy performance of different HVAC systems used in the office room and the classroom...

  10. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    Science.gov (United States)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  11. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  12. Energy-Smart Choices for Schools. An HVAC Comparison Tool. [CD-ROM].

    Science.gov (United States)

    Geothermal Heat Pump Consortium, Inc., Washington, DC.

    A CD ROM program provides comparison construction cost capabilities for heating, ventilation, and air conditioning (HVAC) systems in educational facilities. The program combines multiple types of systems with square footage data on low and high construction cost and school size to automatically calculate HVAC comparative construction costs. (GR)

  13. Energy Savings From System Efficiency Improvements in Iowa's HVAC SAVE Program

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Baker, J. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Wells, J. [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2013-08-01

    The objective of this project is to explore the energy savings potential of maximizing furnace and distribution system performance by adjusting operating, installation, and distribution conditions. The goal of the Iowa HVAC System Adjusted and Verified Efficiency (SAVE) program is to train contractors to measure installed system efficiency as a diagnostic tool to ensure that the homeowner achieves the energy reduction target for the home rather than simply performing a tune-up on the furnace or having a replacement furnace added to a leaky system. The PARR research team first examined baseline energy usage from a sample of 48 existing homes, before any repairs or adjustments were made, to calculate an average energy savings potential and to determine which system deficiencies were prevalent. The results of the baseline study of these homes found that, on average, about 10% of the space heating energy available from the furnace was not reaching the conditioned space. In the second part of the project, the team examined a sample of 10 homes that had completed the initial evaluation for more in-depth study. For these homes, the diagnostic data shows that it is possible to deliver up to 23% more energy from the furnace to the conditioned space by doing system tune ups with or without upgrading the furnace. Replacing the furnace provides additional energy reduction. The results support the author's belief that residential heating and cooling equipment should be tested and improved as a system rather than a collection of individual components.

  14. HVAC modifications and computerized energy analysis for the Operations Support Building at the Mars Deep Space Station at Goldstone

    Science.gov (United States)

    Halperin, A.; Stelzmuller, P.

    1986-01-01

    The key heating, ventilation, and air-conditioning (HVAC) modifications implemented at the Mars Deep Space Station's Operation Support Building at Jet Propulsion Laboratories (JPL) in order to reduce energy consumption and decrease operating costs are described. An energy analysis comparison between the computer simulated model for the building and the actual meter data was presented. The measurement performance data showed that the cumulative energy savings was about 21% for the period 1979 to 1981. The deviation from simulated data to measurement performance data was only about 3%.

  15. Energy efficient HVAC control in historical buildings : a case study for the Amsterdam Museum

    NARCIS (Netherlands)

    Kompatscher, K.; Seuren, S.; Kramer, R.P.; Van Schijndel, J.A.W.M.; Schellen, H.L.

    2017-01-01

    Museums are often located in historical buildings. To provide suitable housing in a historical building for a museum, these buildings are usually adapted to suit the need for object preservation through HVAC control. Maintaining a strict indoor climate and limiting short fluctuations in indoor

  16. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Science.gov (United States)

    Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław

    2017-11-01

    Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  17. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Directory of Open Access Journals (Sweden)

    Pałaszyńska Katarzyna

    2017-01-01

    Full Text Available Thermally Activated Building Systems (TABS are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational. The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year – a typical meteorological year. The model was prepared using a generally accepted simulation tool – TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  18. HVAC retrofit for healthy schools

    International Nuclear Information System (INIS)

    Thompson, R.C.; Fisher, G.; Brennan, T.; Turner, W.A.; McKnight, F.

    1991-01-01

    The Environmental Protection Agency has evaluated the impacts of HVAC systems and building dynamics on radon concentrations in 26 schools across the United States. Diagnostic data indicated that radon was not the only indoor air pollutant in these schools. As a result, an essential step in the School Evaluation Program is determination of the feasibility of using HVAC technology for radon remediation in addition to general indoor air improvement. In 1990, the EPA sponsored the HVAC retrofit of two schools in Maine. This paper presents the information gained by these case studies. First, the extensive pre-retrofit diagnostics and characterizations of the two schools are reviewed. Then follows a discussion of why and how the HVAC systems, including unit ventilators, central air-handling units, and heat recovery ventilation, were retrofitted. Finally, an appraisal of the post-retrofit radon and CO 2 levels is made, along with presentation of related data such as retrofit costs and energy and comfort impacts

  19. Efficient HVAC. New products

    International Nuclear Information System (INIS)

    2016-01-01

    Jung is responding to the challenge of energy efficiency, ease of operation and economic profitability in all of its solutions for the tertiary sector, whether for newly constructed buildings or refurbishments, for full management of the electrical system or the partial control of lighting, HVAC, mood settings, access control, etc., for the bedrooms or specific areas of the building. In the specific case of hotels, Jung offers each a custom-made solution in line with its possibilities and objectives. (Author)

  20. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  1. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    OpenAIRE

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-01-01

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design bui...

  2. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  3. A complete geothermal energy cycle with heat pumps and hybrid HVAC systems for the city of Denizli, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Eltez, M. [Ege Univ., Izmir (Turkey). Mechanical Engineering Dept.; Kilkis, I.B. [Heatway Radiant Floors and Snowmelting, Springfield, MO (United States)]|[Middle East Technical Univ., Ankara (Turkey)

    1995-12-31

    This paper discusses general aspects of maximizing geofluid effectiveness by employing hybrid cycle plants coupled to district HVAC systems. Alternative and new techniques in space heating and cooling are also discussed. A case study is presented for the district HVAC system for the city of Denizli in Turkey. Results are compared with an open-cycle, open-loop system.

  4. Selecting HVAC Systems for Schools To Balance the Needs for Indoor Air Quality, Energy Conservation and Maintenance. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.; Kunz, Walter S., Jr.

    Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…

  5. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  6. Energy management in a telecommunications environment with specific reference to HVAC

    Energy Technology Data Exchange (ETDEWEB)

    Rabie, N.; Delport, G.J. [University of Pretoria (South Africa). Centre for new Electricity Studies

    2002-04-01

    The paper takes an in-depth look at Heating Ventilation and Air Conditioning in a telecommunications environment. The focus is on developing energy conversion models for the cooling equipment installed in telecommunication exchanges. The models can be used for (1) evaluating the installed cooling capacity needed for a particular exchange and (2) assessing the financial implications, with reference to tariff structuring, of manipulating the elements that affect the required cooling load. Together, these will provide a powerful tool for evaluating cost-effective energy configurations, schedules and tariffs. (author)

  7. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Chusak, Lee; Daiber, Jared; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2012-07-01

    Using Computational Fluid Dynamics (CFD), four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a) an all-air overhead system, (b) a combined all-air overhead and hydronic radiant system (chilled ceiling), (c) an all-air raised floor system (displacement ventilation), and (d) a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  8. WIPP conceptual design report. Addendum F. HVAC systems energy analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1977-04-01

    This report presents the results of a technical and economic analysis of alternative methods of meeting the heating, ventilating, and air conditioning requirements of the Waste Isolation Pilot Plant (WIPP) facilities proposed to be constructed in southeastern New Mexico. This report analyzes a total of ten WIPP structures to determine the most energy and economic efficient means of providing heating, ventilating, and air conditioning services. Additional analyses were performed to determine the merits of centralized versus dispersed refrigeration and heating facilities, and of performing supplemental domestic hot water heating with solar panels

  9. HVAC-DYNAMIC; A training simulator for dynamic analysis of HVAC plants

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, M; Novakovic, V [SINTEF Division of Applied Thermodynamic, HVAC Group, Trondheim (Norway); Oegaard, O [SINTEF Division of Automatic Control, Trondheim (Norway); Brustad, G [Computer Aided Modelling, CAMO A/S, Trondheim (Norway)

    1989-01-01

    HVAC-DYNAMIC is a software tool for the dynamic simulation of Heating, Ventilation and Air Conditioning (HVAC) plants. The program is designed to be used by HVAC engineers during design or troubleshooting of plants and by plant operators in their training. The program is based on a set of the most-used HVAC plant configurations and requires only a minimum of knowledge in numeric methods and programming. A brief presentation of the program structure and examples showing some of the application of the program are given. 4 figs., 4 refs.

  10. HVAC-DYNAMIC: a training simulator for dynamic analysis of HVAC plants

    Directory of Open Access Journals (Sweden)

    Morten Heintz

    1989-07-01

    Full Text Available HVAC-DYNAMIC is a software tool for the dynamic simulation of Heating, Ventilation and Air Conditioning (HVAC plants. The program is designed to be used by HVAC engineers during design or troubleshooting of plants and by plant operators in their training. The program is based on a set of the most-used HVAC plant configurations and requires only a minimum of knowledge in numeric methods and programming. A brief presentation of the program structure and examples showing some of the application of the program are given.

  11. Multiyear Plan for Validation of EnergyPlus Multi-Zone HVAC System Modeling using ORNL's Flexible Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhandari, Mahabir S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that can be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.

  12. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  13. Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems

    Directory of Open Access Journals (Sweden)

    Stefano De Antonellis

    2014-11-01

    Full Text Available Air to air heat exchangers play a crucial role in mechanical ventilation equipment, due to the potential primary energy savings both in case of refurbishment of existing buildings or in case of new ones. In particular, interest in heat wheels is increasing due to their low pressure drop and high effectiveness. In this paper a detailed optimization of design parameters of heat wheels is performed in order to maximize sensible effectiveness and to minimize pressure drop. The analysis is carried out through a one dimensional lumped parameters heat wheel model, which solves heat and mass transfer equations, and through appropriate correlations to estimate pressure drop. Simulation results have been compared with experimental data of a heat wheel tested in specific facilities, and good agreement is attained. The device optimization is performed through the variation of main design parameters, such as heat wheel length, channel base, height and thickness and for different operating conditions, namely the air face velocity and the revolution speed. It is shown that the best configurations are achieved with small channel thickness and, depending on the required sensible effectiveness, with appropriate values of wheel length and channel base and height.

  14. Modeling and Control of AHUs in Building HVAC Systems

    OpenAIRE

    Liang, Wei

    2014-01-01

    Heating, ventilation and air conditioning (HVAC) is a mechanical system that provides thermal comfort and accepted indoor air quality often instrumented for large-scale buildings. The HVAC system takes a dominant portion of overall building energy consumption and accounts for 50% of the energy used in the U.S. commercial and residential buildings in 2012. The performance and energy saving of building HVAC systems can be significantly improved by the implementation of better and smarter contro...

  15. Modernisation of space HVAC systems with high energy consumption; Sanierung von RLT-Anlagen mit hohen Energieverbraeuchen

    Energy Technology Data Exchange (ETDEWEB)

    Willan, U. [ROM (Rud. Otto Meyer) - Technik fuer Mensch und Umwelt, Hamburg (Germany). Zentralbereich Ingenieurtechnik

    1997-12-31

    For office buildings and similarly used buildings, concepts are developed for the modernization of space hvac systems. The state of work in the following sectors is discussed: optimum comparison processes for space HVAC systems, measurements to assess the performance of alternative dehumidification and cooling systems, heat-physiological space model. (MSK) [Deutsch] Fuer Buerobauten und Gebaeude aehnlicher Nutzung werden Sanierungskonzepte fuer RLT-Anlagen erarbeitet. Im Folgenden wird der Stand der Arbeiten in den Bereichen: optimale Vergleichsprozesse fuer RLT-Anlagen, messtechnische Beurteilung alternativer Entfeuchtungs- und Kuehlsysteme sowie ein waermetechnisches Raummodell erlaeutert.

  16. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST): Volume 2: Cases E300-E545.

    Energy Technology Data Exchange (ETDEWEB)

    Neymark J.; Judkoff, R.

    2004-12-01

    This report documents an additional set of mechanical system test cases that are planned for inclusion in ANSI/ASHRAE STANDARD 140. The cases test a program's modeling capabilities on the working-fluid side of the coil, but in an hourly dynamic context over an expanded range of performance conditions. These cases help to scale the significance of disagreements that are less obvious in the steady-state cases. The report is Vol. 2 of HVAC BESTEST Volume 1. Volume 1 was limited to steady-state test cases that could be solved with analytical solutions. Volume 2 includes hourly dynamic effects, and other cases that cannot be solved analytically. NREL conducted this work in collaboration with the Tool Evaluation and Improvement Experts Group under the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 22.

  17. The Impact of Insulation and HVAC Degradation on Overall Building Energy Performance: A Case Study

    Directory of Open Access Journals (Sweden)

    Georgios Eleftheriadis

    2018-02-01

    Full Text Available Through monitoring of buildings, it can be proven that the performance of envelope elements and energy supply systems deteriorates with time. The results of this degradation are higher energy consumption and life cycle costs than projected in the building design phase. This paper considers the impacts of this deterioration on the whole building energy performance with the goal of improving the accuracy of long term performance calculations. To achieve that, simplified degradation equations found in literature are applied on selected envelope elements and heating system components of a single-family house in Germany. The energy performance of the building over 20 years is determined through simulations by EnergyPlus and MATLAB. The simulation results show that, depending on maintenance and primary heating system, the building can consume between 18.4% and 47.1% more primary energy over 20 years compared to a scenario in which no degradation were to occur. Thus, it can be concluded that considering performance drop with time is key in order to improve the decision-making process when designing future-proof buildings.

  18. System-Level Monitoring and Diagnosis of Building HVAC System

    OpenAIRE

    Wu, Siyu

    2013-01-01

    Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC system dominates the energy consumption and accounts for 57% of the energy used in U.S. commercial and residential buildings. Unfortunately, the HVAC system may fail to meet the performance expectations due to various faults, including not only complete hardware failures, but also non-optimal operations....

  19. Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

    Directory of Open Access Journals (Sweden)

    Clemente García Cutillas

    2017-03-01

    Full Text Available The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

  20. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America research on HVAC air filter sizing that prompted a change in the California “Title 24” Energy Code requiring filter manufacturers, HVAC designers, and HERS raters to make changes that will encourage the use of higher MERV filters without degrading HVAC performance.

  1. Best practices guide for residential HVAC Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  2. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.

  3. Comparison of co-simulation approaches for building and HVAC/R system simulation

    NARCIS (Netherlands)

    Trcka, M.; Wetter, M.; Hensen, J.L.M.; Jiang, Yi

    2007-01-01

    Appraisal of modern performance-based energy codes, as well as heating, ventilation, airconditioning and refrigeration (HVAC/R) system design require use of an integrated building and system performance simulation program. However, the required scope of the modeling library of such integrated tools

  4. The importance of correctly maintaining HVAC installations and energy management in the hotel sector

    International Nuclear Information System (INIS)

    Acosta Molero, P.

    2016-01-01

    The optimum maintenance of installations in hotel establishments is becoming increasingly necessary given the complexity and diversity of this type of buildings, with the aim of being efficient in the use of the resources that they consume, such as water and energy. From the owners of the establishments and the companies responsible for the hotel management, to the clients that stay in them, it is vitally important that the operation of its installations is guaranteed at all times, particularly as regards temperature control. Proper preventive maintenance therefore plays an essential role in ensuring that the hotel guests’ experience is as positive as possible. (Author)

  5. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Home Innovation Research Labs, Marlboro, MD (United States); Del Bianco, M. [Home Innovation Research Labs, Marlboro, MD (United States); Mallay, D. [Home Innovation Research Labs, Marlboro, MD (United States)

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  6. Economic Optimal HVAC Design for Hybrid GEOTABS Buildings and CO2 Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Damien Picard

    2018-02-01

    Full Text Available In the early design phase of a building, the task of the Heating, Ventilation and Air Conditioning (HVAC engineer is to propose an appropriate HVAC system for a given building. This system should provide thermal comfort to the building occupants at all time, meet the building owner’s specific requirements, and have minimal investment, running, maintenance and replacement costs (i.e., the total cost and energy use or environmental impact. Calculating these different aspects is highly time-consuming and the HVAC engineer will therefore only be able to compare a (very limited number of alternatives leading to suboptimal designs. This study presents therefore a Python tool that automates the generation of all possible scenarios for given thermal power profiles and energy load and a given database of HVAC components. The tool sizes each scenario properly, computes its present total cost (PC and the total CO 2 emissions associated with the building energy use. Finally, the different scenarios can be searched and classified to pick the most appropriate scenario. The tool uses static calculations based on standards, manufacturer data and basic assumptions similar to those made by engineers in the early design phase. The current version of the tool is further focused on hybrid GEOTABS building, which combines a GEOthermal heat pump with a Thermally Activated System (TABS. It should further be noted that the tool optimizes the HVAC system but not the building envelope, while, ideally, both should be simultaneously optimized.

  7. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  8. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  9. Integrated dynamic modelling and multivariable control of HVAC components

    NARCIS (Netherlands)

    Satyavada, H.; Babuska, R.; Baldi, S.; Stoustrup, Jakob; Rantzer, Anders; Jørgensen, John Bagterp

    2016-01-01

    The field of energy efficiency in buildings offers challenging opportunities from a control point of view. Heating, Ventilation and Air-Conditioning (HVAC) units in buildings must be accurately controlled so as to ensure the occupants' comfort and reduced energy consumption. While the existing HVAC

  10. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    . This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was

  11. 10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Preemption of State regulations for commercial HVAC & WH... regulations for commercial HVAC & WH products. Beginning on the effective date of such standard, an energy conservation standard set forth in this Part for a commercial HVAC & WH product supersedes any State or local...

  12. Intelligent control of HVAC systems. Part I: Modeling and synthesis

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2013-03-01

    Full Text Available This is the first part of a work on intelligent type control of Heating, Ventilating and Air-Conditioning (HVAC systems. The study is performed from the perspective of giving a unitary control method to ensure high energy efficiency and air quality improving. To illustrate the proposed HVAC control technique, in this first part it is considered as benchmark problem a single thermal space HVAC system. The construction of the mathematical model is performed only with a view to obtain a framework of HVAC intelligent control validation by numerical simulations. The latter will be reported in a second part of the study.

  13. [Analysis and research on cleaning points of HVAC systems in public places].

    Science.gov (United States)

    Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu

    2010-03-01

    To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.

  14. HVAC in sustainable office buildings a bridge between owners and engineers

    CERN Document Server

    Hovorka, Frank; Kurnitski, Jarek; Litiu, Andrei

    2012-01-01

    This guidebook aims to build a bridge between the real estate community and the engineering community. It explains the challenges of property valuation based on real data and how the sustainability and HVAC-technology can have an impact on value. It also gathers the latest HVAC- and other technologies used in sustainable buildings and gives some real case study examples. But maybe the most important part in terms of improved communication between the owners and engineers is the list of questions to be asked during the life time of a building. It is impossible to give all the right answers in this guidebook, but we will raise some pertinent questions. As climates and cultures are different, as well as existing building types and energy production, the same solutions do not solve problems universally. This guidebook is aimed for the owners and architects as well as engineers. It doesn’t require deep technical knowhow of HVAC-systems or real estate valuation.

  15. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  16. Energy Consumption vs. Energy Requirement

    Science.gov (United States)

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  17. Optimal Model-Based Control in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2008-01-01

    is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....

  18. HVAC retrofitting and remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.G. [Linford Co., Oakland, CA (United States)

    1996-03-01

    This article describes the pitfalls and problems as well as the benefits of updating a HVAC system. Failures and successes, and the lessons learned working in this dominant portion of the construction market are included as the author describes retrofit projects. The projects have ranged from total replacements in unoccupied buildings to updating systems in occupied buildings.

  19. State of the Art of HVAC Technology in Europe and America

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Kazanci, Ongun Berk

    2015-01-01

    of energy sources and energy generators are very much similar. This paper will present state-of the art-off energy efficient systems that will provide a good indoor environmental quality at a decreased energy use. Low Temperature Heating and High Temperature Cooling systems are an important requirement...... mechanisms and media to emit and remove heat or moisture from indoor spaces (e.g. hydronic radiant heating and cooling systems, fan-coil units, and active beams). The main differences between HVAC systems in Europe, North America and other parts of the world are often the indoor terminal units. Type...... for increasing the energy efficiency of HVAC (heating, ventilation and air-conditioning) systems and for increasing the amount of renewable energy used. Especially these types of systems are getting increasing attention in Europe and North-America. In the present study, operation characteristics, possibilities...

  20. HVAC system operation manual of IMEF

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun.

    1997-06-01

    This manual is operation procedures of the IMEF(Irradiated Material Examination Facility) HVAC(Heating, Ventilation and Air Conditioning) System. General operation procedures and test method of the IMEF HVAC system are described. The manual is as follows; 1. HVAC system operation manual 2. HVAC system management guide 3. HVAC system maintenance manual 4. HVAC system air velocity and flowrate measurement manual 5. HVAC system HEPA filter leak test manual 6. HVAC system charcoal filter leak test manual 7. HVAC system HEPA and charcoal filter exchange manual. (author). 8 tabs

  1. Control strategy optimization of HVAC plants

    Energy Technology Data Exchange (ETDEWEB)

    Facci, Andrea Luigi; Zanfardino, Antonella [Department of Engineering, University of Napoli “Parthenope” (Italy); Martini, Fabrizio [Green Energy Plus srl (Italy); Pirozzi, Salvatore [SIAT Installazioni spa (Italy); Ubertini, Stefano [School of Engineering (DEIM) University of Tuscia (Italy)

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  2. Control strategy optimization of HVAC plants

    International Nuclear Information System (INIS)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-01-01

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting

  3. Efficiency improvement of variable speed electrical drives for HVAC applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, F.; Blaabjerg, F.; Pedersen, J.K. [Aalborg Univ., Inst. of Energy Technology, Aalborg East (Denmark)

    2000-07-01

    A large part of the produced electrical energy is consumed by ventilators, pumps and compressors, the so-called HVAC applications. A lot of this energy can be saved by speed control, but even with the large saving obtained alone by introduction of variable speed, it is still essential to optimise the control of the variable speed drive and to optimise the electrical machine with respect to efficiency. Experiments are made with energy optimal induction motor control on a 2.2 kW variable speed pump system. It is demonstrated that 10% of the consumed energy can typically be saved by energy optimal motor control compared with constant V/Hz control. In a comparison of induction motors and permanent magnet synchronous motors for a variable speed pump application it is shown that for 2.2 kW motors an investment in high-efficiency or PM motors are typically paid back within 2.5 years and 7 years respectively. For a 90 kW PM motor the pay-back time would be 24 years. It is today not profitable to use PM motors for variable speed HVAC applications above 2 kW rated motor power. A further study is required to determine this limit in power rating more precisely. (orig.)

  4. Test cell data-based predictive modelling to determine HVAC energy consumption for three façade solutions in Madrid

    Directory of Open Access Journals (Sweden)

    J. Guerrero-Rubio

    2018-01-01

    Full Text Available This study aims to narrow the gap between predicted and actual energy performance in buildings. Predictive models were established that relate the electric consumption by HVAC systems to maintain certain indoor environmental conditions in variable weather to the type of façade. The models were developed using data gathered from test cells with adiabatic envelopes on all but the façade to be tested. Three façade types were studied. The first, the standard solution, consisted in a double wythe brick wall with an intermediate air space, the configuration most commonly deployed in multi-family dwellings built in Spain between 1940 and 1980 (prior to the enactment of the first building codes that limited overall energy demand in buildings. The other two were retrofits frequently found in such buildings: ventilated façades and ETICS (external thermal insulation composite systems. Two predictive models were designed for each type of façade, one for summer and the other for winter. The linear regression equations and the main statistical parameters are reported.

  5. Cutting the cost of hospital HVAC.

    Science.gov (United States)

    Ruddell, Steve

    2011-09-01

    Steve Ruddell, head of global marketing, Motors & Generators, at ABB, emphasises the importance of a good motor management and maintenance policy in getting the best performance from, and reducing the energy consumption of, hospitals' HVAC systems, also explaining why investing in energy-efficient, low voltage drives, and high efficiency electric motors, to control such equipment, can pay major dividends for estates and facilities teams.

  6. Overview of HVAC system simulation

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2010-01-01

    The paper gives an overview of heating, ventilation and air-conditioning (HVAC) system modeling and simulation. The categorization of tools for HVAC system design and analysis with respect to which problems they are meant to deal with is introduced. Each categorization is explained and example tools

  7. Finnish industry's energy requirement

    International Nuclear Information System (INIS)

    Punnonen, J.

    2000-01-01

    Industry uses around half of the electricity consumed in Finland. In 1999, this amounted to 42.3 TWh and 420 PJ of fuel. Despite the continual improvements that have been made in energy efficiency, energy needs look set to continue growing at nearly 2% a year. Finnish industrial output rose by some 5.5% in 1999. In energy-intensive sectors such as pulp and paper, output rose by 3.4%, in the metal industry by 4%, and in the chemical industry by 3.1%. Growth across Finnish industry is largely focused on the electrical and electronics industries, however, where growth last year was 24.3% The Finnish forest products industry used a total of 26.1 TWh of electricity last year, up 1% on 1998. This small increase was the result of the industry's lower-than-average operating rate in the early part of the year The metal industry used 7.2 TWh of electricity, an increase of 5.8% on 1998. Usage in the chemical industry rose by 2% to 5.2 TWh. Usage by the rest of industry totalled 3.8 TWh, up 2.3% on 1998. All in all, industry's use of electricity rose by 2% in 1999 to 42,3 TWh. Increased demand on industry's main markets in Europe will serve to boost industrial output and export growth this year. This increased demand will be particularly felt in energy-intensive industries in the shape of an increased demand for electricity. Overall, electricity demand is expected to grow by 3% this year, 1% more than industry's longterm projected electricity usage growth figure of 2%. The structure of industry's fuel use in Finland has changed significantly over the last 25 years. Oil, for example, now accounts for only some 10% of fuel use compared to the 40% typical around the time of the first oil crisis. Oil has been replaced by biofuels, peat, and natural gas. The pulp and paper industry is the largest industrial user of renewable energy sources in Finland, and uses wood-related fuels to cover nearly 70% of its fuel needs

  8. Management and monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting and HVAC services

    OpenAIRE

    Aghemo, C.; Virgone, J.; Fracastoro, G.V.; Pellegrino, A.; Blaso, L.; Savoyat, J.; Johannes, Kevyn

    2013-01-01

    The presented work addresses the topic of energy savings in existing public buildings, when no significant retrofits on building envelope or plants can be done and savings can be achieved by designing intelligent ICT-based service to monitor and control environmental conditions, energy loads and plants operation. At the end of 2010 the European Commission, within the Seventh Framework Program, has founded a project entitled “Smart Energy Efficient Middleware for Public Spaces” (SEEMPubS). To ...

  9. Proceedings of the 7th cogeneration and independent power congress, natural gas purchasing '92, HVAC controls and energy conservation '92, 1992 indoor air quality congress

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is covered under the following topics: Cogeneration and IPP Market Developments; Natural Gas Marketing and Deliverability Strategies; Identifying the Sources of IAQ Problems; User-Owner Cogeneration Systems; Strategies for International Power Development; Strategic Fuel Purchasing; Cogeneration and utility Power Plant Compliance Issues; New HVAC Design Trends; IAQ Practical solutions: Case Studies

  10. Impact of the duct static pressure reset control strategy on the energy consumption by the HVAC system

    Directory of Open Access Journals (Sweden)

    Walaszczyk Juliusz

    2017-01-01

    Full Text Available This article addresses different duct static pressure control strategies which could be implemented in variable air volume air-conditioning systems (VAV. Two pressure reset control strategies are compared to the commonly used control solution based on the “Constant static pressure” method. First pressure reset control strategy, known as PID Control, uses signals from VAV boxes controllers to reset duct static pressure in a way that one of the VAV dampers is maintained almost entirely open. Second strategy decreases static pressure setpoint until an adjustable number of pressure requests occur. As a response to the certain amount of requests, static pressure setpoint is increased. This strategy is called Trim & Respond. Both static pressure reset control strategies described in this paper are considered to have more significant potential for energy savings than the “Constant static pressure” method. In order to validate this potential, several simulations for different control strategies were carried out and the obtained results are compared and analysed. The theoretical limit of the energy savings - set of the optimal control actions, was estimated with Nelder-Mead algorithm and also presented in this article. General description of the static pressure control strategies "Constant static pressure", PID Control and Trim & Respond is given.

  11. Canadian energy standards : residential energy code requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, K. [SAR Engineering Ltd., Burnaby, BC (Canada)

    2006-09-15

    A survey of residential energy code requirements was discussed. New housing is approximately 13 per cent more efficient than housing built 15 years ago, and more stringent energy efficiency requirements in building codes have contributed to decreased energy use and greenhouse gas (GHG) emissions. However, a survey of residential energy codes across Canada has determined that explicit demands for energy efficiency are currently only present in British Columbia (BC), Manitoba, Ontario and Quebec. The survey evaluated more than 4300 single-detached homes built between 2000 and 2005 using data from the EnerGuide for Houses (EGH) database. House area, volume, airtightness and construction characteristics were reviewed to create archetypes for 8 geographic areas. The survey indicated that in Quebec and the Maritimes, 90 per cent of houses comply with ventilation system requirements of the National Building Code, while compliance in the rest of Canada is much lower. Heat recovery ventilation use is predominant in the Atlantic provinces. Direct-vent or condensing furnaces constitute the majority of installed systems in provinces where natural gas is the primary space heating fuel. Details of Insulation levels for walls, double-glazed windows, and building code insulation standards were also reviewed. It was concluded that if R-2000 levels of energy efficiency were applied, total average energy consumption would be reduced by 36 per cent in Canada. 2 tabs.

  12. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...

  13. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    Science.gov (United States)

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  14. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  15. HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…

  16. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  17. HVAC system optimisation-in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Cai, W.; Xie, L.; Li, S.; Soh, Y.C. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore)

    2004-07-01

    This paper presents a practical method to optimise in-building section of centralised Heating, Ventilation and Air-Conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimisation method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  18. HVAC system optimization - in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lu; Wenjian Cai; Lihua Xie; Shujiang Li; Yeng Chai Soh [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2005-01-01

    This paper presents a practical method to optimize in-building section of centralized Heating, Ventilation and Air-conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimization method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  19. Energy requirement of some energy resources

    International Nuclear Information System (INIS)

    Chapman, P.F.; Hemming, D.F.

    1976-01-01

    The energy requirements for the sources of energy under examination are expressed as the fraction of total energy consumed in the production of a unit of gross output. Clearly there are vast differences between the energy requirements of these sources of fuels. Using energy analysis it is possible to indicate points of futility where no net energy is produced (i.e. Xsub(f) = 1). For North Sea oil fields using current technology, this appears to occur at a field size of 100,000-200,000 tons of recoverable reserves of oil. For oil shales exploited using above-ground retorting, the outer limit is at a grade of about 5 gal/ton. For uranium ores used to fuel a burner reactor, the cut-off grade was found to be of the order of 20 ppm. However, it should be remembered that at Xsub(f) = 1, there is no net output and the price of the fuel would be infinite. Because of payments to labour and capital, the upper limit of economic viability may well occur at values of Xsub(f) from 0.1 to 0.2. Thus uranium ores of a grade of 100 ppm U 3 O 8 or less may not be ecomically viable using current burner reactors and this in turn implies an upper bound for the total thermal reactor capacity. For oil shales exploited using above-ground retorting and room-and-pillar mining 15-20 gal/ton shale may represent the upper limit of economic viability, depending on the efficiency that can be achieved in a commercial-scale retort

  20. Heat recovery unit operation of HVAC system in IMEF

    International Nuclear Information System (INIS)

    Paek, S. R.; Oh, Y. W.; Song, E. S.; Park, D. K.; Joo, Y. S.; Hong, K. P.

    2003-01-01

    HVAC system including a supply and exhaust air system in IMEF(Irradiated Materials Examination Facility) is an essential facility for preventing a leakage of radioactive materials and for a preservation of a working environment. It costs a lot to operate the HVAC system in IMEF because our ventilation type is once-through system, and an air flow is maintained from low level contamination area to high level and maintained high turns of ventilation air under certain conditions. As HRU(Heat Recovery Unit) at HVAC system based on PIEF(Post Irradiation Examination Facility) operation experiences is designed and adopted, it prevents from a heating coil freezing destruction in winter and makes much energy saving etc.. Heat pipe type HRU is adopted in IMEF, and a construction and operation result of HRU is examined

  1. Technical Assessment: WRAP 1 HVAC Passive Shutdown

    International Nuclear Information System (INIS)

    Ball, D.E.; Nash, C.R.; Stroup, J.L.

    1993-01-01

    As the result of careful interpretation of DOE Order 6430.lA and other DOE Orders, the HVAC system for WRAP 1 has been greatly simplified. The HVAC system is now designed to safely shut down to Passive State if power fails for any reason. The fans cease functioning, allowing the Zone 1 and Zone 2 HVAC Confinement Systems to breathe with respect to atmospheric pressure changes. Simplifying the HVAC system avoided overdesign. Construction costs were reduced by eliminating unnecessary equipment. This report summarizes work that was done to define the criteria, physical concepts, and operational experiences that lead to the passive shutdown design for WRAP 1 confinement HVAC systems

  2. Plutonium Finishing Plant (PFP) HVAC System Component Index; FINAL

    International Nuclear Information System (INIS)

    DICK, J.D.

    1999-01-01

    This document identities the components, design media, procedures and defines the critical characteristics of Commercial Grade Items necessary to ensure the HVAC system provides these functions. This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item

  3. The energy-optimized house at Zittau - a new teaching and research buliding for gas and HVAC engineering; Das Niedrigenergiehaus Zittau - ein neues Lehr- und Foschungsgebaeude fuer die Gas- und die Versorgungstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Wilsdorf, J. [Hochschule fuer Technik, Wirtschaft und Sozialwesen, Zittau/Goerlitz, Zittau (Germany). Fachbereich Bauwesen, Lehrgebiet Gastechnik

    1996-06-01

    By means of the new energy-optimized building at Zittau, an education and research object, the Hochschule fuer Technik, Wirtschaft und Sozialwesen of Zittau is enhancing the practice-oriented education of students especially in the curricula hvac engineering and structural engineering. As an experimental building it is, at the same time, a complex system demonstrating energy-saving construction and heating and permitting to carry out research and development work. The article describes the concepts and execution of the building. (orig.) [Deutsch] Mit dem neuen Lehr- und Forschungsgebaeude `Niedrigenergiehaus Zittau` verbessert die Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau die praxisbezogene Ausbildung der Studenten vor allem in den Studiengaengen der Ver- und Entsorgungstechnik und des Bauingenieurwesens. Zugleich ist es als Experimentalbau ein komplexes System fuer energiesparendes Bauen und Heizen und bietet hervorragende Voraussetzungen fuer die Durchfuehrung von Forschungs- und Entwicklungsarbeiten. Im Artikel werden Konzepte und Einrichtungen des Gebaeudes beschrieben. (orig.)

  4. HVAC system simulation: overview, issues and some solutions

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2011-01-01

    Integrated performance simulation of buildings’ heating, ventilation and air-conditioning (HVAC) systems can help in reducing energy consumption and increasing occupant comfort. Recognizing this fact, in the last forty years many tools have been developed to help achieving this goal. In this paper

  5. Requirements for an energy policy

    International Nuclear Information System (INIS)

    Conant, M.A.

    1987-01-01

    The central issue facing the US today lies in the rise of oil imports. No supergiant (5 billion barrels) oil discoveries have been made in the US. Production from existing fields is declining. The 1985-86 oil price collapse from $26 to less than $15 per barrel had a disastrous effect on the budgets of smaller oil companies which do most of the exploring, and on the service industry. Budgets for overseas exploration has been generally sustained. Oil prices are not expected to sustain domestic exploration. Gulf oil sources will, in the next five years, supply some 75 percent of all oil in international trade. Without an energy policy, involvement in Middle East oil will grow exponentially, as will the needs of others for Gulf oil. The natural gas situation is different, with a spare producing capacity of one trillion cubic feet this year, which could double next year. Natural gas deregulation has created an unbelievable mess in the requirements of producers/suppliers and purchasers to have dependable business arrangements. Coal is plentiful and will be until the end of time. Public opposition to emission problems and the greenhouse effect are an obstacle to greater use of coal. The nuclear option may be dead, with no new orders since 1978. Statistics are provided on proven world reserves of conventional crude oil, recoverable heavy oils, tar sands, and shale oil; which indicates for the long term an ability to transform the Geopolitics of oil away from the middle east. Energy options require energy R ampersand D, use of Alaskan gas, conservation and efficiency in energy use, strategic reserves, close energy relations with allies, and a government-industry link which insures meeting the US oil needs from the Western Hemisphere

  6. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  7. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  8. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational

  9. Control of Variable-Speed Pressurization Fan for an Offshore HVAC System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2014-01-01

    all the way above the ambient pressure according to safety regulations. Meanwhile, the indoor air needs to be regularly changed in order to guarantee the indoor air quality. Both requirements could be possibly achieved by automatically manipulating either the throttle valve located at the terminal....... This paper proposes a set of control solutions to regulate the variablespeed pressurization fan system such that the energy efficiency of the considered HVAC system can be explicitly considered. A combined feed-forward with a PI-based feedback control solution, and a MPC solution are proposed based...

  10. Evaluation of High-Performance Rooftop HVAC Unit Naval Air Station Key West, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Howett, Daniel H. [ORNL; Desjarlais, Andre Omer [ORNL; Cox, Daryl [ORNL

    2018-01-01

    This report documents performance of a high performance rooftop HVAC unit (RTU) at Naval Air Station Key West, FL. This report was sponsored by the Federal Energy Management Program as part of the "High Performance RTU Campaign".

  11. Building America Expert Meeting Report. Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS Inc., Pittsburgh, PA (United States)

    2011-10-01

    This expert meeting was hosted by the IBACOS Building America research team to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting.

  12. Energy requirements of tire pulling.

    Science.gov (United States)

    Fredriksen, Per M; Mamen, Asgeir

    2017-10-01

    We have investigated the effect using walking poles and pulling tires at 4 and 6 km·h-1 (1.11 and 1.67 m·s-1) speeds on oxygen uptake (V̇O2) and heart rate. Eleven subjects, 6 males, with a mean (SD) age of 25.2 (6.9) years participated in field tests involving walking without poles, walking with poles and tire pulling with poles. Increasing the load caused the largest increases in energy demand, more than 4 MET. Speed increase also caused substantial energy increase, approximately 4 MET. Increasing the inclination only modestly increased the oxygen uptake, approximately 2 MET. In both level walking and uphill walking, using poles marginally increased oxygen uptake compared to working without poles. Pulling one tire (12.5 kg) required an oxygen uptake of 27 (4) mL·kg-1·min-1 at 4 km·h-1 and 0% inclination. Adding one more tire (6 kg) drove the oxygen uptake further up to 39 (4) mL·kg-1·min-1. This is close to the requirement of level running at 10.5 km·h-1. Pulling both tires at 6 km·h-1 and 5% inclination required a V̇O2 of 54 (6) mL·kg-1·min-1, equal to running uphill at 5% inclination and 12.5 km·h-1 speed. Heart rate rose comparably with oxygen uptake. At 4 km·h-1 and 0% inclination the increase was 29 bpm, from 134 (21) to 163 (22) bpm when going from pulling one tire to two tires. In the hardest exercise, 6 km·h-1 and 5% inclination, heart rate reached 174 (14) bpm. The study showed that tire pulling even at slow speeds has an energy requirement that is so large that the activity may be feasible as endurance training.

  13. Small Business Voucher CRADA Report: Natural Gas Powered HVAC System for Commercial and Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Daniel [Be Power Tech, Deerfield Beach, FL (United States); Ally, Moonis Raza [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mudiraj, Shyam [Be Power Tech, Deerfield Beach, FL (United States); Tilghman, Matthew [Be Power Tech, Deerfield Beach, FL (United States); Graham, Matthew [Be Power Tech, Deerfield Beach, FL (United States)

    2017-04-30

    Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.

  14. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  15. Recommended HVAC standard of the Florida Radon Research Program. Final report, Mar-Sep 90

    International Nuclear Information System (INIS)

    Cummings, J.B.

    1992-01-01

    The report contains the recommended language for the heating, ventilation, and air-conditioning (HVAC) section of the 'Florida Code for Radon-resistant Construction and Mitigation.' It deals with elements of construction that relate to the HVAC of houses. Its primary intent is to prevent pressure differentials in houses that can increase the transport of radon into houses. Three pathways of compliance are available to meet the requirements of the HVAC portion of the standards. The first is purely prescriptive. The second is a performance and prescriptive approach. The third is a marketplace approach

  16. Using a new programme (THERCOM) to predict thermal comfort as a base to design energy efficient buildings

    OpenAIRE

    Al-Khatri, Hanan; Gadi, Mohamed

    2014-01-01

    A strong relationship relates the thermal comfort and the consumption of energy, especially in the hot arid climate where the installation of HVAC systems is unavoidable. In fact, it has been reported that the HVAC systems are responsible for consuming huge amounts of the total energy used by the buildings that can globally reach up to 40% of the total primary energy requirement. The future estimations indicate that the energy consumption is likely to continue growing in the developed economi...

  17. HVAC; Heating, Ventilation, Air Conditioning - Aerosol Duct Sealant

    Science.gov (United States)

    2016-09-01

    material was applied. Annual energy and cost savings were predicted based on a typical weather year for each site. The installation of the duct...Balance reports; Visible dust streaks on duct work, ceilings near supply diffusers, or electrical boxes; Comfort complaints Specific Leakage...energy consumption , depending on the HVAC system type and the location of the ducts that were sealed. The cost effectiveness of the technology is

  18. LARGE BUILDING HVAC SIMULATION

    Science.gov (United States)

    The report discusses the monitoring and collection of data relating to indoor pressures and radon concentrations under several test conditions in a large school building in Bartow, Florida. The Florida Solar Energy Center (FSEC) used an integrated computational software, FSEC 3.0...

  19. Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2018-02-01

    Full Text Available Heating, Ventilating, and Air Conditioning (HVAC systems are the major energy-consuming devices in buildings. Nowadays, due to the high demand for HVAC system installation in buildings, designing an effective controller in order to decrease the energy consumption of the devices while meeting the thermal comfort demands in buildings are the most important goals of control designers. The purpose of this article is to investigate the different control methods for Heating, Ventilating, and Air Conditioning and Refrigeration (HVAC & R systems. The advantages and disadvantages of each control method are discussed and finally the Fuzzy Cognitive Map (FCM method is introduced as a new strategy for HVAC systems. The FCM method is an intelligent and advanced control technique to address the nonlinearity, Multiple-Input and Multiple-Output (MIMO, complexity and coupling effect features of the systems. The significance of this method and improvements by this method are compared with other methods.

  20. Feasibility study for the installation of HVAC for a spa by means of energy recovery from thermal water. Pt. 2: Energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, J.L. Miguez [Universidad de Vigo, Dept. de Ingenieria Mecanica, Vigo (Spain); Alvarez, M. Gandara [ISOLUX Espana, Vigo (Spain); Gonzalez, L.M. Lopez [Universidad de La Rioja, Dept. de Ingenieria Mecanica, Logrono (Spain); Viar, P. Fernandez [Universidad de Oviedo, Dept. de Energia, Oviedo (Spain)

    2001-05-01

    The use of a low temperature geothermal spring together with the heat energy still contained in waste water from the different therapy systems installed in a spa (shower, jets, bathrooms, jacuzzis, pools, ventilation processes) can significantly reduce the operating and maintenance costs of the installation. This covers part of the air conditioning needs of the building and of the heating of thermal water to the appropriate temperature for therapeutic use. In the first part of the study, an analysis of the spring's situation was made, calculating the thermal water needs and presenting the consumption according to the operation schedule on different types of day. In this way, the contribution the spring was capable of giving was compared and the evolution of the thermal water in the tanks was studied. In the second part, the climatic conditions that the spa should meet are studied, along with the loads that it should support, the energy reclaimed from the different heat focuses and the repercussions on the final solution. (Author)

  1. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  2. Transactive Control of Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.

  3. HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing

    OpenAIRE

    Broomes, Peter; Dornfeld, David A

    2003-01-01

    Heating, ventilation, and air conditioning (HVAC) systems used in the clean room environment of biotechnology and drug development and manufacturing, are extremely energy and water intensive and represent a significant operating cost for these facilities [1]. HVAC systems are also the primary source of environmental emissions for the majority of companies operating within the biotechnology and drugs sector. While the processes used in drug manufacture have negligible environmental impact...

  4. Breathing Easier: HVAC Specifications for Schools.

    Science.gov (United States)

    Trent, C. Curtis; Trent, Warren C.

    1996-01-01

    A major source of indoor air contamination in schools originates within the heating, ventilating, and air-conditioning systems (HVAC), with draw-through systems being the worst offenders. Lists provisions for designing an HVAC system and a set of criteria to adhere to when planning new construction or renovations. (nine references) (MLF)

  5. Workplace Trends In HVAC/R

    Science.gov (United States)

    Strang, Lynn; Todd, CeCe

    2013-01-01

    This article presents trends in the heating, ventilation, air conditioning and refrigeration (HVAC/R) industry, with an emphasis on the importance of technician training programs as exemplified at the East Valley Institute of Technology (EVIT) in Mesa, Arizona. The article states that HVAC workers are increasingly helping their consumers "go…

  6. Energy requirements for racing endurance sled dogs*

    OpenAIRE

    Loftus, John P.; Yazwinski, Molly; Milizio, Justin G.; Wakshlag, Joseph J.

    2014-01-01

    Endurance sled dogs have unique dietary energy requirements. At present, there is disparity in the literature regarding energy expenditure and thus energy requirements of these dogs. We sought to further elucidate energy requirements for endurance sled dogs under field conditions. Three sled dog teams completing the 2011 Yukon Quest volunteered to provide diet history. Nutritional content was evaluated and a mock meal was analysed for each team. Race data were obtained from www.yukonquest.com...

  7. Energy Requirements of Military Personnel

    National Research Council Canada - National Science Library

    Tharion, William J; Lieberman, Harris R; Montain, Scott J; Young, Andrew J; Baker-Fulco, Carol J

    2005-01-01

    ...) have been measured while training under various conditions. Group mean total energy expenditures for 424 male military personnel from various units engaged in diverse missions ranged from 13.0 to 29.8 MJ per day...

  8. HVAC design guidelines for effective indoor air quality

    International Nuclear Information System (INIS)

    Bladykas, M.P.

    1993-01-01

    Building owners, designers and occupants need to consider all the design measures that contribute to high indoor air quality. Building occupants, furnishings, equipment, and ambient air pollution all contribute to surmounting indoor air quality concerns. However, these can be minimized by following HVAC design guidelines which promote high indoor air quality while maintaining reasonable energy-efficiency. The possible liabilities and loss of business productivity due to air quality problems are too great to ignore

  9. Nuclear energy and investment requirements

    International Nuclear Information System (INIS)

    Voeltzel, D.

    1978-01-01

    The author assesses the investment requirements of the French nuclear programme within the framework of the national economy. He then evokes the means of financing these requirements as well as drawing attention to certain constraints which must be taken into account [fr

  10. Development of the Aging Management Program for HVAC Systems

    International Nuclear Information System (INIS)

    Cho, Hong Seok; Lee, Dong Min; Lee, Jang Wook; Cho, Ki Hyun; Cho, Sang Bum; Choi, Sang Hoon

    2008-01-01

    The HVAC(heating, ventilation and air conditioning) systems in nuclear power plants are consisted of fan, damper, duct, filter and cooling coil, which is equipped in the safety-related building such as main control room, auxiliary building and containment building. These systems are designed to maintain the required ambient air temperature in all plant areas for the comfort and safety of personnel and for environmental requirement of equipment and to ensure that the gaseous radioactivity emission to the environment is kept below permissible discharge limits. The purpose of this study is to establish the inspection plan to ensure that touch up parts of the duct are sound and to develop the aging management program for maintaining effectively HVAC systems

  11. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    Science.gov (United States)

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  12. Performance analysis of supply and return fans for HVAC systems under different operating strategies of economizer dampers

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, Nabil [Florida Solar Energy Center, A Research Institute of the University of Center Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2010-07-15

    HVAC systems and associated equipment consume a relatively large fraction of total building energy consumption, a significant portion of which is attributed to fan operation. The operation of economizer dampers when installed can cause high energy consumption in fans if they are not functioning in proper and optimal manner. This will mainly be due to the potential high pressure drops through those dampers and associated high total pressures that should be developed by supply and/or return fans. It is then necessary to ensure that a proper strategy to operate optimally the economizer dampers is implemented with minimum fan energy use. The paper examines several operation strategies of the economizer dampers and investigates their effects on the performance of both the supply and return fans in HVAC system. It also discusses a new operating strategy for economizer dampers that can lead to lower fan energy use. The strategies are evaluated by simulations for a typically existing HVAC system. Several factors such as the building locations, system characteristics, resistance in the duct where the dampers are installed, supply air temperature and economizer control, and minimum ventilation requirements are also considered during the evaluations. The results show that the way of the economizer dampers been controlled has a significant effect on fan performance and its energy use. The proposed strategy if properly implemented can provide fan energy saving in the range of 5-30%, depending mainly on the number of hours when the system operates in the free cooling mode, damper characteristics, and minimum outdoor air. (author)

  13. Energy Requirements in Critically Ill Patients

    Science.gov (United States)

    2018-01-01

    During the management of critical illness, optimal nutritional support is an important key for achieving positive clinical outcomes. Compared to healthy people, critically ill patients have higher energy expenditure, thereby their energy requirements and risk of malnutrition being increased. Assessing individual nutritional requirement is essential for a successful nutritional support, including the adequate energy supply. Methods to assess energy requirements include indirect calorimetry (IC) which is considered as a reference method, and the predictive equations which are commonly used due to the difficulty of using IC in certain conditions. In this study, a literature review was conducted on the energy metabolic changes in critically ill patients, and the implications for the estimation of energy requirements in this population. In addition, the issue of optimal caloric goal during nutrition support is discussed, as well as the accuracy of selected resting energy expenditure predictive equations, commonly used in critically ill patients.

  14. Energy Requirements in Critically Ill Patients.

    Science.gov (United States)

    Ndahimana, Didace; Kim, Eun-Kyung

    2018-04-01

    During the management of critical illness, optimal nutritional support is an important key for achieving positive clinical outcomes. Compared to healthy people, critically ill patients have higher energy expenditure, thereby their energy requirements and risk of malnutrition being increased. Assessing individual nutritional requirement is essential for a successful nutritional support, including the adequate energy supply. Methods to assess energy requirements include indirect calorimetry (IC) which is considered as a reference method, and the predictive equations which are commonly used due to the difficulty of using IC in certain conditions. In this study, a literature review was conducted on the energy metabolic changes in critically ill patients, and the implications for the estimation of energy requirements in this population. In addition, the issue of optimal caloric goal during nutrition support is discussed, as well as the accuracy of selected resting energy expenditure predictive equations, commonly used in critically ill patients.

  15. HVAC design manual for hospitals and clinics

    National Research Council Canada - National Science Library

    2013-01-01

    "Provides in-depth design recommendations and proven, cost effective, and reliable solutions for health care HVAC design that provide low maintenance cost and high reliability based on best practices...

  16. Household energy requirement and value patterns

    International Nuclear Information System (INIS)

    Vringer, Kees; Aalbers, Theo; Blok, Kornelis

    2007-01-01

    For an effective consumer energy policy, it is important to know why some households require more energy than others. The aim of the study described here was to examine whether there is a relationship between the total household energy requirement, on one hand, and value patterns, the motivation to save energy or the problem perception of climate change, on the other. To examine these relationships, we held a consumer survey among 2304 respondent households. We did not find significant differences in the energy requirement of groups of households with different value patterns, taking into account the differences in the socio-economic situation of households. Only for the 'motivation to save energy' we did find that the least motivated group requires 10 GJ more energy than the average and most motivated groups; this is about 4% of the total household energy requirement. This means that a self-regulating energy policy, solely based on the fact that a strategy of internalising environmental responsibility will not be effective in saving energy. There are indications that a social dilemma is one of the reasons why people's consumption patterns do not conform to their value patterns, problem perception or motivation to save energy

  17. Energy requirements of infants, children and adolescents

    Science.gov (United States)

    Energy requirements of infants, children and adolescents are defined as the amount of energy needed to balance total energy expenditure (TEE) at a desirable level of physical activity, and to support optimal growth and development consistent with long-term health. The latest FAO/WHO/UNU recommendati...

  18. Projections of energy requirements and their implications

    International Nuclear Information System (INIS)

    Hogroian, P.

    1978-01-01

    The subject is covered in sections, entitled as shown. Numerical data are indicated in parenthesis. The record of nuclear power forecasting (estimates of the growth of world nuclear power, penetration of the electric power market by nuclear power); brief review of energy forecasting techniques and problems; some views of future world energy demand (estimates of world primary energy requirements); possible allocations of energy resources to needs (allocation of resources (oil, oil from tar sands, shale, natural gas, coal, coal to gasification, hydroelectricity, renewable resources, nuclear) to the world's primary energy needs in the year 2000); observations on the adequacy of energy resources; implications for nuclear energy (postulated growth of world nuclear power, annual fuel cycle requirements of the world, annual uranium requirements of the world). (U.K.)

  19. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  20. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J. [J. Neymark & Associates, Golden, CO (United States); Kennedy, M. [Mike D. Kennedy, Inc., Townsend, WA (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gall, J. [AAON, Inc., Tulsa, OK (United States); Knebel, D. [AAON, Inc., Tulsa, OK (United States); Henninger, R. [GARD Analytics, Inc., Arlington Heights, IL (United States); Witte, M. [GARD Analytics, Inc., Arlington Heights, IL (United States); Hong, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDowell, T. [Thermal Energy System Specialists, Madison, WI (United States); Yan, D. [Tsinghua Univ., Beijing (China); Zhou, X. [Tsinghua Univ., Beijing (China)

    2016-03-01

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  1. Applications of heat pipes for HVAC dehumidification at Walt Disney World

    International Nuclear Information System (INIS)

    Allen, P.J.; Dinh, K.

    1993-01-01

    This paper presents the theory and application of heat pipes for HVAC dehumidification purposes. In HVAC applications, a heat pipe is used as a heat exchanger that transfers heat from the return air directly to the supply air. The air is pre-cooled entering the cooling coil and reheated using the same heat removed from the return air. While consuming no energy, the heat pipe lets the evaporator coil operate at a lower temperature, increasing the moisture removal capabilities of the HVAC system by 50% to 100%. WALT DISNEY WORLD is currently testing several heat pipe applications ranging from 1 to 240 tons. The applications include (1) water attractions (2) museums/artifacts areas (3) resort guest rooms and (4) locker rooms. Actual energy usage and relative humidity reductions are shown to determine the effectiveness of the heat pipe as an energy efficient method of humidity control

  2. RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM

    International Nuclear Information System (INIS)

    Ramirez, N.

    2004-01-01

    A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF

  3. Energy requirements for new buildings in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Buildings account for circa 40% of the total energy use in Europe [1] and for about 36% of the EU's total CO{sub 2} emissions [2], including the existing energy conservation in buildings [3]. Key features of the Finnish energy policy are improved energy efficiency and increased use of renewable energy sources. To achieve a sustainable shift in the energy system, a target set by the authorities, both energy savings and increased use of low-pollution energy sources are therefore priority areas. Building low-energy buildings is in accordance with the declared national aim of reducing energy use and thus reducing CO{sub 2} emissions. The main motivation in renewing building codes for new buildings was to build more energy efficiently, encourage the use the most efficient energy sources and to enhance the use of renewable energy sources. In addition the aim was to give more freedom to fi nd the real optimal solutions for energy efficiency by optimising all aspects including the building architecture and different systems with demand controls. However, in order to ensure the good quality of buildings certain minimum requirements for structure U-values are given. (orig.)

  4. Harmonic modelling, propagation and mitigation for large wind power plants connected via long HVAC cables

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz

    2016-01-01

    This paper presents a state-of-the-art review on grid connection of large offshore wind power plants (OWPPs) using extra-long high voltage AC (HVAC) cables. The paper describes research by DONG Energy Wind Power in close collaboration with Aalborg University addressing related challenges through...... an industrial PhD project. The overall goal is to gain a better understanding of extra-long HVAC cable connected OWPPs, in order to ensure reliability and availability of OWPPs. This will reduce the cost of energy, as the risk of costly delays and modifications after the project has been commissioned can...

  5. Research and Development Opportunities for Joining Technologies in HVAC&R

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States)

    2015-10-01

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reduction goals.

  6. Short communication: Prediction of energy requirements of ...

    African Journals Online (AJOL)

    Data collected on metabolizable energy (ME) intake and growth performance of preruminant female kids of the Murciano-Granadina breed was used to assess the accuracy of the latest U. S. National Research Council (NRC) recommendations to predict their energy requirements. Female kids were fed a milk replacer ...

  7. HVAC-DYNAMICS - a tool for quality assurance in relation to delivery of air-conditioning systems. [Heating, ventilating and air conditioning]. HVAC-DYNAMICS - et redskap for kvalitetsikring av sluttleveransen i klima-anlegg

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V [SINTEF Varmeteknikk, Seksjon VVS (NO)

    1990-07-01

    HVAC-DYNAMICS is a computerized tool for quality assurance of the functioning of an air-conditioning system at the time of delivery. The system's efficiency in the case of fluctuating and critical operation is evaluated. The HVAC-DYNAMICS gives an optimal choice for air-conditioning systems regarding indoor climate, efficiency demands and energy consumption. The program can also be use for calibration of regulators, fault-finding, and training purposes. (CLS).

  8. Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, T.; Quilis, S. [Energesis Ingenieria S.L., Ciudad Politecnica de la Innovacion, Camino de Vera s/n, 46022 Valencia (Spain); Montero, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2010-09-15

    This work compares the experimental results obtained for the energy performance study of a ground coupled heat pump system with the design values predicted by means of standard methodology. The system energy performance of a monitored ground coupled heat pump system is calculated using the instantaneous measurements of temperature, flow and power consumption and these values are compared with the numerical predictions. These predictions are performed with the TRNSYS software tool following standard procedures taking the experimental thermal loads as input values. The main result of this work is that simulation results solely based on nominal heat pump capacities and performances overestimate the measured overall energy performance by a percentage between 15% and 20%. A sensitivity analysis of the simulation results to changes in percentage of its input parameters showed that the heat pump nominal coefficient of performance is the parameter that mostly affects the energy performance predictions. This analysis supports the idea that the discrepancies between experimental results and simulation outputs for this ground coupled system are mainly due to heat pump performance degradation for being used at partial load. An estimation of the impact of this effect in energy performance predictions reduces the discrepancies to values around 5%. (author)

  9. The Effects of Set-Points and Dead-Bands of the HVAC System on the Energy Consumption and Occupant Thermal Comfort

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2013-01-01

    A building is a complex system where many components interact with each other therefore the control system plays a key role regarding the energy consumption and the occupant thermal comfort. This study is concerned with a detached, one-storey, single family, energy-plus house. It is equipped...... on the effects of the set-points and dead-bands of different components on the energy consumption together with the occupant thermal comfort. Evaluations are carried out with TRNSYS for Copenhagen and Madrid in order to compare climatic effects....... with a ground heat exchanger, a ground coupled heat pump, embedded pipes in the floor and in the ceiling, a ventilation system (mechanical and natural), a domestic hot water tank and photovoltaic/thermal panels on the roof. Preliminary evaluations showed that for Madrid, change of indoor set-point in cooling...

  10. An energy credit based incentive mechanism for the direct load control of residential HVAC systems incorporation in day-ahead planning

    NARCIS (Netherlands)

    Erdinc, O.; Tascikaraoglu, A.; Paterakis, N.G.; Catalao, J.P.S.

    2017-01-01

    The increasing operational complexity of power systems considering the higher renewable energy penetration and changing load characteristics, together with the recent developments in the ICT field have led to more research and implementation efforts related to the activation of the demand side. In

  11. Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems

    International Nuclear Information System (INIS)

    Rana, Rajib; Kusy, Brano; Wall, Josh; Hu, Wen

    2015-01-01

    Reductions in HVAC (heating, ventilation and air conditioning) energy consumption can be achieved by limiting heating in the winter or cooling in the summer. However, the resulting low thermal comfort of building occupants may lead to an override of the HVAC control, which revokes its original purpose. This has led to an increased interest in modeling and real-time tracking of location, activity, and thermal comfort of building occupants for HVAC energy management. While thermal comfort is well understood, it is difficult to measure in real-time environments where user context changes dynamically. Encouragingly, plethora of sensors available on smartphone unleashes the opportunity to measure user contexts in real-time. An important contextual information for measuring thermal comfort is Metabolism rate, which changes based on current physical activities. To measure physical activity, we develop an activity classifier, which achieves 10% higher accuracy compared to Support Vector Machine and k-Nearest Neighbor. Office occupancy is another contextual information for energy-efficient HVAC control. Most of the phone based occupancy estimation techniques will fail to determine occupancy when phones are left at desk while sitting or attending meetings. We propose a novel sensor fusion method to detect if a user is near the phone, which achieves more than 90% accuracy. Determining activity and occupancy our proposed algorithms can help maintaining thermal comfort while reducing HVAC energy consumptions. - Highlights: • We propose activity and occupancy detection for efficient HVAC control. • Activity classifier achieves 10% higher accuracy than SVM and kNN. • For occupancy detection we propose a novel sensor fusion method. • Using Weighted Majority Voting we fuse microphone and accelerometer data on phone. • We achieve more than 90% accuracy in detecting occupancy.

  12. The strictest energy requirements in the world

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jensen, Jens Stissing

    2013-01-01

    50 years of progressively strengthened energy requirements in the Danish building code appear to be a success, as the energy consumption has remained constant despite an increase in the total area in requirement of heating. This article however argues that the building code mechanism is heavily...... influenced by path dependent regime structuration processes, and that the mechanism constitutes a barrier to more radical developments within low energy housing. Few and poorly organized frontrunner activities within low energy housing have accordingly taken place in a Danish context during the past decades....... Finally it is proposed that the current development within the energy system provides opportunities for cultivating an improved transitional awareness and for carrying out experimental activities that may challenge the path dependencies of prevailing regime structuration processes....

  13. Feasibility study for the installation of HVAC for a spa by means of energy recovery from thermal water. Pt. 1: Analysis of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L.M. Lopez [Universidad de La Rioja, Dept. de Ingenieria Mecanica, Logrono (Spain); Tabares, J.L. Miguez; Viar, P. Fernandez [Universidad de Oviedo, E.T.S. Ingegieros de Minas, Oviedo (Spain); Alvarez, M. Gandara [ISOLUX Galicia, Vigo (Spain)

    2001-05-01

    The use of a low temperature geothermal spring together with the heat energy still contained in waste water from the different therapy systems installed in a spa (shower, jets, bathrooms, Jacuzzis, pools, ventilation processes) can significantly reduce the operating and maintenance costs of the installation, covering part of the air conditioning needs of the building and the heating of thermal water to the appropriate temperature for therapeutic use. The object of the present work is to study the possible energy use of two sources of thermal hot water (spring and waste water) by restructuring of the existing spa so that it is more efficient from both a technical and economic point of view. In this first part, hot water needs are calculated and consumption presented according to the operation schedule on different types of day. Comparison is then made with the contribution that the spring is capable of making and the evolution of the thermal water in the tanks is studied. In a second work, energy and economic analyses will be presented. (Author)

  14. Review on the HVAC System Modeling Types and the Shortcomings of Their Application

    Directory of Open Access Journals (Sweden)

    Raad Z. Homod

    2013-01-01

    Full Text Available The modeling of the heating, ventilation, and air conditioning (HVAC system is a prominent topic because of its relationship with energy savings and environmental, economical, and technological issues. The modeling of the HVAC system is concerned with the indoor thermal sensation, which is related to the modeling of building, air handling unit (AHU equipments, and indoor thermal processes. Until now, many HVAC system modeling approaches are made available, and the techniques have become quite mature. But there are some shortcomings in application and integration methods for the different types of the HVAC model. The application and integration processes will act to accumulate the defective characteristics for both AHU equipments and building models such as nonlinear, pure lag time, high thermal inertia, uncertain disturbance factors, large-scale systems, and constraints. This paper shows types of the HVAC model and the advantages and disadvantages for each application of them, and it finds out that the gray-box type is the best one to represent the indoor thermal comfort. But its application fails at the integration method where its response deviated to unreal behavior.

  15. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  16. Multi-objective optimization of HVAC system with an evolutionary computation algorithm

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Tang, Fan; Xu, Guanglin

    2011-01-01

    A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.

  17. Projecting India's energy requirements for policy formulation

    International Nuclear Information System (INIS)

    Parikh, Kirit S.; Karandikar, Vivek; Rana, Ashish; Dani, Prasanna

    2009-01-01

    Energy policy has to have a long-term perspective. To formulate it one needs to know the contours of energy requirements and options. Different approaches have been followed in literature, each with their own problems. A top down econometric approach provides little guidance on policies, while a bottom up approval requires too much knowledge and too many assumptions. Using top-down econometric approach for aggregate overall benchmarking and a detailed activity analysis model, Integrated Energy System Model, for a few large sectors, provides a unique combination for easing the difficulties of policy formulation. The model is described in this paper. Eleven alternate scenarios are built, designed to map out extreme points of feasible options. Results show that even after employing all domestic energy resource to their full potential, there will be a continued rise of fossil fuel use, continued importance of coal, and continued rise of import dependence. Energy efficiency emerges as a major option with a potential to reduce energy requirement by as much as 17%. Scenario results point towards pushing for development of alternative sources. (author)

  18. Filtration effectiveness of HVAC systems at near-roadway schools.

    Science.gov (United States)

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. Energy Requirements for Biomass Harvest and Densification

    Directory of Open Access Journals (Sweden)

    Kevin Shinners

    2018-03-01

    Full Text Available This research quantified the unit and bulk density of several biomass crops across a variety of harvest and processing methods, as well as the energy and fuel requirements for these operations. A load density of approximately 240 kg·m−3 is needed to reach the legal weight limit of most transporters. Of the three types of balers studied, only the high density (HD large square baler achieved this target density. However, the specific energy and fuel requirements increased exponentially with bale density, and at the maximum densities for corn stover and switchgrass, the dry basis energy and fuel requirements ranged from 4.0 to 5.0 kW·h·Mg−1 and 1.2 to 1.4 L·Mg−1, respectively. Throughputs of tub grinders when grinding bales was less than any other harvesting or processing methods investigated, so specific energy and fuel requirements were high and ranged from 13 to 32 kW·h·Mg−1 and 5.0 to 11.3 L·Mg−1, respectively. Gross size-reduction by pre-cutting at baling increased bale density by less than 6% and increased baling energy requirements by 11% to 22%, but pre-cut bales increased the tub grinder throughput by 25% to 45% and reduced specific fuel consumption for grinding by 20% to 53%. Given the improvement in tub grinder operation, pre-cutting bales should be considered as a means to increase grinder throughput. Additional research is needed to determine the energy required to grind high density pre-cut bales at high throughputs so that better estimates of total energy required for a high density bale system can be made. An alternative bulk feedstock system was investigated that involved chopping moist biomass crops with a precision-cut forage harvester, compacting the bulk material in a silo bag, and then segmenting the densified material into modules optimized for efficient transport. The specific fuel use for chopping and then compacting biomass crops in the silo bag ranged from 1.6 to 3.0 L·Mg−1 and 0.5 to 1.3 L·Mg−1

  20. Modeling of HVAC operational faults in building performance simulation

    International Nuclear Information System (INIS)

    Zhang, Rongpeng; Hong, Tianzhen

    2017-01-01

    Highlights: •Discuss significance of capturing operational faults in existing buildings. •Develop a novel feature in EnergyPlus to model operational faults of HVAC systems. •Compare three approaches to faults modeling using EnergyPlus. •A case study demonstrates the use of the fault-modeling feature. •Future developments of new faults are discussed. -- Abstract: Operational faults are common in the heating, ventilating, and air conditioning (HVAC) systems of existing buildings, leading to a decrease in energy efficiency and occupant comfort. Various fault detection and diagnostic methods have been developed to identify and analyze HVAC operational faults at the component or subsystem level. However, current methods lack a holistic approach to predicting the overall impacts of faults at the building level—an approach that adequately addresses the coupling between various operational components, the synchronized effect between simultaneous faults, and the dynamic nature of fault severity. This study introduces the novel development of a fault-modeling feature in EnergyPlus which fills in the knowledge gap left by previous studies. This paper presents the design and implementation of the new feature in EnergyPlus and discusses in detail the fault-modeling challenges faced. The new fault-modeling feature enables EnergyPlus to quantify the impacts of faults on building energy use and occupant comfort, thus supporting the decision making of timely fault corrections. Including actual building operational faults in energy models also improves the accuracy of the baseline model, which is critical in the measurement and verification of retrofit or commissioning projects. As an example, EnergyPlus version 8.6 was used to investigate the impacts of a number of typical operational faults in an office building across several U.S. climate zones. The results demonstrate that the faults have significant impacts on building energy performance as well as on occupant

  1. Residential and Light Commercial HVAC. Teacher Edition.

    Science.gov (United States)

    Stephenson, David; Fulkerson, Dan, Ed.

    This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…

  2. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  3. HVAC systems and nuclear plant safety. Final report, May 1992

    International Nuclear Information System (INIS)

    1992-05-01

    The primary objective of this study was to provide perspective on the overall risk impact of heating, ventilating, and air conditioning (HVAC) system problems. Industry experience with HVAC system problems is documented and analyzed. In addition, the results of 10 plant-specific probabilistic risk assessments (PRA) were reviewed to determine the contribution of HVAC systems to the risk of core damage. The PRAs included in this review cover a broad range of plant types and operating conditions. The review found that the impact of HVAC systems on risk is plant specific. These results exhibit a broad range of frequencies for HVAC contribution to risk, and the percentage of total core damage due to HVAC problems also had a wide variability. Plant-specific differences in design, environment, operation, and maintenance are the primary factors in determining the risk contribution of HVAC systems. (author)

  4. Building America Best Practices Series Volume 14 - HVAC. A Guide for Contractors to Share with Homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, Theresa L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, Marye G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hand, James R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-08-01

    This guide, which is part of a series of Best Practices guides produced by DOE’s Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment.

  5. Exergy optimization of cooling tower for HGSHP and HVAC applications

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2017-01-01

    Highlights: • Development of new correlations for outlet parameters with all inlet parameters. • Simultaneous achievement of required heat load and minimum exergy destruction. • Multiple combinations of parameters found for same heat load at minimized exergy. • Study useful for optimum control of cooling tower under varying ambient conditions. • Generalized optimization study can be implemented for any mechanical cooling tower. - Abstract: In the present work, a constrained inverse optimization method for building cooling applications is proposed to control the mechanical draft wet cooling tower by minimizing the exergy destruction and satisfying an imposed heat load under varying environmental conditions. The optimization problem is formulated considering the cooling dominated heating, ventilation and air conditioning (HVAC) and hybrid ground source heat pump (HGSHP). As per the requirement, new second degree correlations for the tower outlet parameters (water temperature, air dry and wet-bulb temperatures) with five inlet parameters (dry-bulb temperature, relative humidity, water inlet temperature, water and air mass flow rates) are developed. The Box–Behnken design response surface method is implemented for developing the correlations. Subsequently, the constrained optimization problem is solved using augmented Lagrangian genetic algorithm. This work further developed optimum inlet parameters operating curves for the HGSHP and the HVAC systems under varying environmental conditions aimed at minimizing the exergy destruction along with the fulfillment of the required heat load.

  6. Structure requirements for magnetic energy storage devices

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Huang, X.

    1993-01-01

    Large variety of large and small magnetic energy storage systems have been designed and analyzed in the last 20 years. Cryoresistive and superconductive energy storage (SMES) magnets have been considered for applications such as load leveling for electric utilities, pulsed storage for electromagnetic launchers and accelerator devices, and space borne superconductive energy storage systems. Large SMES are supported by a combination of cold and warm structure while small SMES are supported only by cold structure. In this article we provide analytical and numerical tools to estimate the structure requirements as function of the stored energy and configuration. Large and small solenoidal and toroidal geometries are used. Considerations for both warm and cold structure are discussed. Latest design concepts for both large and small units are included. (orig.)

  7. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  8. Perspectives in energy requirements of mankind

    International Nuclear Information System (INIS)

    Symonds, J.L.

    1975-08-01

    The growth of energy demand from the nineteenth century to the present and its likely future development are described, for the interested layman, in the context of the changing pattern of resource use. The availability and distribution of the renewable and non-renewable resources of energy, which will provide for the future, show that developed and developing countries will incur supply problems in the decades ahead unless the potential of all energy reserves is tapped. Factors such as the market penetration of new resources and the depletion of resources are outlined. It is pointed out that coal may be used increasingly for some time but that nuclear energy is the only other energy form which is immediately available and which can be utilised commercially. Nuclear energy will be needed even if countries are prepared to cut back to low growth rates in energy use. It is suggested that lower growth rates may well be necessary in the next twenty to thirty years, since it takes this time to bring new alternative technologies into commercial use, and a further similar period will be required to achieve significant resource substitution. (author)

  9. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    Science.gov (United States)

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  10. Comparison of energy performance requirements levels

    DEFF Research Database (Denmark)

    Spiekman, Marleen; Thomsen, Kirsten Engelund; Rose, Jørgen

    This summary report provides a synthesis of the work within the EU SAVE project ASIEPI on developing a method to compare the energy performance (EP) requirement levels among the countries of Europe. Comparing EP requirement levels constitutes a major challenge. From the comparison of for instance...... the present Dutch requirement level (EPC) of 0,8 with the present Flemish level of E80, it can easily be seen that direct comparison is not possible. The conclusions and recommendations of the study are presented in part A. These constitute the most important result of the project. Part B gives an overview...... of all other project material related to that topic, which allows to easily identify the most pertinent information. Part C lists the project partners and sponsors....

  11. Intelligent control of HVAC systems. Part II: perceptron performance analysis

    Directory of Open Access Journals (Sweden)

    Ioan URSU

    2013-09-01

    Full Text Available This is the second part of a paper on intelligent type control of Heating, Ventilating, and Air-Conditioning (HVAC systems. The whole study proposes a unified approach in the design of intelligent control for such systems, to ensure high energy efficiency and air quality improving. In the first part of the study it is considered as benchmark system a single thermal space HVAC system, for which it is assigned a mathematical model of the controlled system and a mathematical model(algorithm of intelligent control synthesis. The conception of the intelligent control is of switching type, between a simple neural network, a perceptron, which aims to decrease (optimize a cost index,and a fuzzy logic component, having supervisory antisaturating role for neuro-control. Based on numerical simulations, this Part II focuses on the analysis of system operation in the presence only ofthe neural control component. Working of the entire neuro-fuzzy system will be reported in a third part of the study.

  12. Energy required to pinch a DNA plectoneme

    Science.gov (United States)

    Barde, Céline; Destainville, Nicolas; Manghi, Manoel

    2018-03-01

    DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the kBT range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.

  13. Development of a computer design system for HVAC

    International Nuclear Information System (INIS)

    Miyazaki, Y.; Yotsuya, M.; Hasegawa, M.

    1993-01-01

    The development of a computer design system for HVAC (Heating, Ventilating and Air Conditioning) system is presented in this paper. It supports the air conditioning design for a nuclear power plant and a reprocessing plant. This system integrates various computer design systems which were developed separately for the various design phases of HVAC. the purposes include centralizing the HVAC data, optimizing design, and reducing the designing time. The centralized HVAC data are managed by a DBMS (Data Base Management System). The DBMS separates the computer design system into a calculation module and the data. The design system can thus be expanded easily in the future. 2 figs

  14. Maintenance energy requirements in miniature colony dogs.

    Science.gov (United States)

    Serisier, S; Weber, M; Feugier, A; Fardet, M-O; Garnier, F; Biourge, V; German, A J

    2013-05-01

    There are numerous reports of maintenance energy requirements (MER) in dogs, but little information is available about energy requirements of miniature dog breeds. In this prospective, observational, cohort study, we aimed to determine MER in dogs from a number of miniature breeds and to determine which factors were associated with it. Forty-two dogs participated in the study. MER was calculated by determining daily energy intake (EI) during a period of 196 days (28-359 days) when body weight did not change significantly (e.g. ±2% in 12 weeks). Estimated median MER was 473 kJ/kg(0.75) /day (285-766 kJ/kg(0.75) /day), that is, median 113 kcal/kg(0.75) /day (68-183 kcal/kg(0.75) /day). In the obese dogs that lost weight, median MER after weight loss was completed was 360 kJ/kg(0.75) /day (285-515 kJ/kg(0.75) /day), that is, 86 kcal/kg(0.75) /day, (68-123 kcal/kg(0.75) /day). Simple linear regression analysis suggested that three breeds (e.g. Chihuahua, p = 0.002; Yorkshire terrier, p = 0.039; dachshund, p = 0.035) had an effect on MER. In addition to breed, simple linear regression revealed that neuter status (p = 0.079) and having previously been overweight (p = 0.002) were also of significance. However, with multiple linear regression analysis, only previous overweight status (MER less in dogs previously overweight p = 0.008) and breed (MER greater in Yorkshire terriers [p = 0.029] and less in Chihuahuas [p = 0.089]) remained in the final model. This study is the first to estimate MER in dogs of miniature breeds. Although further information from pet dogs is now needed, the current work will be useful for setting energy and nutrient requirement in such dogs for the future. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  15. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the

  16. Chipping machines: disc and drum energy requirements

    Directory of Open Access Journals (Sweden)

    Alessio Facello

    2013-09-01

    Full Text Available Air pollution and fossil fuel reserves exhaustion are increasing the importance of the biomass-derived products, in particular wood, as source of clean and renewable energy for the production of electricity or steam. In order to improve the global efficiency and the entire production chain, we have to evaluate the energetic aspects linked to the process of transformation, handling and transport of these materials. This paper reports results on a comparison between two chippers of similar size using different cutting technology: disc and drum tool respectively. During trials, fuel consumption, PTO torque and speed, processing time and weight of processed material were recorded. Power demand, fuel consumption, specific energy and productivity were computed. The machine was fed with four different feedstock types (chestnut logs, poplar logs, poplar branches, poplar sawmill residues. 15 repetitions for each combination of feedstock-tool were carried out. The results of this study show that the disc tool requires, depending on the processed material, from 12 to 18% less fuel per unit of material processed than the drum tool, and consequently, from 12 to 16% less specific energy. In particular, the highest difference between tools was found in branches processing whereas the smallest was in poplar logs. Furthermore the results of the investigation indicate, that, in testing conditions, the productivity of drum tool is higher (8% than disc tool.

  17. Study on the Operating Strategy of HVAC Systems for Nuclear Decommissioning Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-hwan; Han, Sung-heum; Lee, Jae-gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    According as Kori nuclear power plant unit 1 was determined to be defueled in 2017, various studies on nuclear plant decommissioning have been performed. In nuclear decommissioning plant, HVAC systems with large fan and electric coil have to be operated for long periods of time to support various types of work from defueled phase to final dismantling phase. So, in view of safety and utility costs, their overall operating strategy need to be established prior to defueled phase. This study presents HVAC system operating strategy at each decommissioning phase, that is, defueled plant operating phase, SSCs(systems, structures, components) decontamination and dismantling phases. In defueled plant operating phase, all fuel assemblies in reactor vessel are transferred to spent fuel pool(SFP) permanently. In defueled plant operation phase, reduction of the operating system trains is more practicable than the introduction of new HVAC components with reduced capacity. And, based on the result of the accident analyses for this phase, HVAC design bases such as MCR habitability requirement can be mitigated. According to these results, associated SSCs also can be downgraded. In similar approach, at each phase of plant decommissioning, proper inside design conditions and operating strategies should be re-established.

  18. A Study on the Determination of Power Supply Class for HVAC System in KJRR

    International Nuclear Information System (INIS)

    Kim, Hagtae; Kim, Minjin; Suh, Yong-Suk; Kim, Jun-Yeon; Chae, Hee-Taek

    2016-01-01

    The purpose of this paper is to propose an appropriate electrical class, power supply class, and operation logic for the major equipment of the HVAC system such as a Confinement Isolation Damper (CID), Fission Molybdenum Isolation Damper (FID), Air Handling Unit (AHU), Air Cleaning Unit (ACU), and Contaminated Air Purification System (CAPS) in light of their functional requirements and importance. The classification for the overall HVAC system of the KJRR is a safety class NNS, Non-Seismic category, quality class S, and electrical class Non-1E. Exceptionally, the CID and FID are safety class 3, seismic category I, and quality class Q. The electrical class for the major equipment of the HVAC system should be determined considering the operation concept during Loss of Normal Electric Power (LOEP) regardless of the safety class. In this paper, the electrical and power supply class is determined and the operation logic is proposed for the major equipment of the HVAC system for the KJRR such as the CID, FID, CAPS, ACU, and AHU. The electrical class Non-1E is determined to implement a fail closed for the enhancement of safety. The power supply class is based on the functional requirements of each equipment. The CID, FID, CAPS, and ACU are Class III, but the AHU is Class IV by reflecting the importance and electrical load. After the recovery of the power supply, there is a difference in the operation concept for the HVAC system between the reactor building and fission molybdenum production building depending on the operator's residence time. The CID and CAPS are operated manually through procedures for checking the accident status, and the FID and ACU are operated automatically without special procedures

  19. A Study on the Determination of Power Supply Class for HVAC System in KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hagtae; Kim, Minjin; Suh, Yong-Suk; Kim, Jun-Yeon; Chae, Hee-Taek [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this paper is to propose an appropriate electrical class, power supply class, and operation logic for the major equipment of the HVAC system such as a Confinement Isolation Damper (CID), Fission Molybdenum Isolation Damper (FID), Air Handling Unit (AHU), Air Cleaning Unit (ACU), and Contaminated Air Purification System (CAPS) in light of their functional requirements and importance. The classification for the overall HVAC system of the KJRR is a safety class NNS, Non-Seismic category, quality class S, and electrical class Non-1E. Exceptionally, the CID and FID are safety class 3, seismic category I, and quality class Q. The electrical class for the major equipment of the HVAC system should be determined considering the operation concept during Loss of Normal Electric Power (LOEP) regardless of the safety class. In this paper, the electrical and power supply class is determined and the operation logic is proposed for the major equipment of the HVAC system for the KJRR such as the CID, FID, CAPS, ACU, and AHU. The electrical class Non-1E is determined to implement a fail closed for the enhancement of safety. The power supply class is based on the functional requirements of each equipment. The CID, FID, CAPS, and ACU are Class III, but the AHU is Class IV by reflecting the importance and electrical load. After the recovery of the power supply, there is a difference in the operation concept for the HVAC system between the reactor building and fission molybdenum production building depending on the operator's residence time. The CID and CAPS are operated manually through procedures for checking the accident status, and the FID and ACU are operated automatically without special procedures.

  20. Design principles of a nuclear and industrial HVAC of IFMIF

    International Nuclear Information System (INIS)

    Pruneri, Giuseppe; Ibarra, A.; Heidinger, R.; Knaster, J.; Sugimoto, M.

    2016-01-01

    Highlights: • Parameter of Derivate air Contamination (DAC) allows to associate the type of air ventilation. • The construction and operation of IFMIF will be subjected to the regulations of the country in which it will be sited. • Structures, systems and components are assigned a particular safety important components (SIC, 1–2 and Non-SIC) clarification that is based on the consequences of their failure. • Reliability, Availability, Maintainability and Inspectability (RAMI) analysis has given a great contribution of the facility to optimize the configuration, particularly for the HVAC system. - Abstract: In 2013, the IFMIF, the International Fusion Material Irradiation Facility, presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase, framed by the Broader Approach Agreement between Japan and EURATOM, accomplished in 2013 its mandate to provide the engineering design of the plant on schedule [1]. The IFMIF aims to qualify and characterize materials that are capable of withstanding the intense neutron flux originated in D-T reactions of future fusion reactors due to a neutron flux with a broad peak at 14 MeV, which is able to provide >20 dpa/fpy on small specimens in this EVEDA phase. The successful operation of such a challenging plant demands a careful assessment of the Conventional Facilities (CF), which have adequate redundancies to allow for the target plant availability [2]. The present paper addresses the design proposed in the IFMIF Intermediate Engineering Design Report regarding the CF, particularly the IFMIF's Nuclear and Industrial HVAC design. A preliminary feasibility study, including the initial configuration, calculations and reliability/availability analysis, were performed. The nuclear HVAC design was developed progressively; first, by establishing a conceptual design, starting from the system functional description, followed by the identification of the corresponding interfacing systems and their

  1. Design principles of a nuclear and industrial HVAC of IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Pruneri, Giuseppe [IFMIF/EVEDA, Project Team, Rokkasho (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Heidinger, R. [F4E, Garching (Germany); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho (Japan); Sugimoto, M. [JAEA, Rokkasho (Japan)

    2016-02-15

    Highlights: • Parameter of Derivate air Contamination (DAC) allows to associate the type of air ventilation. • The construction and operation of IFMIF will be subjected to the regulations of the country in which it will be sited. • Structures, systems and components are assigned a particular safety important components (SIC, 1–2 and Non-SIC) clarification that is based on the consequences of their failure. • Reliability, Availability, Maintainability and Inspectability (RAMI) analysis has given a great contribution of the facility to optimize the configuration, particularly for the HVAC system. - Abstract: In 2013, the IFMIF, the International Fusion Material Irradiation Facility, presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase, framed by the Broader Approach Agreement between Japan and EURATOM, accomplished in 2013 its mandate to provide the engineering design of the plant on schedule [1]. The IFMIF aims to qualify and characterize materials that are capable of withstanding the intense neutron flux originated in D-T reactions of future fusion reactors due to a neutron flux with a broad peak at 14 MeV, which is able to provide >20 dpa/fpy on small specimens in this EVEDA phase. The successful operation of such a challenging plant demands a careful assessment of the Conventional Facilities (CF), which have adequate redundancies to allow for the target plant availability [2]. The present paper addresses the design proposed in the IFMIF Intermediate Engineering Design Report regarding the CF, particularly the IFMIF's Nuclear and Industrial HVAC design. A preliminary feasibility study, including the initial configuration, calculations and reliability/availability analysis, were performed. The nuclear HVAC design was developed progressively; first, by establishing a conceptual design, starting from the system functional description, followed by the identification of the corresponding interfacing systems and their

  2. Maintenance of HVAC-systems and components: How to prevent pollution from HVAC-systems?

    NARCIS (Netherlands)

    Müller, B.; Björkroth, M.; Plitt, U.; Bluyssen, P.M.

    2000-01-01

    In the beginning of 1998 a three-year European project, AIRLESS, was started to develop strategies, principles and protocols to improve and control the performance of HVAC-systems and its components for incorporation in codes and guidelines. Twelve institutes, universities and companies, from seven

  3. Why, when and how do HVAC-systems pollute? Characterisation of HVAC-systems related pollution

    NARCIS (Netherlands)

    Bluyssen, P.M.; Björkroth, M.; Müller, B.; Oliveira Fernandes, E. de; Roulet, C.A.

    2000-01-01

    In the beginning of 1998 a three-year European project, AIRLESS, was started to develop strategies, principles and protocols to improve and control the performance of HVAC-systems and its components for incorporation in codes and guidelines. Twelve institutes, universities and companies from seven

  4. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    Almerico, F.; Machiels, A.J.; Ornberg, S.C.; Lahti, G.P.

    1985-01-01

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  5. RECOMMENDED HVAC STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report contains the recommended language for the heating, ventilation, and air conditioning (HVAC) section of the "Florida Code for Radon-resistant Construction and Mitigation." t deals with elements of construction that relate to the HVAC of houses. ts primary intent is to p...

  6. Applying power electronics to residential HVAC

    International Nuclear Information System (INIS)

    Sulfstede, L.

    1991-01-01

    This paper outlines several of the market and application issues bearing on the economics residential variable speed air conditioners and heat pumps. Technical details of capacity modulized systems have been avoided, along with design issues and tradeoffs involving power semiconductors, motor torque and speed control strategies- and silicon integration for these applications. The intention is to provoke new creative technical solutions but perhaps more importantly, to involve new marketing strategies that will develop the mature potential of air conditioning products containing power electronics to enable them to generate the tough HVAC market, competing successfully against conventional systems

  7. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  8. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in the first

  9. Optimal Set-Point Synthesis in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2007-01-01

    This paper presents optimal set-point synthesis for a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger and a water-to-air heat exchanger. The objective function is composed of the electrical power for different...... components, encompassing fans, primary/secondary pump, tertiary pump, and air-to-air heat exchanger wheel; and a fraction of thermal power used by the HVAC system. The goals that have to be achieved by the HVAC system appear as constraints in the optimization problem. To solve the optimization problem......, a steady state model of the HVAC system is derived while different supplying hydronic circuits are studied for the water-to-air heat exchanger. Finally, the optimal set-points and the optimal supplying hydronic circuit are resulted....

  10. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    Energy Technology Data Exchange (ETDEWEB)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  11. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems

    International Nuclear Information System (INIS)

    Jin, Guang-Yu; Cai, Wen-Jian; Lu Lu; Lee, Eng Lock; Chiang, Andrew

    2007-01-01

    This paper proposes a new, simple, yet accurate mechanical cooling tower model for the purpose of energy conservation and management. On the basis of Merkel's theory and effectiveness-NTU method, the model is developed by energy balance and heat, mass transfer analysis. Commissioning information is then used to identified, only three model parameters by Levenberg-Marquardt method. Compared with the existing models, the proposed model has simple characteristic parameters to be determined and without requiring iterative computation when the operating point changes. The model is validated by real operating data from the cooling towers of a heating, ventilating and air conditioning (HVAC) system of a commercial hotel. The testing results show that the performance of the cooling tower varies from time to time due to different operating conditions and the proposed model is able to reflect these changes by tuning its parameters. With this feature, the proposed model can be simply used and accurately predict the performance of the real-time operating cooling tower

  12. Efficient HVAC. New products; Climatización eficiente. Nuevos productos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Jung is responding to the challenge of energy efficiency, ease of operation and economic profitability in all of its solutions for the tertiary sector, whether for newly constructed buildings or refurbishments, for full management of the electrical system or the partial control of lighting, HVAC, mood settings, access control, etc., for the bedrooms or specific areas of the building. In the specific case of hotels, Jung offers each a custom-made solution in line with its possibilities and objectives. (Author)

  13. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  14. Comparative guide to emerging diagnostic tools for large commercial HVAC systems; TOPICAL

    International Nuclear Information System (INIS)

    Friedman, Hannah; Piette, Mary Ann

    2001-01-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool

  15. An approach to defining the energy requirements of dairy sheep

    International Nuclear Information System (INIS)

    Susmel, P.; Cuzzit, R.

    1988-01-01

    Evaluation of the interaction between nutrition and reproduction in Mediterranean sheep requires knowledge of the energy requirements of animals in different productive and reproductive stages. The available energy systems developed for temperate climates and genotypes are not directly applicable to Mediterranean breeds of dairy sheep. Using already available data, metabolizable energy requirements for these types of animals are proposed. (author). 59 refs, 9 tabs

  16. Tomorrow's energy needs require intelligent networks

    International Nuclear Information System (INIS)

    Bitsch, R.

    1998-01-01

    With the European wide move towards increased competition and greater deregulation of the energy industry, has come a thrust for greater efficiency and understanding customer needs and external constraints such as the environment. This, in turn, has led to solutions which take advantage of the tremendous developments in information technology and on-line control systems which are described in this paper. Topics include intelligent networks, decentralised energy supplies and decentralised energy management. (UK)

  17. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  18. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  19. ISH. HVAC engineering yearbook 1999; ISH. Jahrbuch fuer Gebaeudetechnik 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The 1999 HVAC engineering yearbook contains contributions on energy conservation and optimization in the fields of ventilation and air conditioning: inter alia, solar cooling and air conditioning, optimum rating of ventilator units, and cooling ceilings with ventilation function. In the field of heating, the following topics are addressed, equally under the aspect of energy conservation: condensing boiler technology, hydraulic balancing of heating pipe systems and sequential boiler switching using fuzzy control. Further works deal with rational use of electricity in buildings, and building automation. 17 papers are individually listed in the Energy database. [Deutsch] Das Jahrbuch fuer Gebaeudetechnik 1999 enthaelt Beitraege zur Energieeinsparung und Optimierung auf den Gebieten Lueftung und Klimatisierung, u. a. solare Kuehlung und Klimatisierung, optimale Auslegung von Ventilator-Aggregaten und Kuehldecken mit Lueftungsfunktion. Auf dem Gebiet der Heizung werden ebenfalls unter dem Gesichtspunkt Energieeinsparung die Brennwerttechnologie, der hydraulische Abgleich von Heizungsrohrnetzen sowie Kesselfolgeschaltungen mit Fuzzy Control angesprochen. Weitere Arbeiten befassen sich mit der rationellen Elektrizitaetsverwendung in Geb auden sowie der Gebaeudeautomation. Fuer die Datenbank Energy wurden 17 Arbeiten separat aufgenommen.

  20. Designing the controllability of a HVAC-plant by dynamic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V; Grindal, A

    1994-05-01

    This paper was presented at CLIMA 2000 - The international conference on energy and environmental matters in built environment, London, 1.-3. November 1993. Nowadays, HVAC engineers can use dynamic simulation programs in their everyday work. Such tools provide the ability to analyze different system configurations and to check the obtained states even before the building and plant are constructed. To encourage its wider use, the authors present in this paper the experiences obtained with the simulation program HVAC-DYNAMICS. The program was used to simulate the retrofitting of a heat recovery wheel to a conventional ventilation plant with a hot water heating coil. The effects of different design parameters on the controllability of the plant were investigated. Interestingly, some commonly recommended ``clever`` configurations can lead to unexpected control scenarios. 4 refs., 3 figs., 2 tabs.

  1. A Statistical Approach for Selecting Buildings for Experimental Measurement of HVAC Needs

    Directory of Open Access Journals (Sweden)

    Malinowski Paweł

    2017-03-01

    Full Text Available This article presents a statistical methodology for selecting representative buildings for experimentally evaluating the performance of HVAC systems, especially in terms of energy consumption. The proposed approach is based on the k-means method. The algorithm for this method is conceptually simple, allowing it to be easily implemented. The method can be applied to large quantities of data with unknown distributions. The method was tested using numerical experiments to determine the hourly, daily, and yearly heat values and the domestic hot water demands of residential buildings in Poland. Due to its simplicity, the proposed approach is very promising for use in engineering applications and is applicable to testing the performance of many HVAC systems.

  2. European Utility Requirements: European nuclear energy

    International Nuclear Information System (INIS)

    Komsi, M.; Patrakka, E.

    1997-01-01

    The work procedure and the content of the European Utility Requirements (EUR) concerning the future LWRs is described in the article. European Utility Requirements, produced by utilities in a number of European countries, is a document specifying the details relating to engineered safety, operating performance, reliability and economics of the reactors to be built by manufacturers for the European market

  3. D-Zero HVAC Heat Pump Controls

    International Nuclear Information System (INIS)

    Markley, Dan

    2004-01-01

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  4. MATERIALS REQUIREMENTS FOR THERMIONIC ENERGY CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R. C.; Skeen, C. H.

    1963-03-15

    The fundamentals of the thermionic energy conversion and its potential applications are reviewed. Materials problems associated with thermionic emitters are considered in relation to the following: work function; emissivity; vaporization; thermal, mechanical, and electrical properties; chemical stability; permeation; and stability under nuclear radiation. Cesium purity and materials suitable for collectors, electrical leads, support structures, insulators, and seals are also discussed. Experimental work on problems involved is reviewed. It is concluded that significant developments have occurred recently in all areas of thermionic energy conversion. (40 references) (A.G.W.)

  5. Review of Residential Low-Load HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thornton, Brian A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  6. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  7. Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  8. Requirements for success in competitive energy markets

    International Nuclear Information System (INIS)

    Wallis, E.

    1997-01-01

    A summary of a lecture delivered to the Institute of Energy on a power generator's experience of the UK competitive electricity market is given. It is concluded that privatization has met the public interest better than nationalisation and that the future lies in international growth and globalisation. (UK)

  9. Cost optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...

  10. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  11. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  12. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  13. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  14. Using variable speed drives technology to reap rewards of efficient HVAC design

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Electric motors are continuously running at full speed with vanes and throttles used to modulate the output, in most HVAC applications. This results in an excessive wastage of electrical energy, and the solution is the variable speed drive, which can save vast amounts of energy in fans, pumps and compressors across the HVAC system. Users of traditional control methods will not benefit from the energy savings that are possible through variable speed drives because the motor speed remains the same, with the result that some, and in some cases most, of the energy drawn will be wasted. Variable speed drives are more efficient because they control output by regulating the motor speed, rather than run the motor at full speed and use restrictions to reduce the flow. Recently, small so-called micro-drives have been launched, cutting the cost for most variable speed operation. Variable speed motors can also introduce new features to the HVAC system. An example of how drives can save money and improve the indoor climate is cited for Heathrow airport. There, the gateroom was earlier controlled by modulating valves in both heater and cooler coils, with two fans that operated continuously at rated speed. This system was very inefficient because the occupancy of the gateroom varied between zero and maximum several times daily. A new system was installed using two AC drives, in which one drive controls the supply air fan and the other the return air fan. The energy savings amounted to 89% during two tests and 77% in a third. A pump installation in the district heating system of Strasbourg, Germany, showed the savings that are possible in pump applications

  15. Investment requirements in the energy sector and their financing

    International Nuclear Information System (INIS)

    Diehl, R.; Radtke, G.; Stoessel, R.

    1980-01-01

    The authors investigate the investment requirements of the energy economy, especially for the Federal Republic Germany, but also for parts of the world. Possibilities for financing are shown which can be considered as assured, under certain conditions. Included are the investments and the capital requirements for the fossil energy-carriers (coal, brown coal, oil, natural gas), for the electricity economy and for the regenerativ energy sources (e.g. tidal energy, wind, solar radiation). The last chapter deals with financing the necessary investments in the energy sector, considering the financing structure, financial problems of individual branches and the development of the credit volume. (orig.) [de

  16. Investment requirements in the energy sector and their financing

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, R; Radtke, G; Stoessel, R [Dresdner Bank A.G., Duesseldorf (Germany, F.R.)

    1980-01-01

    The authors investigate the investment requirements of the energy economy, especially for the Federal Republic Germany, but also for parts of the world. Possibilities for financing are shown which can be considered as assured, under certain conditions. Included are the investments and the capital requirements for the fossil energy-carriers (coal, brown coal, oil, natural gas), for the electricity economy and for the regenerativ energy sources (e.g. tidal energy, wind, solar radiation). The last chapter deals with financing the necessary investments in the energy sector, considering the financing structure, financial problems of individual branches and the development of the credit volume.

  17. A forecast of energy requirements in South Africa

    International Nuclear Information System (INIS)

    Kotze, D.J.

    1975-01-01

    The aim of this paper is to evaluate the adequacy of South Africa's energy resources relative to projected demands. The forecasting procedure embraces the construction of suitable energy balances and the development of econometric demand models. An energy balance is employed which integrates supply and demand data on all forms of energy for a particular year. The demand side of the balance is divided into both final demand and demand by the conversion sector. Useful energy consumption in each sector is estimated by applying utilisation efficiency co-efficients to the physics energy content of each energy form. Total final demand is determined by developing sub-models for each sector of final demand including households, industry, mining and transport. In these sub-models, economic series representing the type of activity in the particular sub-sector, are used as explanatory variables. Further relationships, quantifying the contributions of each form of energy to the sectorial totals, are constructed. Having established the future value of final useful energy demand, total future production and final consumption is obtained. The forecast of primary energy requirements is therefore made via a reversed calculation from the final energy demand through all conversion processes to the primary energy stage. Once the future distribution of energy by source, form and end use sector is known it is possible to plan the optimum allocation of energy resources in the country. It is also possible to evaluate the life of indigenous energy resources, their adequacy, and import requirements

  18. Neuro-optimal operation of a variable air volume HVAC and R system

    International Nuclear Information System (INIS)

    Ning Min; Zaheeruddin, M.

    2010-01-01

    Low operational efficiency especially under partial load conditions and poor control are some reasons for high energy consumption of heating, ventilation, air conditioning and refrigeration (HVAC and R) systems. To improve energy efficiency, HVAC and R systems should be efficiently operated to maintain a desired indoor environment under dynamic ambient and indoor conditions. This study proposes a neural network based optimal supervisory operation strategy to find the optimal set points for chilled water supply temperature, discharge air temperature and VAV system fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. Simulation results show that compared to the conventional night reset operation scheme, the optimal operation scheme saves around 10% energy under full load condition and 19% energy under partial load conditions.

  19. Development of the world energy requirement until 2000

    International Nuclear Information System (INIS)

    Schmitt, D.

    1977-01-01

    In its final report entitled 'Energy Global Prospects 1985 - 2000' and in three technical reports the Workshop on Alternative Energy Strategies (WAES), which was attended by 70 experts from 15 countries, in the summer of this year published the first worldwide forecast of the energy requirement up to the year 2000. The uncertainties affecting the long term development caused the WAES to employ a scenario in which the variables were economic growth, price levels of energy (and oil, respectively), and energy policy. Additional variables included to describe the long term problems arising in meeting the energy requirement are the coal vs. nuclear power alternative, the gross additions to the oil reserves, and assumptions about OPEC production limits. In view of the long lead times of technological developments and the extraordinarily high capital investments involved, rethinking is necessary right now, according to the WAES study, to find a possibility to change to other sources of fossil energy, nuclear power and, finally, renewable sources of energy, in view of the impending scarcity of the most important present source of energy, i.e., oil. Since the chances to meet a growing energy requirement by natural gas are viewed sceptically and a major contribution of new sources of energy is not expected to come forth before the next century, coal and nuclear power will be the main sources of energy supply for a foreseeable period of time to come. (orig.) [de

  20. Factorial estimation of energy requirement for egg production

    DEFF Research Database (Denmark)

    Chwalibog, André

    1992-01-01

    Based on balance and respiration measurements with 60 White Leghorns during the laying period from 27 to 48 wk of age, a factorial method for estimating the energy requirement for egg production is proposed. The present experiment showed that the deposition of fat and energy increased during...... the laying period, but protein deposition slightly decreased. It has been shown that the efficiency of ME utilization for fat energy deposition is higher than for protein energy deposition in the egg. Because the proportions of protein and fat differ during the laying period, and because energy utilization...... is different between protein and fat, the ME requirement was calculated as the sum of ME for maintenance and the partial requirements for protein, fat, and carbohydrate deposition. For practical applications, functions for prediction of protein (OP), fat (OF), and energy (OE) in eggs during the laying period...

  1. Energy requirement for fine grinding of torrefied wood

    Energy Technology Data Exchange (ETDEWEB)

    Repellin, Vincent; Govin, Alexandre; Guyonnet, Rene [Department of Powder and Multi-Components Materials (PMMC), SPIN Research Center, Ecole des Mines de Saint Etienne (EMSE), 158 Cours Fauriel, F-42023 Saint-Etienne (France); Rolland, Matthieu [Process Developments and Engineering Division, Chemical Engineering Department, Institut Francais du Petrole (IFP-Lyon), F-69390 Vernaison (France)

    2010-07-15

    The purpose of this study is to investigate the influence of torrefaction on wood grinding energy. Wood chips were torrefied at different temperatures and durations. The energy required to obtain fine powder was measured. Particle size analyses were carried out on each powder sample. It is showed that torrefaction decreases both grinding energy and particle size distribution. A criterion to compare grindability of natural and torrefied wood is proposed. It takes into account both grinding energy and particle size distribution. It accounts the energy required for grinding particles to sizes inferior to 200 {mu}m, for given grinding conditions. Torrefaction is characterised by the anhydrous weight loss (AWL) of wood. For AWL inferior to around 8%, grinding energy decreases fast. Over 8%, grinding energy decreases at a slow rate. Particle size distribution decreases linearly as the AWL increases. Both for spruce and beech, the grinding criterion is decreased of 93% when the AWL is around 28%. (author)

  2. Development and supply of the world energy requirement

    International Nuclear Information System (INIS)

    Schulz, E.

    1981-01-01

    Recently published research reveals that the world energy requirement can and must grow more slowly than previously anticipated. In order to supply developing nations with the energy necessary for the expansion of their economies, energy saving and oil substitution assume greater significance in the industrialised countries such as the Federal Republic. Future fulfillment of the world energy requirement will be characterised by escalating costs for supply, especially for the current main energy carrier oil, on the one hand and by increased use of coal and nuclear energy as well unconventional fossils such as regenerative energies on the other. Nuclear energy and thus the electricity economy must play a key function in the future energy supply of industrial nations such as Federal Germany. Nuclear energy enables, both directly and indirectly, the substitution of oil in the heat market, supplies the process heat required for coal production and, due to the ease of storage or uranium, provides a hedge against fluctuations on the world energy market. (orig.) [de

  3. Energization of Long HVAC Cables in Parallel - Analysis and Estimation Formulas

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    2012-01-01

    The installation of long HVAC cables has recently become more common and it tends to increase during the next years. Consequently, the energization of long HVAC cables in parallel is also a more common condition. The energization of HVAC cables in parallel resembles the en-ergization of capacitor...... has several simplifications and does not always provide accurate results. This paper proposes a new formula that can be used for the estimation of these two quantities for two HVAC cables in parallel....

  4. The energy requirement of holidays and household reduction options

    International Nuclear Information System (INIS)

    Van den Berg, M.; Vringer, K.

    1999-12-01

    Like all consumer products and services, holidays require energy. The aim of this study is to give insight to the energy consumption for holidays of Dutch households and to suggest options to reduce this energy demand. To examine the energy consumption for holidays, nine holiday packages are composed, each representing a large group of Dutch vacationers. The packages describe the destination, means of transport, duration, accommodation and number of vacationers. The average energy requirement for the accommodation and transport for long summer holidays is 12.5 GJ per Dutch household, excluding the energy requirement for food and activities. About 10% of the Dutch households, the ones that travel by plane to their holiday destination, consume 70% of the total amount of energy all households require for holiday purposes. This is mainly due to the distance travelled, rather than to the chosen means of transport. If the travelled distances will be reduced by 50% and all nights are spent in a tent, the average household energy requirement would be 6.1 GJ, a reduction of more than 50%. 36 refs

  5. HVAC retrofit evaluations: Persuading owners to do it right

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.G. [Linford (Robert G.), Oakland, CA (United States)

    1997-11-01

    HVAC system retrofit evaluations for commercial buildings are complex and, at best, imperfect. The number of variables even for a simple system is large. For a complex system, they can be nearly overwhelming. One of the most difficult questions owners of older buildings face is to decide when is it cost effective to replace or upgrade the HVAC system rather than to repair (or ignore) specific components. Similarly, two of the major questions a prospective buyer faces in evaluating a building during the due diligence process are: how well does the HVAC system work today, and how well will it work in the future and at what cost? These are addressed in this article.

  6. The German energy policy: between national requirements and community exigencies

    International Nuclear Information System (INIS)

    Notz, K.

    2007-01-01

    Taking into account the strategic and economic stakes that are associated with the security of energy supplies, the German federal government has made of this question one of the priorities of its european presidency. In this note, the author observes a radical change in the German energy policy with the future phaseout of nuclear energy and the perspectives of Russian gas supply. The author also reviews the challenges of the elaboration of a European energy policy, with certain member States refusing to transfer their sovereignty in the energy domain, and the large split between national requirements and community exigencies in this field

  7. Energy requirements during sponge cake baking: Experimental and simulated approach

    International Nuclear Information System (INIS)

    Ureta, M. Micaela; Goñi, Sandro M.; Salvadori, Viviana O.; Olivera, Daniela F.

    2017-01-01

    Highlights: • Sponge cake energy consumption during baking was studied. • High oven temperature and forced convection mode favours oven energy savings. • Forced convection produced higher weight loss thus a higher product energy demand. • Product energy demand was satisfactorily estimated by the baking model applied. • The greatest energy efficiency corresponded to the forced convection mode. - Abstract: Baking is a high energy demanding process, which requires special attention in order to know and improve its efficiency. In this work, energy consumption associated to sponge cake baking is investigated. A wide range of operative conditions (two ovens, three convection modes, three oven temperatures) were compared. Experimental oven energy consumption was estimated taking into account the heating resistances power and a usage factor. Product energy demand was estimated from both experimental and modeling approaches considering sensible and latent heat. Oven energy consumption results showed that high oven temperature and forced convection mode favours energy savings. Regarding product energy demand, forced convection produced faster and higher weight loss inducing a higher energy demand. Besides, this parameter was satisfactorily estimated by the baking model applied, with an average error between experimental and simulated values in a range of 8.0–10.1%. Finally, the energy efficiency results indicated that it increased linearly with the effective oven temperature and that the greatest efficiency corresponded to the forced convection mode.

  8. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  9. Analysis of the energy requirement for household consumption

    NARCIS (Netherlands)

    Vringer, Kees

    2005-01-01

    Humans in households use energy for their activities. This use is both direct, for example electricity and natural gas, but also indirect, for the production, transport and trade of other goods and services. The main objective of this thesis is to gain insight into the energy requirement associated

  10. Chapter 4: Small Commercial and Residential Unitary and Split System HVAC Heating and Cooling Equipment-Efficiency Upgrade Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jacobson, David [Jacobson Energy Research, Providence, RI (United States); Metoyer, Jarred [DNV GL, Madison, WI (United States)

    2017-11-02

    The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.

  11. Energy requirements for growth in the Yorkshire terrier.

    Science.gov (United States)

    Alexander, Janet E; Colyer, Alison; Morris, Penelope J

    2017-01-01

    The 2006 National Research Council (NRC) equation calculating puppy energy requirements does not account for reported breed differences in growth pattern. Energy requirements of toy breed puppies are unknown and it is unclear whether feeding guidelines should differ between breeds. Energy requirements of Yorkshire terrier (YT) puppies were observed over their first year of life and compared with those predicted by the NRC and those previously observed in large (Labrador retriever) and medium (miniature Schnauzer; MS) breed puppies. Twenty-two puppies (from eight litters) were offered complete and balanced diets to maintain ideal body condition score (BCS). Energy intake, body weight and BCS were recorded from 10 to 52 weeks of age. Every 12 weeks, health was monitored by veterinary examination, routine haematology and plasma biochemistry. Puppies remained clinically healthy with normal skeletal development throughout. After analysis by linear mixed models it was observed that the NRC equation overestimates YT energy requirements between 10 and 20 weeks of age by up to 324·3 (95 % CI 390·4, 258·2) kJ/kg 0·75 . Energy intake was lower ( P  < 0·05) in YT than Labradors until 29 weeks by up to 376·6 (95 % CI 477·4, 275·3) kJ/kg 0·75 and lower than MS between 16 and 25 weeks by up to 216·3 (95 % CI 313·0, 119·7) kJ/kg 0·75 ( P  < 0·05). Data indicate differences in toy, medium and large breed energy requirements for growth. The NRC equation for puppy energy requirements overestimated the requirements of this YT population, suggesting the need for breed-specific feeding guides for growth to avoid overfeeding.

  12. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels...... of minimum energy performance requirements. In addition to the summary report released in August 2011, the full detailed report on this study is now also made available, just as the EC is about to publish its proposed Regulation for MS to apply in their process to update national building requirements....

  13. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  14. Thermal room modelling adapted to the test of HVAC control systems; Modele de zone adapte aux essais de regulateurs de systemes de chauffage et de climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Riederer, P.

    2002-01-15

    Room models, currently used for controller tests, assume the room air to be perfectly mixed. A new room model is developed, assuming non-homogeneous room conditions and distinguishing between different sensor positions. From measurement in real test rooms and detailed CFD simulations, a list of convective phenomena is obtained that has to be considered in the development of a model for a room equipped with different HVAC systems. The zonal modelling approach that divides the room air into several sub-volumes is chosen, since it is able to represent the important convective phenomena imposed on the HVAC system. The convective room model is divided into two parts: a zonal model, representing the air at the occupant zone and a second model, providing the conditions at typical sensor positions. Using this approach, the comfort conditions at the occupant zone can be evaluated as well as the impact of different sensor positions. The model is validated for a test room equipped with different HVAC systems. Sensitivity analysis is carried out on the main parameters of the model. Performance assessment and energy consumption are then compared for different sensor positions in a room equipped with different HVAC systems. The results are also compared with those obtained when a well-mixed model is used. A main conclusion of these tests is, that the differences obtained, when changing the position of the controller's sensor, is a function of the HVAC system and controller type. The differences are generally small in terms of thermal comfort but significant in terms of overall energy consumption. For different HVAC systems the cases are listed, in which the use of a simplified model is not recommended. (author)

  15. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  16. Low sound level source path contribution on a HVAC

    NARCIS (Netherlands)

    Bree, H.E. de; Basten, T.G.H.

    2008-01-01

    For compliance test purposes, the noise level of a HVAC is usually measured with a pressure microphone positioned at a certain distance. This measurement is normally performed in an anechoic room. However, this method doesn't provide the engineer any insight on what noise sources do contribute to

  17. D0 HVAC System Controls Evaluation of Upgrade Options

    International Nuclear Information System (INIS)

    Markley, D.; Simon, P.

    1998-01-01

    This engineering note documents three different options for upgrading the Dzero HVAC control system. All three options leave the current field hardware and field devices intact and upgrade the computer control hardware and software. Dzero will be heading into a physics run starting in 2000. This physics run could last several years. The Dzero HVAC system is an integral part of climate control and electronics cooling. The current HVAC control system is based upon a 1985 Johnson Controls System. In order to enter the next long-term physics run with a solid HVAC control system, the current control system needs to be upgraded. This proposal investigates three options: (1) Replacement to the next generation of Johnson Controls Hardware and Software with the Johnson Controls operator interface - FESS; (2) Replacement to the next generation of Johnson Controls Hardware and Software with the FIX32 Operator Interface - FESS/Dzero; and (3) Replacement with a commercially available Programmable Logic Controller (PLC) WITH THE FIX 32 Operator Interface - Dzero.

  18. Towards an integral approach of building and HVAC system

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1993-01-01

    The dynamic thermal interaction between a building and the HVAC systems which service it is still difficult to predict. As this thermal interaction becomes more critical in practice, related knowledge and evaluation tools become increasingly important. It is argued why these need to be based on an

  19. Illinois Occupational Skill Standards: HVAC/R Technician Cluster.

    Science.gov (United States)

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended to serve as a guide for work force preparation program providers, details the Illinois occupational skill standards for programs preparing students for employment in jobs in the heating, ventilation, air conditioning, and refrigeration (HVAC/R) industry. Agency partners involved in this project include: the…

  20. Maximize Benefits, Minimize Risk: Selecting the Right HVAC Firm.

    Science.gov (United States)

    Golden, James T.

    1993-01-01

    An informal survey of 20 major urban school districts found that 40% were currently operating in a "break down" maintenance mode. A majority, 57.9%, also indicated they saw considerable benefits in contracting for heating, ventilating, and air conditioning (HVAC) maintenance services with outside firms. Offers guidelines in selecting…

  1. Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics

    Science.gov (United States)

    In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.

  2. INFLUENCE OF RESIDENTIAL HVAC DUTY CYCLE ON INDOOR AIR QUALITY

    Science.gov (United States)

    Measurements of duty cycle, the fraction of time the heating and cooling (HVAC) system was operating, were made in homes during the spring season of the RTP Particulate Matter Panel Study and the Tampa Asthmatic Children's Study. A temperature sensor/logger placed on an outlet...

  3. Application of modeling and simulation to HVAC systems

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1996-01-01

    This paper attempts to describe the advantages and disadvantages of different modelling approaches for design and performance evaluation of heating, ventilating, and air-conditioning (HVAC) systems for buildings. Merits and drawbacks of the various modelling methods are illustrated by case study

  4. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  5. Changing Energy Requirements in the Mediterranean Under Changing Climatic Conditions

    Directory of Open Access Journals (Sweden)

    George Demosthenous

    2009-09-01

    Full Text Available This study investigates the impacts of climate change on energy requirements in the Mediterranean. Energy requirements, especially for space heating and cooling, are closely linked to several weather variables, mainly air temperature. The analysis is based on daily temperature outputs from several regional climate models run at a resolution of 25 km × 25 km in the framework of EU project ENSEMBLES using the A1B emissions scenario. The impacts of changes in temperature on energy requirements are investigated using the concept of degree days, defined as the difference of mean air temperature from a base temperature. Base temperature should be chosen to coincide with the minimum energy consumption. In this way, changes in heating and cooling requirements between the reference and the future period are calculated and areas about to undergo large changes identified. These changes are calculated between a 30-year reference period 1961–1990 and a near future period 2021–2050 taking the ensemble mean of all regional climate models. The near-term future has been chosen instead of the frequently used end-of-the-century period to assist policy makers in their planning. In general, a decrease in energy requirements is projected under future milder winters and an increase under hotter summers.

  6. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  7. Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California.

    Science.gov (United States)

    Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D

    2012-08-01

    This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.

  8. Investment requirements in the energy sector and their financing

    Energy Technology Data Exchange (ETDEWEB)

    Diel, R; Radtke, G; Stoesel, R

    1981-06-01

    The present research study illustrates the required volume of investment in the energy sector during the next two decades while referring explicitly to the availability of financial resources. The data for the respective primary energy sources and electric power production relate to the Federal Republic of Germany; still, as far as figures were available, the energy situation of the Western World is taken into account. Starting from the premise that energy needs will continue to grow - albeit at a slower rate -, future investment activity will have to depart from past trends, with their more or less evenly spread recourse to all available primary energy sources, to a substantial reliance on nuclear energy, coal and natural gas as against oil. In addition to the higher capital requirements due to the restructuring of the energy supply, future investment will be characterized by particularly capital-intensive projects and, in addition, by the fact that expensive development schemes must be vigorously pursued. This applies not only to coal gasification and liquifaction but also to regenerative energy sources.

  9. HVAC System Replacements for the Spanish Nuclear Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.; Gensollen, T.; Pérez, C.

    2015-07-01

    The European Union and its Member States have established regulations to phase out ozone-depleting chlorofluorocarbons (CFCs). The chiller systems installed at the Spanish nuclear fleet contained zone depleting refrigerants (such as R-11, R-12, and R-22), which are being phased out of service. Due to the different material and thermodynamic properties of the replacement refrigerant (e.g. R-134A), a complete chiller system replacement is needed to comply with the EU regulations for CFCs. Delivering state of the art HVAC and Chiller systems that comply with the Nuclear Plant design basis, licensing basis, system and component specifications as well as European Union (EU) and Spanish codes and standards can be challenging for products purchased from US based manufacturers. Procurement specifications and Request for Quotes (RFQs) issued today for the procurement of original Plant components and systems will contain references to numerous codes and standards that were not in effect at the time the original components were specified and procured. The reference to EU and Spanish codes and standards that are unfamiliar to the HVAC suppliers can lead to uncertainty and concern related to specification compliance. The unnecessary burden of ambiguous codes and standards complicates the proposal process and introduces pricing uncertainty and contract risk. A review of the EU and Spanish national codes and standards that are often referenced in HVAC system related RFQs need to be performed to determine what codes and standards are applicable to HVAC systems designed, manufactured and tested in the US for export to Spain for installation in Spanish NPPs. Lessons learned and best practices should be applied to help both the Supplier (HVAC OEM) and the Purchaser Plant Operator) to optimize the procurement process and improve the quality of offerings to comply with applicable codes and standards. (Author)

  10. Forecast of wind energy production and ensuring required balancing power

    International Nuclear Information System (INIS)

    Merkulov, M.

    2010-01-01

    The wind energy is gaining larger part of the energy mix around the world as well as in Bulgaria. Having in mind the irregularity of the wind, we are in front of a challenge for management of the power grid in new unknown conditions. The world's experience has proven that there could be no effective management of the grid without forecasting tools, even with small scale of wind power penetration. Application of such tools promotes simple management of large wind energy production and reduction of the quantities of required balancing powers. The share of the expenses and efforts for forecasting of the wind energy is incomparably small in comparison with expenses for keeping additional powers in readiness. The recent computers potential allow simple and rapid processing of large quantities of data from different sources, which provides required conditions for modeling the world's climate and producing sophisticated forecast. (author)

  11. Designing for Optimal Energy Use in Production Facilities

    National Research Council Canada - National Science Library

    2004-01-01

    These briefing charts accompany a presentation on how Albert Kahn Associate saves its clients energy costs through building structure, design of HVAC systems, lighting systems, process related systems...

  12. The millennium development goals and household energy requirements in Nigeria.

    Science.gov (United States)

    Ibitoye, Francis I

    2013-01-01

    Access to clean and affordable energy is critical for the realization of the United Nations' Millennium Development Goals, or MDGs. In many developing countries, a large proportion of household energy requirements is met by use of non-commercial fuels such as wood, animal dung, crop residues, etc., and the associated health and environmental hazards of these are well documented. In this work, a scenario analysis of energy requirements in Nigeria's households is carried out to compare estimates between 2005 and 2020 under a reference scenario, with estimates under the assumption that Nigeria will meet the millennium goals. Requirements for energy under the MDG scenario are measured by the impacts on energy use, of a reduction by half, in 2015, (a) the number of household without access to electricity for basic services, (b) the number of households without access to modern energy carriers for cooking, and (c) the number of families living in one-room households in Nigeria's overcrowded urban slums. For these to be achieved, household electricity consumption would increase by about 41% over the study period, while the use of modern fuels would more than double. This migration to the use of modern fuels for cooking results in a reduction in the overall fuelwood consumption, from 5 GJ/capita in 2005, to 2.9 GJ/capita in 2015.

  13. Energie- en eiwitbehoefte van biologisch gehouden pluimvee = Energy and protein requirements of organic housed poultry

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Krimpen, van M.M.

    2008-01-01

    In this literature review, the physiological basis for possible differences in energy and protein requirements of organic versus conventional poultry is investigated. Energy need for maintenance of organic housed poultry seems to be increased, whereas protein requirements might not differ between

  14. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  15. Energy-efficient houses built according to the energy performance requirements introduced in Denmark in 2006

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Rose, Jørgen; Svendsen, Svend

    2007-01-01

    In order to meet new tighter building energy requirements introduced in Denmark in 2006 and prepare the way for future buildings with even lower energy consumption, single-family houses were built with the purpose to demonstrate that it is possible to build typical single-family houses with an en......% of the required and almost the level of typical passive houses.......In order to meet new tighter building energy requirements introduced in Denmark in 2006 and prepare the way for future buildings with even lower energy consumption, single-family houses were built with the purpose to demonstrate that it is possible to build typical single-family houses...... with an energy consumption that meets the demands without problems concerning building technology or economy. The paper gives a brief presentation of the houses and the applied energy-saving measures. The paper also presents results from measurements of the overall energy use, indoor climate and air tightness...

  16. The Role of Photovoltaics in Energy Requirements in Pakistan

    International Nuclear Information System (INIS)

    Shah, I.A.; Haq, N.U.; Nasir, H.

    2011-01-01

    In this review article global energy issue is discussed with specific reference to Pakistan. The energy consumption and supply from different sources like oil, gas, electricity, nuclear power, bio gas and especially from renewables is taken into account. Also discussed some suggestions for the energy requirements. Focus is given to the production of renewable energy sources like technology of photovoltaics in which solar power is converted into electricity. Solar cell is discussed including its two basic types inorganic solar cell and organic solar cell, its way of functioning, process of fabrication etc is also discussed. Organic or polymeric solar cell is discussed in detail. keeping in view the financial condition and requirement of energy for our country suggestions are given for low cost and simple processing of organic solar cells. It is also suggested that availability of all the materials required for the development of organic solar cells should be guaranteed. Interest should be developed at the university and other research organization level of Pakistan to do work on polymeric solar cells for increasing their efficiencies so that they can be practically utilized. (author)

  17. Energy requirements and perceived body discomfort of the various ...

    African Journals Online (AJOL)

    The main aim of this preliminary study was to assess the energy cost of the various sub tasks required of workers during manual sugar cane harvesting. A secondary aim was to assess body mass changes, levels of dehydration and body discomfort. Eight workers were randomly selected to participate in this pilot study and ...

  18. Energy requirement for firing porcelain | M. de O. Madivate | Bulletin ...

    African Journals Online (AJOL)

    Results from studies on the ternary system Ribaué kaolin–Carapira feldspar– Marracuene quartz sands were used to test a procedure that we developed for calculation of the energy requirement for firing porcelain. Results obtained vary between 1300 and 1800 kJ/kg porcelain. These results differ largely from the ones ...

  19. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  20. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  1. Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wei [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sevilla, Thomas Alonso [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Zuo, Wangda [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-06-08

    Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. This paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.

  2. Energy requirement and economic analysis of citrus production in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan E-mail: bozkan@akdeniz.edu.tr; Akcaoz, Handan; Karadeniz, Feyza

    2004-07-01

    The aim of this research was to examine the energy requirements of the inputs and output in citrus production in the Antalya province of Turkey. Data for the production of citrus fruits (orange, lemon and mandarin) were collected from 105 citrus farms by using a face to face questionnaire method. The research results revealed that lemon production was the most energy intensive among the three fruits investigated. The energy input of chemical fertilizer (49.68%), mainly nitrogen, has the biggest share in the total energy inputs followed by Diesel (30.79%). The lemon production consumed a total of 62 977.87 MJ/ha followed by orange and mandarin with 60 949.69 and 48 838.17 MJ/ha, respectively. The energy ratios for orange, mandarin and lemon were estimated to be 1.25, 1.17 and 1.06, respectively. On average, the non-renewable form of energy input was 95.90% of the total energy input used in citrus production compared to only 3.74% for the renewable form. The benefit-cost ratio was the highest in orange production (2.37) followed by lemon. The results indicate that orange production in the research area is most remunerative to growers compared to lemon and mandarin.

  3. Analysis of return on investment for Naval air station fallon energy project Alternatives

    Science.gov (United States)

    2017-06-01

    Manager (Justin Sielsch, personal communication ). Lack of in-house skill related to HVAC retrofits would require substantial effort by Public Works ...bill. An ESPC project is financed by the contractor performing the work . The contractor guarantees a certain annual energy savings because of their... work . The Navy installation uses the annual savings from its energy budget to pay back the contractor. ESPCs include contractor performance

  4. Decentralized Optimization for a Novel Control Structure of HVAC System

    Directory of Open Access Journals (Sweden)

    Shiqiang Wang

    2016-01-01

    Full Text Available A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.

  5. Design and Operation of 3-Pin FTL HVAC System

    International Nuclear Information System (INIS)

    Chi, D. Y.; Sim, B. S.; Park, S. K.; Park, K. N.; Lee, J. M.; Ahn, S. H.; Lee, C. Y.; Kim, Y. J.

    2005-01-01

    According to the increasing demand for irradiation tests to develop new fuels, the 3-Pin FTL(Fuel Test Loop for 3 pin test fuel) facility has now been under design to conduct in-core fuel performance tests at the operating conditions, which will be installed at HANARO. The HVAC system of the FTL will be dependent on that of the HANARO. The FTL has three equipments rooms, which are the room 1, room 2 and the control room. The high pressure and high temperature equipments will be installed in the room 1. The atmosphere of the room 1 shall be maintained under the designed condition. This paper describes the design of the FTL HVAC system in the room 1

  6. ANFIS -Based Navigation for HVAC Service Robot with Image Processing

    International Nuclear Information System (INIS)

    Salleh, Mohd Zoolfadli Md; Rashid, Nahrul Khair Alang Md; Mustafah, Yasir Mohd

    2013-01-01

    In this paper, we present an ongoing work on the autonomous navigation of a mobile service robot for Heat, Ventilation and Air Condition (HVAC) ducting. CCD camera mounted on the front-end of our robot is used to analyze the ducts openings (blob analysis) in order to differentiate them from other landmarks (blower fan, air outlets and etc). Distance between the robot and duct openings is measured using ultrasonic sensor. Controller chosen is ANFIS where its architecture accepts three inputs; recognition of duct openings, robot positions and distance while the outputs is maneuver direction (left or right).45 membership functions are created from which produces 46 training epochs. In order to demonstrate the functionality of the system, a working prototype is developed and tested inside HVAC ducting in ROBOCON Lab, IIUM

  7. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...... requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW...... less ‘environment’ for the construction than renewable technologies, especially wind and solar....

  8. An evaluation of damping ratios for HVAC duct systems using vibration test data

    International Nuclear Information System (INIS)

    Gunyasu, K.; Horimizu, Y.; Kawakami, A.; Iokibe, H.; Yamazaki, T.

    1988-01-01

    The function of Heating Ventilating Air Conditioning (HVAC) systems must be maintained including HVAC duct systems to keep the operation of safety-related equipment in nuclear power plants during earthquake excitations. Therefore, it is important to carry out seismic design for HVAC duct systems. In the previous aseismic design for HVAC duct systems, the 0.5% damping ratio has been used in Japan. In recent years, vibration tests, held on actual duct systems in nuclear power plants and mockup duct systems were performed in order to investigate damping ratios for HVAC duct systems. Based on the results, it was confirmed that the damping ratio for HVAC duct systems, evaluated from these tests, were much greater than the 0.5% damping ratio used in the previous aseismic design of Japan. The new damping ratio in aseismic design was proposed to be 2.5%. The present paper describes the results of the above mentioned investigation

  9. Integrated high efficiency blower apparatus for HVAC systems

    Science.gov (United States)

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  10. HVAC fault tree analysis for WIPP integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.; Iacovino, J.

    1990-01-01

    In order to evaluate the public health risk from operation of the Waste Isolation Pilot Plant (WIPP) due to potential radioactive releases, a probabilistic risk assessment of waste handling operations was conducted. One major aspect of this risk assessment involved fault tree analysis of the plant heating, ventilation, and air conditioning (HVAC) systems, which comprise the final barrier between waste handling operations and the environment. 1 refs., 1 tab

  11. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  12. Residential building envelope heat gain and cooling energy requirements

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Tsang, C.L.; Li, Danny H.W.; Cheung, S.O.

    2005-01-01

    We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992-2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960-2001), horizontal global solar radiation (1992-2001) and global solar radiation on vertical surfaces (1996-2001) were examined. The OTTV found varied from 27 to 44 W/m 2 with a mean value of 37.7 W/m 2 . Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV

  13. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  14. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Bergsøe, Niels Christian

    2018-01-01

    . In particular, a model of a PCM-based heat exchanger was developed in this work by using the programming language Modelica. This device was designed to store cold energy during night-time and release it during daytime through the water circuit. Results for a typical office building model showed...... that the integration of free cooling devices can significantly reduce the primary energy use of the novel HVAC system. In particular, the thermal plant configuration including the PCM-based heat exchanger made it possible to almost completely avoid the use of mechanical cooling, leading to annual primary energy......This article presents a simulation-based study that estimates the primary energy use of a novel HVAC system for different configurations of a thermal plant. The main characteristic of the system is its ability to provide simultaneous heating and cooling to buildings by using a single hydronic...

  15. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  16. Contribution of wind energy to future electricity requirements of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaili, M. A.; Memon, M.

    2007-01-01

    Pakistan is an energy deficit country. About half of the country's population has no access to electricity and per capita supply is only 520 kWh. About 67% of the conventional electricity is generated from fossil fuels with 51% and 16% share of gas and oil respectively. It has been projected that electricity demand in Pakistan would increase at an average annual growth rate of 5% to 12% under different scenarios. The indigenous reserves of oil and gas are limited and the country heavily depends on imported oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payment situation. Pakistan is becoming increasingly more dependent on a few sources of supply and its energy security often hangs on the fragile threat of imported oil that is subject to supply disruptions and price volatility. The production and consumption of fossil fuels also adversely affects the quality of the environment due to indiscriminate release of toxic substances. Pakistan spends huge amount on the degradation of the environment. This shows that Pakistan must develop alternate, indigenous and environment friendly energy resources such as wind energy to meet its future electricity requirements. This paper presents an overview of wind power generation potential and assessment of its contribution to future electricity requirements of Pakistan under different policy scenarios. The country has about 1050 km long coastline. The technical potential of centralized grid connected wind power and wind home systems in the coastal area of the country has been estimated as about 484 TWh and 0.135 TWh per year respectively. The study concludes that wind power could meet about 20% to 50% of the electricity demand in Pakistan by the year 2030. The development and utilization of wind power would reduce the pressure on oil imports, protect the environment from pollution and improve the socio-economic conditions of the people

  17. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements

    Directory of Open Access Journals (Sweden)

    Giuseppe Todde

    2018-02-01

    Full Text Available Dairy cattle farms are continuously developing more intensive systems of management which require higher utilization of durable and not-durable inputs. These inputs are responsible of significant direct and indirect fossil energy requirements which are related to remarkable emissions of CO2. This study aims to analyze direct energy requirements and the related carbon footprint of a large population of conventional dairy farms located in the south of Italy. A detailed survey of electricity, diesel and Liquefied Petroleum Gas (LPG consumptions has been carried out among on-farm activities. The results of the analyses showed an annual average fuel consumption of 40 kg per tonne of milk, while electricity accounted for 73 kWh per tonne of milk produced. Expressing the direct energy inputs as primary energy, diesel fuel results the main resource used in on-farm activities, accounting for 72% of the total fossil primary energy requirement, while electricity represents only 27%. Moreover, larger farms were able to use more efficiently the direct energy inputs and reduce the related emissions of carbon dioxide per unit of milk produced, since the milk yield increases with the herd size. The global average farm emissions of carbon dioxide equivalent, due to all direct energy usages, accounted for 156 kg CO2-eq per tonne of Fat and Protein Corrected Milk (FPCM, while farms that raise more than 200 heads emitted 36% less than the average value. In this two-part series, the total energy demand (Part 1 + Part 2 per farm is mainly due to agricultural inputs and fuel consumption, which have the largest quota of the annual requirements for each milk yield class. These results also showed that large size farms held lower CO2-eq emissions when referred to the mass of milk produced.

  18. Rightsizing HVAC Systems to Reduce Capital Costs and Save Energy

    Science.gov (United States)

    Sebesta, James

    2010-01-01

    Nearly every institution is faced with the situation of having to reduce the cost of a construction project from time to time through a process generally referred to as "value engineering." Just the mention of those words, however, gives rise to all types of connotations, thoughts, and memories (usually negative) for those in the…

  19. Generator Requirements For Rural Electrification From Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Dzune Mipoung, Olivare; Pragasen, Pillay

    2010-09-15

    This paper addresses the issue of rural electrification from renewable energy. A brief introduction on biomass and wind electrical systems is given. The aim of this research is to propose optimal electrification system design for rural areas. This requires suitable generators selection as a starting point. Some generator types for rural electrification systems are introduced, followed by a discussion on the selection criteria. Simulation results of a typical electrification system for remote areas are obtained to support the safety aspect related to the individual generator types, in the event of accidental rotor motion. All simulations are done in Matlab-Simulink.

  20. A safeguards program for implementing Department of Energy requirements

    International Nuclear Information System (INIS)

    Erkkila, B.H.

    1989-01-01

    The U.S. Department of Energy (DOE) issued a new materials control and accountability (MC ampersand A) order 5633.3 in February of 1988. This order contains all of the requirements for an effective MC ampersand A (safeguards) program for facilities that control and account for nuclear materials in their operations. All contractors were expected to come into compliance with the order by April 30, 1989, or obtain approval for exceptions and/or extensions. The order also contains various performance requirements that are not in effect until the DOE issues the guidelines to the performance requirements. After evaluations were completed in February 1989, it was determined there were several deficiencies in the Los Alamos National Laboratory's (LANL's) safeguards program. Documentation of policy and procedures needed correction before LANL could be in compliance with the new MC ampersand A order. Differences between the old and new orders were addressed. After this determination, action teams were established to corrected LANL's safeguards program. Compliance with the DOE requirements was the goal of this activity. The accomplishments of the action teams are the subject of this paper

  1. Large Scale Computing and Storage Requirements for High Energy Physics

    International Nuclear Information System (INIS)

    Gerber, Richard A.; Wasserman, Harvey

    2010-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  2. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  3. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  4. Weather data around the world for design of field hospital HVAC

    NARCIS (Netherlands)

    Forejt, L.; Hensen, J.L.M.; Drkal, F.; Barankova, P.

    2006-01-01

    Field hospital (FH) is a military mobile complex to be deployed in almost any climate around the world. Heating, ventilation and air-conditioning (HVAC) system for the Czech Republic FH units is being redesigned. Computer simulation software will be used for the design of HVAC under variety of

  5. Considerations to Prevent Growth and Spread of Legionella in HVAC Systems.

    Science.gov (United States)

    Coleman, Jeff

    1998-01-01

    Discusses the threat posed by the Legionnaire's Disease bacterium and the germ's ability to thrive in heating, ventilating, and air conditioning (HVAC) systems, especially in standing water. Describes ways to minimize disease risk through HVAC system design (such as locating cooling towers away from air intakes) and ways to maintain a clean…

  6. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  7. Integrovany pristup k reseni systemu vytapeni,vetrani a klimatizace v budovach (HVAC)

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1994-01-01

    Towards an integral approach of building and HVAC system The dynamic thermal interacion between a building and the HVAC systems which service it, is still difficult to predict. As this thermal interacition becomes more critical in practice, related knowledge and evaluation tools become increasingly

  8. HVAC SYSTEMS IN THE CURRENT STOCK OF US K-12 SCHOOLS

    Science.gov (United States)

    The report summarizes information on heating, ventilating, an air- conditioning (HVAC) systems commonly found in U. S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize a...

  9. Critical control points for the management of microbial growth in HVAC systems

    NARCIS (Netherlands)

    Gommers, S; Franchimon, F.; Bronswijk, van J.E.M.H.; Strøm-Tejsen, P; Olesen, BW; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Office buildings with HVAC systems consistently report Sick Building Symptoms that are derived from microbial growth. We used the HACCP methodology to find the main critical control points (CCPs) for microbial management of HVAC systems in temperate climates. Desk research revealed relative humidity

  10. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  11. Optimization of the structural design of HVAC ducts and their supports

    International Nuclear Information System (INIS)

    DeMatias, I.P.; Barrio, M.

    1987-01-01

    This paper describes the computerized process of qualification and design based on experience accumulated in structural designs of HVAC systems in nuclear power plants, using CAD/CAE systems. Such computerization has drastically reduced the number of manhours employed to generate the information necessary to issue duct and support fabrication drawings. During the analysis stage, the requirements for qualification of ducts and supports contained in CONAGT ANSI/ASME AG-1 have been considered. The data package applicable to the process consists of a set of computer programs which may be used independently or combined. A significant portion of such programs governs the graphic design. Moreover, analyses are performed on results of the different types of tests carried out to date, and on those necessary to determine the mechanisms of failures in ducts, and in order to be able to calibrate design criteria currently in use

  12. HVAC systems in a field laboratory for indoor climate study

    DEFF Research Database (Denmark)

    Fang, Lei; Melikov, Arsen Krikor; Olesen, Bjarne W.

    2012-01-01

    This paper presents the design of a HVAC system for a field lab. The design integrated mixing ventilation, displacement ventilation, low impulse vertical ventilation, personalized ventilation, natural ventilation, hybrid ventilation, active chilled beams, radiant ceiling and floor, and heat...... with the controlled room temperature in the range from 10 to 35 °C and relative humidity in the range from 15 to 80 %. The field lab can be used to test the performance of each system included in the field lab as well as the combined performance of two or more systems....

  13. Required storage capacity to increase the value of renewable energy

    International Nuclear Information System (INIS)

    Nacht, T.

    2014-01-01

    The effort to achieve a more eco - friendly production of energy leads to larger shares of renewables in the electricity sector, resulting in more supply - dependency and volatility. This results in a time shift between production and consumption. In order to gain an upper hand, possibilities for transferring renewable energies from the time of production to the time when the demand occurs are researched. Energy storage systems will play a big role in this process, with pumped storage plants being the most developed and most common technology nowadays. As a first part of this thesis, the renewables in Germany are studied through the use of models on the basis of hourly measured values of the primary energy carriers for the corresponding technology. For these data series many years’ worth of measurements were considered, resulting in data for the hourly production values of the renewable energy sources. The results show a strong dependency between production and the seasons of the year. Furthermore a very small secured contribution of renewable production during times of peak load is registered, leading to the conclusion that energy storages are indeed necessary. Different strategies for the dispatch of the storage technologies pumped hydro storage, compressed air storage and hydrogen storage are developed for the region of Germany, which will be dispatched outside the energy - only market. The different strategies for the storage dispatch have the reduction of the resulting load in common, by preferably transferring renewable energy from times when it is not needed to those times with high loads. This resulting load needs to be covered by thermal power plants. The required capacities of the different storage technologies are evaluated and compared. By using pumped storage plants the increase in the value of renewables, as measured by the secure contribution during peak load hours, is determined. An analysis of different compositions of renewable production allows

  14. Discussion paper : offshore wind facilities renewable energy approval requirements

    International Nuclear Information System (INIS)

    2010-06-01

    This paper discussed a proposed shoreline exclusion zone for offshore wind projects in Ontario. Considerations relevant to offshore wind projects and the protection of human health, cultural heritage, and the environment were also discussed. The paper was prepared in order to provide greater clarity to renewable energy developers and to Ontario residents about the offshore wind policy that is currently being considered by the Ontario Government. Feedback received from the discussion paper will be used to propose policy and associated regulatory amendments. A 5 km shoreline exclusion zone for all offshore wind facilities was proposed. Some projects may be required to be located beyond the proposed exclusion zone. Proposed developments within the exclusion zone must meet all applicable requirements, including those related to cultural and natural heritage. The zone will establish a distance between drinking water intakes, and ensure that sediment dredging and other construction-related activities do not impact drinking water quality, and ensure that potential noise levels are within acceptable levels. The zone will establish a distance between near-shore activities and wind facilities, and also help to maintain the ecological health of inland waters. Guidelines and technical requirements for wind facility operators were also included.

  15. Physical and energy requirements of competitive swimming events.

    Science.gov (United States)

    Pyne, David B; Sharp, Rick L

    2014-08-01

    The aquatic sports competitions held during the summer Olympic Games include diving, open-water swimming, pool swimming, synchronized swimming, and water polo. Elite-level performance in each of these sports requires rigorous training and practice to develop the appropriate physiological, biomechanical, artistic, and strategic capabilities specific to each sport. Consequently, the daily training plans of these athletes are quite varied both between and within the sports. Common to all aquatic athletes, however, is that daily training and preparation consumes several hours and involves frequent periods of high-intensity exertion. Nutritional support for this high-level training is a critical element of the preparation of these athletes to ensure the energy and nutrient demands of the training and competition are met. In this article, we introduce the fundamental physical requirements of these sports and specifically explore the energetics of human locomotion in water. Subsequent articles in this issue explore the specific nutritional requirements of each aquatic sport. We hope that such exploration will provide a foundation for future investigation of the roles of optimal nutrition in optimizing performance in the aquatic sports.

  16. ASSESSMENT OF CLIMATE CHANGE IMPACT ON THE REQUIRED COOLING LOAD OF THE HOSPITAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    M. AHMADZADEHTALATAPEH

    2017-08-01

    Full Text Available The impact of climate change on the energy performance of the Heating, Ventilation and Air Conditioning (HVAC systems was studied in this research. The present research employs the Transient System Simulation Software (TRNSYS to study the hour-by-hour influence of the climate change scenario on a HVAC system performance by modeling the system in the TRNSYS software as the base line model. To this end, a HVAC system operating in a hospital as a high energy demanding building was selected for data collection, analysis and simulation. Three sets of predicted Typical Meteorological Year (TMY data for the region are used for simulation in the TRNSYS to analyze the established indoor air conditions and yearly required cooling loads by the building. Based on the predictions and comparison of the findings with the year 2000, it can be estimated that the yearly required cooling load for 2020 and 2050 would be increased by 4.66% and 7.3%, respectively.

  17. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  18. 'Consolidation' of HVAC and cooling systems at CERN

    CERN Document Server

    Inigo-Golfin, J; Pepinster, P; CERN. Geneva. TS Department

    2008-01-01

    A â€ワconsolidation” of installations after they have reached the end of their predetermined life-time is part of the life cycle of industrial installations, regardless how well maintained they are. The â€ワconsolidation” plan might cover the replacement of obsolete equipment, partial refurbishment, the work requested to comply with new standards and applicable rules (environmental aspects) until the complete replacement of the whole installation. This â€ワconsolidation” process is all the more critical since the installation dates of the existing cooling and HVAC equipment at CERN spans over a period of 50 years and â€ワconsolidation” in the past has been not been systematic, being most of the time associated with new projects. This paper describes the reasons behind the recent â€ワconsolidation” requests for cooling and HVAC equipment both for the accelerators backbone and in tertiary buildings. A criticality analysis is given, based on the criteria laid down in the p...

  19. Rapid Deployment of Optimal Control for Building HVAC Systems Using Innovative Software Tools and a Hybrid Heuristic/Model Based Control Approach

    Science.gov (United States)

    2017-03-21

    Tutorial. European Journal Of Control. Vol 13/2-3, pp 242–260. Parrish, K., J. Granderson, A. Mercado, P. Mathew. 2013. Improving Energy Efficiency...successfully, the project as a whole was not able to successfully demonstrate the technology. Anecdotal evidence, academic studies, and system simulations...Oceanography Center HVAC heating, ventilating, and air-conditioning NPS Naval Postgraduate School NRL U.S. Naval Research Laboratory NSAM Naval

  20. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  1. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available Energy consumption of mobile and wireless networks and devices is significant, indirectly increasing greenhouse gas emissions and energy costs for operators. Cognitive radio (CR) solutions can save energy for such networks and devices; moreover...

  2. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  3. Compatibility of DOE energy data bases with EEMIS data requirements. [Energy Emergency Management Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    D& #x27; Acierno, J; Hermelee, A

    1979-12-01

    Object of this report is to present the data from EIA data bases which are compatible with the requirements of the data structure for the Energy Emergency Management Information System (EEMIS). An overview of data availability is briefly described and presented in the EEMIS petroleum and natural gas flow diagrams as well as in a more detailed review with each data element in the EEMIS data requirements. This information is presented with the intent that it be used as an overall system guide during the data transfer task as well as in future operation of EEMIS and in the interpretation of EEMIS data.

  4. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  5. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  6. Filter forensics: microbiota recovery from residential HVAC filters.

    Science.gov (United States)

    Maestre, Juan P; Jennings, Wiley; Wylie, Dennis; Horner, Sharon D; Siegel, Jeffrey; Kinney, Kerry A

    2018-01-30

    Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types. Heating, ventilation, and air conditioning (HVAC) filters hold promise as long-term, spatially integrated, high volume samplers to characterize the airborne microbiome in homes and other climate-controlled spaces. In this study, the effect that dust recovery method (i.e., cut and elution, swabbing, or vacuuming) has on the microbial community structure, membership, and repeatability inferred by Illumina sequencing was evaluated. The results indicate that vacuum samples captured higher quantities of total, bacterial, and fungal DNA than swab or cut samples. Repeated swab and vacuum samples collected from the same filter were less variable than cut samples with respect to both quantitative DNA recovery and bacterial community structure. Vacuum samples captured substantially greater bacterial diversity than the other methods, whereas fungal diversity was similar across all three methods. Vacuum and swab samples of HVAC filter dust were repeatable and generally superior to cut samples. Nevertheless, the contribution of environmental and human sources to the bacterial and fungal communities recovered via each sampling method was generally consistent across the methods investigated. Dust recovery methodologies have been shown to affect the recovery, repeatability, structure, and membership of microbial communities recovered from dust samples in the built environment. The results of this study are directly applicable to indoor microbiota studies utilizing the filter forensics approach. More broadly, this study provides a

  7. Private capital requirements for international biomass energy projects

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [University of Sao Paulo, Sao Paulo (Brazil)

    1995-12-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author) 9 refs, 4 figs, 3 tabs

  8. Private capital requirements for international biomass energy projects

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author)

  9. A Case Study in Market Transformation for Residential Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2017-09-01

    This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.

  10. Systems and methods for controlling energy use during a demand limiting period

    Science.gov (United States)

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  11. Stage 1 performance qualification of heat-ventilation air-conditioning (HVAC) system for the manufacturing of Tc-99m Generator at Nuclear Malaysia

    International Nuclear Information System (INIS)

    Yen Ng; Noriah Jamal; Rehir Dahalan; Wan Anuar Wan Awang; Noraisyah Yusof; Shaharum Ramli; Jusnan Hashim; Ariff Hamzah; Wan Firdaus Wan Ishak; Yahaya Talib; Othman Mahmud; Asmah Mohibat; Shafii Khamis; Zulkifli Mohamed Hashim; Zakaria Ibrahim; Shaaban Kasim

    2007-01-01

    Manufacturing of Tc-99m generator is carried out in clean room Block 21 of Malaysian Nuclear Agency, which need to comply current Good Manufacturing Practice requirement. High-ventilation air conditioning (HVAC) is a new renovated system. It is a critical system for maintaining suitable temperature, relative humidity and pressure differential in the clean room. The objective of this paper is to present results on Stage 1 Performance Qualification (PQ) for HVAC. This PQ stage 1 was done from 7 February 2007 till 16 March 2007. Temperature, Relative Humidity and Pressure Differential for each compartment in the clean room was monitored twice daily. The Measurement of air-born particle count was done weekly. Settle plate for microbial test was also done weekly. The results were then analyzed and compared with the pre-determined specification. We found that temperature was within the specs, namely 24 +20 degree C. Relative humidity was less than 65%. Pressure differential shows variation, some compartments are below the specs namely 1-3 mm H 2 O. Air-born particle and microbial test also meet the requirement. The results show that all parameters meeting the specs excepts for the pressure differential for certain compartments are a bit low, but is sufficient to create proper air flow and not cause any risk of cross contamination. The existing HVAC system in the clean room is in compliance to the pre-determined specification. However, further improvement can be made by increasing the pressure differential between compartments. (Author)

  12. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  13. Managing Campus Energy: Compromising between Rapid Needs and Environmental Requirement

    Science.gov (United States)

    Ambariyanto, Ambariyanto; Utama, Yos J.; Purwanto

    2018-02-01

    The utilization of energy, especially electricity at Diponegoro University campus continues to increase in line with the development of the university. This increase has a direct impact on the increased costs to be paid by the university. Some of the causes of increased utilization of electrical energy is the construction of new buildings to meet the needs, increased learning activities and education, research activities in the laboratory, and various other activities. On the other hand, the increase of energy utilization is considered not good from the environment point of view, especially the utilization of electrical energy coming from non sustainable resources. Efforts to compromise on both are to develop policies in developing environmentally friendly buildings, efficiency in utilization of electrical energy, and development of sustainable energy sources.

  14. Phase change materials in energy sector - applications and material requirements

    Science.gov (United States)

    Kuta, Marta; Wójcik, Tadeusz M.

    2015-05-01

    Phase change materials (PCMs) have been applying in many areas. One of them is energy field. PCMs are interesting for the energy sector because their use enables thermal stabilization and storage of large amount of heat. It is major issue for safety of electronic devices, thermal control of buildings and vehicles, solar power and many others energy domains. This paper contains preliminary results of research on solid-solid phase change materials designed for thermal stabilisation of electronic devices.

  15. Building Assessment Survey and Evaluation (BASE) Study: Summarized Data - Test Space HVAC Characteristics

    Science.gov (United States)

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  16. Energy Cloud: Services for Smart Buildings

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja

    2018-01-01

    , and network technologies. Using smart building energy management systems provides intelligent procedures to control buildings’ equipment such as HVAC (heating, ventilating, and air-conditioning) systems, home and office appliances, and lighting systems to reduce energy consumption while maintaining......Energy consumption in buildings is responsible for a significant portion of the total energy use and carbon emissions in large cities. One of the main approaches to reduce energy consumption and its environmental impact is to convert buildings into smart buildings using computer, software, sensor...... the required quality of living in all of the building’s spaces. This chapter discusses and reviews utilizing cloud computing to provide energy-related services to enhance the operations of smart buildings’ energy management systems. Cloud computing can provide many advantages for smart buildings’ energy...

  17. Expert Meeting Report: HVAC Fault Detection, DIagnosis, and Repair/Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2016-05-01

    The concept for the expert meeting described in this report was to bring together most of the stakeholders in the area of FDD, including academic researchers, manufacturers, educators, program managers and implementers, representatives of standards organizations, utilities, HVAC contractors, and home performance contractors to identify the major gaps and to develop ideas about what can be done to capitalize on the residential HVAC efficiency resource.

  18. Expert Meeting Report: HVAC Fault Detection, Diagnosis, and Repair/Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States). Davis Energy Group

    2016-05-01

    The concept for the expert meeting described in this report was to bring together most of the stakeholders in the area of FDD, including academic researchers, manufacturers, educators, program managers and implementers, representatives of standards organizations, utilities, HVAC contractors, and home performance contractors to identify the major gaps and to develop ideas about what can be done to capitalize on the residential HVAC efficiency resource.

  19. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    Science.gov (United States)

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  20. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters

    OpenAIRE

    Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2013-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50...

  1. Energy and protein requirements for growth of the local domestic ...

    African Journals Online (AJOL)

    The diet 3 in the grower phase improved growth with the highest EFU, 0.12, and was better utilized by the birds than in the chick starter phase where it was least utilized. High energy, high protein diet enhanced growth while low energy, high protein diet did not support maximum growth especially in the chick starter phase.

  2. Strategies for Reducing Energy Consumption in a Student Cafeteria in a Hot-Humid Climate: A Case Study

    Directory of Open Access Journals (Sweden)

    Mohammed Alhaji Mohammed

    2013-03-01

    Full Text Available Increasing attention is being given to energy consumption and potential for energy savings in public buildings in order to improve energy performance. Due to their size and functional requirements, public buildings especially cafeteria facilities tend to consume a significant amount of energy. Furthermore, due to their operational characteristics and construction pattern, unnecessary energy is likely to be used for maintaining acceptable indoor environmental quality. In this study, a student cafeteria at King Fahd University of Petroleum and Minerals, Saudi Arabia, was selected for the assessment of its energy performance and potential energy conservation opportunities. Energy simulation software Visual DOE 4.1 was used to develop an energy performance model for assessing various energy conservation measures pertinent to the building envelope and HVAC system design. Data required for setting up the model were gathered through simple energy audits. The architectural and mechanical drawings and the history of electrical consumption were collected. Various energy conservation strategies were then implemented including standards, single and combined energy conservation measures. These measures resulted in a combined design saving of 27.4%, the HVAC system saving 10.6%, implementation of standards saving about 16.7%, lighting 6.6%, equipment 2.6%, insulation 2.5% and glazing 1.4%. Based on these results, it is apparent that there is a significant potential for improving energy performance and justification to employ the suggested measures for achieving substantial energy savings and minimize energy consumption.

  3. Fumigation of a laboratory-scale HVAC system with hydrogen peroxide for decontamination following a biological contamination incident.

    Science.gov (United States)

    Meyer, K M; Calfee, M W; Wood, J P; Mickelsen, L; Attwood, B; Clayton, M; Touati, A; Delafield, R

    2014-03-01

    To evaluate hydrogen peroxide vapour (H2 O2 ) for its ability to inactivate Bacillus spores within a laboratory-scale heating, ventilation and air-conditioning (HVAC) duct system. Experiments were conducted in a closed-loop duct system, constructed of either internally lined or unlined galvanized metal. Bacterial spores were aerosol-deposited onto 18-mm-diameter test material coupons and strategically placed at several locations within the duct environment. Various concentrations of H2 O2 and exposure times were evaluated to determine the sporicidal efficacy and minimum exposure needed for decontamination. For the unlined duct, high variability was observed in the recovery of spores between sample locations, likely due to complex, unpredictable flow patterns within the ducts. In comparison, the lined duct exhibited a significant desorption of the H2 O2 following the fumigant dwell period and thus resulted in complete decontamination at all sampling locations. These findings suggest that decontamination of Bacillus spore-contaminated unlined HVAC ducts by hydrogen peroxide fumigation may require more stringent conditions (higher concentrations, longer dwell duration) than internally insulated ductwork. These data may help emergency responders when developing remediation plans during building decontamination. © 2013 The Society for Applied Microbiology This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  4. Longitudinal change in energy expenditure and effects on energy requirements of the elderly

    Science.gov (United States)

    2013-01-01

    Background Very little is known about the longitudinal changes in energy requirements in late life. The purposes of this study were to: (1) determine the energy requirements in late life and how they changed during a 7 year time-span, (2) determine whether changes in fat free mass (FFM) were related to changes in resting metabolic rate (RMR), and (3) determine the accuracy of predicted total energy expenditure (TEE) to measured TEE. Methods TEE was assessed via doubly labeled water (DLW) technique in older adults in both 1999 (n = 302; age: 74 ± 2.9 yrs) and again in 2006 (n = 87 age: 82 ± 3.1 yrs). RMR was measured with indirect calorimetry, and body composition was assessed with dual-energy x-ray absorptiometry. Results The energy requirements in the 9th decade of life were 2208 ± 376 kcal/d for men and 1814 ± 337 kcal/d for women. This was a significant decrease from the energy requirements in the 8th decade of life in men (2482 ± 476 kcal/d vs. 2208 ± 376 kcal/d) but not in women (1892 ± 271 kcal/d vs. 1814 ± 337 kcal/d). In addition to TEE, RMR, and activity EE (AEE) also decreased in men, but not women, while FFM decreased in both men and women. The changes in FFM were correlated with changes in RMR for men (r = 0.49, p < 0.05) but not for women (r = −0.08, ns). Measured TEE was similar to Dietary Reference Intake (DRI) predicted TEE for men (2208 ± 56 vs. 2305 ± 35 kcal/d) and women (1814 ± 42 vs. 1781 ± 20 kcal/d). However, measured TEE was different than the World Health Organization (WHO) predicted TEE in men (2208 ± 56 vs. 2915 ± 31 kcal/d (p < 0.05)) and women (1814 ± 42 vs. 2315 ± 21 kcal/d (p < 0.05)). Conclusions TEE, RMR and AEE decreased in men, but not women, from the 8th to 9th decade of life. The DRI equation to predict TEE was comparable to measured TEE, while the WHO equation over-predicted TEE in our elderly population

  5. Energy conservation: a requirement of the present time

    International Nuclear Information System (INIS)

    Alcoforado, Fernando Antonio Goncalves

    1993-01-01

    The origins of the financial crisis that affects the Brazilian electrical sector is presented. The options available to overcome this situation and the role played by energy conservation are described. 7 refs

  6. Experience with Energy Efficiency Requirements for Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication has been produced as part of the work programme in support of the Gleneagles Plan of Action (GPOA), where the IEA was requested to 'undertake a study to review existing global appliance standards and codes'. In accordance with the G8 request, this study investigates the coverage and impact of forms of minimum energy performance standards (MEPS) and comparative energy labelling programmes; which comprise the cornerstone of most IEA countries national energy efficiency strategy. This scope also reflects governments' aspirations to achieve ambitious targets for reducing greenhouse gas emissions. As a result, this study does not address endorsement labelling and associated voluntary programmes, although these are also important policy tools for national energy efficiency strategies.

  7. International Requirements for Large Integration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Molina-Garcia, Angel; Hansen, Anca Daniela; Muljadi, Ed

    2017-01-01

    Most European countries have concerns about the integration of large amounts of renewable energy sources (RES) into electric power systems, and this is currently a topic of growing interest. In January 2008, the European Commission published the 2020 package, which proposes committing the European...... Union to a 20% reduction in greenhouse gas emissions, to achieve a target of deriving 20% of the European Union's final energy consumption from renewable sources, and to achieve 20% improvement in energy efficiency both by the year 2020 [1]. Member states have different individual goals to meet...... these overall objectives, and they each need to provide a detailed roadmap describing how they will meet these legally binding targets [2]. At this time, RES are an indispensable part of the global energy mix, which has been partially motivated by the continuous increases in hydropower as well as the rapid...

  8. Supplementing the energy and plant nutrient requirements through organic recycling

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, S. S.; Misra, R. V.

    1980-03-15

    In context of dwindling non-renewable energy resources and increasing health hazards because of environmental pollution, recycling of organic residues obtained through various sources like crops, animals, and human beings is becoming increasingly important. The organic residues obtained as wastes through these sources can be recycled effectively to meet scarce resources of energy and the plant nutrients, so vitally needed for our day-to-day activities and for raising agricultural production. Agriculture is the main stay of the Indian economy. Considerable quantities of crop residues available from agriculture can be utilized to serve as a source of organic fertilizers which not only provide plant nutrients but also improve soil health. The country has a large animal and human population. The animal and human wastes can be successfully used for production of energy and organic fertilizer by routing through biogas system. There is a need to develop an integrated energy and nutrient supply program. An action program is outlined.

  9. Black hole firewalls require huge energy of measurement

    Science.gov (United States)

    Hotta, Masahiro; Matsumoto, Jiro; Funo, Ken

    2014-06-01

    The unitary moving mirror model is one of the best quantum systems for checking the reasoning of the original firewall paradox of Almheiri et al. [J. High Energy Phys. 02 (2013) 062] in quantum black holes. Though the late-time part of radiations emitted from the mirror is fully entangled with the early part, no firewall exists with a deadly, huge average energy flux in this model. This is because the high-energy entanglement structure of the discretized systems in almost maximally entangled states is modified so as to yield the correct description of low-energy effective field theory. Furthermore, the strong subadditivity paradox of firewalls is resolved using nonlocality of general one-particle states and zero-point fluctuation entanglement. Due to the Reeh-Schlieder theorem in quantum field theory, another firewall paradox is inevitably raised with quantum remote measurements in the model. We resolve this paradox from the viewpoint of the energy cost of measurements. No firewall appears, as long as the energy for the measurement is much smaller than the ultraviolet cutoff scale.

  10. Occupancy pattern in office buildings : consequences for HVAC system design and operation

    Energy Technology Data Exchange (ETDEWEB)

    Halvarsson, Johan

    2011-07-01

    The main objectives with the work presented in this thesis have been: (a) to contribute to an increased understanding of the consequences that the occupancy pattern can have on the indoor climate and for Heating, Ventilation and Air Conditioning (HVAC) system design and operation; and (b) to investigate how typical occupancy patterns can look like in office buildings. The occupancy pattern in an office is a function of the floor layout of the building, and the user organisation(s) occupying it and their way of working. The combination of these two, will decide how the users occupy the building, which in turn is an important design prerequisite/constraint for the HVAC system design process. There are many assessments related to indoor climate and HVAC that involve considerations of the occupancy pattern, reaching from estimates of internal heat and pollution loads to deciding on an appropriate control strategy of HVAC systems, or estimating the energy saving potential with demand controlled ventilation. A few numerical measures have been used to describe different aspects of the occupancy pattern. The zone based occupancy factor (OFz) expresses the ratio between the number of occupied sub-zones/rooms in a zone and the total number of sub-zones/rooms in the zone. OFz does not take the number of people into account, only whether a sub-zone/room is occupied or unoccupied. OFz can be used both to express instantaneous occupancy levels and averages over time. Superscript is used to specify the time, or time period, that the measure refers to. For instance, 06 18,wd OFz means the average OFz between 6 a.m. and 6 p.m. on working days, while the 95th percentile of OFz6{sub 1}8,wd , means the 95th percentile of all instantaneous values (one or five minute averages in the case studies) of OFz that have occurred during the same time period. The utilisation rate (UR) expresses the fraction of time that a room is occupied, within a specific time period. It is important to

  11. Review of the Operability for the Components Under the Loss of the HVAC System of the Pump Room

    International Nuclear Information System (INIS)

    Hwang Mee Jeong; Yoon, Churl; Yang, Joon Eon; Park, Joo Hwan

    2005-01-01

    In this paper, we estimated the temperature of the pump rooms and reviewed the operability of the components under the loss of the HVAC (Heating, Ventilation, and Air Condition) system. The issues relevant to the HVAC system in the PSA (Probabilistic Safety Assessment) FT (Fault Tree) model are as follows: does the loss of the HVAC system bring about a function failure of other components?. Can the operator take action to reduce the temperature of the room in case of a HVAC function failure?. At present we do not know whether a component will lose its function or not under the loss of the HVAC. ASME Standard describes that a recovery action can be credited if the related recovery action is included in the procedure or there are similar recovery experiences in the plant. However, there is no description about the recovery action of the HVAC in the EOP (Emergency Operation Procedure) of the UCN3, 4 under the situation of a loss of the HVAC. Even though we consider this assumption positively, it would be limited to the rooms such as the Switchgear Room, Inverter Room, and Main Control Room etc. where a real recovery action can be performed easily. However, if we consider the HVAC failure in the PSA FT model according to the above background, the problem is that the unavailability induced from the loss of a HVAC is highly unrealistically. From a viewpoint of the PSA, it is not true that the related system always fails even though the HVAC system fails. Therefore, we reviewed the necessity of the HVAC model through the identification of the operable temperature of the components' within the pump room and the change of the temperature of the pump room under the situation of a loss of the HVAC system

  12. The direct and indirect energy requirement of households in the European Union

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Vringer, K.; Blok, K.

    2003-01-01

    In this article we evaluate the average energy requirement of households in 11 EU member states. By investigating both the direct (electricity, natural gas, gasoline, etc.) and the indirect energy requirement, i.e. the energy embodied in consumer goods and services, we add to research done on only

  13. Department of Energy Emergency Management Functional Requirements Study

    International Nuclear Information System (INIS)

    1987-05-01

    This Study, the Emergency Management Functional Requirements Study (EMFRS), identifies the physical environment, information resources, and equipment required in the DOE Headquarters Emergency Operations Center (EOC) to support the DOE staff in managing an emergency. It is the first step toward converting the present Forrestal EOC into a practical facility that will function well in each of the highly diverse types of emergencies in which the Department could be involved. 2 figs

  14. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    Science.gov (United States)

    Fiems, Leo O.; De Boever, Johan L.; Vanacker, José M.; De Campeneere, Sam

    2015-01-01

    Simple Summary Double-muscled Belgian Blue animals are extremely lean, characterized by a deviant muscle fiber type with more fast-glycolytic fibers, compared to non-double-muscled animals. This fiber type may result in lower maintenance energy requirements. On the other hand, lean meat animals mostly have a higher rate of protein turnover, which requires more energy for maintenance. Therefore, maintenance requirements of Belgian Blue cows were investigated based on a zero body weight gain. This technique showed that maintenance energy requirements of double-muscled Belgian Blue beef cows were close to the mean requirements of cows of other beef genotypes. Abstract Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW0.75/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature. PMID:26479139

  15. A decay heat removal system requiring no external energy

    International Nuclear Information System (INIS)

    Costes, D.; Fermandjian, J.

    1983-12-01

    A new Decay heat Removal System is described for PWR's with dry containment, i.e. a containment building which encloses no permanent reserve of cooling water. This new system is intended to provide a high level of safety since it uses no external energy, but only the thermodynamic energy of the air-steam-liquid water mixture generated in the containment after the failure of the primary circuit (''LOCA'') or of the secondary circuit. Thermodynamics of the system is evaluated first: after some design considerations, the use of the system for protecting actual PWR's is addressed

  16. Abnormalities of climate require energy-political consensus

    International Nuclear Information System (INIS)

    Lehmann, W.M.

    1990-01-01

    The speeches held on the Winter Conference 1990 of the German Atom Forum are reported on in brief summaries. The speeches deal mainly with problems connected with a necessary reactivation of nucleon energy, particularly referring to measures of additional equipment, problems of safety and waste management and recycling. (UA) [de

  17. Global energy - investment requirements. A presentation of the world energy investments outlook 2003 - insights

    International Nuclear Information System (INIS)

    Cattier, F.

    2003-01-01

    In order to meet the World's energy requirements for the next 30 years, 16 000 billion dollars will be necessary. Some 60% of this investment will go to the electricity sector and almost half of the total investment must be made in the developing countries. Where fossil fuels are concerned the bulk of the investments will a devoted to exploration and development activities. Transportation and distribution will account for 54 % of the investment in the electricity sector. The financing of these investments is currently the subject of various uncertainties. The conditions for access to resources will be decisive for the oil and gas sectors. The impact of liberalization in the countries of the OECD and the profitability of the investments in developing countries constitute the main challenges for the electricity sector. (authors)

  18. Numerical simulation of energy efficiency measures: control and operational strategies

    International Nuclear Information System (INIS)

    Ardehali, M. M.

    2006-01-01

    The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)

  19. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  20. Estimating occupant satisfaction of HVAC system noise using quality assessment index

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Full Text Available Noise may be defined as any unwanted sound. Sound becomes noise when it is too loud, unexpected, uncontrolled, happens at the wrong time, contains unwanted pure tones or unpleasant. In addition to being annoying, loud noise can cause hearing loss, and, depending on other factors, can affect stress level, sleep patterns and heart rate. The primary object for determining subjective estimations of loudness is to present sounds to a sample of listeners under controlled conditions. In heating, ventilation and air conditioning (HVAC systems only the ventilation fan industry (e.g., bathroom exhaust and sidewall propeller fans uses loudness ratings. In order to find satisfaction, percent of exposure to noise is the valuable issue for the personnel who are working in these areas. The room criterion (RC method has been defined by ANSI standard S12.2, which is based on measured levels of in HVAC systems noise in spaces and is used primarily as a diagnostic tool. The RC method consists of a family of criteria curves and a rating procedure. RC measures background noise in the building over the frequency range of 16-4000 Hz. This rating system requires determination of the mid-frequency average level and determining the perceived balance between high-frequency (HF sound and low-frequency (LF sound. The arithmetic average of the sound levels in the 500, 1000 and 2000 Hz octave bands is 44.6 dB; therefore, the RC 45 curve is selected as the reference for spectrum quality evaluation. The spectral deviation factors in the LF, medium-frequency sound and HF regions are 2.9, 7.5 and -2.3, respectively, giving a Quality Assessment Index (QAI of 9.8. This concludes the QAI is useful in estimating an occupant′s probable reaction when the system design does not produce optimum sound quality. Thus, a QAI between 5 and 10 dB represents a marginal situation in which acceptance by an occupant is questionable. However, when sound pressure levels in the 16 or 31.5 Hz octave

  1. Estimating occupant satisfaction of HVAC system noise using quality assessment index.

    Science.gov (United States)

    Forouharmajd, Farhad; Nassiri, Parvin; Monazzam, Mohammad R; Yazdchi, Mohammadreza

    2012-01-01

    Noise may be defined as any unwanted sound. Sound becomes noise when it is too loud, unexpected, uncontrolled, happens at the wrong time, contains unwanted pure tones or unpleasant. In addition to being annoying, loud noise can cause hearing loss, and, depending on other factors, can affect stress level, sleep patterns and heart rate. The primary object for determining subjective estimations of loudness is to present sounds to a sample of listeners under controlled conditions. In heating, ventilation and air conditioning (HVAC) systems only the ventilation fan industry (e.g., bathroom exhaust and sidewall propeller fans) uses loudness ratings. In order to find satisfaction, percent of exposure to noise is the valuable issue for the personnel who are working in these areas. The room criterion (RC) method has been defined by ANSI standard S12.2, which is based on measured levels of in HVAC systems noise in spaces and is used primarily as a diagnostic tool. The RC method consists of a family of criteria curves and a rating procedure. RC measures background noise in the building over the frequency range of 16-4000 Hz. This rating system requires determination of the mid-frequency average level and determining the perceived balance between high-frequency (HF) sound and low-frequency (LF) sound. The arithmetic average of the sound levels in the 500, 1000 and 2000 Hz octave bands is 44.6 dB; therefore, the RC 45 curve is selected as the reference for spectrum quality evaluation. The spectral deviation factors in the LF, medium-frequency sound and HF regions are 2.9, 7.5 and -2.3, respectively, giving a Quality Assessment Index (QAI) of 9.8. This concludes the QAI is useful in estimating an occupant's probable reaction when the system design does not produce optimum sound quality. Thus, a QAI between 5 and 10 dB represents a marginal situation in which acceptance by an occupant is questionable. However, when sound pressure levels in the 16 or 31.5 Hz octave bands exceed 65

  2. Dynamic facades, the smart way of meeting the energy requirements

    DEFF Research Database (Denmark)

    Johnsen, Kjeld; Winther, Frederik Vilbrad

    2015-01-01

    The paper describes an innovative dynamic façade system, developed in cooperation between two industrial companies, the Danish Building Research Institute and Aalborg University, Den¬mark. The system, named Energy Frames, is a newly developed industrially produced façade system based on the exper...... climate conditions. The dynamic façades play an important role in this development as it optimizes the interaction with the external environment in close correlation with the demand from the building and the users.......The paper describes an innovative dynamic façade system, developed in cooperation between two industrial companies, the Danish Building Research Institute and Aalborg University, Den¬mark. The system, named Energy Frames, is a newly developed industrially produced façade system based...

  3. The gas turbine - a bundle of energy - requires tender care

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, J.; Uronen, J.; Leisio, C. [ed.

    1997-11-01

    The ability of a power plant to generate energy economically depends to a great extent on the functioning of the turbine. These days, an increasingly large number of these power plant `motors` are gas turbines. IVO`s expertise in the operation, maintenance and repair of gas turbines is based on long practical experience and the company`s own research. And IVO is also no stranger to the design and construction of new gas turbine plants

  4. Promoting high efficiency residential HVAC equipment: Lessons learned from leading utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Neme, C.; Peters, J.; Rouleau, D.

    1998-07-01

    The Consortium for Energy Efficiency recently sponsored a study of leading electric utility efforts to promote high efficiency residential HVAC equipment. Given growing concerns from some utilities about the level of expenditures associated with rebate programs, special emphasis was placed on assessing the success of financing and other non-rebate options for promoting efficiency. Emphasis was also placed on review of efforts--rebate or otherwise--to push the market to very high levels of efficiency (i.e., SEER 13). This paper presents the results of the study. It includes discussion of key lessons from the utility programs analyzed. It also examines program participation rates and other potential indicators of market impacts. One notable conclusion is that several utility programs have pushed market shares for SEER 12 equipment to about 50% (the national average is less than 20%). At least one utility program has achieved a 50% market share for SEER 13 equipment (the national average is less than 3%). In general, financing does not appear to have as broad an appeal as consumer rebates. However, one unique utility program which combines the other of customer financing with modest incentives to contractors--in the form of frequent seller points that can be redeemed for advertising, technician training, travel and other merchandise--offers some promise that high participation rates can be achieved without customer rebates.

  5. Prediction of the metabolizable energy requirements of free-range laying hens.

    Science.gov (United States)

    Brainer, M M A; Rabello, C B V; Santos, M J B; Lopes, C C; Ludke, J V; Silva, J H V; Lima, R A

    2016-01-01

    This experiment was conducted with the aim of estimating the ME requirements of free-range laying hens for maintenance, weight gain, and egg production. These experiments were performed to develop an energy requirement prediction equation by using the comparative slaughter technique and the total excreta collection method. Regression equations were used to relate the energy intake, the energy retained in the body and eggs, and the heat production of the hens. These relationships were used to determine the daily ME requirement for maintenance, the efficiency energy utilization above the requirements for maintenance, and the NE requirement for maintenance. The requirement for weight gain was estimated from the energy content of the carcass, and the diet's efficiency energy utilization was determined from the weight gain, which was measured during weekly slaughter. The requirement for egg production was estimated by considering the energy content of the eggs and the efficiency of energy deposition in the eggs. The requirement and efficiency energy utilization for maintenance were 121.8 kcal ME/(kg∙d)and 0.68, respectively. Similarly, the NE requirement for maintenance was 82.4 kcal ME/(kg∙d), and the efficiency energy utilization above maintenance was 0.61. Because the carcass body weight and energy did not increase during the trial, the weight gain could not be estimated. The requirements for egg production requirement and efficiency energy utilization for egg production were 2.48 kcal/g and 0.61, respectively. The following energy prediction equation for free-range laying hens (without weight gain) was developed: ME /(hen ∙ d) = 121.8 × W + 2.48 × EM, in which W = body weight (kg) and EM = egg mass (g/[hen ∙ d]).

  6. The Giant Reed as an energy crop: assessing the energy requirements within its supply chain

    DEFF Research Database (Denmark)

    Rodias, Efthymis; Busato, P.; Bochtis, Dionysis

    2013-01-01

    Biomass energy is one form of renewable energy sources that are in the core of interesting for many researchers. There many different biomass sources that can be exploited for energy production, such as crop residues, waste materials, forestry residues and energy crops. Regarding energy crops......, there are many different types of crops significantly varies in terms of energy potential yields, production and provision methods, etc. To this end, a thoroughly assessment of the energy inputs and outputs of each potential energy crop is necessary. In this paper, the Giant Reed is evaluated energetically...... as a potential energy crop. The assessment regards a 10 year period. The considered energy elements include direct inputs (e.g. fuel consumption) as well as indirect inputs (e.g. embodied energy of materials and machinery). According to the results, the balance between the estimated total energy input...

  7. Performance Testing of Unitary Split-System Heat Pump with an Energy Recovery Expansion Device

    OpenAIRE

    Czapla, Nicholas; Inamdar, Harshad; Salts, Nicholas; Groll, Eckhard

    2016-01-01

    Due to the rising demand of using energy resources more efficiently, the HVAC&R industry is constantly facing the challenge of meeting strict energy consumption requirements. This paper presents a study that focuses on improving the efficiency of a residential split-system vapor compression heat pump using R410A as the refrigerant. R410A, when used as any sub-critical refrigerant in a vapor compression cycle, has a meaningful difference in potential energy savings when using a practically ach...

  8. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    Directory of Open Access Journals (Sweden)

    Leo O. Fiems

    2015-02-01

    Full Text Available Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB cows were used to estimate the energy required to maintain body weight (BW. They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW0.75/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10. Parity affected maintenance energy requirements (p < 0.001, although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature.

  9. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows.

    Science.gov (United States)

    Fiems, Leo O; De Boever, Johan L; Vanacker, José M; De Campeneere, Sam

    2015-02-13

    Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW(0.75)/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature.

  10. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  11. The Effects of Normothermic and Hypothermic Cardiopulmonary Bypass Upon Defibrillation Energy Requirements and Transmyocardial Impedance

    National Research Council Canada - National Science Library

    Martin, David

    1993-01-01

    .... To evaluate these questions we studied the effect of controlled hypothermia upon defibrillation energy requirements and transcardiac impedance in a canine model of cardiopulmonary bypass in which 26...

  12. Attaining the Photometric Precision Required by Future Dark Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Christopher [Harvard Univ., Cambridge, MA (United States)

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  13. Analysis of the HVAC system's sound quality using the design of experiments

    International Nuclear Information System (INIS)

    Park, Sang Gil; Sim, Hyun Jin; Yoon, Ji Hyun; Jeong, Jae Eun; Choi, Byoung Jae; Oh, Jae Eung

    2009-01-01

    Human hearing is very sensitive to sound, so a subjective index of sound quality is required. Each situation of sound evaluation is composed of Sound Quality (SQ) metrics. When substituting the level of one frequency band, we could not see the tendency of substitution at the whole frequency band during SQ evaluation. In this study, the Design of Experiments (DOE) is used to analyze noise from an automotive Heating, Ventilating, and Air Conditioning (HVAC) system. The frequency domain is divided into 12 equal parts, and each level of the domain is given an increase or decrease due to the change in frequency band based on the 'loud' and 'sharp' sound of the SQ analyzed. By using DOE, the number of tests is effectively reduced by the number of experiments, and the main result is a solution at each band. SQ in terms of the 'loud' and 'sharp' sound at each band, the change in band (increase or decrease in sound pressure) or no change in band will have the most effect on the identifiable characteristics of SQ. This will enable us to select the objective frequency band. Through the results obtained, the physical level changes in arbitrary frequency domain sensitivity can be determined

  14. [Utilization of feed energy by growing pigs. 3. Energy requirement for the growth and fattening of pigs].

    Science.gov (United States)

    Hoffmann, L; Schiemann, R; Jentsch, W

    1979-02-01

    The test series for the investigation of the energy consumption of growing pigs of the breeds large white and improved land race pig as well as cross breeds of the two breeds in a total of 369 metabolism periods (as described in the first two pieces of information of this publication series -- Hoffmann and others, 1977 and Jentsch and Hoffmann, 1977) were statistically analysed for the purpose of the derivation of the energy requirement for maintenance and the partial energy requirement for growth in order to test the possibilities of the factorial analysis for the derivation of energy requirement values of growing pigs. The dependence of the maintenance requirement of growing pigs (investigations in the live weight range of 10 to 40 kg -- see 1st information--were made with boars those in the live weight range of 30 to 120 kg were made with gelded boars, 2nd information) on the live weight can best be characterised by applying a power exponent of 0,61 or 0,62 for the live weight. A definition is offered to be discussed for the energetic maintenance requirement of productive live stock and laboratory animals as a conventional value. The energy requirement values derived from the doubly-factorial statistical analysis show a satisfactory adaptation to the measured values as such concerning energy intake and observed growth performance of the test animals. The conclusion is drawn that the factorial analysis of the energy requirement (maintenance plus partial performances) results in a better estimate of the requirement of growing animals than the assessment according only to live weight and live weight increase without characterising the energy requirement for partial performances. This is important for the further working on and more exact definition of requirement norms.

  15. The effects of HVAC system design and operation on radon entry into school buildings

    International Nuclear Information System (INIS)

    Turner, W.A.; Leovic, K.W.; Craig, A.B.

    1990-01-01

    Heating, ventilating, and air conditioning (HVAC) systems in schools vary considerably and tend to have a greater impact on pressure differentials--and consequently radon levels--than do heating and air-conditioning systems in houses. If the HVAC system induces a negative pressure relative to the subslab area, radon can be pulled into the building. If the HVAC system pressurizes the building, it can prevent radon entry as long as the fan is running. However, school HVAC systems are normally set back or turned off on evenings and weekends and, even if the HVAC system pressurizes the school during operation, indoor radon levels may build up during setback periods. In this paper many of the historical methods utilized to deliver ventilation air (outdoor air) over the past 40 years are summarized. In addition, for each type of system presented, the possible impact the ventilation system might be expected to have (positive or negative) on the pressure of the building envelope (and subsequent radon levels in the building) is discussed

  16. The direct and indirect energy requirement of households in the European Union

    International Nuclear Information System (INIS)

    Reinders, A.H.M.E.; Vringer, K.; Blok, K.

    2003-01-01

    In this article we evaluate the average energy requirement of households in 11 EU member states. By investigating both the direct (electricity, natural gas, gasoline, etc.) and the indirect energy requirement, i.e. the energy embodied in consumer goods and services, we add to research done on only the direct household energy requirement. Our analysis is mainly based on data of expenditures of households and the associated energy intensities of consumer goods. We found that differences between countries in the total energy requirement of households are mainly due to differences in total household expenditure. In particular, the indirect energy requirement is linearly related to the total household expenditure. The share of direct energy to the total energy requirement in different countries varies from 34% up to 64%. Differences in climate do not fully account for this variation. Corrected for total household expenditure, indirect energy requirement may vary significantly per country in the consumption classes 'food, beverages and tobacco', 'recreation and culture', 'housing', and 'hotels, cafes and restaurants'

  17. Analysis of Marine Corps renewable energy planning to meet installation energy security requirements

    OpenAIRE

    Chisom, Christopher M.; Templenton, Jack C., II

    2013-01-01

    Approved for public release; distribution is unlimited. The purpose of this thesis is to analyze Marine Corps installation energy consumption and the pursuit of increased renewable energy generation goals across Marine Corps installations. The main objective of this report is to determine the cost of interruption and the net present value (NPV) of renewable energy generation needed to meet the Marine Corps energy security objectives. First, we determine installation-specific energy consump...

  18. Analysis of the electrical energy requirements of the GSI facility

    CERN Document Server

    Ripp, Christopher

    2013-01-01

    Die Veränderung auf dem deutschen Energiemarkt durch die Energiewende bringt eine Viel-zahl von Problemen mit sich. Der stetig ansteigende Ausbau von erneuerbaren Energien und die daraus resultierende starke Schwankung der eingespeisten Energiemengen zwingen die Netzbetreiber zum Ausbau der Stromnetze [1]. Die dadurch verursachten Kosten lassen die Netznutzungsgebühren steigen, welche an die Endkunden weitergegeben werden. Ebenfalls stieg die EEG-Umlage (Erneuerbare-Energie-Gesetz) von 3,6ct/kWh im Jahr 2012 über 5,3ct/kWh im Jahr 2013 auf 6,3ct/kWh für das Jahr 2014 [2], [3], [4]. Die extrem schnell steigenden Energiekosten zwingen die Verbraucher zur Erhöhung ihrer Energieeffizienz, um die laufenden Kosten so niedrig wie möglich zu halten [3]. Dies verlangt nach innovativen Ansätzen und Lösungen im unternehmenseigenen Energiemanagement. Besonders For-schungseinrichtungen mit großem Energiebedarf müssen eine höhere Energieeffizienz reali-sieren, um bei knappen Budgets ihrem Forschungsauftrag gerec...

  19. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  20. Local Content Requirements in Renewable Energy Schemes - Government Procurement or a Violation of International Obligations?

    NARCIS (Netherlands)

    Verburg, Cornelis

    2017-01-01

    Numerous States have adopted renewable energy schemes aimed at incentivising investments in renewable energy generation capacity that contain local content requirements as an eligibility criterion to obtain support, such as a feed-in tariff. However, these requirements may violate the international

  1. Energy-efficient Ship Operation – Training Requirements and Challenges

    Directory of Open Access Journals (Sweden)

    Michael Baldauf

    2013-06-01

    Full Text Available The International Maritime Organization (IMO, through its Maritime Environmental Protection Committee (MEPC, has been carrying out substantive work on the reduction and limitation of greenhouse gas emissions from international shipping since 1997, following the adoption of the Kyoto Protocol and the 1997 MARPOL Conference. While to date no mandatory GHG instrument for international shipping has been adopted, IMO has given significant consideration of the matter and has been working in accordance with an ambitious work plan with a view to adopting a package of technical provisions. Beside the efforts undertaken by IMO, it is assumed that e.g. optimized manoeuvring regimes have potential to contribute to a reduction of GHG emissions. Such procedures and supporting technologies can decrease the negative effects to the environment and also may reduce fuel consumption. However, related training has to be developed and to be integrated into existing course schemes accordingly. IMO intends to develop a Model Course aiming at promoting the energy-efficient operation of ships. This Course will contribute to the IMO’s environmental protection goals as set out in resolutions A.947(23 and A.998(25 by promulgating industry “best practices”, which reduce greenhouse gas emissions and the negative impact of global shipping on climate change. In this paper the outline of the research work will be introduced and the fundamental ideas and concepts are described. A concept for the overall structure and the development of suggested detailed content of the draft Model course will be exemplarily explained. Also, a developed draft module for the model course with samples of the suggested integrated practical exercises will be introduced and discussed. The materials and data in this publication have been obtained partly through capacity building research project of IAMU kindly supported by the International Association of Maritime Universities (IAMU and The Nippon

  2. Transient pattern analysis for fault detection and diagnosis of HVAC systems

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Yang, Hoon-Cheol; Zaheer-uddin, M.; Ahn, Byung-Cheon

    2005-01-01

    Modern building HVAC systems are complex and consist of a large number of interconnected sub-systems and components. In the event of a fault, it becomes very difficult for the operator to locate and isolate the faulty component in such large systems using conventional fault detection methods. In this study, transient pattern analysis is explored as a tool for fault detection and diagnosis of an HVAC system. Several tests involving different fault replications were conducted in an environmental chamber test facility. The results show that the evolution of fault residuals forms clear and distinct patterns that can be used to isolate faults. It was found that the time needed to reach steady state for a typical building HVAC system is at least 50-60 min. This means incorrect diagnosis of faults can happen during online monitoring if the transient pattern responses are not considered in the fault detection and diagnosis analysis

  3. Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.

    Science.gov (United States)

    Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru

    2017-07-01

    Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.

  4. Energy requirements of Federal Germany and their consequences for the energy policy of the eighties

    International Nuclear Information System (INIS)

    Spalthoff, F.J.

    1980-01-01

    The author deals in a popular way with the hindrances preventing the energy supply from a continuous development. When doing this, he looks at the development in th FRG within a world-wide frame. The energy sources of the future are for the FRG coal and nuclear energy. (UA) [de

  5. ENERGY-REQUIREMENTS FOR MOLT IN THE KESTREL FALCO-TINNUNCULUS

    NARCIS (Netherlands)

    DIETZ, MW; DAAN, S; MASMAN, D

    1992-01-01

    We estimated energy requirements for plumage replacement in the kestrel (Falco tinnunculus) by comparing O2 consumption Vo2 and metabolizable energy intake during molt and nonmolt. The energy expenditure for feather synthesis (S) as derived from the regression of basal metabolic rate (BMR) on molt

  6. Analysis of requirements for accelerating the development of geothermal energy resources in California

    Science.gov (United States)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  8. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Sama Amid

    2016-06-01

    Full Text Available A literature review shows that energy consumption in agricultural production in Iran is not efficient and a high degree of inefficiency in broiler production exists in Iran. Energy consumption of broiler production in Ardabil province of Iran was studied and the non-parametric method of data envelopment analysis (DEA was used to analyze energy efficiency, separate efficient from inefficient broiler producers, and calculate wasteful use of energy to optimize energy. Data was collected using face-to-face questionnaires from 70 broiler farmers in the study area. Constant returns to scale (CCR and variable returns to scale (BCC models of DEA were applied to assess the technical efficiency of broiler production. The results indicated that total energy use was 154,283 MJ (1000 bird−1 and the share of fuel at 61.4% was the highest of all inputs. The indices of energy efficiency, energy productivity, specific energy, and net energy were found to be 0.18, 0.02 kg MJ−1, 59.56 MJ kg−1, and −126,836 MJ (1000 bird−1, respectively. The DEA results revealed that 40% and 22.86% of total units were efficient based on the CCR and BCC models, respectively. The average technical, pure technical, and scale efficiency of broiler farmers was 0.88, 0.93, and 0.95, respectively. The results showed that 14.53% of total energy use could be saved by converting the present units to optimal conditions. The contribution of fuel input to total energy savings was 72% and was the largest share, followed by feed and electricity energy inputs. The results of this study indicate that there is good potential for increasing energy efficiency of broiler production in Iran by following the recommendations for efficient energy use.

  9. 10 CFR 905.17 - What are the requirements for the energy efficiency and/or renewable energy report (EE/RE report...

    Science.gov (United States)

    2010-01-01

    ... renewable energy report (EE/RE report) alternative? 905.17 Section 905.17 Energy DEPARTMENT OF ENERGY ENERGY... energy efficiency and/or renewable energy report (EE/RE report) alternative? (a) Requests to submit an EE..., including any requirements for documenting customer energy efficiency and renewable energy activities. (b...

  10. In-the-loop simulation of electronic automatic temperature control systems: HVAC modeling

    Energy Technology Data Exchange (ETDEWEB)

    Domschke, R.; Matthes, M. [Visteon Deutschland GmbH, Kerpen (Germany)

    2006-07-01

    The Electronic Automatic Temperature Control (EATC) ensures the occupant comfort and provides safety features like rapid defrost and demist protection. Doing this, the EATC controller provides a direct interface to the end consumer and has a considerable impact on customer satisfaction. The In-the-loop (IL) simulation process is an integral part of Visteons model-based development process. It helps to design and calibrate the EATC controller. It consists of several IL simulation techniques like Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL). In this article, we will focus on MIL/SIL Simulations. MIL/SIL allows simulation of the EATC controller in a virtual vehicle environment from the early states of and throughout the development process. This ensures a rapid, high quality and robust development process. The MIL/SIL model contains a thermal vehicle model, a heating, ventilation and air conditioning (HVAC) unit model and a model of the EATC controller itself. The thermal vehicle model simulates transient temperature and humidity conditions in the passenger compartment of a vehicle, settings from the controller, heat fluxes through the vehicle shell and windows, solar load and several further boundary conditions. Whereas the thermal vehicle model of a specific vehicle can be adapted from a default data base, one has to pay special attention to the HVAC unit model. Visteon has developed a special, physically based HVAC unit model to be adapted and implemented into the MIL/SIL simulation. This HVAC model enables a straightforward implementation of different HVAC architectures into the MIL/SIL simulation. Moreover, changes in the HVAC settings (i.e. different blower/scroll assemblies) can be assessed and the influence on passenger comfort can be quantified. Examples of the MIL/SIL simulation demonstrate the benefits of this approach. Results are discussed and a further outlook provided. (orig.)

  11. HVAC--the importance of clean intake section and dry air filter in cold climate.

    Science.gov (United States)

    Hanssen, S O

    2004-01-01

    HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.

  12. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    OpenAIRE

    Fiems, Leo O.; De Boever, Johan L.; Vanacker, José M.; De Campeneere, Sam

    2015-01-01

    Simple Summary Double-muscled Belgian Blue animals are extremely lean, characterized by a deviant muscle fiber type with more fast-glycolytic fibers, compared to non-double-muscled animals. This fiber type may result in lower maintenance energy requirements. On the other hand, lean meat animals mostly have a higher rate of protein turnover, which requires more energy for maintenance. Therefore, maintenance requirements of Belgian Blue cows were investigated based on a zero body weight gain. T...

  13. Global optimization for overall HVAC systems - Part I problem formulation and analysis

    International Nuclear Information System (INIS)

    Lu Lu; Cai Wenjian; Chai, Y.S.; Xie Lihua

    2005-01-01

    This paper presents the global optimization technologies for overall heating, ventilating and air conditioning (HVAC) systems. The objective function of global optimization and constraints are formulated based on mathematical models of the major components. All these models are associated with power consumption components and heat exchangers for transferring cooling load. The characteristics of all the major components are briefly introduced by models, and the interactions between them are analyzed and discussed to show the complications of the problem. According to the characteristics of the operating components, the complicated original optimization problem for overall HVAC systems is transformed and simplified into a compact form ready for optimization

  14. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  15. Simplified frequency-dependent formulae for series-impedance matrices of single-core HVAC cables

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da

    2015-01-01

    The installation of HVAC underground cables became more common in recent years, a trend expected to continue in the future. Underground cables are more complex than overhead lines and the calculation of their resistance and reactance can be challenging and time consuming for frequencies that are ......The installation of HVAC underground cables became more common in recent years, a trend expected to continue in the future. Underground cables are more complex than overhead lines and the calculation of their resistance and reactance can be challenging and time consuming for frequencies...

  16. Power Flow Analysis of HVAC and HVDC Transmission Systems for Offshore WindParks

    DEFF Research Database (Denmark)

    da Silva, Filipe Miguel Faria; Castro, Rui

    2009-01-01

    As the onshore wind resource is running shorter, wind power promoters are paying attention to the offshore resources. As in most cases there is no load offshore, wind power must be transmitted to the main land. To do so, two options are available: HVAC and HVDC transmission systems. In this paper...... that HVAC solution is limited by the distance to shore and by the wind transmitted power. HVDC options do not show these limitations, but are more expensive and more delicate to deal with, because there is a lack of operational experience, so far....

  17. Simulation Study of the Energy Performance of Different Space Heating Methods in Plus-energy Housing

    DEFF Research Database (Denmark)

    Schøtt, Jacob; Andersen, Mads E.; Kazanci, Ongun Berk

    2016-01-01

    Due to a shortage of energy resources, the focus on indoor environment and energy use in buildings is increasing which sets higher standards for the performance of HVAC systems in buildings. The variety of available heating systems for both residential buildings and office buildings is therefore...... cases the heat source was a natural gas fired condensing boiler, and for the floor heating cases also an air-to-water heat pump was used to compare two heat sources. The systems were also compared in terms of auxiliary energy use for pumps and fans. The results show that the investigated floor heating...... from the low temperature heating potential since an increased floor covering requires higher average water temperatures in the floor loops and decreases the COP of the heat pump. The water-based heating systems required significantly less auxiliary energy input compared to the air-based heating system...

  18. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    Science.gov (United States)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  19. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  20. Integrated Simulation for HVAC Performance Prediction: State-of-the-Art Illustration

    NARCIS (Netherlands)

    Hensen, J.L.M.; Clarke, J.A.

    2000-01-01

    This paper aims to outline the current state-of-the-art in integrated building simulation for performance prediction of heating, ventilating and air-conditioning (HVAC) systems. The ESP-r system is used as an example where integrated simulation is a core philosophy behind the development. The

  1. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    Science.gov (United States)

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  2. Residential and Light Commercial HVAC. Teacher Edition and Student Edition. Second Edition.

    Science.gov (United States)

    Stephenson, David

    This package contains teacher and student editions of a residential and light commercial heating, ventilation, and air conditioning (HVAC) course of study. The teacher edition contains information on the following: using the publication; national competencies; competency profile; related academic and workplace skills list; tools, equipment, and…

  3. Evaluation of the ultimate pressure capacity of rectangular HVAC ducts for nuclear pwoer plants

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1984-01-01

    Typical Category I HVAC ducts in a nuclear plant must be designed for loads and load combinations including positive and negative pressure loads which are generated due to the normal operation and postulated accident conditions. These pressure loads most often govern the design of the HVAC ducts. Structural design criteria are presently based on the AISI Code which limits the duct panel width-to-thickness ratio to a maximum of 500 and the maximum height-to-thickness ratio to 200, unless it can be shown by structural tests that larger ratios can be used. Test Programs performed on rectangular HVAC ducts subjected to vacumm loads have substantiated the use of ducts having panel width to thickness ratios of up to 1600. The results of the test programs were subsequently incorporated into the design through a more rational analytical design method which was developed from and correlates well with the test results. The purpose of this paper is to present the analytical design method and its correlation with the test results. Simple formulae for the design of rectangular HVAC ducts are presented. Lower bound values of duct sheet, and stiffener ultimate loads are derived, and correlated with recent test results. Analytically predicted ultimate pressures are also compared with other available duct test data

  4. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  5. Thermal analysis of an HVAC system with TRV controlled hydronic radiator

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2010-01-01

    A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis and contr......A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis...... and controller design. A discrete-element model with interconnected small scaled elements is proposed for the radiator. This models the radiator more precisely than that of a lumped model in terms of transfer delay and radiator gain. This precise modeling gives us an intuition into a regular unwanted phenomenon...... which occurs in low demand situations. When flow is very low in radiator and the supply water temperature and the pressure drop across the valve is constant, oscillation in room temperature occurs. One reason could be the large gain of radiator in low demand conditions compared to the high demand...

  6. Compliance of SLAC's Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    International Nuclear Information System (INIS)

    Woods, M.

    2009-01-01

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance

  7. Summary of Energy Assessment Requirements under the Area Source Boiler Rule

    Science.gov (United States)

    This document provides an overview of the energy assessment requirements for the national emission standards for hazardous air pollutants (NESHAP) for area sources: industrial, commercial and Institutional boilers, 40 CFR Part 63, Subpart JJJJJJ.

  8. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  9. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  10. Determining required valve performance for discrete control of PTO cylinders for wave energy

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    investigates the required valve performance to achieve this energy efficient operation, while meeting basic dynamic requirements. The components making up the total energy loss during shifting is identified by analytically expressing the losses from the governing differential equations. From the analysis...... a framework for evaluating the adequacy of a valve’s response is established, and the analysis shows the results may be normalised for a wider range of systems. Finally, the framework is successfully applied to the Wavestar converter....

  11. Energy management system for power distribution. Interfaces and data communication requirements

    International Nuclear Information System (INIS)

    Koponen, P.; Lemstroem, B.; Ikonen, J.

    1995-01-01

    The opening of the electricity market for competition in Finland creates new requirements for the information systems and data communication in distribution utilities. Energy management systems for distribution utilities are needed with interfaces that make it possible to separate the network business from the energy trade business. However, these interfaces should also support optimization of the whole energy supply system of the country. In this report the interfaces and data communication requirements of the energy management system of the electricity trade business are analyzed. To support this subfunctions of the energy management have been analyzed. It was realized that the amount of necessary data transfer and optimization of the national power system both depend strongly on the general rules of the energy markets. (author)

  12. Food and energy choices for India: a programming model with partial endogenous energy requirements.

    Science.gov (United States)

    Parikh, K S; Srinivasan, T N

    1980-09-01

    This paper presents a mathematical model for all matter-energy processing subsystems at the level of the society, specifically India. It explores India's choices in the food and energy sectors over the coming decades. Alternative land intensive, irrigation energy intensive, and fertilizer intensive techniques of food production are identified using a nonlinear programming model. The land saved is devoted to growing firewood. The optimum combination of railway (steam, diesel, and electric traction) and road (automobiles, diesel trucks, and diesel and gasoline buses) transport is determined. For the oil sector, two alternative sources of supply of crude oil and petroleum products are included, namely, domestic production and imports. The optimum choice is determined through a linear programming model. While the model is basically a static one, designed to determine the optimal choice for the target year of 2000-2001, certain intertemporal detail is incorporated for electricity generation. The model minimizes the costs of meeting the needs for food, transport in terms of passenger kilometers and goods per ton per kilometer, energy needs for domestic cooking and lighting, and the energy needs of the rest of the economy.

  13. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  14. Case Study of Electrical Energy Requirement for Various Needs in a Desert Dwelling

    OpenAIRE

    Sadiq Ali Shah; Abdul Fatah Abbasi; Jawaid Daudpoto

    2013-01-01

    case study of electrical energy requirement for various needs in a desert dwelling is carried out in order to explore an indigenous self-sustained electrical power generation process, which can provide means to produce electrical power, potable water and agricultural production. The objective of such study is to develop a self-sustainable and self-contained electrical energy system that can cater for energy needs for the people living in such remote areas. The study is carried out on a micro ...

  15. The role and importance of nuclear energy in the realisation of energy requirements

    International Nuclear Information System (INIS)

    Giraud, A.

    1976-01-01

    The competitiveness of nuclear energy in relation to fuel oil is now fully established for electricity generation, not merely for base production but also for much lower load factors. Likewise, in the field of steam generation nuclear energy has a high competitivity margin in comparison with fuel oil. At the outlet of the boiler the cost of the nuclear steam B.T.U. is much lower than the cost of the nuclear electricity B.T.U., but this advantage could be evened out, partially or totally, by the ease of transportation and the flexibility of utilization of electricity. The availability of high temperatures may in the future open new markets (hydrogen production, industrial processes ..). Thus, through its various vectors, nuclear energy may occupy an important place in the energy balance of a country. An evaluation has been made, on certain assumptions, until the year 2030, of the place that nuclear energy will take. The evaluation shows clearly that uranium supply will be next to impossible if nuclear energy is supplied by light water reactors, associated or not with other thermal reactors. It will be necessary to resort urgently to fast breeder reactors. The acceleration of the fast breeder reactors breakthrough resulting from the insertion of natural uranium converters does not fundamentally change the supply problem, nor does the insertion of HTRs intended to break into the high temperature market. On the other hand, improvement of the performance of fast breeder reactors, particularly an increase in the breeding ratio and a shortening of the cycle, might have a decisive effect and might ensure the definite mastering of the uranium needs. (author)

  16. Critical and precious materials consumption and requirement in wind energy system in the EU 27

    International Nuclear Information System (INIS)

    Kim, Junbeum; Guillaume, Bertrand; Chung, Jinwook; Hwang, Yongwoo

    2015-01-01

    Graphical abstract: Critical and precious materials requirement in the wind energy system in the EU 27 by 2020. - Highlights: • The critical and precious materials consumption were calculated in wind energy system in the EU 27. • The future requirement of critical and precious materials was estimated in the EU 27 by 2020. • Fluorspar, silver, magnesium, indium, gold and tantalum are the mainly used and required materials. • This research approach could be applied to other industrial sectors as well as other renewable technology. - Abstract: Critical materials as well as rare earth elements and precious metals such as platinum, gold and silver are used significantly for computer hard disk drives, mobile phones, hybrid electric vehicles, batteries, renewable energy system and many other applications. It is therefore important to quantify and estimate both current stocks and flows of such materials, as well as future requirement for industries and economies. In this study, which is focused on wind energy system in the European Union (EU) 27, the current consumption and future requirement of critical and precious materials were calculated and estimated using the wind power production dataset from ecoinvent and data from National Renewable Energy Action Plan (NREAP). It is shown that fluorspar has been the most consumed material to date, and will probably be the most required material in the future. Among other critical and valuable materials, the main materials used for current wind energy system are silver, magnesium, indium, gold and tantalum. These materials will also be required significantly by 2020 for the wind energy system in the EU 27. It is argued that these results should be connected to the future energy and material policy and management

  17. Analysis of Marine Corps Renewable Energy Planning to Meet Installation Energy Security Requirements

    Science.gov (United States)

    2013-12-03

    monitoring grid interruptions at each installation and their impact on operations. Collecting interruption data will assist in obtaining an accurate...zero energy status is within reach if Miramar implements the recommended measures, replaces all remaining natural gas with biogas , and completely

  18. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  19. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide minimal

  20. Provision of protein and energy in relation to measured requirements in intensive care patients

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Esmailzadeh, Negar; Knudsen, Anne Wilkens

    2012-01-01

    , also when adjusted for baseline prognostic variables (APACHE II, SOFA scores and age). Provision of energy, measured resting energy expenditure or energy and nitrogen balance was not related to mortality. The possible cause-effect relationship is discussed after a more detailed analysis of the initial......BACKGROUND & AIMS: Adequacy of nutritional support in intensive care patients is still a matter of investigation. This study aimed to relate mortality to provision, measured requirements and balances for energy and protein in ICU patients. DESIGN: Prospective observational cohort study of 113 ICU...... part of the admission. CONCLUSION: In these severely ill ICU patients, a higher provision of protein and amino acids was associated with a lower mortality. This was not the case for provision of energy or measured resting energy expenditure or energy or nitrogen balances. The hypothesis that higher...

  1. Estimating energy requirement in cashew (Anacardium occidentale L.) nut processing operations

    Energy Technology Data Exchange (ETDEWEB)

    Jekayinfa, S.O. [Department of Agricultural Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State (Nigeria); Bamgboye, A.I. [Department of Agricultural Engineering, University of Ibadan, Ibadan (Nigeria)

    2006-07-15

    This work deals with a study on estimation of energy consumption in eight readily defined unit operations of cashew nut processing. Data for analysis were collected from nine cashew nut mills stratified into small, medium and large categories to represent different mechanization levels. Series of equations were developed to easily compute requirements of electricity, fuel and labour for each of the unit operations. The computation of energy use was done using spreadsheet program on Microsoft Excel. The results of application test of the equations show that the total energy intensity in the cashew nut mills varied between 0.21 and 1.161MJ/kg. Electrical energy intensity varied between 0.0052 and 0.029MJ/kg, while thermal energy intensity varied from 0.085 to 1.064MJ/kg. The two identified energy intensive operations in cashew nut processing are cashew nut drying and cashew nut roasting, altogether accounting for over 85% of the total energy consumption in all the three mill categories. Thermal energy, obtained from diesel fuel, represented about 90% of the unit energy cost for cashew nut processing. The developed equations have therefore proven to be a useful tool for carrying out budgeting, forecasting energy requirements and planning plant expansion. (author)

  2. Energy prospects for the Mediterranean area through 2030: a sustainable energy future requires a real energy transition

    International Nuclear Information System (INIS)

    Ben Jannet-Allal, H.

    2012-01-01

    The Mediterranean Energy Observatory (MEO), an association of the main energy companies around the Mediterranean, celebrated its 20. anniversary last October. For that occasion, the organisation published a special edition of its magazine GEM, Global Energy for the Mediterranean, which, apart from covering the history of the association, presents an in-depth analysis of the Mediterranean energy market in 2011 and its prospects going out to 2030. This collective assessment, undertaken by a team from MEG, benefited from the expertise of several members of the organization, as well as the inputs from well-known experts from the energy sector. The same survey has also been reviewed in the May 2012 issue of the specialist publication Medenergie. This article has been drawn from that study. (author)

  3. Quantifying the energy required for groundwater pumping across a regional aquifer system

    Science.gov (United States)

    Ronayne, M. J.; Shugert, D. T.

    2017-12-01

    Groundwater pumping can be a substantial source of energy expenditure, particularly in semiarid regions with large depths to water. In this study we assessed the energy required for groundwater pumping in the Denver Basin aquifer system, a group of sedimentary rock aquifers used for municipal water supply in Colorado. In recent decades, declining water levels in the Denver Basin aquifers has resulted in increased pumping lifts and higher energy use rates. We quantified the spatially variable energy intensity for groundwater pumping by analyzing spatial variations in the lift requirement. The median energy intensities for two major aquifers were 1.2 and 1.8 kWh m-3. Considering typical municipal well production rates and household water use in the study area, these results indicate that the energy cost associated with groundwater pumping can be a significant fraction (>20%) of the total electricity consumption for all household end uses. Pumping at this scale (hundreds of municipal wells producing from deep aquifers) also generates substantial greenhouse gas emissions. Analytical wellfield modeling conducted as part of this study clearly demonstrates how multiple components of the lift impact the energy requirement. Results provide guidance for water management strategies that reduce energy expenditure.

  4. Prediction equation for estimating total daily energy requirements of special operations personnel.

    Science.gov (United States)

    Barringer, N D; Pasiakos, S M; McClung, H L; Crombie, A P; Margolis, L M

    2018-01-01

    Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Generate a predictive equation estimating energy requirements of SOF. Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures. Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d- 1 . Regression analysis revealed that physical activity level ( r  = 0.91; P  plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.

  5. The development of the world's population as a factor determining future energy requirements

    International Nuclear Information System (INIS)

    Vossebrecker, H.; Henssen, H.

    1988-01-01

    Urgently desired economic developments improving the conditions of living in the developing countries and, in the long term, introducing a stabilization of the world's population, result in a considerable rise in world energy requirement. This, in turn, causes conflicts and raises major ecological dangers because of the accelerated depletion of fossil sources of energy it entails. The severity of the CO 2 problem emerges clearly only when seen in connection with the population growth of the developing countries. Undoubtedly, therefore, the fossil sources of energy will have to give up their present leading role in world energy supply because of the intolerable environmental pollution they produce and because of the dwindling oil and gas reserves. The only hope remaining for the present is the possibility of nuclear power and renewable energies pointly being able to meet requirements, while all economically reasonable conservation potentials are being exploited. (orig./UA) [de

  6. Developing the (ASTM) voluntary consensus standards required to help implement the National Energy Plan

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The recommended guide is the first American Society for Testing and Materials (ASTM) matrix in a family of such documents that combined, will help manage the development of the ASTM standards considered necessary to implement the current National Plan for Energy Research, Development, and Demonstration. It is expected that the guide will provide a framework for standards development to complement the nation's research and development in support of critical energy needs. The recommended guide identifies the energy-critical areas that are to be developed, the master ASTM recommended guide for developing the standards required to help the National Plan, the section in which each energy-critical area is covered, and the suggested ASTM lead committee responsible for each area (fossil, solar, geothermal, conservation, fusion, and fission reactor development). A comprehensive matrix to identify the areas of need for which ASTM standards will be required to help implement the National Energy Plan is also presented

  7. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    International Nuclear Information System (INIS)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  8. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  9. Case study of electrical energy requirement for various needs in a desert dwelling

    International Nuclear Information System (INIS)

    Shah, S.A.

    2013-01-01

    A case study of electrical energy requirement for various needs in a desert dwelling is carried out in order to explore an indigenous self-sustained electrical power generation process, which can provide means to produce electrical power, potable water and agricultural production. The objective of such study is to develop a self-sustainable and self-contained electrical energy system that can cater for energy needs for the people living in such remote areas. The study is carried out on a micro level but these results are stretchable to macro levels to accommodate a possible increase in the scale of energy consumption in the long run. (author)

  10. Energy Requirements in Early Life Are Similar for Male and Female Goat Kids

    Directory of Open Access Journals (Sweden)

    T. F. V. Bompadre

    2014-12-01

    Full Text Available Little is known about the gender differences in energetic requirements of goats in early life. In this study, we determined the energy requirements for maintenance and gain in intact male, castrated male and female Saanen goat kids using the comparative slaughter technique and provide new data on their body composition and energy efficiency. To determine the energy requirements for maintenance, we studied 21 intact males, 15 castrated males and 18 females (5.0±0.1 kg initial body weight (BW and 23±5 d of age using a split-plot design with the following main factors: three genders (intact males, castrated males, and females and three dry matter intake levels (ad libitum, 75% and 50% of ad libitum intake. A slaughter group included three kids, one for each nutritional plane, of each gender, and all three animals within a group were slaughtered when the ad libitum kid reached 15 kg in BW. Net energy requirements for gain were obtained for 17 intact males, eight castrated males and 15 females (5.1±0.4 kg BW and 23±13 d of age. Animals were fed ad libitum and slaughtered when they reached 5, 10, and 15 kg in BW. A digestion trial was performed with nine kids of each gender to determine digestible energy, metabolizable energy and energy metabolizability of the diet. Our results show no effect of gender on the energy requirements for maintenance and gain, and overall net energy for maintenance was 205.6 kJ/kg0.75 empty body weight gain (EBW (170.3 kJ/kg0.75 BW from 5 to 15 kg BW. Metabolizable energy for maintenance was calculated by iteration, assuming heat production equal to metabolizable energy intake at maintenance, and the result was 294.34 kJ/kg0.75 EBW and km of 0.70. As BW increased from 5 to 15 kg for all genders, the net energy required for gain increased from 9.5 to 12.0 kJ/g EBW gain (EWG, and assuming kg = 0.47, metabolizable energy for gain ranged from 20.2 to 25.5 kJ/g EWG. Our results indicate that it is not necessary to formulate

  11. Virtual vs. real: Modeling the energy performance of a quick service restaurant

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.A.; Young, R.; Spata, A.J.; Fisher, D.

    1999-07-01

    This paper describes the process of modeling a number of energy conservation measures used in constructing a new quick service restaurant. An hour-by-hour energy simulation model was used to predict energy savings for each energy conservation measure. The initial model was based on the design drawings and assumptions about operating conditions and energy use by the food service equipment. Based on a year's worth of measured energy and environmental data, the model inputs were calibrated and the model outputs were validated. The modifications to initial model conditions required for calibration and validation are discussed for each energy end use: lighting, water heating, HVAC, food processing, and building envelope. Differences between the measured data and the predicted results of the final model are summarized. The strengths and shortcomings of building energy modeling in the context of food service applications and the potential for future application of the model during restaurant design are discussed.

  12. Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Aggerholm, S.

    2013-09-15

    The purpose of the report is to analyse the cost optimality of the energy requirements in the Danish Building Regulations 2010, BR10 to new building and to existing buildings undergoing major renovation. The energy requirements in the Danish Building Regulations have by tradition always been based on the cost and benefits related to the private economical or financial perspective. Macro economical calculations have in the past only been made in addition. The cost optimum used in this report is thus based on the financial perspective. Due to the high energy taxes in Denmark there is a significant difference between the consumer price and the macro economical for energy. Energy taxes are also paid by commercial consumers when the energy is used for building operation e.g. heating, lighting, ventilation etc. In relation to the new housing examples the present minimum energy requirements in BR 10 all shows gaps that are negative with a deviation of up till 16 % from the point of cost optimality. With the planned tightening of the requirements to new houses in 2015 and in 2020, the energy requirements can be expected to be tighter than the cost optimal point, if the costs for the needed improvements don't decrease correspondingly. In relation to the new office building there is a gap of 31 % to the point of cost optimality in relation to the 2010 requirement. In relation to the 2015 and 2020 requirements there are negative gaps to the point of cost optimality based on today's prices. If the gaps for all the new buildings are weighted to an average based on mix of building types and heat supply for new buildings in Denmark there is a gap of 3 % in average for the new building. The excessive tightness with today's prices is 34 % in relation to the 2015 requirement and 49 % in relation to the 2020 requirement. The component requirement to elements in the building envelope and to installations in existing buildings adds up to significant energy efficiency

  13. Energy Storage Requirements for PV Power Ramp Rate Control in Northern Europe

    Directory of Open Access Journals (Sweden)

    Julius Schnabel

    2016-01-01

    Full Text Available Photovoltaic (PV generators suffer from fluctuating output power due to the highly fluctuating primary energy source. With significant PV penetration, these fluctuations can lead to power system instability and power quality problems. The use of energy storage systems as fluctuation compensators has been proposed as means to mitigate these problems. In this paper, the behavior of PV power fluctuations in Northern European climatic conditions and requirements for sizing the energy storage systems to compensate them have been investigated and compared to similar studies done in Southern European climate. These investigations have been performed through simulations that utilize measurements from the Tampere University of Technology solar PV power station research plant in Finland. An enhanced energy storage charging control strategy has been developed and tested. Energy storage capacity, power, and cycling requirements have been derived for different PV generator sizes and power ramp rate requirements. The developed control strategy leads to lesser performance requirements for the energy storage systems compared to the methods presented earlier. Further, some differences on the operation of PV generators in Northern and Southern European climates have been detected.

  14. Evaluation of energy savings potential of variable refrigerant flow (VRF from variable air volume (VAV in the U.S. climate locations

    Directory of Open Access Journals (Sweden)

    Dongsu Kim

    2017-11-01

    Full Text Available Variable refrigerant flow (VRF systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE, is used to assess the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.

  15. Draft PRN 2006-A: Use of Antimicrobial Pesticide Products in Heating, Ventilation, Air Conditioning and Refrigeration Systems (HVAC&R)

    Science.gov (United States)

    This draft notice provides guidance to registrants of EPA-registered antimicrobial products whose labels bear general directions related to hard, non-porous or porous surfaces, but which are not but which are not specifically registered for HVAC uses.

  16. Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R), AFSC 3E1X1. OSSN 2368

    National Research Council Canada - National Science Library

    1999-01-01

    Survey Coverage: The Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R) career ladder, AFSC 3E1X1, was surveyed to gather data needed to guide the development and evaluation of training...

  17. Direct and indirect energy requirements of output of the New Zealand economy

    Energy Technology Data Exchange (ETDEWEB)

    Peet, N.J.

    1985-10-01

    Data on energy supply in New Zealand for the year of the survey are reviewed critically. Results are tabulated as the direct and indirect energy intensities of output for each of the energy supply industries: coal mining and natural gas production; petroleum refining, oil and coal products; electricity, state supply; electricity, local body supply; and gas manufacture and distribution. Two types of sector tabulations are presented; at the 178-sector level (the maximum detail available) and the 29-sector level, corresponding to the usual GDP sectors and the energy industries. Energy requirements of gross fixed capital formation are also tabulated, at the 29-sector level. While the data from the survey are now eight years old, changes in the energy supply industries, and in industry as a whole, are believed to have been sufficiently slow for the results to be generally applicable until data from the 1981-82 survey become available. 33 references, 4 tables.

  18. Energy conservation applications of microprocessors

    Energy Technology Data Exchange (ETDEWEB)

    Shih, James Y.

    1979-07-01

    A survey of the application of microprocessors for industrial and commercial energy conservation has been made. Microprocessor applications for HVAC, chiller control, and automotive equipment are discussed. A case study of successful replacement of a conventional cooling plant control is recounted. The rapid advancement of microelectronic technology will affect efficient energy control, more sophisticated control methodology, and more investment in controls.

  19. Archtechtual Envilomental and Eequipment Laboratory Issues on HVAC System in a Commercial Kitchen(Educational Practice through Research)

    OpenAIRE

    吉野, 一; Hajime, Yoshino

    2017-01-01

    Generally, large amount of heat, oil fume including chemical substances and exhaust gases were generated during cooking in commercial kitchens. Therefore, it is important to keep highly safe and good hygienic condition by HVAC System. In this paper, health effect of oil fume and fire spread were surveyed based on investigation of previous studies. Lastly, current issues and future prospects of commercial kitchens HVAC system in Japan were described.

  20. Formula for average energy required to produce a secondary electron in an insulator

    International Nuclear Information System (INIS)

    Xie Ai-Gen; Zhan Yu; Gao Zhi-Yong; Wu Hong-Yan

    2013-01-01

    Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (in) is obtained. On the basis of the energy band of an insulator and the formula for in, the formula for the average energy required to produce a secondary electron in an insulator (in i ) is deduced as a function of the width of the forbidden band (E g ) and electron affinity χ. Experimental values and the in i values calculated with the formula are compared, and the results validate the theory that explains the relationships among E g , χ, and in i and suggest that the formula for in i is universal on the condition that the primary electrons at any energy hit the insulator. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. [Energy requirements in adolescents playing basketball in Russian Olympic reserve team].

    Science.gov (United States)

    Martinchik, A N; Baturin, A K; Petukhov, A B; Baeva, V S; Zemlianskaia, T A; Sokolov, A I; Peskova, E V; Tysiachnaia, E M

    2003-01-01

    The energy expenditure and requirements and dietary intake were studied in basketball players aged 14-16 years during 3 week-training period. The subjects of study were 14 boys and 18 girls as of the members of reserve of Russian Olympic basketball team. The dietary intake was estimated by dietary record of all food consumed within 24 hours last 7 days of training period. The energy expenditure was estimated by registration of time on different physical activity of team and multiplication on physical activity coefficient. The decrease of body mass and body mass index were observed in boys with height 195 cm and more to the end of training period. These tall boys did not consume enough food to satisfy the estimated energy requirement. It is estimated that energy need of tall basketball players is no less then 5000 kcal for boys and 3100 kcal for girls.

  2. Comparison of initial capital investment requirements for new domestic energy supplies: 1980 update

    International Nuclear Information System (INIS)

    Schlesinger, B.; Hay, N.E.; Wilkinson, P.

    1980-01-01

    A.G.A.'s update of its 1978 analysis comparing the initial capital investments required for several domestic sources of alternative energy (coal conversion, oil shale, unconventional natural gas, Alaskan gas, nuclear power, and solar energy) concludes that US energy-supply and utilization systems based on gaseous fuels need substantially less initial capital investment than do equivalent nuclear, coal, and solar electric systems or synthetic-liquids systems. The capital estimates include the costs of resource extraction, processing and conversion, transmission and distribution, and end-use equipment. The cost advantages shown for the three end-use applications compared - residential and small-commercial space heating, premium industrial usage, and large industrial boilers - reflect both the lower capital requirements and higher energy efficiencies of the gaseous systems

  3. Evaluation of the energy required for constructing and operating a fusion power plant

    International Nuclear Information System (INIS)

    Buende, R.

    1982-09-01

    The energy required for constructing and operating a tokamak fusion power plant is appraised with respect to the energy output during the lifetime of the plant. A harvesting factor is deduced as a relevant figure of energetic merit and is used for a comparison between fusion, fission, and coal-fired power plants. Because fusion power plants involve considerable uncertainties the comparison is supplemented by a sensitivity analysis. In comparison with Light Water Reactor plants fusion power plants appear to be rather favourable in this respect. The energy required for providing the fuel is relatively low for fusion plants, thus overcompensating the considerable higher amount of energy necessary for constructing the fusion power plant. (orig.)

  4. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    Science.gov (United States)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  5. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  6. Required Assets for a Nuclear Energy Applied R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs

  7. Energy requirements and physical activity level of active elderly people in rural areas of Cuba

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.H.; Sanchez, V.; Basabe-Tuero, B.; Gonzalez-Calderin, S.; Diaz, M.E.; Aleman-Mateo, H.; Valencia-Julleirat, M.; Salazar, G.

    2002-01-01

    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 % of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1.77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The total energy expenditure: The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11 % and 30% lower than the values obtained by the DLW-method. The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated

  8. Calculating the Contribution of Zooxanthellae to Giant Clams Respiration Energy Requirements

    OpenAIRE

    Ambariyanto

    2002-01-01

    Giant clams (Tridacnidae) are known to live in association with photosynthetic single cell dinoflagellate algae commonly called zooxanthellae. These algae which can be found in the mantle of the clams are capable of transferring part of their photosynthates which become an important source of energy to the host ( apart from filter feeding activity). In order to understand the basic biological processes of the giant clams , the contribution of zooxanthellae to the clam's energy requirement nee...

  9. Safety requirements laid down in the Atomic Energy Law and in the Law on Immission Control

    International Nuclear Information System (INIS)

    Hansmann, K.

    1981-01-01

    The paper deals with safety requirements relating to installations, laid down in the Atomic Energy Law and in the Law on Immission Control. Actually it is a matter of how the safety requirements of sect. 7 of the Atomic Energy Law can be compared with those laid down in the sections 5 and 6 of the Federal Act for the Protection Against Nuisances. In the process, three comparative levels are examined: 1. The normative conditions concerning the licencability of hazardous installations, 2. those demands that go way beyond that in order to reduce residual risks, and 3. the licensing authorities' scope of discretion. (orig./HP) [de

  10. The energy requirements of Eurasian perch (Perca fluviatilis L.) in intensive culture

    DEFF Research Database (Denmark)

    Strand, A.; Overton, Julia Lynne; Alanara, A.

    2011-01-01

    requirements of this species. The aim of this study was to develop an energy requirement model for intensive culture of Eurasian perch reared at rational temperatures. Data on growth (the thermal unit growth coefficient, TGC, 3√g ‧ (℃ ‧ days)-1) and digestible energy need (DEN, kJ DE ‧ g -1) of Eurasian perch...... at a size range of 20–180 g and at temperatures of 17–23 ℃ were used. Regression analysis revealed that both TGC and DEN were affected significantly by fish size (P 0.05). Two models including body size of the fish were developed: (i) an inverse TGC model for evaluation...

  11. Modelling of capital requirements in the energy sector: capital market access. Final memorandum

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Formal modelling techniques for analyzing the capital requirements of energy industries have been performed at DOE. A survey has been undertaken of a number of models which forecast energy-sector capital requirements or which detail the interactions of the energy sector and the economy. Models are identified which can be useful as prototypes for some portion of DOE's modelling needs. The models are examined to determine any useful data bases which could serve as inputs to an original DOE model. A selected group of models are examined which can comply with the stated capabilities. The data sources being used by these models are covered and a catalog of the relevant data bases is provided. The models covered are: capital markets and capital availability models (Fossil 1, Bankers Trust Co., DRI Macro Model); models of physical capital requirements (Bechtel Supply Planning Model, ICF Oil and Gas Model and Coal Model, Stanford Research Institute National Energy Model); macroeconomic forecasting models with input-output analysis capabilities (Wharton Annual Long-Term Forecasting Model, Brookhaven/University of Illinois Model, Hudson-Jorgenson/Brookhaven Model); utility models (MIT Regional Electricity Model-Baughman Joskow, Teknekron Electric Utility Simulation Model); and others (DRI Energy Model, DRI/Zimmerman Coal Model, and Oak Ridge Residential Energy Use Model).

  12. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  13. 100% energy supply coverage with renewable energy. Requirements for its implementation at the global, national and municipal level

    International Nuclear Information System (INIS)

    Rogall, Holger

    2014-01-01

    This book presents itself as a systematic, easily understandable introduction into the requirements for an energy supply based 100% on renewable energy. Its main focus is on the strategic paths that must be followed for this purpose in the realms of business, technology and governmental policy. It highlights the opportunities and impediments on the way, analysing in the process the roles of political, economic and civil society players from the global down to the municipal level. Starting out from the present state of discussion on the German energy transition it investigates the strengths and weak points of efficiency technologies and renewable energies available today and elaborates a strategic path for developing the necessary infrastructure. In awareness of the fact that 100% coverage will not come about from market mechanisms alone it explores the ecological crash barriers that need to be set up in addition. This is followed by chapters on the roles, interests and means of those players who can exert influence on the framing of the relevant political and legal instruments as well as their means of pursuing their interests. The book thus contributes to clarifying the possibilities of and impediments to achieving an energy supply system based 100% on renewable energy.

  14. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  15. Preventive maintenance basis: Volume 19 -- HVAC -- chillers and compressors. Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear power plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This document provides a program of preventive maintenance tasks suitable for application to HVAC -- Chillers and Compressors. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used in conjunction with material from other sources, to develop a complete PM program or to improve an existing program

  16. Dietary energy requirements of young adult men, determined by using the doubly labeled water method

    International Nuclear Information System (INIS)

    Roberts, S.B.; Heyman, M.B.; Evans, W.J.; Fuss, P.; Tsay, R.; Young, V.R.

    1991-01-01

    The autors examined the hypothesis that current recommendations on dietary energy requirements may underestimate the total energy needs of young adult men, by measuring total energy expenditure (TEE) and resting energy expenditure (REE) in 14 weight-maintaining healthy subjects leading unrestricted lives. TEE and body composition were measured by using 2H(2)18O, and REE was measured by using indirect calorimetry. All subjects had sedentary full-time occupations and participated in strenuous leisure activities for 34 ± 6 (SE) min/d. TEE and REE were 14.61 ± 0.76 and 7.39 ± 0.26 MJ/d, respectively, and 202 ± 2 and 122 ± 2 kJ.kg-1.d-1. There were significant relationships between TEE and both body fat-free mass (r = 0.732, P less than 0.005) and measured REE (r = 0.568, P less than 0.05). Measured TEE:REE values were significantly higher than the recommended energy requirement (1.98 ± 0.09, compared with 1.55 or 1.67, P less than 0.005). These results are consistent with the suggestion that the current recommended energy intake for young adult men may underestimate total energy needs

  17. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  18. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  19. Colloquy and workshops: regional implications of the engineering manpower requirements of the National Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Segool, H. D. [ed.

    1979-05-01

    The crucial interrelationships of engineering manpower, technological innovation, productivity and capital re-formaton were keynoted. Near-term, a study has indicated a much larger New England energy demand-reduction/economic/market potential, with a probably larger engineering manpower requirement, for energy-conservation measures characterized by technological innovation and cost-effective capital services than for alternative energy-supply measures. Federal, regional, and state energy program responsibilities described a wide-ranging panorama of activities among many possible energy options which conveyed much endeavor without identifiable engineering manpower demand coefficients. Similarly, engineering manpower assessment data was described as uneven and unfocused to the energy program at the national level, disaggregated data as non-existent at the regional/state levels, although some qualitative inferences were drawn. A separate abstract was prepared for each of the 16 individual presentations for the DOE Energy Data Base (EDB); 14 of these were selected for Energy Abstracts for Policy Analysis (EAPA) and 2 for Energy Research Abstracts (ERA).

  20. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  1. Energy requirements and physical activity level of active elderly people in rural areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Triana, M; Aleman Mateo, H; Valencia Julleirat, M [Institute of Nutrition and Food Hygiene, Havana (Cuba); and others

    2002-07-01

    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1. 77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11% and 30% lower than the values obtained by the DLW-method The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated. (author)

  2. Energy requirements and physical activity level of active elderly people in rural areas of China

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.; Aleman Mateo, H.; Valencia Julleirat, M.

    2002-01-01

    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1. 77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11% and 30% lower than the values obtained by the DLW-method The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated. (author)

  3. Assessing Energy Requirements in Women With Polycystic Ovary Syndrome: A Comparison Against Doubly Labeled Water.

    Science.gov (United States)

    Broskey, Nicholas T; Klempel, Monica C; Gilmore, L Anne; Sutton, Elizabeth F; Altazan, Abby D; Burton, Jeffrey H; Ravussin, Eric; Redman, Leanne M

    2017-06-01

    Weight loss is prescribed to offset the deleterious consequences of polycystic ovary syndrome (PCOS), but a successful intervention requires an accurate assessment of energy requirements. Describe energy requirements in women with PCOS and evaluate common prediction equations compared with doubly labeled water (DLW). Cross-sectional study. Academic research center. Twenty-eight weight-stable women with PCOS completed a 14-day DLW study along with measures of body composition and resting metabolic rate and assessment of physical activity by accelerometry. Total daily energy expenditure (TDEE) determined by DLW. TDEE was 2661 ± 373 kcal/d. TDEE estimated from four commonly used equations was within 4% to 6% of the TDEE measured by DLW. Hyperinsulinemia (fasting insulin and homeostatic model assessment of insulin resistance) was associated with TDEE estimates from all prediction equations (both r = 0.45; P = 0.02) but was not a significant covariate in a model that predicts TDEE. Similarly, hyperandrogenemia (total testosterone, free androgen index, and dehydroepiandrosterone sulfate) was not associated with TDEE. In weight-stable women with PCOS, the following equation derived from DLW can be used to determine energy requirements: TDEE (kcal/d) = 438 - [1.6 * Fat Mass (kg)] + [35.1 * Fat-Free Mass (kg)] + [16.2 * Age (y)]; R2 = 0.41; P = 0.005. Established equations using weight, height, and age performed well for predicting energy requirements in weight-stable women with PCOS, but more precise estimates require an accurate assessment of physical activity. Our equation derived from DLW data, which incorporates habitual physical activity, can also be used in women with PCOS; however, additional studies are needed for model validation. Copyright © 2017 Endocrine Society

  4. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters.

    Science.gov (United States)

    Calfee, M Worth; Rose, Laura J; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2014-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. Published by Elsevier B.V.

  5. Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moniot, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jehlik, Forrest [Argonne National Laboratory; Chevers, Netsanet [Toyota Motor North America R& D; Hirabayshi, Hidekazu [Toyota Motor North America R& D; Song, Yuanpei [DENSO International America Inc.

    2018-04-03

    This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.

  6. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  7. Microalgae Oil Production: A Downstream Approach to Energy Requirements for the Minamisoma Pilot Plant

    Directory of Open Access Journals (Sweden)

    Dhani S. Wibawa

    2018-02-01

    Full Text Available This study investigates the potential of microalgae oil production as an alternative renewable energy source, in a pilot project located at Minamisoma City in the Fukushima Prefecture of Japan. The algal communities used in this research were the locally mixed species, which were mainly composed of Desmodesmus collected from the Minamisoma pilot project. The microalgae oil-production processes in Minamisoma consisted of three stages: cultivation, dewatering, and extraction. The estimated theoretical input-energy requirement for extracting oil was 137.25 MJ to process 50 m3 of microalgae, which was divided into cultivation 15.40 MJ, centrifuge 13.39 MJ, drum filter 14.17 MJ, and hydrothermal liquefaction (HTL 94.29 MJ. The energy profit ratio (EPR was 1.41. The total energy requirement was highest in the HTL process (68% followed by cultivation (11% and the drum filter (10%. The EPR value increased along with the yield in the cultivation process. Using HTL, the microalgae biomass could be converted to bio-crude oil to increase the oil yield in the extraction process. Therefore, in the long run, the HTL process could help lower production costs, due to the lack of chemical additions, for extracting oil in the downstream estimation of the energy requirements for microalgae oil production.

  8. MEGASTAR: The Meaning of Energy Growth: An Assessment of Systems, Technologies, and Requirements

    Science.gov (United States)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach that includes the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption for the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario. The total requirements and the energy subsystems for each scenario are assessed for their primary impacts in the areas of society, the environment, technology and the economy.

  9. Utilization of respiratory energy in higher plants : requirements for 'maintenance' and transport processes

    NARCIS (Netherlands)

    Bouma, T.J.

    1995-01-01

    Quantitative knowledge of both photosynthesis and respiration is required to understand plant growth and resulting crop yield. However, especially the nature of the energy demanding processes that are dependent on dark respiration in full-grown tissues is largely unknown. The main objective

  10. Assessment of energy requirements in proven and new copper processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, C.H.; Wadsworth, M.E.

    1980-12-31

    Energy requirements are presented for thirteen pyrometallurgical and eight hydrometallurgical processes for the production of copper. Front end processing, mining, mineral processing, gas cleaning, and acid plant as well as mass balances are included. Conventional reverberatory smelting is used as a basis for comparison. Recommendations for needed process research in copper production are presented.

  11. Comparing the energy required for fine grinding torrefied and fast heat treated pine

    International Nuclear Information System (INIS)

    Kokko, Lauri; Tolvanen, Henrik; Hämäläinen, Kai; Raiko, Risto

    2012-01-01

    The purpose of the study was to compare torrefaction to partial pyrolysis conducted with a fast heat treatment process. Both torrefaction and the fast heat treatment tests were performed in a bubbling fluidized bed reactor. The study investigated the anhydrous weight losses, the fine grinding energy requirements, and the lower heating values of the samples produced with the two methods i.e. torrefaction and the fast heat treatment. The effect of particle size to these quantities was also investigated. The measurements demonstrated that the fine grinding energy requirement decreased rapidly as a function of anhydrous weight loss. The overall energy content remaining in the solid product decreased linearly as a function of anhydrous weight loss. The study shows that there is only little difference in the final products of the two processes when using particle sizes less than 4 mm. This means that it is possible to get similar products from the fast heat treatment process that takes only seconds compared to the slower torrefaction process that takes minutes. -- Highlights: ► Fine grinding energy requirement is dependent on anhydrous weight loss. ► A fast heat treatment process of only 10 s is possible for pine wood. ► A particle size of less than 4 mm is required for the fast process.

  12. Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves

    NARCIS (Netherlands)

    Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Filho, S.C.V.; Castro, M.M.D.; Dijkstra, J.

    2017-01-01

    The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five

  13. A New Model to Simulate Energy Performance of VRF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real

  14. A 2nd generation static model of greenhouse energy requirements (horticern) : a comparison with dynamic models

    CERN Document Server

    Jolliet, O; Munday, G L

    1989-01-01

    Optimisation of a greenhouse and its components requires a suitable model permitting precise determination of its energy requirements. Existing static models are simple but lack precision; dynamic models though more precise, are unsuitable for use over long periods and difficult to handle in practice. A theoretical study and measurements from the CERN trial greenhouse have allowed the development of new static model named "HORTICERN", precise and easy to use for predicting energy consumption and which takes into account effects of solar energy, wind and radiative loss to the sky. This paper compares the HORTICERN model with the dynamic models of Bot, Takakura, Van Bavel and Gembloux, and demonstrates that its precision is comparable; differences on average being less than 5%, it is independent of type of greenhouse (e.g. single or double glazing, Hortiplus, etc.) and climate. The HORTICERN method has been developed for PC use and is proving to be a powerful tool for greenhouse optimisation by research work...

  15. A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lenzen, M. [University of Sydney (Australia). School of Physics; Wier, M. [Royal Veterinary and Agricultural University, Copenhagen (Denmark). Danish Research Institute of Food Economics; Cohen, C. [Universidade Federal Fluminense, Rio de Janeiro (Brazil). Faculdade de Economia; Hayami, Hitoshi [Keio University, Tokyo (Japan). Keio Economic Observatory; Pachauri, S. [Swiss Federal Institutes of Technology, Zurich (Switzerland). Centre for Energy Policy and Economics; Schaeffer, R. [Universidade Federal do Rio de Janeiro (Brazil). COPPE

    2006-03-01

    In this paper, we appraise sustainable household consumption from a global perspective. Using per capita energy requirements as an indicator of environmental pressure, we focus on the importance of income growth in a cross-country analysis. Our analysis is supported by a detailed within-country analysis encompassing five countries, in which we assess the importance of various socioeconomic-demographic characteristics of household energy requirements. We bring together family expenditure survey data, input-output tables, and energy statistics in a multivariate analysis. Instead of a uniform Kuznet's curve, we find that the effect of increasing income varies considerably across countries, even when controlling for socioeconomic and demographic variations. The latter variables show similar influences, but differing importance across countries. (author)

  16. China's economic reform and industry sector energy requirement: A forecast to 2015

    International Nuclear Information System (INIS)

    Gu, A.Y.

    1997-01-01

    With its GDP growing at an average rate of 9.8% for the last seventeen years, China has the world's fastest growing economy. This rapid pace of growth and industrialization has caused economic strain because fuel production cannot keep pace with demand, If China allows this situation to continue, significant oil imports will be necessary. In 1993, the industrial sector contributed 56% to China's GDP and consumed 61% of the total final energy. The industrial sector will remain the largest energy consumer in China well into the next century. According to China's Ninth Five-Year Plan (1996--2000), China will strengthen its ability to develop new products and will use technological advancement to promote industrial development. The Plan calls for special attention in four major areas: microelectronics technology, digital technology, software technology, and network technology. Given China's emphasis on developing light industries and on improving industrial sector energy efficiency, it is important to study the future energy demand of the industrial sector. Two scenarios for future energy requirements are studied through the year 2015: a Business As Usual (BASU) scenario and an Energy Efficient (EE) scenario. The study evaluates China's current economic reform policies and energy efficiency policies. The results of this evaluation are used to assign appropriate growth rates to industrial GDP and the industrial energy intensity for both scenarios. Results from the two scenarios are compared and analyzed

  17. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  18. Strategic study on energy-protein requirements for local sheep: 5. Ewes during lactation phase

    Directory of Open Access Journals (Sweden)

    I-W Mathius

    2004-03-01

    Full Text Available Thirty-six Javanese thin-tail ewes in the end of late pregnancy phase were set out to study the energy and crude protein requirements during the first eight-week of lactation phase. The ewes were penned individually in doors and randomly assigned to a 3 x 3 factorial arrangement, consisting of three levels of energy (low, medium and high and three levels of crude protein (low, medium and high diets with four ewes per treatment. The diets were pelleted and offered four times daily in approximately equal amount. Feed intake, nutrient digestibility, body weight and milk production were recorded. Results showed that, total lamb birth weights was not affected, but protein content on the ration treatments significantly altered (P0.05, while crude protein content on the ration highly significantly affected (P<0.01. Based on data recorded, the energy and protein requirements for ewes during lactation phase are highly significantly depended on ewes’ live weight, milk production and the ratio of energy metabolism and crude protein of the ration. It was concluded that in order to fulfil the crude protein and energy needs of the ewes during lactation phase, the ration given should contain crude protein and energy as much as 16% (based on dry matter and 13.4 MJ/kg dry matter respectively.

  19. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  20. Capital requirements for the transportation of energy materials: 1979 ARC estimates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-28

    TERA's estimates of capital requirements to transport natural gas, crude oil, petroleum products, and coal in the US by 1990 are presented. It is a continuation of a 1978 study (EAPA 5:3946) to perform a similar analysis on 1979 scenarios. Scenarios B, C, and D from the EIA's Mid-range Energy Forecasting Systems, as used in the 1979 Annual Report to Congress (ARC), were provided as a basis for the analysis and represent three alternative futures. Summaries of transportation investment requirements through 1990 are given for Scenarios B, C, and D. Total investment requirements for the three models (pipelines, railroads, waterways) and the three energy commodities (coal, petroleum, petroleum products, natural gas) are estimated to range between $35.3 and $42.7 billion by 1990 depending on the scenario.

  1. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications

    International Nuclear Information System (INIS)

    Wiedenhofer, Dominik; Lenzen, Manfred; Steinberger, Julia K.

    2013-01-01

    Household consumption requires energy to be used at all stages of the economic process, thereby directly and indirectly leading to environmental impacts across the entire production chain. The levels, structure and determinants of energy requirements of household consumption therefore constitute an important avenue of research. Incorporating the full upstream requirements into the analysis helps to avoid simplistic conclusions which would actually only imply shifts between consumption categories without taking the economy wide effects into account. This paper presents the investigation of the direct and indirect primary energy requirements of Australian households, contrasting urban, suburban and rural consumption patterns as well as inter- and intra-regional levels of inequality in energy requirements. Furthermore the spatial and socio-economic drivers of energy consumption for different categories of energy requirements are identified and quantified. Conclusions regarding the relationships between energy requirements, household characteristics, urban form and urbanization processes are drawn and the respective policy implications are explored. - Highlights: • We statistically analyze the energy requirements of consumption in Australia. • Contrasting urban/suburban/rural consumption patterns and spatial inequality. • Energy requirements are influenced by urban form, income and demographics. • Urban households require less direct energy, but their total consumption is higher. • Significant rebound effects can be expected when direct energy use is decreased

  2. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  3. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  4. New regulatory requirements of HVAC ventilation systems in nuclear installations Spanish

    International Nuclear Information System (INIS)

    Sierra, J. J.

    2011-01-01

    Ventilation systems serve a number of functions vital to the safe operation of nuclear facilities: the renewal of air, cooling components, prevent the release of contaminated air into the environment under both normal operating and accident, or ensure habitability of the control rooms in all situations.

  5. Integrated analysis of CFD data with K-means clustering algorithm and extreme learning machine for localized HVAC control

    International Nuclear Information System (INIS)

    Zhou, Hongming; Soh, Yeng Chai; Wu, Xiaoying

    2015-01-01

    Maintaining a desired comfort level while minimizing the total energy consumed is an interesting optimization problem in Heating, ventilating and air conditioning (HVAC) system control. This paper proposes a localized control strategy that uses Computational Fluid Dynamics (CFD) simulation results and K-means clustering algorithm to optimally partition an air-conditioned room into different zones. The temperature and air velocity results from CFD simulation are combined in two ways: 1) based on the relationship indicated in predicted mean vote (PMV) formula; 2) based on the relationship extracted from ASHRAE RP-884 database using extreme learning machine (ELM). Localized control can then be effected in which each of the zones can be treated individually and an optimal control strategy can be developed based on the partitioning result. - Highlights: • The paper provides a visual guideline for thermal comfort analysis. • CFD, K-means, PMV and ELM are used to analyze thermal conditions within a room. • Localized control strategy could be developed based on our clustering results

  6. Antimatter Requirements and Energy Costs for Near-Term Propulsion Applications

    Science.gov (United States)

    Schmidt, G. R.; Gerrish, H. P.; Martin, J. J.; Smith, G. A.; Meyer, K. J.

    1999-01-01

    The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.

  7. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  8. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    International Nuclear Information System (INIS)

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.

    1991-01-01

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein

  9. Energy requirements for maintenance and growth of male saanen goat kids.

    Science.gov (United States)

    Medeiros, A N; Resende, K T; Teixeira, I A M A; Araújo, M J; Yáñez, E A; Ferreira, A C D

    2014-09-01

    The aim of study was to determine the energy requirements for maintenance and growth of forty-one Saanen, intact male kids with initial body weight (BW) of 5.12±0.19 kg. The baseline (BL) group consisted of eight kids averaging 5.46±0.18 kg BW. An intermediate group consisted of six kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of 12.9±0.29 kg. The remaining kids (n = 27) were randomly allocated into nine slaughter groups (blocks) of three animals distributed among three amounts of dry matter intake (DMI; ad libitum and restricted to 70% or 40% of ad libitum intake). Animals in a group were slaughtered when the ad libitum-treatment kid in the group reached 20 kg BW. In a digestibility trial, 21 kids (same animals of the comparative slaughter) were housed in metabolic cages and used in a completely randomized design to evaluate the energetic value of the diet at different feed intake levels. The net energy for maintenance (NEm) was 417 kJ/kg(0.75) of empty BW (EBW)/d, while the metabolizable energy for maintenance (MEm) was 657 kJ/kg(0.75) of EBW/d. The efficiency of ME use for NE maintenance (km) was 0.64. Body fat content varied from 59.91 to 92.02 g/kg of EBW while body energy content varied from 6.37 to 7.76 MJ/kg of EBW, respectively, for 5 and 20 kg of EBW. The net energy for growth (NEg) ranged from 7.4 to 9.0 MJ/kg of empty weight gain by day at 5 and 20 kg BW, respectively. This study indicated that the energy requirements in goats were lower than previously published requirements for growing dairy goats.

  10. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  11. A novel intelligent control of HVAC system in smart microgrid

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Hakimi

    2017-09-01

    Full Text Available Heating systems have played an important role in building energy and comfort management. This paper set forth a novel intelligent residential heating system controller that has smart grid functionality. In smart grid, demand response systems now have the ability to not only engage commercial and industrial customers, but also the individual residential customers. Additionally, the ability exists to have automated control systems which operate on an availability of renewable energy and welfare of customers. In this paper one possible implementation of an active controller will be examined. An active controller operates by responding to a combination of internal set points and external signal from local control entity. The optimization objective of the heating systems management was to minimize the cost of smart microgrid, minimize the size of smart microgrid units, minimize import energy from distribution grid and maximize reliability of smart microgrid. This means that, smart heating system and renewable energy can work well together and their individual benefits can be added together when used in combination. Simulation studies are used to demonstrate the capability on the proposed heating system controller on the planning of a smart microgrid system.

  12. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    Science.gov (United States)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  13. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    International Nuclear Information System (INIS)

    Pachauri, Shonali

    2004-01-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements

  14. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    Energy Technology Data Exchange (ETDEWEB)

    Pachauri, Shonali E-mail: shonali.pachauri@cepe.mavt.ethz.ch

    2004-10-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements.

  15. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  16. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-11-01

    The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3  Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2  m -3  order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Remote systems requirements of the high-yield lithium injection fusion energy converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-01-01

    Remote systems will be required in the high-yield lithium injection fusion energy converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings, and welds must be done remotely. Ideas for remote maintenance of laser-beam blast baffles, optics, and target material traps are described. Radioisotope sources, their distributions, and exposure rates at various points in the reactor vicinity are presented

  18. Remote systems requirements of the High Yield Lithium Injection Fusion Energy (HYLIFE) converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-10-01

    Remote systems will be required in the High Yield Lithium Injection Fusion Energy Converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings and welds must be done remotely. Ideas for remote maintenance of laser beam blast baffles, optics, and target material traps are described. Radioisotope sources and their distributions, and exposure rates at various points in the reactor vicinity are presented

  19. Energy simulation in building design

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1992-01-01

    Design decision support related to building energy consumption and / or indoor climate, should be based on an integral approach of environment, building, heating, ventilating and airconditioning (HVAC) system and occupants. The tools to achieve this are now available in the form of computer

  20. Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.; Grado, S.C.

    1992-01-01

    A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel