WorldWideScience

Sample records for huygens-fresnel model finally

  1. Huygens-Fresnel principle: Analyzing consistency at the photon level

    Science.gov (United States)

    Santos, Elkin A.; Castro, Ferney; Torres, Rafael

    2018-04-01

    Typically the use of the Rayleigh-Sommerfeld diffraction formula as a photon propagator is widely accepted due to the abundant experimental evidence that suggests that it works. However, a direct link between the propagation of the electromagnetic field in classical optics and the propagation of photons where the square of the probability amplitude describes the transverse probability of the photon detection is still an issue to be clarified. We develop a mathematical formulation for the photon propagation using the formalism of electromagnetic field quantization and the path-integral method, whose main feature is its similarity with a fractional Fourier transform (FRFT). Here we show that because of the close relation existing between the FRFT and the Fresnel diffraction integral, this propagator can be written as a Fresnel diffraction, which brings forward a discussion of the fundamental character of it at the photon level compared to the Huygens-Fresnel principle. Finally, we carry out an experiment of photon counting by a rectangular slit supporting the result that the diffraction phenomenon in the Fresnel approximation behaves as the actual classical limit.

  2. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    Science.gov (United States)

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  3. Extended Huygens-Fresnel principle and optical waves propagation in turbulence: discussion.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-07-01

    Extended Huygens-Fresnel principle (EHF) currently is the most common technique used in theoretical studies of the optical propagation in turbulence. A recent review paper [J. Opt. Soc. Am. A31, 2038 (2014)JOAOD60740-323210.1364/JOSAA.31.002038] cites several dozens of papers that are exclusively based on the EHF principle. We revisit the foundations of the EHF, and show that it is burdened by very restrictive assumptions that make it valid only under weak scintillation conditions. We compare the EHF to the less-restrictive Markov approximation and show that both theories deliver identical results for the second moment of the field, rendering the EHF essentially worthless. For the fourth moment of the field, the EHF principle is accurate under weak scintillation conditions, but is known to provide erroneous results for strong scintillation conditions. In addition, since the EHF does not obey the energy conservation principle, its results cannot be accurate for scintillations of partially coherent beam waves.

  4. Complementary Huygens Principle for Geometrical and Nongeometrical Optics

    Science.gov (United States)

    Luis, Alfredo

    2007-01-01

    We develop a fundamental principle depicting the generalized ray formulation of optics provided by the Wigner function. This principle is formally identical to the Huygens-Fresnel principle but in terms of opposite concepts, rays instead of waves, and incoherent superpositions instead of coherent ones. This ray picture naturally includes…

  5. Complementary Huygens principle for geometrical and nongeometrical optics

    International Nuclear Information System (INIS)

    Luis, Alfredo

    2007-01-01

    We develop a fundamental principle depicting the generalized ray formulation of optics provided by the Wigner function. This principle is formally identical to the Huygens-Fresnel principle but in terms of opposite concepts, rays instead of waves, and incoherent superpositions instead of coherent ones. This ray picture naturally includes diffraction and interference, and provides a geometrical picture of the degree of coherence

  6. Uma visualização do princípio de Huygens-Fresnel na obtenção de um padrão de difração

    OpenAIRE

    Barbosa,Valmar Carneiro; Breitschaft,Ana Maria Senra; Mendonça,José Paulo Rodrigues Furtado de; Moreira,Leonardo Marmo; Moraes,Pedro Claudio Guaranho de

    2012-01-01

    Utilizando a relação que fornece a irradiância devida à interferência de fontes pontuais, mostramos por meio de gráficos como o princípio de Huygens-Fresnel funciona quando é aplicado para determinar o padrão de difração de Fraunhofer gerado por uma onda plana que incide perpendicularmente em um anteparo que contém apenas uma fenda. Desta forma, somos capazes de identificar como se originam os picos principal e secundários de difração, o que não é entendido claramente a partir da obtenção ana...

  7. Huygens begins its final journey into the unknown

    Science.gov (United States)

    2004-12-01

    “Today’s release is another successful milestone in the Cassini/Huygens odyssey”, said Dr David Southwood, ESA’s director of science programmes. “This was an amicable separation after seven years of living together. Our thanks to our partners at NASA for the lift. Each spacecraft will now continue on its own but we expect they’ll keep in touch to complete this amazing mission. Now all our hopes and expectations are focused on getting the first in-situ data from a new world we’ve been dreaming of exploring for decades”. Final stage of a 7-year odyssey The Cassini/Huygens mission, jointly developed by NASA, ESA and the Italian space agency (ASI), began on 15 October 1997, when the composite spacecraft were launched from Cape Canaveral, Florida, atop a Titan 4B/Centaur vehicle. Together, the two probes weighed 5548 kg at launch and became the largest space mission ever sent to the outer planets. To gain sufficient velocity to reach Saturn, they had to conduct four gravity-assist manoeuvres by flying twice by Venus, once by the Earth and once by Jupiter. On 1 July Cassini/Huygens eventually became the first spacecraft to enter an orbit around Saturn. On 17 December, while on its third orbit around the ringed planet, the Cassini orbiter performed a manoeuvre to enter a controlled collision trajectory towards Titan. As planned, a fine tuning of the trajectory took place on 22 December to place Huygens on its nominal entry trajectrory. While Huygens will remain on this trajectory till it plunges into Titan’s atmosphere on 14 January, the orbiter will perform a deflection manoeuvre on 28 December to avoid crashing onto the moon. Today’s separation was achieved by the firing of pyrotechnic devices. Under the action of push-off springs, ramps and rollers, the probe was released at a relative velocity of about 0.3 m/s with a spin rate of 7 rpm. Telemetry data confirming the separation were collected by NASA’s Deep Space Network stations in Madrid, Spain

  8. Optical Coherence Tomography: Advanced Modeling

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, Lars; Yura, Harold T.

    2013-01-01

    - and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...... are discussed. Finally, the Wigner phase-space distribution function is derived in a closed-form solution, which may have applications in OCT....

  9. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    KAUST Repository

    Amin, M.

    2018-04-10

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell\\'s law and Fermat\\'s principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens\\' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  10. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    KAUST Repository

    Amin, M.; Siddiqui, O.; Farhat, Mohamed; Khelif, A.

    2018-01-01

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell's law and Fermat's principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  11. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    Science.gov (United States)

    Amin, M.; Siddiqui, O.; Farhat, M.; Khelif, A.

    2018-04-01

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell's law and Fermat's principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  12. Advanced modelling of optical coherence tomography systems

    International Nuclear Information System (INIS)

    Andersen, Peter E; Thrane, Lars; Yura, Harold T; Tycho, Andreas; Joergensen, Thomas M; Frosz, Michael H

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens-Fresnel principle valid both for the single and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. Moreover, for the first time the model is verified experimentally. From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical tissue phantom. Such algorithm holds promise for improving OCT imagery and to extend the possibility for functional imaging

  13. Second space Christmas for ESA: Huygens to begin its final journey to Titan/ Media activities.

    Science.gov (United States)

    2004-12-01

    the morning of 25 December at about 05:08 CET. Since the Cassini orbiter will have to achieve precise pointing for the release, there will be no real-time telemetry available until it turns back its main antenna toward Earth and beams the recorded data of the release. It will take over an hour (67 min) for the signals to reach us on Earth. The final data confirming the separation will be available later on Christmas Day. After release, Huygens will move away from Cassini at a speed of about 35 cm per second and, to keep on track, will spin on its axis, making about 7 revolutions a minute. Huygens will not communicate with Cassini for the whole period until after deployment of the main parachute following entry into Titan’s atmosphere. On 28 December Cassini will then manoeuvre off collision course to resume its mission and prepare itself to receive Huygens data, which it will record for later playback to Earth. Huygens will remain dormant until a few hours before its arrival at Titan on 14 January. The entry into the atmosphere is set for 11:15 CET. Huygens is planned to complete its descent in about two hours and 15 minutes, beaming back its science data to the Cassini orbiter for replay to Earth later in the afternoon. If Huygens, which is designed as an atmospheric probe rather than a lander, survives touchdown on the surface, it could deliver up to 2 hours of bonus data before the link with Cassini is lost. Direct radio signals from Huygens will reach Earth after 67 minutes of interplanetary travel at the speed of light. An experiment has been set up by radio scientists that will use an array of radio telescopes around the Pacific to attempt to detect a faint tone from Huygens. If successful, early detection is not expected before around 11:30 CET. The European Space Agency owns and manages the Huygens probe and is in charge of operations of the probe from its control centre in Darmstadt, Germany. NASA's Jet Propulsion Laboratory in Pasadena, California

  14. Titan from Cassini-Huygens

    CERN Document Server

    Brown, Robert H; Waite, J. Hunter

    2010-01-01

    This book reviews our current knowledge of Saturn's largest moon Titan featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses Titan’s origin and evolution, internal structure, surface geology, the atmosphere and ionosphere as well as magnetospheric interactions. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  15. Cassini-Huygens maneuver automation for navigation

    Science.gov (United States)

    Goodson, Troy; Attiyah, Amy; Buffington, Brent; Hahn, Yungsun; Pojman, Joan; Stavert, Bob; Strange, Nathan; Stumpf, Paul; Wagner, Sean; Wolff, Peter; hide

    2006-01-01

    Many times during the Cassini-Huygens mission to Saturn, propulsive maneuvers must be spaced so closely together that there isn't enough time or workforce to execute the maneuver-related software manually, one subsystem at a time. Automation is required. Automating the maneuver design process has involved close cooperation between teams. We present the contribution from the Navigation system. In scope, this includes trajectory propagation and search, generation of ephemerides, general tasks such as email notification and file transfer, and presentation materials. The software has been used to help understand maneuver optimization results, Huygens probe delivery statistics, and Saturn ring-plane crossing geometry. The Maneuver Automation Software (MAS), developed for the Cassini-Huygens program enables frequent maneuvers by handling mundane tasks such as creation of deliverable files, file delivery, generation and transmission of email announcements, generation of presentation material and other supporting documentation. By hand, these tasks took up hours, if not days, of work for each maneuver. Automated, these tasks may be completed in under an hour. During the cruise trajectory the spacing of maneuvers was such that development of a maneuver design could span about a month, involving several other processes in addition to that described, above. Often, about the last five days of this process covered the generation of a final design using an updated orbit-determination estimate. To support the tour trajectory, the orbit determination data cut-off of five days before the maneuver needed to be reduced to approximately one day and the whole maneuver development process needed to be reduced to less than a week..

  16. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator

    International Nuclear Information System (INIS)

    Chemisana, D.; Ibanez, M.; Rosell, J.I.

    2011-01-01

    Highlights: → A combined domed Fresnel lens - CPC PVT system is designed and characterized. → Electrical and thermal experiments have been performed. → CFD analysis has been used to determine thermal characteristic dimensionless numbers. - Abstract: An advanced solar unit is designed to match the needs of building integration and concentrating photovoltaic/thermal generation. The unit proposed accurately combines three elements: a domed linear Fresnel lens as primary concentrator, a compound parabolic reflector as secondary concentrator and a photovoltaic-thermal module. In this work the photovoltaic-thermal generator is built, analysed and characterized. Models for the electrical and thermal behaviour of the module are developed and validated experimentally. Applying a thermal resistances approach the results from both models are combined. Finally, efficiency electrical and thermal curves are derived from theoretical analysis showing good agreement with experimental measurements.

  17. Cassini-Huygens makes first close approach to Titan

    Science.gov (United States)

    2004-10-01

    Purple zaze hi-res Size hi-res: 88 kb Credits: NASA/JPL/Space Science Institute Purple haze around Titan This NASA/ESA/ASI Cassini-Huygens image of Titan was taken with the narrow-angle camera on 3 July 2004, from a distance of about 789 000 kilometres from Titan. The image scale is 4.7 kilometres per pixel. This image shows two thin haze layers. The outer haze layer is detached and appears to float high in the atmosphere. Because of its thinness, the high haze layer is best seen at the moon's limb. The image was taken using a spectral filter sensitive to wavelengths of ultraviolet light centred at 338 nanometres. The image has been falsely coloured, the globe of Titan retains the pale orange hue our eyes would usually see, but both the main atmospheric haze and the thin detached layer have been brightened and given a purple colour to enhance their visibility. At the time of the closest approach, which is scheduled for 18:44 CEST, the spacecraft will be travelling only 1200 kilometres above the surface of the moon, almost grazing the outer atmosphere, at a speed of six kilometres per second (21 800 kilometres per hour)! Confirmation that the fly-by was successful and that all the data were received will not take place until 03:30 CEST on 27 October. This fly-by not only allows important surface science to be performed, such as radar analysis at close quarters, but also it significantly changes the orbit of the spacecraft around Saturn. Currently Cassini-Huygens has an orbital period of four months, which will change to 48 days, thus setting the course for the next close Titan fly-by on 13 December 2004 and the Huygens probe release on 25 December. Several of the observations performed during this fly-by will provide important information for ESA’s Huygens team, who will be using the data gathered to double-check atmospheric models for entry and descent on 14 January 2005. The Huygens probe will need to perform reliably in some of the most challenging and remote

  18. Huygens is alive and well, in space

    Science.gov (United States)

    1997-10-01

    "It all went very smoothly, " said Jonh Dodsworth, ESOC's flight operations Director, "We had the option to continue checks on 26 October in case of difficulty, but we don't need to. That's good news". ESOC established connection with the Huygens probe at 10:09 hrs, Central European Time on 23 October, using NASA's link to Cassini. Thanks to ESOC's new flight operations system, engineers and scientists responsible for the mission could check quite quickly that Huygens is alive and well in all respects. ESA's project management team, and representatives of the contractors who built Huygens, were able to report that the engineering system and subsystems are all performing nominally. The principal investigators from Europe and the USA, in charge of the six instruments on Huygens, were also present for the tests. Each experiment was checked for functionality : * HASI to analyse Titan's atmosphere and weather - DWE to measure wind speeds during the descent - GCMS to analyse chemical compounds on Titan - ACP to break down aerosols for chemical analysis - DISR to produce images and spectra of Titan - SSP to determine the nature of Titan's surface. "Six experiments, six green lights", said Jean-Pierre Lebreton, ESA's project scientist. The project manager for Huygens is Hamid Hassan. In Darmstadt he too declared himself pleased with the check-out of the Huygens systems, subsystems and instruments. "We will now let Huygens go back to sleep, except for the planned six monthly checkouts" Hassan said. "The probe will remain in that condition for the seven-year journey to Saturn. But we now have every reason to expect a successful outcome to this unprecedented mission".

  19. Cassini-Huygens Science Highlights: Surprises in the Saturn System

    Science.gov (United States)

    Spilker, Linda; Altobelli, Nicolas; Edgington, Scott

    2014-05-01

    The Cassini-Huygens mission has greatly enhanced our understanding of the Saturn system. Fundamental discoveries have altered our views of Saturn, its retinue of icy moons including Titan, the dynamic rings, and the system's complex magnetosphere. Launched in 1997, the Cassini-Huygens spacecraft spent seven years traveling to Saturn, arriving in July 2004, roughly two years after the northern winter solstice. Cassini has orbited Saturn for 9.5 years, delivering the Huygens probe to its Titan landing in 2005, crossing northern equinox in August 2009, and completing its Prime and Equinox Missions. It is now three years into its 7-year Solstice mission, returning science in a previously unobserved seasonal phase between equinox and solstice. As it watches the approach of northern summer, long-dark regions throughout the system become sunlit, allowing Cassini's science instruments to probe as-yet unsolved mysteries. Key Cassini-Huygens discoveries include icy jets of material streaming from tiny Enceladus' south pole, lakes of liquid hydrocarbons and methane rain on giant Titan, three-dimensional structures in Saturn's rings, and curtain-like aurorae flickering over Saturn's poles. The Huygens probe sent back amazing images of Titan's surface, and made detailed measurements of the atmospheric composition, structure and winds. Key Cassini-Huygens science highlights will be presented. The Solstice Mission continues to provide new science. First, the Cassini spacecraft observes seasonally and temporally dependent processes on Saturn, Titan, Enceladus and other icy satellites, and within the rings and magnetosphere. Second, it addresses new questions that have arisen during the mission thus far, for example providing qualitatively new measurements of Enceladus and Titan that could not be accommodated in the earlier mission phases. Third, it will conduct a close-in mission at Saturn yielding fundamental knowledge about the interior of Saturn. This grand finale of the

  20. Cassini at Saturn Huygens results

    CERN Document Server

    Harland, David M

    2007-01-01

    "Cassini At Saturn - Huygens Results" will bring the story of the Cassini-Huygens mission and their joint exploration of the Saturnian system right up to date. Cassini is due to enter orbit around Saturn on the 1 July 2004 and the author will have 8 months of scientific data available for review, including the most spectacular images of Saturn, its rings and satellites ever obtained by a space mission. As the Cassini spacecraft approached its destination in spring 2004, the quality of the images already being returned by the spacecraft clearly demonstrate the spectacular nature of the close-range views that will be obtained. The book will contain a 16-page colour section, comprising a carefully chosen selection of the most stunning images to be released during the spacecraft's initial period of operation. The Huygens craft will be released by Cassini in December 2004 and is due to parachute through the clouds of Saturn's largest moon, Titan, in January 2005.

  1. A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)

    Science.gov (United States)

    Fulchignoni, M.; Aboudan, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Flamini, E.; Gaborit, V.; Ghafoor, N.; Hathi, B.; Harri, A.-M.; Lehto, A.; Lion Stoppato, P. F.; Patel, M. R.; Zarnecki, J. C.

    2004-08-01

    We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over 30 km to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher. The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy. The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base "Luigi Broglio" in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of 32 km and released to perform a parachuted descent lasting 53 min, to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan. We present here the results of this experiment discussing their relevance in

  2. The Fresnel Diffraction: A Story of Light and Darkness

    Science.gov (United States)

    Aime, C.; Aristidi, É.; Rabbia, Y.

    2013-03-01

    In a first part of the paper we give a simple introduction to the free space propagation of light at the level of a Master degree in Physics. The presentation promotes linear filtering aspects at the expense of fundamental physics. Following the Huygens-Fresnel approach, the propagation of the wave writes as a convolution relationship, the impulse response being a quadratic phase factor. We give the corresponding filter in the Fourier plane. As an illustration, we describe the propagation of wave with a spatial sinusoidal amplitude, introduce lenses as quadratic phase transmissions, discuss their Fourier transform properties and give some properties of Soret screens. Classical diffractions of rectangular diaphragms are also given here. In a second part of the paper, the presentation turns into the use of external occulters in coronagraphy for the detection of exoplanets and the study of the solar corona. Making use of Lommel series expansions, we obtain the analytical expression for the diffraction of a circular opaque screen, giving thereby the complete formalism for the Arago-Poisson spot. We include there shaped occulters. The paper ends up with a brief application to incoherent imaging in astronomy.

  3. Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan

    Science.gov (United States)

    Rodriguez, S.; Le, Mouelic S.; Sotin, Christophe; Clenet, H.; Clark, R.N.; Buratti, B.; Brown, R.H.; McCord, T.B.; Nicholson, P.D.; Baines, K.H.

    2006-01-01

    Titan is one of the primary scientific objectives of the NASA-ESA-ASI Cassini-Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4-5.2 ??m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini-Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 ??m images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titan's surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak. ?? 2006 Elsevier Ltd. All rights reserved.

  4. Scientific and synergistic lessons learned from the Cassini-Huygens mission

    Science.gov (United States)

    Coustenis, Athena

    The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [2-4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of the Cassini-Huygens mission results [1-8], which demonstrated the power of synergistic remote and in situ exploration. I will focus on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the other satellites, Enceladus in particular. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. Finally, I will describe the future

  5. Development of Powerhouse Using Fresnel lens

    Directory of Open Access Journals (Sweden)

    Al-Dohani Nawar Saif

    2018-01-01

    Full Text Available Solar energy is an alternative source of renewable energy. Sultanate of Oman government showed initiation on utilization of solar energy for domestic and industrial applications. Fresnel lens is one of the methods to collect maximum energy by gathering heat of the sun in the concentrated form (using solar collectors. Earlier research work discloses that Fresnel lens gave better result in terms of power output and produces lower heat loss as compared to linear –parabolic solar collectors. In this work, development of a proto Fresnel lens power house was made to generate electricity. The focused heat from Fresnel lens was used to heat the molten salt in a heat exchanger to produce the steam. The generated steam was used to rotate the steam engine coupled to a generator. In the current work, a maximum power of 30 W was produced. In addition, comparative study was carried out regarding solar salts and heat exchanger materials to understand the Fresnel powerhouse performance. Overall the present study gave valuable information regarding usage of Fresnel lens for electricity generation in Oman.

  6. Alternate model of Chladni figures for the circular homogenous thin plate case with open boundaries

    International Nuclear Information System (INIS)

    Trejo-Mandujano, H A; Mijares-Bernal, G; Ordoñez-Casanova, E G

    2015-01-01

    The wave equation is a direct but a complex approach to solve analytically for the Chladni figures, mainly because of the complications that non-smooth and open boundary conditions impose. In this paper, we present an alternate solution model based on the principle of Huygens-Fresnel and on the ideas of Bohr for the hydrogen atom. The proposed model has been implemented numerically and compared, with good agreement, to our own experimental results for the case of a thin homogenous circular plate with open boundaries

  7. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  8. Signal-enhancement reflective pulse oximeter with Fresnel lens

    Science.gov (United States)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  9. Optical modeling of Fresnel zoneplate microscopes

    International Nuclear Information System (INIS)

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-01-01

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  10. The Cassini-Huygens mission

    CERN Document Server

    The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system’s most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. Thi...

  11. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    Science.gov (United States)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  12. High resolution Fresnel zone plate laser alignment system

    International Nuclear Information System (INIS)

    Bressler, V.E.; Fischer, G.E.; Ruland, R.E.; Wang, T.

    1992-03-01

    The existing Fresnel zone plate laser alignment system is currently being extended and upgraded for the Final Focus Test Beam (FFTB). Previously, the resolution of this system has been several tens of micrometers. After the upgrade, the resolution will be a few micrometers. Details of the upgrade as well as simulation and experimental results will be presented

  13. Photometric analysis on concentration characteristics of Fresnel lenses; Fotometoriho wo mochiita Fresnel lens no shuko tokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Light concentration characteristics of Fresnel lenses were analyzed by using photometry. Light concentrating systems include a reflective system represented by a rotary parabolic mirror, and a refractive system represented by the Fresnel lens. The refractive system has a focused section broadened as much as the dispersion effect in association with refraction, and cannot derive a focus with high magnification as compared with the reflective system which can achieve it. The refractive system causes reduction in collected light intensity to about half on a parax, hence a large amount of loss. However, the system can be made available inexpensively due to mass production by using mold formation. Although it is difficult to utilize all of the light, 95% of the received radiation is concentrated in an opening area with a radius of about 4G (G is a radius of an image of solar light at a focus plane which passes through the center of a Fresnel lens). The average magnification of light concentration at this time in the opening area reaches 390 times. When a 3-D compound parabolic concentrator (CPC) with a radius of 4G is placed on a lens focus as a secondary light concentrator, the final magnification of light concentration shows a value of about 2700 times, whereas restoration of 39% is possible, as compared with a rotary parabolic mirror. The system has sufficient possibility to be used for high-temperature light concentration. 3 refs., 5 figs., 1 tab.

  14. Digital reconstruction of Young's fringes using Fresnel transformation

    Science.gov (United States)

    Kulenovic, Rudi; Song, Yaozu; Renninger, P.; Groll, Manfred

    1997-11-01

    This paper deals with the digital numerical reconstruction of Young's fringes from laser speckle photography by means of the Fresnel-transformation. The physical model of the optical reconstruction of a specklegram is a near-field Fresnel-diffraction phenomenon which can be mathematically described by the Fresnel-transformation. Therefore, the interference phenomena can be directly calculated by a microcomputer.If additional a CCD-camera is used for specklegram recording the measurement procedure and evaluation process can be completely carried out in a digital way. Compared with conventional laser speckle photography no holographic plates, no wet development process and no optical specklegram reconstruction are needed. These advantages reveal a wide future in scientific and engineering applications. The basic principle of the numerical reconstruction is described, the effects of experimental parameters of Young's fringes are analyzed and representative results are presented.

  15. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    Science.gov (United States)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  16. Titan after Cassini Huygens

    Science.gov (United States)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  17. Analysis of the HASI accelerometers data measured during the impact phase of the Huygens probe on the surface of Titan by means of a simulation with a finite-element model

    Science.gov (United States)

    Bettanini, C.; Zaccariotto, M.; Angrilli, F.

    2008-04-01

    data provide peculiar information related to the dynamic response of the whole Huygens probe when impacting the surface, whereas the SSP data were collected mainly by sensors located on a small penetrometer below the main probe dome. Therefore, although having a sensibly lower sampling frequency, HASI Accelerometer Subsystem (ACC) data complete the information of SSP data in the study of impact deceleration profiles, which can provide key information for the estimation of the mechanical parameters of the soil and get an insight of its consistency and composition. In the analysis of Huygens mission data some unexpected features were present in the ACC data sets, so a dedicated study was needed to investigate the presence of dynamic interferences during an acquisition and correct the impact signature. The developed method is based on dynamic analysis of the impact through a three-dimensional finite-element dynamic model of the Huygens probe and the results lead to a corrected interpretation of accelerometer readings and provided an improved description of key aspects of the planetary landing. Although some aspects of probe's state after impact need some further analysis, as for final resting attitude which is to date not completely agreed on, this study disclosed that the probe experienced a vertical decelerating action which is compatible with two possible scenarios: the first one implies the penetration in a soft substrate material followed by a lateral bounce out of the generated hole and the second one suggests the displacement of pebbles from the surface into the soil. Numerical elaboration of impact data calculated a 12 cm penetration into the surface, which may have been experienced either by the lower dome of the probe or from pebbles that were situated under the dome when contacting the planet. In either case after a few seconds of motion the Huygens probe finally rested above Titan's surface with a negligible penetration. Since HASI piezo-accelerometer design

  18. Highly concentrating Fresnel lenses

    International Nuclear Information System (INIS)

    Kritchman, E.M.; Friesem, A.A.; Yekutieli, G.

    1979-01-01

    A new type of concave Fresnel lens capable of concentrating solar radiation very near the ultimate concentration limit is considered. The differential equations that describe the lens are solved to provide computed solutions which are then checked by ray tracing techniques. The performance (efficiency and concentration) of the lens is investigated and compared to that of a flat Fresnel lens, showing that the new lens is preferable for concentrating solar radiation. (author)

  19. Design and construction of a Fresnel linear distiller

    International Nuclear Information System (INIS)

    Saettone, E.

    2014-01-01

    It was designed a Fresnel linear distiller based on optical calculations obtained from taking into account Lima's latitude value, Earth inclination angle and heat absorber cavity's dimensions. The 5.6 m 2 reflective surface concentrator of the distiller was constructed with 32 plane rectangular mirrors; the heat absorber cavity was made with a rectangular blackened aluminum tube 1 m long and installed 2.5 m over the plane of mirrors. The Fresnel linear distiller was installed at the University of Lima and experimental tests were performed during no cloudy summer days. There were measured ambient temperature, heat absorber cavity temperature, radiant flux and fresh water volume. From this, it was obtained a production of 0.89 liters/hour and 0.79 L/m 2 , and it was calculated a total performance of 34.5% in desalting sea water. Finally, it is presented a comparison between Fresnel linear distiller (FLD) and parabolic trough distiller (PTD) with similar dimensions and characteristics. It is obtained that the last one produced almost 32% more fresh water than the former, but at the same time, the FLD is almost 20% cheaper than PTD. However, water cost production with both distillers using is almost the same. (author)

  20. Fresnel diffraction at an opaque strip expressed by means of asymptotic representations of Fresnel integrals

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Petr; Horváth, P.

    2012-01-01

    Roč. 29, č. 6 (2012), s. 1071-1077 ISSN 1084-7529 R&D Projects: GA MŠk(CZ) 1M06002; GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : Fresnel integrals * Fresnel diffraction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.665, year: 2012

  1. Cassini-Huygens Nears Saturn Orbit Insertion

    Science.gov (United States)

    Showstack, Randy

    2004-06-01

    After nearly 7 years and a 3.5-billion-km, circuitous journey from Earth, the $3-billion Cassini-Huygens mission to Saturn and Titan-an international effort by NASA, the European Space Agency, and the Italian Space Agency-now is just days away from its critical Saturn orbit insertion. Scheduled for 30 June, this will begin the 4-years part of the mission to study the Saturnian system. At a 3 June briefing at NASA headquarters in Washington, D.C., Robert Mitchell, the Cassini program manager with the Jet Propulsion Laboratory in Pasadena, California, said that scientists involved with the program are feeling excited, relieved, and also a bit anxious as the Cassini-Huygens spacecraft draws near to the ringed planet and its system.

  2. The Huygens Doppler Wind Experiment: Ten Years Ago

    Science.gov (United States)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  3. Design of a segmented nonimaging Fresnel dome for nontracking solar collection

    Science.gov (United States)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-07-01

    The efficiency of sunlight collection systems is related to the optical element used as a collector. On this subject, the design of a nontracking solar collector that consists of a segmented nonimaging Fresnel dome is presented. It is formed by the conjunction of different zones for solar collection, where each one is a nonimaging Fresnel lens that collects a specific angular range (θ) of sunlight received in the northeast of Mexico, but the methodology presented can be easily extended to other geographic locations. The final design is a semistationary segmented collector with a 100-cm diameter and 50-cm focal length that needs a 180-deg rotation over the XY-plane in each equinox. The numerical simulations show that the nontracking segmented collector has a combined acceptance semiangle of θ=±105 deg with an average efficiency of over 67% from 9:00 to 18:00 h. The spatial and angular distributions of the sunlight collected are also included. This design has a collection area equal to that of a single nonimaging Fresnel lens with an acceptance semiangle of θ=±45 deg. These results are reproducible and provide valuable data for designing nontracking solar collectors based on nonimaging Fresnel lens.

  4. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has...

  5. A fast point-cloud computing method based on spatial symmetry of Fresnel field

    Science.gov (United States)

    Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui

    2017-10-01

    Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.

  6. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver

    International Nuclear Information System (INIS)

    Montes, María J.; Barbero, Rubén; Abbas, Rubén; Rovira, Antonio

    2016-01-01

    Highlights: • A thermal model for a single-tube Fresnel receiver has been developed. • A comparative analysis based on different design parameters, has been carried out. • A comparative analysis based on different working fluids, has been carried out. • The receiver thermal performance is characterized by energy and exergy efficiencies. - Abstract: Although most of recent commercial Solar Thermal Power Plants (STPP) installed worldwide are parabolic trough plants, it seems that Linear Fresnel Collectors (LFC) are becoming an attractive option to generate electricity from solar radiation. Contrary to parabolic trough collectors, the design of LFC receivers has many degrees of freedom, and two basic designs can be found in the literature: single-tube and multi-tube design. This article studies the single-tube design, for which a thermal model has been developed. This model has been thought to be accurate enough to characterize the heat transfer in a non-elementary geometry and flexible enough to support changes of the characteristic parameters in the receiver design. The thermal model proposed is based on a two-dimensional, steady-state energy balance, in the receiver cross section and along its length. One of the features of the model is the characterization of the convective and radiative heat transfer in the receiver cavity, as it is not an elementary geometry. Another feature is the possibility of studying the receiver performance with different working fluids, both single-phase or two-phase. At last, the receiver performance has been characterized by means of the energy and exergy efficiency. Both variables are important for a complete receiver thermal analysis, as will be shown in the paper. The model has been first applied to the comparative study of the thermal performance of LFC receivers based on the value of some parameters: selective coating emissivity in the tube and inlet fluid thermal properties, for the case of using water/steam. As a second

  7. On the Fresnel sine integral and the convolution

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2003-01-01

    Full Text Available The Fresnel sine integral S(x, the Fresnel cosine integral C(x, and the associated functions S+(x, S−(x, C+(x, and C−(x are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel sine integral and its associated functions with x+r, xr are evaluated.

  8. Bragg-Fresnel optics: New field of applications

    Energy Technology Data Exchange (ETDEWEB)

    Snigirev, A. [ESRF, Grenoble (France)

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  9. Fluorescent sensing with Fresnel microlenses for optofluidic systems

    Science.gov (United States)

    Siudzińska, Anna; Miszczuk, Andrzej; Marczak, Jacek; Komorowska, Katarzyna

    2017-05-01

    The concept of fluorescent sensing in a microchannel equipped with focusing light Fresnel lenses has been demonstrated. The concept employs a line or array of Fresnel lenses generating a line or array of focused light spots within a microfluidic channel, to increase the sensitivity of fluorescent signal detection in the system. We have presented efficient methods of master mold fabrication based on the lithography method and focused ion beam milling. The flexible microchannel was fabricated by an imprint process with new thiolene-epoxy resin with a good ability to replicate even submicron-size features. For final imprinted lenses, the measured background to peak signal level shows more than nine times the increase in brightness at the center of the focal spot for the green part of the spectrum (532 nm). The effectiveness of the microlenses in fluorescent-marked Escherichia coli bacteria was confirmed in a basic fluoroscope experiment, showing the increase of the sensitivity of the detection by the order of magnitude.

  10. Adaption of optical Fresnel transform to optical Wigner transform

    International Nuclear Information System (INIS)

    Lv Cuihong; Fan Hongyi

    2010-01-01

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  11. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    Science.gov (United States)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  12. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Mathioulakis, Emmanouil; Tzivanidis, Christos; Belessiotis, Vassilis; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • A linear Fresnel solar collector with flat plate receiver is investigated. • The collector is investigated experimentally in energetic and exergetic terms. • The developed numerical model is validated with the experimental results. • The operation with thermal oil is also examined with the developed model. • The final results prove satisfying performance for medium temperature levels. - Abstract: In this study a linear Fresnel solar collector with flat plate receiver is investigated experimentally and numerically with Solidworks Flow Simulation. The developed model combines optical, thermal and flow analysis; something innovative and demanding which leads to accurate results. The main objective of this study is to determine the thermal, the optical and the exergetic performance of this collector in various operating conditions. For these reasons, the developed model is validated with the respective experimental data and after this step, the solar collector model is examined parametrically for various fluid temperature levels and solar incident angles. The use of thermal oil is also analyzed with the simulation tool in order to examine the collector performance in medium temperature levels. The experiments are performed with water as working fluid and for low temperature levels up to 100 °C. The final results proved that this solar collector is able to produce about 8.5 kW useful heat in summer, 5.3 kW in spring and 2.9 kW in winter. Moreover, the operation of this collector with thermal oil can lead to satisfying results up to 250 °C.

  13. Stretchable Binary Fresnel Lens for Focus Tuning

    NARCIS (Netherlands)

    Li, X.; Wei, L.; Poelma, R.H.; Vollebregt, S.; Wei, J.; Urbach, Paul; Sarro, P.M.; Zhang, G.Q.

    2016-01-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material

  14. Lenses and waves Christiaan Huygens and the mathematical science of optics in the seventeenth century

    CERN Document Server

    Dijksterhuis, Fokko Jan

    2004-01-01

    In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of natural knowledge. This book discusses the development of Huygens' wave theory, reconstructing the winding road that eventually led to Traité de la Lumière. For the first time, the full range of manuscript sources is taken into account. In addition, the development of Huygens' thinking on the nature of light is put in t

  15. Astrophysical targets of the Fresnel diffractive imager

    Science.gov (United States)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with

  16. Huygens file service and storage architecture

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Stabell-Kulo, Tage; Stabell-Kulo, Tage

    1993-01-01

    The Huygens file server is a high-performance file server which is able to deliver multi-media data in a timely manner while also providing clients with ordinary “Unix” like file I/O. The file server integrates client machines, file servers and tertiary storage servers in the same storage

  17. Huygens File Service and Storage Architecture

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Stabell-Kulo, Tage; Stabell-Kulo, Tage

    1993-01-01

    The Huygens file server is a high-performance file server which is able to deliver multi-media data in a timely manner while also providing clients with ordinary “Unix” like file I/O. The file server integrates client machines, file servers and tertiary storage servers in the same storage

  18. Estimation of Radiation Limit from a Huygens' Box under Non-Free-Space Conditions

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Bonev, Ivan Bonev

    2013-01-01

    The recently studied Huygens' box method has difficulties when radiation of an electronic module is to be determined under non-free-space conditions, i.e. with an enclosure. We propose an estimate on radiation limit under such conditions based only on the Huygens' box data from free...

  19. Development of Fresnel lens for improvement of rear visibility; Shikai kojo Fresnel lens no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, K; Sanada, C; Tsukino, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    Fresnel lenses have been widely used to increase the visual field around vehicles for drivers. However, internal reflection in these lenses has been an obstacle in producing dear images. This internal glow is generated by incident light from an unexpected direction reflecting on the non-lens surface or radiating from the non-lens surface of the Fresnel lens. The cause of internal glow has been made dear combining louver film with the lens. The newly developed technology removes obstacles in producing dear images by reducing internal glow. 7 figs.

  20. Color corrected Fresnel lens for solar concentration

    International Nuclear Information System (INIS)

    Kritchman, E.M.

    1979-01-01

    A new linear convex Fresnel lens with its groove side down is described. The design philosophy is similar to the highly concentrating two focal Fresnel lens but including a correction for chromatic aberration. A solar concentration ratio as high as 80 is achieved. For wide acceptance angles the concentration nears the theoretical maximum. (author)

  1. Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens

    International Nuclear Information System (INIS)

    Xie, W.T.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Research highlights: → We studied a point focus Fresnel solar collector using different cavity receivers. → The collector heat removal factors are derived to find the optimal cavity shape. → Numerical and experimental analysis shows that the conical cavity is optimum. -- Abstract: A high concentration imaging Fresnel solar collector provided with different cavity receivers was developed and its behavior was investigated. Round copper pipes winded into different spring shapes were used as receiver by placing in the cylindrical cavity to absorb concentrated solar energy and transfer it to a heat transfer fluid (HTF). The collector efficiency factor and collector heat removal factor were derived for the cavity receivers to find out heat transfer mechanism and to propose an effective way for evaluating the performance of Fresnel solar collector and determining the optimal cavity structure. The problem of Fresnel solar collector with synthetic heat transfer oil flow was simulated and analyzed to investigate heat loss from different cavity receivers. Solar irradiation as well as convection and heat transfer in the circulating fluid and between the internal surfaces of the cavity and the environment are considered in the model. The temperature distribution over its area as well as the collector thermal efficiency at nominal flow rate was used in order to validate the simulation results. It was found that the simulated temperature distribution during operation and the average collector efficiency are in good agreement with the experimental data. Finally, the optimal shape of solar cavity receiver, as well as its thermal performance, are deeply analyzed and discussed.

  2. On the Huygens principle for bianisotropic mediums with symmetric permittivity and permeability dyadics

    Energy Technology Data Exchange (ETDEWEB)

    Faryad, Muhammad, E-mail: muhammad.faryad@lums.edu.pk [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-02-19

    Mathematical statements of the Huygens principle relate the electric and magnetic field phasors at an arbitrary location in a source-free region enclosed by a surface to the tangential components of the electric and magnetic field phasors over that surface, via the dyadic Green functions applicable to the linear homogeneous medium occupying that region. We have mathematically formulated the Huygens principle for the electric and magnetic field phasors when the permittivity and permeability dyadics of the medium are symmetric, the symmetric parts of the two magnetoelectric dyadics of the medium are negative of each other, and both magnetoelectric dyadics also contain anti-symmetric terms. We have also formulated the Huygens principle for the electric (resp. magnetic) field phasor in a medium whose permittivity (resp. permeability) is scalar, the permeability (resp. permittivity) is symmetric, the symmetric parts of the two magnetoelectric dyadics reduce to dissimilar scalars, and anti-symmetric parts of the two magnetoelectric dyadics are identical. - Highlights: • The Huygens principle was formulated for bianistropic mediums when the permittivity and permeability dyadics of the medium are symmetric. • The formulation covers isotropic, biisotropic, and gyrotropic-like uniaxial mediums for which the Huygens principle is already available. • The formulation also covers new mediums like biaxial, chiro-omega, pseudo chiral, gyrotropic-like biaxial, and Lorentz reciprocal mediums.

  3. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  4. Huygens landing site to be named after Hubert Curien

    Science.gov (United States)

    2007-03-01

    The naming ceremony for the Huygens landing site, which will be known as the "Hubert Curien Memorial Station", will be held at ESA’s Headquarters on 14 March, in the presence of ESA Council delegates and of Professor Curien’s wife, Mrs Perrine Curien, and one of their sons. Media interested in attending are invited to submit the reply form below. Huygens' landing on Saturn’s largest moon in January 2005 represented one of the greatest successes achieved by humankind in the history of space exploration. The part played by ESA, in cooperation with NASA and the Italian Space Agency (ASI), was made possible thanks to the commitment of a man who, for several decades, worked to promote and strengthen the role of scientific research in his home country - France - and in Europe. Among his numerous responsibilities, Hubert Curien was French Minister of Research and Space under four Prime Ministers. As Chairman of the ESA Council from 1981 to 1984, Professor Curien played a crucial part in setting up ESA's former long-term science programme, "Horizon 2000", which included the Huygens mission among its projects. Professor Roger Bonnet, current President of COSPAR, and former ESA Director of Science (1983-2001), commented: "Curien’s diplomatic skills were hugely influential in bringing about the birth of European space science. In 1985, his support was pivotal when the European ministers had to decide how to build a solid space science programme and ensure that it would be financially sustainable in the long term." "ESA's present science programme, Cosmic Vision, draws on the heritage left by Hubert Curien", said Professor David Southwood, ESA's current Director of Science. "He encouraged cooperation between nations in the belief that space research is fundamental to the progress and welfare of a knowledge-based society like ours. He also promoted the concept of long-term planning", he continued. "It would seem almost inconceivable today to initiate any space venture

  5. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Brotherton D.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is reported. The Fresnel "drag" in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the consequence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  6. Low-reflection beam refractions by ultrathin Huygens metasurface

    International Nuclear Information System (INIS)

    Jia, Sheng Li; Wan, Xiang; Fu, Xiao Jian; Zhao, Yong Jiu; Cui, Tie Jun

    2015-01-01

    We propose a Huygens source unit cell to develop an ultrathin low-reflection metasurface, which could provide extreme controls of phases of the transmitted waves. Both electric and magnetic currents are supported by the proposed unit cell, thus leading to highly efficient and full controls of phases. The coupling between electric and magnetic responses is negligible, which will significantly reduce the difficulty of design. Since the unit cell of metasurface is printed on two bonded boards, the fabrication process is simplified and the thickness of metasurface is reduced. Based on the proposed unit cell, a beam-refracting metasurface with low-reflection is designed and manufactured. Both near-field and far-field characteristics of the beam-refracting metasurface are investigated by simulations and measurements, which indicate that the proposed Huygens metasurface performs well in controlling electromagnetic waves

  7. Titan's surface spectra at the Huygens landing site and Shangri-La

    Science.gov (United States)

    Rannou, P.; Toledo, D.; Lavvas, P.; D'Aversa, E.; Moriconi, M. L.; Adriani, A.; Le Mouélic, S.; Sotin, C.; Brown, R.

    2016-05-01

    Titan is an icy satellite of Saturn with a dense atmosphere and covered by a global photochemical organic haze. Ground based observations and the Huygens descent probe allowed to retrieve the main spectral signature of the water ice (Griffith, C.A. et al. [2003]. Science 300(5619), 628-630; Coustenis, A. et al. [2005]. Icarus 177, 89-105) at the surface, possibly covered by a layer of sedimented organic material (Tomasko, M.G. et al. [2005]. Nature 438(7069), 765-778). However, the spectrum of the surface is not yet understood. In this study, we find that the surface reflectivity at the Huygens Landing Site (HLS) is well modeled by a layer of water ice grains overlaid by a moist layer of weakly compacted photochemical aggregated aerosols. Moist soils have spectra shifted toward short wavelengths relatively to spectra of dry soils. Cassini observations of Shangri-La region from orbit also show a very dark surface with a reflectivity peak shifted toward short wavelengths in respect to the reflectivity peak of bright surfaces, revealing a dichotomy between terrains based to their spectra in visible.

  8. Huygens' Principle, Dirac Operators, and Rational Solutions of the AKNS Hierarchy

    International Nuclear Information System (INIS)

    Chalub, Fabio A. C. C.; Zubelli, Jorge P.

    2005-01-01

    We prove that rational solutions of the AKNS hierarchy of the form q=σ/τ and r=ρ/τ, where (σ,τ,ρ) are certain Schur functions, naturally yield Dirac operators of strict Huygens' type, i.e., the support of their fundamental solutions is the surface of the light-cone. This strengthens the connection between the theory of completely integrable systems and Huygens' principle by extending to the Dirac operators and the rational solutions of the AKNS hierarchy a classical result of Lagnese and Stellmacher concerning perturbations of wave operators

  9. Terahertz wave tomographic imaging with a Fresnel lens

    Institute of Scientific and Technical Information of China (English)

    S. Wang; X.-C. Zhang

    2003-01-01

    We demonstrate three-dimensional tomographic imaging using a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.

  10. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re- ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse- quence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  11. Lenses and Waves - Christiaan Huygens and the Mathematical Science of Optics in the Seventeenth Century

    NARCIS (Netherlands)

    Dijksterhuis, Fokko J.

    2004-01-01

    In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of nature knowledge.

  12. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    Science.gov (United States)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  13. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  14. Water-core Fresnel fiber

    NARCIS (Netherlands)

    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N.

    2005-01-01

    A water core photonic crystal Fresnel fiber exploiting a hole distribution on zone plates of a cylindrical waveguide was developed and characterized. This fiber has similar guiding properties as the pristine air-hole guiding fiber although a large loss edge ~900nm is observed indicating that the

  15. Titan en Christiaan. Huygens in werk en leven

    NARCIS (Netherlands)

    Dijksterhuis, Fokko J.

    2000-01-01

    In three respects Christiaan Huygens (1629-1695) poses a biographical problem. Unlike contemporaries he hardly ever reflected upon what he thought he was doing; his versatility makes it hard to gain a balanced view of what he was doing; his personality seems almost absent from his writings. In the

  16. The fresnel interferometric imager

    Science.gov (United States)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel

  17. Design and thermal performances of a scalable linear Fresnel reflector solar system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2017-01-01

    Highlights: • A scalable linear Fresnel reflector which can supply different temperatures is proposed. • Inclination design of the mechanical structure is used to reduce the end losses. • The maximum thermal efficiency of 64% is achieved in Guangzhou. - Abstract: This paper proposes a scalable linear Fresnel reflector (SLFR) solar system. The optical mirror field which contains an array of linear plat mirrors closed to each other is designed to eliminate the inter-low shading and blocking. Scalable mechanical mirror support which can place different number of mirrors is designed to supply different temperatures. The mechanical structure can be inclined to reduce the end losses. Finally, the thermal efficiency of the SLFR with two stage mirrors is tested. After adjustment, the maximum thermal efficiency of 64% is obtained and the mean thermal efficiency is higher than that before adjustment. The results indicate that the end losses have been reduced effectively by the inclination design and excellent thermal performance can be obtained by the SLFR after adjustment.

  18. Solar-pumped 80 W laser irradiated by a Fresnel lens.

    Science.gov (United States)

    Ohkubo, Tomomasa; Yabe, Takashi; Yoshida, Kunio; Uchida, Shigeaki; Funatsu, Takayuki; Bagheri, Behgol; Oishi, Takehiro; Daito, Kazuya; Ishioka, Manabu; Nakayama, Yuichirou; Yasunaga, Norihito; Kido, Kouichirou; Sato, Yuji; Baasandash, Choijil; Kato, Kiyoshi; Yanagitani, Takagimi; Okamoto, Yoshiaki

    2009-01-15

    A solar-pumped 100 W class laser that features high efficiency and low cost owing to the use of a Fresnel lens and a chromium codoped neodymium YAG ceramic laser medium was developed. A laser output of about 80 W was achieved with combination of a 4 m(2) Fresnel lens and a pumping cavity as a secondary power concentrator. This output corresponds to 4.3% of conversion efficiency from solar power into laser, and the maximum output from a unit area of Fresnel lens was 20 W/m(2), which is 2.8 times larger than previous results with mirror-type concentrator.

  19. Light deflection in gadolinium molybdate ferroelastic crystals

    International Nuclear Information System (INIS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-01-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle α i on the sample at room temperature. The A and B deflected beams do not cross each other during the α i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction. (author)

  20. Effects of Strong Local Sporadic E on ELF Propagation.

    Science.gov (United States)

    1978-08-15

    Huygens diffraction model (e.g., Marcuse , 1972). The model is similar to that used by Crombie. Unlike Crombie’s work however , the Fresnel approximation...40. Marcuse , D., “Light transmission optics ,” Van Nostrand Reinhold Co., New York , 1972. Papper t , R. A. & Moler , W. F., “A theoretica’ study of...ATTN Donald Dubbert O1 CY ATTN Herbert Rend University of IllinoisDepartment of Electrical Engineering Develco Urbana , IL 61803 530 Logue Avenue O2CY

  1. O tratado sobre a luz de Huygens: comentários

    Directory of Open Access Journals (Sweden)

    Sonia Krapas

    2011-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-7941.2011v28n1p123 Huygens é conhecido no ensino introdutório de Física por dar conta da refração segundo um modelo ondulatório. Livros didáticos lhe rendem homenagens atribuindo seu nome a um princípio, mas em sua obra máxima, Tratado sobre a luz, é possível se ver muito mais: sua inventividade na defesa de um modelo ondulatório para a luz como alternativo ao modelo corpuscular. Neste trabalho, tenta-se evidenciar o raciocínio de Huygens, mostrando que, apesar de ter sido publicada há mais de trezentos anos, a obra está escrita numa linguagem relativamente acessível.

  2. Experimental characterization of Fresnel-Köhler concentrators

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.

    2012-01-01

    Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.

  3. Design of a nonimaging Fresnel lens for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Akisawa, Atushi; Kashiwagi, Takao [Tokyo University of Agriculture and Technology (Japan). Dept. of Mechanical Systems Engineering; Suzuki, Akio [UNESCO, Paris (France)

    1999-04-01

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens is intended for use in evacuated tube type solar concentrators, generating mid-temperature heat to drive sorption cycles, or provide industrial process heat. It can also be used along with a secondary concentrator in photovoltaic applications. (author)

  4. From Mie to Fresnel through effective medium approximation with multipole contributions

    International Nuclear Information System (INIS)

    Malasi, Abhinav; Kalyanaraman, Ramki; Garcia, Hernando

    2014-01-01

    The Mie theory gives the exact solution to scattering from spherical particles while the Fresnel theory provides the solution to optical behavior of multilayer thin film structures. Often, the bridge between the two theories to explain the behavior of materials such as nanoparticles in a host dielectric matrix, is done by effective medium approximation (EMA) models which exclusively rely on the dipolar response of the scattering objects. Here, we present a way to capture multipole effects using EMA. The effective complex dielectric function of the composite is derived using the Clausius–Mossotti relation and the multipole coefficients of the approximate Mie theory. The optical density (OD) of the dielectric slab is then calculated using the Fresnel approach. We have applied the resulting equation to predict the particle size dependent dipole and quadrupole behavior for spherical Ag nanoparticles embedded in glass matrix. This dielectric function contains the relevant properties of EMA and at the same time predicts the multipole contributions present in the single particle Mie model. (papers)

  5. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  6. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    Science.gov (United States)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  7. Improvements on Fresnel arrays for high contrast imaging

    Science.gov (United States)

    Wilhem, Roux; Laurent, Koechlin

    2018-03-01

    The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman- α line ( λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.

  8. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  9. Progress In Fresnel-Köhler Concentrators

    Science.gov (United States)

    Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan

    2011-12-01

    The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).

  10. High convergence efficiency design of flat Fresnel lens with large aperture

    Science.gov (United States)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  11. Optimum design of nonimaging Fresnel lens; Hiketsuzo fureneru renzu no saiteki sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Komai, K.; Akisawa, A.; Kashiwagi, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan); Suzuki, A. [Unesco, Paris (France). Associations in Japan

    1999-11-25

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens can used as concentrator in photovoltaic and solar thermal applications. (author)

  12. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    Science.gov (United States)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  13. Daylighting System Based on Novel Design of Linear Fresnel lens

    Directory of Open Access Journals (Sweden)

    Thanh Tuan Pham

    2017-10-01

    Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

  14. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    Science.gov (United States)

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  15. LED Uniform Illumination Using Double Linear Fresnel Lenses for Energy Saving

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-12-01

    Full Text Available We present a linear Fresnel lens design for light-emitting diode (LED uniform illumination applications. The LED source is an array of LEDs. An array of collimating lens is applied to collimate output from the LED array. Two linear Fresnel lenses are used to redistribute the collimated beam along two dimensions in the illumination area. Collimating lens and linear Fresnel lens surfaces are calculated by geometrical optics and nonimaging optics. The collimated beam output from the collimating lens array is divided into many fragments. Each fragment is refracted by a segment of Fresnel lens and distributed over the illumination area, so that the total beam can be distributed to the illumination target uniformly. The simulation results show that this design has a compact structure, high optical efficiency of 82% and good uniformity of 76.9%. Some consideration of the energy savings and optical performance are discussed by comparison with other typical light sources. The results show that our proposed LED lighting system can reduce energy consumption five-times in comparison to using a conventional fluorescent lamp. Our research is a strong candidate for low cost, energy savings for indoor and outdoor lighting applications.

  16. Fresnel's phase observation by means of the pinhole Young's experiment

    International Nuclear Information System (INIS)

    Medina, F.F.; Matteucci, G.

    2000-04-01

    Using the conventional Young's experiment with two pinholes, we observe the shift effect of the Fresnel's phase on the interference patterns, by measuring its intensity on the optical axis. It allows us to propose a criterion for distinguishing between Fraunhofer and Fresnel diffraction. Indeed, in the Fraunhofer domain the Young's patterns will be centered on the optical axis. As a consequence, only constructive interference will occur at this point. But in the Fresnel domain, the Young's patterns will be laterally shifted in such a way that constructive and destructive interference will occur alternatively on the optical axis, and the intensity of the diffraction pattern at this point will oscillate. Extended diffracting apertures can be analyzed as ensembles of Young's pairs of wavelet sources. From this point of view, the intensity distribution they produce on the detector plane results from the superposition of all their interference patterns. (author)

  17. Profiling Saturn's rings by radio occultation

    International Nuclear Information System (INIS)

    Marouf, E.A.; Tyler, G.L.; Rosen, P.A.

    1986-01-01

    The development of reconstruction algorithms that correct for diffraction effects in radio occultation measurements is described. The reciprocal Fresnel transform relationship between the complex amplitude of the observed coherent signal and the complex microwave transmittance of the rings is derived using the Huygens-Fresnel formulation of the diffraction problem. The effects of the finite data segment width, the uncertainties in the Fresnel scale, systematic phase errors in the kernel of the inverse transform, reference oscillator instabilities, and random noise measurements on the resolution of the reconstructed transmittance are analyzed. Examples of reconstructed opacity profiles for some regions of Saturn's rings derived by applying the reconstruction theory to Voyager 1 at Saturn data are presented. 35 references

  18. Quantum correspondence of the mixed Lenz-Fresnel transform in classical optics

    International Nuclear Information System (INIS)

    Fan Hongyi; Tang Xubing; Lu Hailiang

    2006-01-01

    We find the quantum correspondence (a four-parameter squeezing operator U(r,s,μ)) of the mixed optical Lenz-Fresnel transform, i.e. that the kernel of Lenz-Fresnel transform is just the matrix element of U(r,s,μ) in the entangled states. The group multiplication rule of U(r,s,μ) is proved by virtue of its coherent entangled state representation which is essential to this correspondence

  19. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  20. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Ma, Xinglong

    2016-01-01

    Highlights: • A common design method of a cycloidal transmissive Fresnel solar concentrator was presented. • The gallium arsenide high concentrated solar was used as the receiver. • High efficiency of electric generating could be achieved at noon. • Fresnel solar concentrator was studied and compared in hazy weather and clear weather. - Abstract: A design method of a cycloidal transmissive Fresnel solar concentrator which can provide a certain width focal line was presented in this study. Based on the optical principle of refraction, the dimensions of each wedge-shaped element of Fresnel lens are calculated. An optical simulation has been done to obtain the optical efficiency of the concentrator for different tracking error and axial incidence angle. It has been found that about 80% of the incident sunlight can still be gathered by the absorber when the tracking error is within 0.7°. When the axial angle of incidence is within 10°, it almost has no influence to the receiving rate. The concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator has been designed in this paper. Take the gallium arsenide high concentrated battery as the receiver, experimental research about cylindrical Fresnel concentrating photovoltaic/thermal system is undertaken in the real sky. Main parameters are tested such as the temperature distribution on receiver, electric energy and thermal energy outputs of concentrating photovoltaic/thermal system, the efficiency of multipurpose utilization of electric and heat, and so on. The test results in clear weather show that maximum electric generating efficiency is about 18% at noon, the maximum heat receiving rate of cooling water is about 45%. At noon time (11:00–13:00), the total efficiency of thermal and electricity can reach more than 55%. Performance of this concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator is studied and compared in two types typical weather, hazy

  1. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  2. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  3. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    Science.gov (United States)

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  4. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    Energy Technology Data Exchange (ETDEWEB)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen [WISFIR Lab., Physics of Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Riyanto, Erwin [PT Freeport Indonesia, Tembagapura, Indonesia herlansetiadi@yahoo.com (Indonesia)

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  5. Riddles of the Sphinx: Titan Science Questions at the End of Cassini-Huygens

    Science.gov (United States)

    Nixon, C. A.; Achterberg, R. K.; Buch, A.; Clark, R. N.; Coll, P.; Flasar, F. M.; Hayes, A. G.; Iess, L.; Lorenz, R. D.; Lopes, R.; Mastroguiseppe, M.; Raulin, F.; Smith, T.; Solomidou, A.; Sotin, C.; Strobel, D. F.; Turtle, E. P.; Vuitton, V.; West, R. A.; Yelle, R.

    2017-02-01

    The paper will describe the outstanding high-level questions for Titan science that are remaining at the end of the Cassini-Huygens mission, compiled by a cross-section of scientists from multiple instrument teams.

  6. Perceptions of Colours by Different Eyes

    NARCIS (Netherlands)

    Dijksterhuis, Fokko J.; Bushart, Magdalena; Steinle, Friedrich

    2015-01-01

    The historiography of early modern optics is dominated by a canon of names that stretches from Kepler and Descartes, via Huygens and Newton, to Euler, Young and Fresnel. As a result a long line of alternative approaches to light and vision have been relatively neglected. This goes in particular for

  7. Flux-redistribution in the focal region of a planar Fresnel ring mirror

    Energy Technology Data Exchange (ETDEWEB)

    Sastroamidjojo, M.S.A. (Gadjah Mada Univ., Indonesia); Lubis, W.

    1979-01-01

    The results of an investigation of flux redistribution at the focal region of a planar Fresnel ring mirror are reported. A parabolic mirror of large aperture was used to provide a parallel beam of light which was directed at the Fresnel test object. A cotton thread grid was used as a mapping aid to provide a 25 x 25 matrix of spatial data points. (SPH)

  8. Applications of the fresnel diffraction of neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Opat, G.I.

    1978-01-01

    The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with very small specimens; focussing of long wavelength neutron beams using zone plates

  9. Applications of the Fresnel diffraction of neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Opat, G.I.

    1978-01-01

    The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with very small specimens; focussing of long wavelength neutron beams using zone plates

  10. A space Fresnel imager concept assessment study led by CNES for astrophysical applications

    Science.gov (United States)

    Hinglais, Emmanuel

    2011-06-01

    In 2009, the Centre National d'Etudes Spatiales (CNES) carried out an assessment study on a "Fresnel telescope" concept based on a two-spacecraftformation flying configuration. This concept uses a binary Fresnel zone plate, and the principle of diffraction focusing, which allows high resolution optical imaging for astrophysics. In addition to CNES, the Laboratoire d'Astrophysique de Toulouse Tarbes (LATT) was deeply involved at two levels: through Research & Technology (R&T) studies to simulate and validate on a test bench the Fresnel concept performance, and through active participation in the CNES team for the optical aspects and to define the astrophysical fields of Fresnel-based space missions. The study was conducted within the technical limitations that resulted from a compromise between the R&T state of the art and the potential scientific domains of interest. The main technical limitations are linked to the size of the primary Fresnel array and to its usable spectral bandwidth. In this framework, the study covers ambitious architectures, correlating the technology readiness of the main critical components with the time-scale and programmatic horizons. The possible scientific topics arise from this range of missions. In this paper, I present a mission launched by a Soyuz, dedicated to astrophysics in the Ultra Violet (UV) band: 120 to 300 nm using a 4-m Fresnel array. It could be competitive in the next fifteen years, whereas a 10-m aperture mission in different bands; UV, visible or Infra Red (IR) (up to 6 μm) could be achievable in the future. Larger missions, using a primary array larger than 20 m, request technologies not yet available but that will probably be based on new inflatable structures with membranes, as already tested in the USA for other ends.

  11. Weyl Ordering Operator Formula Derived by IWOP Technique and Its Application for Fresnel Operator

    International Nuclear Information System (INIS)

    Fan Hongyi; Hu Liyun

    2009-01-01

    Based on the technique of integration within an ordered product of operators, the Weyl ordering operator formula is derived and the Fresnel operators' Weyl ordering is also obtained, which together with the Weyl transformation can immediately lead to Fresnel transformation kernel in classical optics. (general)

  12. Huygens' principle, the free Schrodinger particle and the quantum anti-centrifugal force

    DEFF Research Database (Denmark)

    Cirone, M.A.; Dahl, Jens Peder; Fedorov, M.

    2002-01-01

    Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrodinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force-the quantum anti-centrifugal force-towards its centre. We connect these two...

  13. Theoretical and Experimental Study of Optical Coherence Tomography (OCT) Signals Using an Analytical Transport Model

    International Nuclear Information System (INIS)

    Vazquez Villa, A.; Delgado Atencio, J. A.; Vazquez y Montiel, S.; Cunill Rodriguez, M.; Martinez Rodriguez, A. E.; Ramos, J. Castro; Villanueva, A.

    2010-01-01

    Optical coherence tomography (OCT) is a non-invasive low coherent interferometric technique that provides cross-sectional images of turbid media. OCT is based on the classical Michelson interferometer where the mirror of the reference arm is oscillating and the signal arm contains a biological sample. In this work, we analyzed theoretically the heterodyne optical signal adopting the so called extended Huygens-Fresnel principle (EHFP). We use simulated OCT images with known optical properties to test an algorithm developed by ourselves to recover the scattering coefficient and we recovered the scattering coefficient with a relative error less than 5% for noisy signals. In addition, we applied this algorithm to OCT images from phantoms of known optical properties; in this case curves were indistinguishable. A revision of the validity of the analytical model applied to our system should be done.

  14. Babinet's principle in the Fresnel regime studied using ultrasound

    Science.gov (United States)

    Hitachi, Akira; Takata, Momo

    2010-07-01

    The diffraction of ultrasound by a circular disk and an aperture of the same size has been investigated as a demonstration of Babinet's principle in the Fresnel regime. The amplitude and the phase of the diffracted ultrasonic waves are measured and a graphical treatment of the results is performed by drawing vectors in the complex plane. The results verify Babinet's principle. It is also found that the incident wave is π /2 behind the phase of the wave passing through on the central axis of a circular aperture. Because both waves travel the same path and the same distance, they should be in phase. This paradox has previously been regarded as a defect of Fresnel's theory.

  15. Angular criterion for distinguishing between Fraunhofer and Fresnel diffraction

    International Nuclear Information System (INIS)

    Medina, Francisco F.; Garcia-Sucerquia, Jorge; Castaneda, Roman; Matteucci, Giorgio

    2003-03-01

    The distinction between Fresnel and Fraunhofer diffraction is a crucial condition for the accurate analysis of diffracting structures. In this paper we propose a criterion based on the angle subtended by the first zero of the diffraction pattern from the center of the diffracting aperture. The determination of the zero of the diffraction pattern is the crucial point for assuring the precision of the criterion. It mainly depends on the dynamical range of the detector. Therefore, the applicability of adequate thresholds for different detector types is discussed. The criterion is also generalized by expressing it in terms of the number of Fresnel zones delimited by the aperture. Simulations are reported for illustrating the feasibility of the criterion. (author)

  16. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  17. Huygens a Fontenelle o mimozemšťanech a lidech

    Czech Academy of Sciences Publication Activity Database

    Špelda, Daniel

    2017-01-01

    Roč. 39, č. 2 (2017), s. 141-165 ISSN 1210-0250 R&D Projects: GA ČR GB14-37038G Institutional support: RVO:67985955 Keywords : early modern cosmology * Fontenelle * Huygens * extraterrestrial life * the infinite universe * cognitive passions Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology http://teorievedy.flu.cas.cz/index.php/tv/article/view/385

  18. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction

    Science.gov (United States)

    Chen, Michael; Abdo-Sánchez, Elena; Epstein, Ariel; Eleftheriades, George V.

    2018-03-01

    Huygens' metasurfaces are electrically thin devices which allow arbitrary field transformations. Beam refraction is among the first demonstrations of realized metasurfaces. As previously shown for extreme-angle refraction, control over only the electric impedance and magnetic admittance of the Huygens' metasurface proved insufficient to produce the desired reflectionless field transformation. To maintain zero reflections for wide refraction angles, magnetoelectric coupling between the electric and magnetic response of the metasurface, leading to bianisotropy, can be introduced. In this paper, we report the theory, design, and experimental characterization of a reflectionless bianisotropic metasurface for extreme-angle refraction of a normally incident plane wave towards 71.8° at 20 GHz. The theory and design of three-layer asymmetric bianisotropic unit cells are discussed. The realized printed circuit board structure was tested via full-wave simulations as well as experimental characterization. To experimentally verify the prototype, two setups were used. A quasi-optical experiment was conducted to assess the specular reflections of the metasurface, while a far-field antenna measurement characterized its refraction nature. The measurements verify that the fabricated metasurface has negligible reflections and the majority of the scattered power is refracted to the desired Floquet mode. This provides an experimental demonstration of a reflectionless wide-angle refracting metasurface using a bianisotropic Huygens' metasurface at microwave frequencies.

  19. On Huygens' principle for Dirac operators associated to electromagnetic fields

    Directory of Open Access Journals (Sweden)

    CHALUB FABIO A.C.C.

    2001-01-01

    Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.

  20. Reconstruction of Huygens' gedanken experiment and measurements based on video analysis tools

    International Nuclear Information System (INIS)

    Malgieri, Massimiliano; Onorato, Pasquale; Mascheretti, Paolo; De Ambrosis, Anna

    2013-01-01

    In this paper we describe the practical realization and the analysis of a thought experiment devised by Christiaan Huygens, which was pivotal in his derivation of the formula for the radius of gyration of a compound pendulum. Measurements are realized by recording the experiment with a digital camera, and using a video analysis and modelling software tool to process and extract information from the acquired videos. Using this setup, detailed quantitative comparisons between measurements and theoretical predictions can be carried out, focusing on many relevant topics in the undergraduate physics curriculum, such as the ‘radius of gyration’, conservation of energy, moment of inertia, constraint and reaction forces, and the behaviour of the centre of mass. (paper)

  1. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    Science.gov (United States)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  2. Beam-width spreading of vortex beams in free space

    Science.gov (United States)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  3. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean

    Science.gov (United States)

    Tang, Miaomiao; Zhao, Daomu

    2014-02-01

    Based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, the spectral changes of stochastic anisotropic electromagnetic beams propagating through oceanic turbulence are revealed. As an example, some numerical calculations are illustrated for an anisotropic electromagnetic Gaussian Schell-model beam propagating in a homogeneous and isotropic turbulent ocean. It is shown that, under the influence of oceanic turbulence, the on-axis spectrum is always blue-shifted along with the propagation distance, however, for the off-axis positions, red-blue spectral switch can be found.

  4. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer.

    Science.gov (United States)

    Jashnsaz, Hossein; Mohajerani, Ezeddin; Nemati, Hossein; Razavi, Seyed Hossein; Alidokht, Isa Ahmad

    2011-06-10

    A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

  5. Numerical calculation of the Fresnel transform.

    Science.gov (United States)

    Kelly, Damien P

    2014-04-01

    In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.

  6. Replica casting technique for micro Fresnel lenses characterization

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    The available measuring techniques are not always suitable for the characterization of optical surfaces such as Fresnel lenses or polished specimens. A way to overcome these challenges is to reproduce the optical components surface using a polymer casting method and to measure the replicated...

  7. Accuracy concerns in digital speckle photography combined with Fresnel digital holographic interferometry

    Science.gov (United States)

    Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.

    2018-05-01

    A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.

  8. Diamond turning of small Fresnel lens array in single crystal InSb

    International Nuclear Information System (INIS)

    Jasinevicius, R G; Duduch, J G; Cirino, G A; Pizani, P S

    2013-01-01

    A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a ‘mechanical lithography’ process in single crystal semiconductors. (paper)

  9. The Cassini-Huygens visit to Saturn an historic mission to the ringed planet

    CERN Document Server

    Meltzer, Michael

    2015-01-01

    Cassini-Huygens was the most ambitious and successful space journey ever launched to the outer Solar System. This book examines all aspects of the journey: its conception and planning; the lengthy political processes needed to make it a reality; the engineering and development required to build the spacecraft; its 2.2-billion mile journey from Earth to the Ringed Planet; and the amazing discoveries from the mission. The author traces how the visions of a few brilliant scientists matured, gained popularity, and eventually became a reality. Innovative technical leaps were necessary to assemble such a multifaceted spacecraft and reliably operate it while it orbited a planet so far from our own. The Cassini-Huygens spacecraft design evolved from other deep space efforts, most notably the Galileo mission to Jupiter, enabling the voluminous, paradigm-shifting scientific data collected by the spacecraft.  Some of these discoveries are absolute gems. A small satellite that scientists once thought of as a dead pi...

  10. Interpretation of interfacial structures in X-ray multilayers by TEM Fresnel fringe effects

    OpenAIRE

    Nguyen, Tai D.; O'Keefe, Michael A.; Kilaas, Roar; Gronsky, Ronald; Kortright, Jeffrey B.

    1991-01-01

    Assessment of interfacial structures from high-resolution TEM images of cross-sectional specimens is difficult due to Fresnel fringe effects producing different apparent structures in the images. The effects of these fringes have been commonly over-looked in efforts of making quantitative interpretation of interfacial profiles. In this report, we present the observations of the Fresnel fringes in nanometer period Mo/Si, W/C, and WC/C multilayers in through-focus-series TEM images. Calculation...

  11. Experimental and theoretical study of bragg-Fresnel optics etched on multilayer structures. Application: lenses for X-Ray imaging; Etude experimentale et theorique d`optiques de bragg-Fresnel gravees sur miroirs interferentiels multicouches. Application: lentilles pour l`imagerie X

    Energy Technology Data Exchange (ETDEWEB)

    Soullie, G.

    1996-10-01

    This work concerns the study of a new type of X-ray focusing optics known as Bragg-Fresnel lenses developed for imaging in the X and X-UV range. These optics, etched on multilayer structure, combine the focusing properties of zone plate with the Bragg reflection of multilayer used like support. Using synchrotron sources and a plasma source produced by a laser, we tested the efficiency and the spatial resolution of these lenses. With a monochromatic beam, we first obtained the image of a object by using the first order diffraction of an elliptical off-axis Bragg-Fresnel lens. By using only one part of a lens, the superposition of different diffraction orders in focal plane can be avoided, thus improving the image contrast. In order to evaluate the chromatic aberrations of these lenses, we have summed on the same image, three exposures at different energies in the band pass of the multilayer. To reduce these kind of aberrations, we used a system composed of two off-axis lenses. To simplify the alignment, we tested an elliptical off-axis lens associated with a lamellar grating. Thus we are able to validate the theoretical approximation of an off-axis Bragg-Fresnel lens to a variable spaced grating. Finally, to show the perturbation brought by the zeroth order, we successively imaged a laser plasma source with a centred and an off-axis elliptical lenses. As with the synchrotron source, a set of images of a test object enabled us to improve the spatial resolution. (author).

  12. How to handle a Huygens' box inside an enclosure

    DEFF Research Database (Denmark)

    Sørensen, Morten; Bonev, Ivan Bonev; Franek, Ondrej

    2013-01-01

    It has been suggested that it is possible to replace printed circuit boards with a Huygens' box (HB) representation obtained from a near-field scan in simulation of far-fields from an apparatus. However, the surface equivalence theorem requires that the environment outside HB is the same in the n...... caused by violating the surface equivalence theorem can be lower than 2 dB. It is also demonstrated that if the printed circuit board is galvanically connected to the enclosure, the near-field scan must be performed under same conditions....

  13. Study on high concentration solar concentrator using a Fresnel lens with a secondary concentrator; Fresnel lens to niji shukokei wo mochiita solar chemistry yo kobairitsu shukokei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, T; Suzuki, A; Fujibayashi, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    A high concentration light collection system for solar chemistry was devised by using an inexpensive Fresnel lens in a primary concentration system and a conical type concentrator in a secondary concentration system. A Fresnel lens alone would not achieve sufficiently high light collecting magnification to attain high temperatures because of restrictions in the opening angle as seen from a focus. Therefore, a secondary concentration system was installed on a focus for an attempt of stopping. Reflection plane of a three-dimensional compound parabolic concentrator (CPC) is a rotary parabolic plane, whose process is expensive because of its surface processing accuracy. Therefore, a conical type concentrator was employed as a secondary concentration system. This system may not be capable of achieving as high concentration as in the CPC, but its shape is simple and it is inexpensive. In its optimization, a complete black body surface placed in vacuum atmosphere was hypothesized as a light concentrating part for the secondary concentration system to calculate heat collecting efficiencies at respective temperature settings. Using simultaneously the secondary concentration system, rather than collecting heat by using a Fresnel lens alone, has attained as high value as from 5.99% (500 degC) to 43.47% (1400 degC). Economical high-temperature heat collection of solar chemistry level may be possible by using a Fresnel lens and a conical secondary concentration system. 1 ref., 7 figs., 2 tabs.

  14. Titan's cold case files - Outstanding questions after Cassini-Huygens

    Science.gov (United States)

    Nixon, C. A.; Lorenz, R. D.; Achterberg, R. K.; Buch, A.; Coll, P.; Clark, R. N.; Courtin, R.; Hayes, A.; Iess, L.; Johnson, R. E.; Lopes, R. M. C.; Mastrogiuseppe, M.; Mandt, K.; Mitchell, D. G.; Raulin, F.; Rymer, A. M.; Todd Smith, H.; Solomonidou, A.; Sotin, C.; Strobel, D.; Turtle, E. P.; Vuitton, V.; West, R. A.; Yelle, R. V.

    2018-06-01

    The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004-2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008-2010) and Solstice Mission (2010-2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim.

  15. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  16. Electrically Tunable Binary-Phase Fresnel Lens Based on Polymer Dispersed Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Hui LI

    2017-08-01

    Full Text Available This is a proposal for a Fresnel lens with an electrically tunable binary-phase made of polymer dispersed liquid crystal (PDLC, which has relatively fast response time and low applied voltage. Simple fabrication is the major advantage of the proposed method. In this study, NOA65 and E7 were utilized with weight ratios of 60 wt.%: 40 wt.%. There was also the utilization of a relatively low intensity UV-light, 0.53 mW/cm2. The duration time of exposure was about 30 hours. The performance improvement of the Fresnel lens resulted from the infiltration of large LC droplet into the PDLC film. The phenomenon of black cross strip patterns could be explained with the use of the electro-hydrodynamics theory. The diffraction efficiency of the proposed lens was from 31.1 % to 41 % with the changes of externally applied voltage. This work presents an effective approach to get relatively complete phase separation in PDLC. The proposed method also provides great potential in developing high performance Fresnel lens.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16317

  17. Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation.

    Science.gov (United States)

    Siegel, Nisan; Rosen, Joseph; Brooker, Gary

    2013-10-01

    Recent advances in Fresnel incoherent correlation holography (FINCH) increase the signal-to-noise ratio in hologram recording by interference of images from two diffractive lenses with focal lengths close to the image plane. Holograms requiring short reconstruction distances are created that reconstruct poorly with existing Fresnel propagation methods. Here we show a dramatic improvement in reconstructed fluorescent images when a 2D Hamming window function substituted for the disk window typically used to bound the impulse response in the Fresnel propagation. Greatly improved image contrast and quality are shown for simulated and experimentally determined FINCH holograms using a 2D Hamming window without significant loss in lateral or axial resolution.

  18. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    Science.gov (United States)

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  19. ZEROES OF GENERALIZED FRESNEL COMPLEMENTARY INTEGRAL FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Jaime Lobo Segura

    2016-08-01

    Full Text Available Theoretical upper and lower bounds are established for zeroes of a parametric family of functions which are defined by integrals of the same type as the Fresnel complementary integral. Asymptotic properties for these bounds are obtained as well as monotony properties of the localization intervals. Given the value of the parameter an analytical-numerical procedure is deduced to enclose all zeros of a given function with an a priori error.

  20. Optimization of insulation of a linear Fresnel collector

    Science.gov (United States)

    Ardekani, Mohammad Moghimi; Craig, Ken J.; Meyer, Josua P.

    2017-06-01

    This study presents a simulation based optimization study of insulation around the cavity receiver of a Linear Fresnel Collector. This optimization study focuses on minimizing heat losses from a cavity receiver (maximizing plant thermal efficiency), while minimizing insulation cross-sectional area (minimizing material cost and cavity dead load), which leads to a cheaper and thermally more efficient LFC cavity receiver.

  1. Newton versus Huygens: como (não ocorreu a disputa entre suas teorias para a luz

    Directory of Open Access Journals (Sweden)

    Breno Arsioli Moura

    2016-04-01

    Full Text Available http://dx.doi.org/10.5007/2175-7941.2016v33n1p111 Este artigo apresenta uma análise crítica da possível disputa entre as teorias sobre luz e cores elaboradas por Newton e Huygens que teria ocorrido entre os séculos XVII e XIX. Com base em diversos estudos historiográficos já realizados sobre o tema, será mostrado que na Historiografia da Ciência a ideia de uma disputa entre as ópticas de Newton e Huygens é considerada ultrapassada. O artigo fornece um apanhado histórico da Óptica no período, oferecendo subsídios para que essa questão seja também problematizada no Ensino, assim como foi na Historiografia da Ciência atual.

  2. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  3. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    Science.gov (United States)

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  4. Stop grating for perfect replication of micro Fresnel lens by thermal imprinting

    International Nuclear Information System (INIS)

    Gao, Yulong; Lin, Jie; Jin, Peng; Tan, Jiubin; Davies, Graham; Prewett, Philip D

    2012-01-01

    A stop grating concept is proposed to improve polymer filling in the thermal imprinting of a micro Fresnel lens structure. The stop grating consists of line and space structures outside the Fresnel lens pattern zone area. The experimental results have proved that the stop grating can help to achieve the complete filling of a mold, at the same time acting as a stop to prevent possible damage to the mold surface relief structures during imprinting press. A computer simulation was carried out to identify the phenomena of micro-holes at the edge of imprinted pattern. By removing the cavity between the pattern area and stop grating, perfect imprinting results have been achieved. (paper)

  5. Numerical Models for Exact Description of in-situ Digital In-Line Holography Experiments with Irregularly-Shaped Arbitrarily-Located Particles

    Directory of Open Access Journals (Sweden)

    Marc Brunel

    2015-04-01

    Full Text Available We present the development of a numerical simulator for digital in-line holography applications. In-line holograms of arbitrarily shaped and arbitrarily located objects are calculated using generalized Huygens-Fresnel integrals. The objects are 2D opaque or phase objects. The optical set-up is described by its optical transfer matrix. A wide variety of optical systems, involving windows, spherical or cylindrical lenses, can thus be taken into account. It makes the simulator applicable for design and description of in situ experiments. We discuss future applications of this simulator for detection of nanoparticles in droplets, or calibration of airborne instruments that detect and measure ice crystals in the atmosphere.

  6. Fresnel representation of the Wigner function: an operational approach.

    Science.gov (United States)

    Lougovski, P; Solano, E; Zhang, Z M; Walther, H; Mack, H; Schleich, W P

    2003-07-04

    We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996)

  7. Christiaan Huygens : Sailing and Flying on Other Worlds

    Science.gov (United States)

    Lorenz, Ralph

    2014-11-01

    In Christiaan Huygens posthumous book, "The Celestial Worlds Discover's" (1698) he lays out an optimistic vision of a universe of various worlds, some populated by beings like ourselves, and even with a few who might be scientists wondering about the same questions. He offers, in essence, a truly modern perspective on planetary physics and astrobiology.He notes that other worlds may have fluids forming clouds and rain, but that these fluids might be different from water, since for example Jupiter and Saturn are far from the sun and this 'water of ours' would be 'liable to frost.' He even speculates that other atmospheres might be thicker than ours, which would be favorable for the locomotion of the 'volatile animals.' Rather germane to present studies of Titan's seas and giant planet interiors, he even wonders if there might be layers of fluids of different densities : "There may also be many forts of Fluids ranged over one another in Rows as it were. The Sea perhaps may have such a fluid lying on it, which tho’ ten times lighter than Water, may be a hundred Time heavier than Air".Huygens considered that mariners on other worlds might use the same pulleys and anchors (noting essentially the universality of function of such devices) yet that other planets might have advantages or disadvantages for any given approach. Indeed, he rues how easy navigation must be on Jupiter and Saturn, having the benefit of so many moons from which Longitude could be determined (a vexing challenge of his day). He even notes that other worlds might have magnetic fields, allowing their sailors to use the compass. As post-Cassini exploration of Titan contemplates a number of vehicle types, from hot air balloons to sailboats which can exploit the thick atmosphere and low gravity of that environment, it is fitting to recall the perspective of Titan's discoverer on other worlds as being similar, but different. The same laws of physics and logic of design apply, but with different

  8. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    Science.gov (United States)

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  9. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  10. Up scaling and test results of an advanced Fresnel greenhouse

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Zwart, de H.F.

    2012-01-01

    A greenhouse with Fresnel lenses in the south facing roof and a receiver for concentrated Photovoltaics with water cooling (CPVT system) will result in electrical and thermal energy output from the solar energy excess entering a greenhouse. The PV system converts about half of the direct radiation

  11. The temporal Fresnel number in terms of ray matrix elements

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Fan Dianyuan

    1993-01-01

    By using the analogy between temporal ray matrix and the well known ray matrix, the temporal Fresnel number, which gives the qualitative and quasiquantitative characteristics (shape, width and chirp) of optical pulses, is derived. A concept of effective propagation time is introduced. Several typical examples are discussed. 6 refs

  12. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole

    International Nuclear Information System (INIS)

    Cho, Jung-Ho; Na, Suck-Joo

    2006-01-01

    A computational analysis of laser keyhole welding is achieved. The main driving force to make the molten pool as a narrow and deep keyhole is the recoil pressure induced by evaporation of the material. Also, the multiple reflection effect on the keyhole wall plays an important role in making the keyhole deeper and raising its total energy absorption rate. Multiple reflection and Fresnel absorption are implemented simultaneously with the proposed ray tracing technique in a discrete grid cell system during the simulation for every single time step. In particular, the Fresnel absorption model is chosen as an energy transfer mechanism from laser beam to workpiece. With all the governing equations including continuity, momentum and energy equation, the VOF method is adopted to trace the free surface of the molten pool. Simulation results are compared with the experimental ones to verify its validity. A pulsed Nd : YAG laser was used for keyhole welding experiments on mild steel plates of 7 mm thickness. It was observed that the generated keyhole maintains its solidified shape without any closing phenomenon both in the experiments and in the simulations

  13. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung-Ho; Na, Suck-Joo [Department of Mechanical Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2006-12-21

    A computational analysis of laser keyhole welding is achieved. The main driving force to make the molten pool as a narrow and deep keyhole is the recoil pressure induced by evaporation of the material. Also, the multiple reflection effect on the keyhole wall plays an important role in making the keyhole deeper and raising its total energy absorption rate. Multiple reflection and Fresnel absorption are implemented simultaneously with the proposed ray tracing technique in a discrete grid cell system during the simulation for every single time step. In particular, the Fresnel absorption model is chosen as an energy transfer mechanism from laser beam to workpiece. With all the governing equations including continuity, momentum and energy equation, the VOF method is adopted to trace the free surface of the molten pool. Simulation results are compared with the experimental ones to verify its validity. A pulsed Nd : YAG laser was used for keyhole welding experiments on mild steel plates of 7 mm thickness. It was observed that the generated keyhole maintains its solidified shape without any closing phenomenon both in the experiments and in the simulations.

  14. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    Science.gov (United States)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  15. Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Jin Xiangzhong [Laser Institute of Hunan University, Changsha, Hunan, 410082 (China); Berger, Peter [Institut fuer Strahlwerkzeuge (IFSW), University of Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Graf, Thomas [Institut fuer Strahlwerkzeuge (IFSW), University of Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2006-11-07

    In laser welding experiments of glass, keyhole shapes are observed by two high-speed cameras from two perpendicular directions. From the obtained keyhole pictures, it can be seen that in medium- and low-speed laser penetration welding, the main distortion of the keyhole is not the section metamorphosis from rotational symmetry, but the bending of its centre line. Based on such a keyhole photograph, the keyhole profiles and its centre line are determined by the method of polynomial fitting. Then, under the assumption of a circular cross section at each depth of the keyhole, the behaviour of the laser beam in the keyhole is analysed by tracing a ray of light using geometrical optics theory; the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. The absorbed laser intensity is not distributed uniformly on the keyhole wall. The keyhole wall absorbs laser intensity mainly on the half-part of the keyhole wall near the front wall. Because of the high absorptivity of the glass, Fresnel absorption from the first incidence of a laser beam plays a dominant role in the final laser intensity distribution on the keyhole wall, multiple reflections have some minor effects on the intensity distribution on the bottom part of the keyhole.

  16. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    Science.gov (United States)

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio. © 2011 Optical Society of America

  17. Automated Fresnel lens tester system

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  18. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    Science.gov (United States)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  19. Evaluation of Fresnel's corrections to the eikonal approximation by the separabilization method

    International Nuclear Information System (INIS)

    Musakhanov, M.M.; Zubarev, A.L.

    1975-01-01

    Method of separabilization of potential over the Schroedinger approximate solutions, leading to Schwinger's variational principle for scattering amplitude, is suggested. The results are applied to calculation of the Fresnel corrections to the Glauber approximation

  20. Performance testing of a Fresnel/Stirling micro solar energy conversion system

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit

    2013-01-01

    Highlights: • Solar energy has a big importance among the renewable energy sources. • A micro solar energy system consisted of a Stirling engine and Fresnel lens was tested. • Solar radiation was directly focused into a cavity. • Cavities made of copper, aluminium and stainless steel were used. • The maximum performance was obtained with aluminium cavity. - Abstract: In this study, a beta-type Stirling engine was tested with concentrated solar radiation. The displacer cylinder of the engine was modified by integrating a concentrated solar radiation receiver. Basically, the receiver is a cavity drilled in a separate part mounted on top of the displacer cylinder by screws. Tests were conducted with three cavities made of aluminium, copper and stainless steel. The solar radiation was concentrated by a Fresnel lens with 1.4 m 2 capture area. Among the cavities, the highest performance was provided by aluminium cavity and followed by the stainless steel and copper cavities respectively. The maximum shaft power was observed as 64.4 W at systematic tests conducted with the aluminium cavity. The maximum shaft power corresponded to 218 rpm engine speed and 2.82 Nm torque. For this shaft power, the overall conversion efficiency of the system was estimated to be 5.64%. The maximum torque measured with aluminium cavity was 2.93 Nm corresponding to 177 rpm below which the engine stopped. The Fresnel-lens/Stirling-engine micro power plant established in this investigation was more efficient than the micro power plants presented in the literature

  1. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    CERN Document Server

    Elghazaly, A

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement.

  2. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    International Nuclear Information System (INIS)

    Elghazaly, A.; Attia, M.T.

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement

  3. Zeroes of functions of Fresnel complementary integral type

    Directory of Open Access Journals (Sweden)

    Mario Alberto Villalobos Arias

    2017-02-01

    Full Text Available Theoretical upper and lower bounds are established for zeroes of a parametric family of functions which are defined by integrals of the same type as  the Fresnel complementary integral. Asymptotic properties for these bounds are obtained as well as monotony properties of the localization  intervals.  Given the value of the parameter an analytical-numerical procedure is deduced to enclose all  zeros of a given function with an a priori error.

  4. A concentrator system for BI-CPVT with static linear Fresnel lenses

    NARCIS (Netherlands)

    Swinkels, G.L.A.M.; Sonneveld, P.J.; Tuijl, van B.A.J.; Janssen, H.J.J.; Zwart, de H.F.

    2011-01-01

    A greenhouse with Fresnel lenses in the south facing roof and a receiver for concentrated Photovoltaic with water cooling (CPVT system) will result in electrical and thermal energy output from the solar energy excess entering a greenhouse. The PV system converts about half of the direct radiation

  5. Huygens triviality of the time-independent Schrödinger equation. Applications to atomic and high energy physics

    Science.gov (United States)

    Kholodenko, Arkady L.; Kauffman, Louis H.

    2018-03-01

    Huygens triviality - a concept invented by Jacques Hadamard - describes an equivalence class connecting those 2nd order partial differential equations which are transformable into the wave equation. In this work it is demonstrated, that the Schrödinger equation with the time-independent Hamiltonian belongs to such an equivalence class. The wave equation is the equation for which Huygens' principle (HP) holds. The HP was a subject of confusion in both physics and mathematics literature for a long time. Not surprisingly, the role of this principle was obscured from the beginnings of quantum mechanics causing some theoretical and experimental misunderstandings. The purpose of this work is to bring the full clarity into this topic. By doing so, we obtained a large amount of new results related to uses of Lie sphere geometry, of twistors, of Dupin cyclides, of null electromagnetic fields, of AdS-CFT correspondence, of Penrose limits, of geometric algebra, etc. in physical problems ranging from the atomic to high energy physics and cosmology.

  6. Synchrotron radiation focusing by a Bragg--Fresnel lens

    International Nuclear Information System (INIS)

    Aristov, V.V.; Basov, Y.A.; Snigirev, A.A.

    1989-01-01

    Since the discovery of x rays and until the present time the possibilities of their controlling and focusing have been widely discussed. In the hard spectrum region (λ∼1 A) the main focusing schemes are the following: geometrical focusing based on incoherent interaction of wave packets reflected by different regions of bending crystals and coherent (dynamic) focusing performed at the cost of the effect of refraction index angular dispersion near the exact Bragg angle value -θ B . A main disadvantage of geometrical focusing is low spatial resolution (∼0.1 mm) and temperature stability. In the case of coherent focusing a main disadvantage is a narrow angular aperture (∼10 sec. of arc) at spatial resolution (∼1--10 μm). Recently, advances in the development of diffraction physics and microstructuring technology open up possibilities for fabricating effective focusing x-ray optical elements---Bragg--Fresnel lenses (BFL)---with high spatial resolution (∼0.1 μm) at a wide angular aperture and high temperature stability. The present paper describes the main principles of Bragg--Fresnel optics (BFO). It presents the results on the synchrotron experiment and on observation of focusing. In this work the peculiarities of BFL diffraction contrast formation are investigated and image transmission using a BFL is performed. Possibilities of developing x-ray optical schemes of ultrahigh resolution on the basis of BFL elements are also discussed

  7. Why history matters: Ab initio rederivation of Fresnel equations confirms microscopic theory of refractive index

    Science.gov (United States)

    Starke, R.; Schober, G. A. H.

    2018-03-01

    We provide a systematic theoretical, experimental, and historical critique of the standard derivation of Fresnel's equations, which shows in particular that these well-established equations actually contradict the traditional, macroscopic approach to electrodynamics in media. Subsequently, we give a rederivation of Fresnel's equations which is exclusively based on the microscopic Maxwell equations and hence in accordance with modern first-principles materials physics. In particular, as a main outcome of this analysis being of a more general interest, we propose the most general boundary conditions on electric and magnetic fields which are valid on the microscopic level.

  8. High spatial resolution X-UV Fresnel zone plates imaging; Imagerie a haute resolution spatiale dans le domaine X-UV a l'aide de lentilles a zone de Fresnel

    Energy Technology Data Exchange (ETDEWEB)

    Pichet-Thomasset, M

    1999-07-01

    The goal of this work is to study the capabilities of imaging of Fresnel zone plates in the 1.5. and 2 keV X-ray range for the imaging of laser-produced plasmas. The diagnostic is composed of a Fresnel zone plate with good imaging capabilities and a multilayer mirror to select the spectral emission bandwidth of the plasma we want to study. This diagnostic was evaluated at the Centre d'Etudes de Limeil-Valenton experiments to study spatial resolution with this kind of X-ray source. The images we obtained showed that there is no geometric aberrations over an object field of several millimetre. Fresnen zone plates are often used for monochromatic biological objects imaging in the water window around 400 eV but they offer large prospects for laser produced plasma imaging. (author)

  9. 24-GHz LTCC Fractal Antenna Array SoP With Integrated Fresnel Lens

    KAUST Repository

    Ghaffar, Farhan A.; Khalid, Muhammad Umair; Salama, Khaled N.; Shamim, Atif

    2012-01-01

    A novel 24-GHz mixed low-temperature co-fired ceramic (LTCC) tape based system-on-package (SoP) is presented, which incorporates a fractal antenna array with an integrated grooved Fresnel lens. The four-element fractal array employs a relatively low

  10. Electrical Properties of Tholins and Derived Constraints on the Huygens Landing Site Composition at the Surface of Titan

    Science.gov (United States)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Caujolle-Bert, S.; Schreiber, F.; Carrasco, N.; Cernogora, G.; Szopa, C.; Brouet, Y.; Simões, F.; Correia, J. J.; Ruffié, G.

    2018-04-01

    In 2005, the complex permittivity of the surface of Saturn's moon Titan was measured by the PWA-MIP/HASI (Permittivity Wave Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) experiment on board the Huygens probe. The analysis of these measurements was recently refined but could not be interpreted in terms of composition due to the lack of knowledge on the low-frequency/low-temperature electrical properties of Titan's organic material, a likely key ingredient of the surface composition. In order to fill that gap, we developed a dedicated measurement bench and investigated the complex permittivity of analogs of Titan's organic aerosols called "tholins." These laboratory measurements, together with those performed in the microwave domain, are then used to derive constraints on the composition of Titan's first meter below the surface based on both the PWA-MIP/HASI and the Cassini Radar observations. Assuming a ternary mixture of water ice, tholin-like dust and pores (filled or not with liquid methane), we find that at least 10% of water ice and 15% of porosity are required to explain observations. On the other hand, there should be at most 50-60% of organic dust. PWA-MIP/HASI measurements also suggest the presence of a thin conductive superficial layer at the Huygens landing site. Using accurate numerical simulations, we put constraints on the electrical conductivity of this layer as a function of its thickness (e.g., in the range 7-40 nS/m for a 7-mm thick layer). Potential candidates for the composition of this layer are discussed.

  11. Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics

    CERN Document Server

    Takano, H; Takeuchi, A

    2003-01-01

    A hard X-ray focusing test of a Fresnel zone plate has been performed with a synchrotron radiation source at the undulator beamline 20XU of SPring-8. Fresnel zone plate with a radius of 150 mu m, and an outermost zone width of 100 nm was used for the X-ray focusing device. The 248-m-long beamline provides fully coherent illumination for the focusing device. The focused beam evaluated by the knife-edge-scan method and scanning microscope test using test charts. Nearly diffraction- limited focusing with a size of 120 nm was achieved for the first-order diffraction at 10 keV X-ray. Evaluation for the third order diffraction was also performed at 8 keV X-ray, and a focal size of 50 m has been obtained. (author)

  12. Cassini at Saturn: The Final Two Years

    Science.gov (United States)

    Spilker, L.; Edgington, S.; Altobelli, N.

    2015-10-01

    After 11 years in orbit, the Cassini-Huygens Mission to Saturn, a collaboration of NASA, ESA, and ASI, continues to wow the imagination and reveal unprecedented findings. Every year Cassini produces answers to questions raised by the Voyager flybys, while at the same time posing new questions that can only be answered with a long duration mission using a flagship-class spacecraft. Here we sample a few of Cassini's discoveries from the past year and give an overview of Cassini's final two years.

  13. Um experimento simples usado na produção de placas de zonas de Fresnel

    OpenAIRE

    Muller,Márcia; Silva,Jean Carlos Cardozo da; Fabris,José Luís

    2005-01-01

    Neste trabalho propomos um experimento simples que tem por finalidade auxiliar no aprendizado dos fenômenos de interferência e difração da luz. Após uma análise pertinente da teoria de Fresnel da difração, os conhecimentos são aplicados na compreensão do funcionamento das placas de zonas de Fresnel. Apresentamos uma descrição detalhada dos processos usados para a fabricação e caracterização destas placas zonais, o que possibilita a produção de lentes difrativas com a distância focal desejada ...

  14. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    Science.gov (United States)

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  15. Optical image encryption using fresnel zone plate mask based on fast walsh hadamard transform

    Science.gov (United States)

    Khurana, Mehak; Singh, Hukum

    2018-05-01

    A new symmetric encryption technique using Fresnel Zone Plate (FZP) based on Fast Walsh Hadamard Transform (FWHT) is proposed for security enhancement. In this technique, bits of plain image is randomized by shuffling the bits randomly. The obtained scrambled image is then masked with FZP using symmetric encryption in FWHT domain to obtain final encrypted image. FWHT has been used in the cryptosystem so as to protect image data from the quantization error and for reconstructing the image perfectly. The FZP used in proposed scheme increases the key space and makes it robust to many traditional attacks. The effectiveness and robustness of the proposed cryptosystem has been analyzed on the basis of various parameters by simulating on MATLAB 8.1.0 (R2012b). The experimental results are provided to highlight suitability of the proposed cryptosystem and prove that the system is secure.

  16. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    International Nuclear Information System (INIS)

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-01-01

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs

  17. Universal Huygens's principle of synchronization and coordination in the DNA and cell molecules

    International Nuclear Information System (INIS)

    Gareev, F.A.; Gareeva, G.F.

    2001-01-01

    Full text: Many objects in Nature - elementary particles, nuclei, atoms, molecules, DNA, proteins, etc. are build as self-consistent hierarchical systems and have the same homological construction in the sense that they are found by the same fundamental physical laws: energy-momentum conservation law and sectoral conservation law (the second Kepler law). Schroedinger wrote that an interaction between microscopic physical objects is controlled by specific resonance laws. According to these laws any interaction in a microscopic hierarchic wave system exhibits the resonance character. Due to above said the corresponding partial motion are determinate. This determinism arises as a consequences of the energy conservation law. As the resonance condition arises from the fundamental energy conservation law, the rhythms and synchronization of the majority of phenomena to be observed are the reflection of the universal property of self-organization of the Universe. The Huygens synchronization principle is substantiated at the microscopic level as the consequence of energy conservation law and resonance character of any interaction between wave systems. In this paper we demonstrated the universality of the Huygens synchronization principle independent of substance, fields, and interactions for microsystems. Thereby, webbing some arguments in favor of the mechanism - ORDER from ORDER, declared by Schrodinger is fundamental problem of contemporary science. We came to conclusion that a stable proton and neutron play the role of standard for other elementary particles and nuclei. They contain all necessary information about structure of other particles and nuclei. This information is used and reproduced by simple rational relations, according to the fundamental conservation law of energy momentum. We originated from the principles of commensurability and self-similarity. The commensurability and self-similarity result in the very unity of the world. The principle of

  18. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  19. Fresnel diffraction correction by phase-considered iteration procedure in soft X-ray projection microscopy

    International Nuclear Information System (INIS)

    Shiina, Tatsuo; Suzuki, Tsuyoshi; Honda, Toshio; Ito, Atsushi; Kinjo, Yasuhito; Yoshimura, Hideyuki; Yada, Keiji; Shinohara, Kunio

    2009-01-01

    In soft X-ray projection microscopy, it is easy to alter the magnification by changing the distance between the pinhole and the specimen, while the image is blurred because the soft X-rays are diffracted through the propagation from specimen to CCD detector. We corrected the blurred image by the iteration procedure of Fresnel to inverse Fresnel transformation taking phase distribution of the specimen into account. The experiments were conducted at the BL-11A of the Photon Factory, KEK, Japan for the specimens such as glass-capillaries, latex-particles, dried mammalian cells and human chromosomes. Many of those blurred images were corrected adequately by the iteration procedure, though some images such as those which have high-contrast or are overlapped by small cells still remain to be improved.

  20. Making sound vortices by metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  1. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  2. Emergence of Fresnel diffraction zones in gravitational lensing by a cosmic string

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Núñez, Isabel [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Institut de Ciències del Cosmos (ICCUB), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Bulashenko, Oleg, E-mail: oleg.bulashenko@ub.edu [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-06-09

    The possibility to detect cosmic strings – topological defects of early Universe, by means of wave effects in gravitational lensing is discussed. To find the optimal observation conditions, we define the hyperbolic-shaped Fresnel observation zones associated with the diffraction maxima and analyse the frequency patterns of wave amplification corresponding to different alignments. In particular, we show that diffraction of gravitational waves by the string may lead to significant amplification at cosmological distances. The wave properties we found are quite different from what one would expect, for instance, from light scattered off a thin wire or slit, since a cosmic string, as a topological defect, gives no shadow at all. - Highlights: • Interference and diffraction of gravitational waves by a cosmic string are studied. • Uniform asymptotic theory of diffraction is applied for a finite distance source. • Hyperbolic-shaped Fresnel observation zones associated with maxima of diffraction. • Frequency patterns modulated by diffraction for different string alignments are given. • The method is applicable to condensed-matter defects and other types of waves.

  3. A Microwave Holographic Procedure for Large Symmetric Reflector Antennas Using a Fresnel-Zone Field Data Processing

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzarella

    2012-01-01

    Full Text Available In this paper we propose a new holographic procedure for the diagnostic of large reflector antennas, based on the direct use of the Fresnel-field pattern. The relation leading from the Fresnel field to the current on the reflector surface is formulated in the least-squares sense as a discrete data inverse problem and then regularized by using a singular value decomposition approach. A detailed theoretical analysis of the problem and full assessment of the presented technique are provided. Simulations are carried out by using the radiative near-field pattern generated with a commercial software. Results show good accuracy and robustness to noise for the retrieval of the panel-to-panel misalignment of a reflector antenna.

  4. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    International Nuclear Information System (INIS)

    Oku, T.; Morita, S.; Moriyasu, S.; Yamagata, Y.; Ohmori, H.; Takizawa, Y.; Shimizu, H.M.; Hirota, T.; Kiyanagi, Y.; Ino, T.; Furusaka, M.; Suzuki, J.

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 -4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material

  5. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  6. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  7. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    OpenAIRE

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.

  8. Accounting for Antenna in Half-Space Fresnel Coefficient Estimation

    Directory of Open Access Journals (Sweden)

    A. D'Alterio

    2012-01-01

    Full Text Available The problem of retrieving the Fresnel reflection coefficients of a half-space medium starting from measurements collected under a reflection mode multistatic configuration is dealt with. According to our previous results, reflection coefficient estimation is cast as the inversion of linear operator. However, here, we take a step ahead towards more realistic scenarios as the role of antennas (both transmitting and receiving is embodied in the estimation procedure. Numerical results are presented to show the effectiveness of the method for different types of half-space media.

  9. Development of multilayer Fresnel lens (zone plate) for formation of focused neutron beam

    International Nuclear Information System (INIS)

    Tamura, Shigeharu

    2008-01-01

    Multilayer Fresnel zone plates (FZPs) for the neutron beamline have been designed and fabricated. Firstly, materials for the FZP were examined: layer materials, wire substrate, etc. Secondly, FZPs were designed and three kinds of FZPs were fabricated: two Cu/Al-FZPs and a Ni(Cr)/Al-FZP. (author)

  10. Nineteenth-century aether theories

    CERN Document Server

    Schaffner, Kenneth F

    2013-01-01

    Nineteenth-Century Aether Theories focuses on aether theories. The selection first offers information on the development of aether theories by taking into consideration the positions of Christiaan Huygens, Thomas Young, and Augustin Fresnel. The text then examines the elastic solid aether. Concerns include Green's aether theory, MacCullagh's aether theory, and Kelvin's aether theory. The text also reviews Lorentz' aether and electron theory. The development of Lorentz' ideas of the stagnant aether and electrons; Lorentz' theorem of corresponding states and its development; and Lorentz' respons

  11. Diffraction patterns in Fresnel approximation of periodic objects for a colorimeter of two apertures

    Science.gov (United States)

    Cortes-Reynoso, Jose-German R.; Suarez-Romero, Jose G.; Hurtado-Ramos, Juan B.; Tepichin-Rodriguez, Eduardo; Solorio-Leyva, Juan Carlos

    2004-10-01

    In this work, we present a study of Fresnel diffraction of periodic structures in an optical system of two apertures. This system of two apertures was used successfully for measuring color in textile samples solving the problems of illumination and directionality that present current commercial equipments. However, the system is sensible to the spatial frequency of the periodic sample"s area enclosed in its optical field of view. The study of Fresnel diffraction allows us to establish criteria for geometrical parameters of measurements in order to assure invariance in angular rotations and spatial positions. In this work, we use the theory of partial coherence to calculate the diffraction through two continuous apertures. In the calculation process, we use the concept of point-spread function of the system for partial coherence, in this way we avoid complicated statistical processes commonly used in the partial coherence theory.

  12. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  13. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    Science.gov (United States)

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  14. Fresnel's original interpretation of complex numbers in 19th century optics

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo

    2018-01-01

    In 1823, Fresnel published an original (physical) interpretation of complex numbers in his investigations of refraction and reflection of polarized light. This is arguably the first time that complex numbers were given a physical interpretation, which led to a better understanding of elliptical a...... and circular polarizations. This rather unknown episode of the history of physics is described in this work, and some of the pedagogical lessons that can be extracted from it are discussed....

  15. Fresnel's original interpretation of complex numbers in 19th century optics

    Science.gov (United States)

    Karam, Ricardo

    2018-04-01

    In 1823, Fresnel published an original (physical) interpretation of complex numbers in his investigations of refraction and reflection of polarized light. This is arguably the first time that complex numbers were given a physical interpretation, which led to a better understanding of elliptical and circular polarizations. This rather unknown episode of the history of physics is described in this work, and some of the pedagogical lessons that can be extracted from it are discussed.

  16. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    Science.gov (United States)

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

  17. Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems.

    Science.gov (United States)

    Brunel, Marc; Shen, Huanhuan; Coetmellec, Sebastien; Lebrun, Denis

    2012-03-10

    We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.

  18. Rainbow and Fresnel diffraction effects in the heavy ion scattering

    International Nuclear Information System (INIS)

    Salvadori, M.C.B.S.

    1984-01-01

    A detailed theoretical analysis of the heavy-ion elastic scattering differential cross section, using the uniform semiclassical approximation of Berry in the sharp cut-off limit is presented. A decomposition of the cross section into four physically well-defined components is used in the analysis. The aim of the analysis is to explore the possibility of distinguishing at the cross-section level, between a pure raibow or Fresnel diffraction nature of the heavy-ion elastic scattering at above-barrier energies and not too large angles. (Author) [pt

  19. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  20. Fabrication and characterization of InP fresnel microlenses

    International Nuclear Information System (INIS)

    Diadiuk, V.; Walpole, J.N.; Liau, Z.L.

    1987-01-01

    Since diode lasers typically have a beam divergence of a few tens of degrees, collimating the laser outputs leads to greatly far-field patterns, which, in turn translates into more power in the main lobe of the combined output. Achieving this collimation in the case of a diode laser array, with its small device-to-device distance, requires an array of similarly spaced microlenses with very short focal length, small diameter and small F number. In this paper, the authors describe the fabrication and performance of a Fresnel microlens array etched directly in InP wafers; these microlenses have been used successfully to collimate the output of GainAsP/InP buried-heterostructure (BH) diode lasers

  1. Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors

    International Nuclear Information System (INIS)

    Abbas, R.; Muñoz, J.; Martínez-Val, J.M.

    2012-01-01

    Highlights: ► An innovative multitube receiver for linear Fresnel reflectors is presented. ► Higher performance is achieved thanks to better heat transfer conditions. ► A wide range of designs that maximize efficiency for different conditions is found. ► Heat transfer fluid inlet temperature must be lower for low radiation intensities. ► Fresnel performance may be close to trough collectors, with lower costs. -- Abstract: The study of the performance of an innovative receiver for linear Fresnel reflectors is carried out in this paper, and the results are analyzed with a physics perspective of the process. The receiver consists of a bundle of tubes parallel to the mirror arrays, resulting on a smaller cross section for the same receiver width as the number of tubes increases, due to the diminution of their diameter. This implies higher heat carrier fluid speeds, and thus, a more effective heat transfer process, although it conveys higher pumping power as well. Mass flow is optimized for different tubes diameters, different impinging radiation intensities and different fluid inlet temperatures. It is found that the best receiver design, namely the tubes diameter that maximizes the exergetic efficiency for given working conditions, is similar for the cases studied. There is a range of tubes diameters that imply similar efficiencies, which can drive to capital cost reduction thanks to the flexibility of design. In addition, the length of the receiver is also optimized, and it is observed that the optimal length is similar for the working conditions considered. As a result of this study, it is found that this innovative receiver provides an optimum design for the whole day, even though impinging radiation intensity varies notably. Thermal features of this type of receiver could be the base of a new generation of concentrated solar power plants with a great potential for cost reduction, because of the simplicity of the system and the lower weigh of the

  2. Fresnel zone plate imaging of a 252Cf spontaneous fission source

    International Nuclear Information System (INIS)

    Stalker, K.T.; Hessel, K.R.

    1976-11-01

    The feasibility of coded aperture imaging for nuclear fuel motion monitoring is shown using Cf 252 spontaneous fission source. The theory of coded aperture imaging for Fresnel zone plate apertures is presented and design considerations for zone plate construction are discussed. Actual images are obtained which demonstrate a transverse resolution of 1.7 mm and a tomographic resolution of 1.5 millimeters. The capability of obtaining images through 12.7 mm of stainless steel is also shown

  3. First light of an external occulter testbed at flight Fresnel numbers

    Science.gov (United States)

    Kim, Yunjong; Sirbu, Dan; Hu, Mia; Kasdin, Jeremy; Vanderbei, Robert J.; Harness, Anthony; Shaklan, Stuart

    2017-01-01

    Many approaches have been suggested over the last couple of decades for imaging Earth-like planets. One of the main candidates for creating high-contrast for future Earth-like planets detection is an external occulter. The external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The occulter is typically tens of meters in diameter and the separation from the telescope is of the order of tens of thousands of kilometers. Optical testing of a full-scale external occulter on the ground is impossible because of the long separations. Therefore, laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The goal of this experiment is to demonstrate a pupil plane suppression of better than 1e-9 with a corresponding image plane contrast of better than 1e-11. The occulter testbed uses a 77.2 m optical propagation distance to realize the flight Fresnel number of 14.5. The scaled mask is placed at 27.2 m from the artificial source and the camera is located 50.0 m from the scaled mask. We will use an etched silicon mask, manufactured by the Microdevices Lab(MDL) of the Jet Propulsion Laboratory(JPL), as the occulter. Based on conversations with MDL, we expect that 0.5 μm feature size is an achievable resolution in the mask manufacturing process and is therefore likely the indicator of the best possible performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the experimental setup of the testbed. We compare the experimental results with simulations

  4. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    Science.gov (United States)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  5. Fast generation of Fresnel holograms based on multirate filtering.

    Science.gov (United States)

    Tsang, Peter; Liu, Jung-Ping; Cheung, Wai-Keung; Poon, Ting-Chung

    2009-12-01

    One of the major problems in computer-generated holography is the high computation cost involved for the calculation of fringe patterns. Recently, the problem has been addressed by imposing a horizontal parallax only constraint whereby the process can be simplified to the computation of one-dimensional sublines, each representing a scan plane of the object scene. Subsequently the sublines can be expanded to a two-dimensional hologram through multiplication with a reference signal. Furthermore, economical hardware is available with which sublines can be generated in a computationally free manner with high throughput of approximately 100 M pixels/second. Apart from decreasing the computation loading, the sublines can be treated as intermediate data that can be compressed by simply downsampling the number of sublines. Despite these favorable features, the method is suitable only for the generation of white light (rainbow) holograms, and the resolution of the reconstructed image is inferior to the classical Fresnel hologram. We propose to generate holograms from one-dimensional sublines so that the above-mentioned problems can be alleviated. However, such an approach also leads to a substantial increase in computation loading. To overcome this problem we encapsulated the conversion of sublines to holograms as a multirate filtering process and implemented the latter by use of a fast Fourier transform. Evaluation reveals that, for holograms of moderate size, our method is capable of operating 40,000 times faster than the calculation of Fresnel holograms based on the precomputed table lookup method. Although there is no relative vertical parallax between object points at different distance planes, a global vertical parallax is preserved for the object scene as a whole and the reconstructed image can be observed easily.

  6. Active liquid-crystal deflector and lens with Fresnel structure

    Science.gov (United States)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  7. Thyroid scintigraphy using coded apertures derived from a complex Fresnel zone plate

    International Nuclear Information System (INIS)

    Meinke, J.

    1986-01-01

    Comparative evaluations of conventional scintiscanning and Fresnel zone plate imaging carried out in the thyroid for the purposes of this study showed that the purported benefits of the latter technique were confirmed by phantoms but did to a lesser extent bear out in patients. Major drawbacks are the lack of additional information of clinical relevance, the greater length of time needed and the difficult interpretation of artefacts. (TRV) [de

  8. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  9. Multiple Reflections and Fresnel Absorption of Gaussian Laser Beam in an Actual 3D Keyhole during Deep-Penetration Laser Welding

    Directory of Open Access Journals (Sweden)

    Xiangzhong Jin

    2012-01-01

    Full Text Available In deep penetration laser welding, a keyhole is formed in the material. Based on an experimentally obtained bending keyhole from low- and medium-speed laser penetration welding of glass, the keyhole profiles in both the symmetric plane are determined by polynomial fitting. Then, a 3D bending keyhole is reconstructed under the assumption of circular cross-section of the keyhole at each keyhole depth. In this paper, the behavior of focused Gaussian laser beam in the keyhole is analyzed by tracing a ray of light using Gaussian optics theory, the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. Finally, the formation mechanism of the keyhole is deduced.

  10. Thin Fresnel zone plate lenses for focusing underwater sound

    International Nuclear Information System (INIS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-01-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens

  11. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  12. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  13. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  14. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  15. Experimental and theoretical study of Bragg-Fresnel focalizing optical systems engraved on multi layers interferential mirrors adapted to X and X-UV fields; Etude experimentale et theorique d`optiques focalisantes de type Bragg-Fresnel gravees sur des miroirs interferentiels multicouches adaptes aux domaines X et X-UV

    Energy Technology Data Exchange (ETDEWEB)

    Idir, M.

    1995-02-01

    This work concerns the study of a particular type of X-ray focusing optics known as Bragg-Fresnel lenses, formed through ion-etching of multilayered structures. Using the Super-ACO (LURE/Orsay) synchrotron storage ring, we tested several Bragg-Fresnel lenses having either linear or elliptical geometries (producing a line or a point focus, respectively). Diffraction profiles were first obtained for the linear lenses ion-etched on W/Si multilayers of nano-metric period. The experimental results were compared with our theoretical predictions. We next proposed and tested a solution to the problem superposing the different diffraction orders in the focal plane, that of fabricating Bragg-Fresnel lenses with an off-axis configuration, first for the linear and then the elliptical geometry. An experimental application, for an off-axis elliptical lens produced a focused X-ray spot of 5 x 10 microns{sup 2} for the Super-ACO synchrotron source. The same lens also produced a 1/3-size X-ray image of a grid-like object at 1750 eV using the first and third diffraction orders. (author).

  16. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    Science.gov (United States)

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  17. Chromatic aberration compensation in numerical reconstruction of digital holograms by Fresnel-Bluestein propagation.

    Science.gov (United States)

    Hincapie, Diego; Velasquez, Daniel; Garcia-Sucerquia, Jorge

    2017-12-15

    In this Letter, we present a method for chromatic compensation in numerical reconstruction of digitally recorded holograms based on Fresnel-Bluestein propagation. The proposed technique is applied to correct the chromatic aberration that arises in the reconstruction of RGB holograms of both millimeter- and micrometer-sized objects. The results show the feasibility of this strategy to remove the wavelength dependence of the size of the numerically propagated wavefields.

  18. Titan's interior from Cassini-Huygens

    Science.gov (United States)

    Tobie, G.; Baland, R.-M.; Lefevre, A.; Monteux, J.; Cadek, O.; Choblet, G.; Mitri, G.

    2013-09-01

    The Cassini-Huygens mission has brought many informations about Titan that can be used to infer its interior structure: the gravity field coefficients (up to degree 3, [1]), the surface shape (up to degree 6, [2]), the tidal Love number [1], the electric field [3], and the orientation of its rotation axis [4]. The measured obliquity and gravity perturbation due to tides, as well as the electric field, are lines of evidence for the presence of an internal global ocean beneath the ice surface of Titan [5,1,3]. The observed surface shape and gravity can be used to further constrain the structure of the ice shell above the internal ocean. The presence of a significant topography associated with weak gravity anomalies indicates that deflections of internal interface or lateral density variations may exist to compensate the topography. To assess the sources of compensation, we consider interior models including interface deflections and/or density variations, which reproduces simultaneously the surface gravity and long-wavelength topography data [6]. Furthermore, in order to test the long-term mechanical stability of the internal mass anomalies, we compute the relaxation rate of each internal interface in response to surface mass load. We show that the topography can be explained either by defections of the ocean/ice interface or by density variations in an upper crust [6]. For non-perfectly compensated models of the outer ice shell, the present-day structure is stable only for a conductive layer above a relatively cold ocean (for bottom viscosity > 1016 Pa.s, T residual gravity anomalies. The existence of mass anomalies in the rocky core is a most likely explanation. However, as the observed geoid and topography are mostly sensitive to the lateral structure of the outer ice shell, no information can be retrieved on the ice shell thickness, ocean density and/or size of the rocky core. Constraints on these internal parameters can be obtained from the tidal Love number and

  19. Analysis and interpretation of soft X-ray photographs of coronal active regions taken with Fresnel zone plates. I

    International Nuclear Information System (INIS)

    Kraemer, G.; Einighammer, H.J.; Elwert, G.; Braeuninger, H.; Fink, H.H.; Truemper, J.

    1978-01-01

    Soft X-ray photographs of the Sun taken at O VII 21.6 A and in a spectral band ranging from 13.2 to 22.1 A have been analysed in order to establish spatially resolved maps of temperature and emission measure for several active regions in the corona. The photographs were taken on 11 March, 1971, and on 2 March, 1972, with Fresnel zone plate cameras which were flown on ESRO and NRI sounding rockets. The authors deal with those aspects of the instrumentation which are important for setting up a suitable image analysis procedure. The characteristics of the wavelength dependent image formation by zone plates combined with absorption filters are discussed. Results of the calibration of the X-ray film are given. Then a specific iterative data reduction procedure is described and finally the resulting maps of temperature and emission measure are presented for a selected active region. (Auth.)

  20. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  1. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  2. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    Energy Technology Data Exchange (ETDEWEB)

    Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  3. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells

    International Nuclear Information System (INIS)

    Xu, Ning; Ji, Jie; Sun, Wei; Han, Lisheng; Chen, Haifei; Jin, Zhuling

    2015-01-01

    Graphical abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, respectively. Experimental results show that direct irradiation affects the electrical performance of the system dominantly. Fitting results of electrical performance offer simple and reliable methods to analyze the system performance. - Highlights: • A point-focus Fresnel lens photovoltaic/thermal system is proposed and studied. • The system presents an instantaneous electrical efficiency of 28%. • The system has a highest instantaneous thermal efficiency of 54%. • Direct irradiation has the dominant effect on the electrical performance. • Fitting results offer simple and reliable methods to analyze system performances. - Abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, which means the overall efficiency of the system can be more than 80%. A mathematical model for calculating cell temperature is proposed to solve difficult measurement of cell temperature in a system. Moreover, characteristics of electrical performance under various direct

  4. Experimental and theoretical study of Bragg-Fresnel focalizing optical systems engraved on multi layers interferential mirrors adapted to X and X-UV fields

    International Nuclear Information System (INIS)

    Idir, M.

    1995-02-01

    This work concerns the study of a particular type of X-ray focusing optics known as Bragg-Fresnel lenses, formed through ion-etching of multilayered structures. Using the Super-ACO (LURE/Orsay) synchrotron storage ring, we tested several Bragg-Fresnel lenses having either linear or elliptical geometries (producing a line or a point focus, respectively). Diffraction profiles were first obtained for the linear lenses ion-etched on W/Si multilayers of nano-metric period. The experimental results were compared with our theoretical predictions. We next proposed and tested a solution to the problem superposing the different diffraction orders in the focal plane, that of fabricating Bragg-Fresnel lenses with an off-axis configuration, first for the linear and then the elliptical geometry. An experimental application, for an off-axis elliptical lens produced a focused X-ray spot of 5 x 10 microns 2 for the Super-ACO synchrotron source. The same lens also produced a 1/3-size X-ray image of a grid-like object at 1750 eV using the first and third diffraction orders. (author)

  5. Experimental Investigation on the Feasibility of Using a Fresnel Lens as a Solar-Energy Collection System for Enhancing On-Orbit Power Generation Performance

    Directory of Open Access Journals (Sweden)

    Tae-Yong Park

    2017-01-01

    Full Text Available Cube satellites have a limitation for generating power because of their cubic structure and extremely small size. In addition, the incidence angle between the sun and the solar panels continuously varies owing to the revolution and rotation of the satellite according to the attitude control strategy. This angle is an important parameter for determining the power generation performance of the cube satellite. In this study, we performed an experimental feasibility study that uses a Fresnel lens as a solar-energy collection system for cube satellite applications, so that the power generation efficiency can be enhanced under the worst incidence angle condition between the sun and solar panels by concentrating and redirecting solar energy onto the solar panels with a commercial Fresnel lens. To verify the effectiveness of the proposed system, we conducted a power-measurement test using a solar simulator and Fresnel lenses at various angles to the light source. In addition, we predicted the on-orbit power-generation enhancement achieved by employing the solar-energy collection system with various attitude control strategies.

  6. Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2016-01-01

    Highlights: • A parabolic primary mirror field is designed to reduce the gap between adjacent mirrors. • The movable receiver can reduce the end losses. • The thermal efficiency of 66% is achieved at Guangzhou in winter. - Abstract: This paper proposes a stretched parabolic linear Fresnel reflector (SPLFR) collecting system. The primary optical mirror field of the SPLFR collecting system and the second-stage concentrator of compound parabolic collector are designed. The mirrors located at the parabolic line are close to each other, which effectively reduce the gap between the adjacent mirrors. The end losses of the receiver are very important, especially in a small-scale collecting system. A movable receiver is introduced for the reduction of the end losses. Moreover, a stretched structure of SPLFR is designed for wind resistance. Finally, the thermal performance of the SPLFR collecting system with fixed and movable receiver located in Guangzhou is tested. The maximum thermal efficiency obtained by this collecting system with movable receiver is 66% which avoid the end losses effectively, and the solar collector thermal loss coefficient is 1.32 W/m"2 °C. The results show that the SPLFR collecting system has excellent thermal performance and a promising application future. Meanwhile, this system will provide a valuable reference for concentrating solar power technology.

  7. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  8. Energy performance of a concentrated photovoltaic energy system with static linear Fresnel lenses integrated in a greenhouse

    NARCIS (Netherlands)

    B.A.J. van Tuijl; Piet Sonneveld; J. Campen; Gert-Jan Swinkels; H.J.J. Janssen; G.P.A Bot

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  9. Surface wear of TiN coated nickel tool during the injection moulding of polymer micro Fresnel lenses

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2012-01-01

    Limited tool life of nickel mould inserts represents an issue for the mass-production of polymer optics with complex micro three-dimensional geometries by injection moulding. TiN coating was applied to a nickel insert for the injection moulding of polycarbonate micro Fresnel lenses. Surface wear...

  10. Development of background reduced Fresnel phase zone plate

    International Nuclear Information System (INIS)

    Tamari, Yohei; Azechi, Hiroshi

    2004-01-01

    In study of hot and dense plasma, a high spatial resolution (a few microns) x-ray imaging is very important to observe these plasmas. The Fresnel phase zone plate (FPZP) consists of alternately material and transparent circular annuli placed concentrically, which image x rays using diffraction x rays from all annuli. FPZP have imaged 4.7-4.77 keV x rays with 2.2 μm spatial resolution. However FPZP has a problem that background level is comparable to signal level. In subtraction of background, the error of 10% is caused. For the accurate background subtraction, we designed new FPZP, which consist of three β layers of a transparent zone and two material zones. The new design FPZP parameters (thickness of material zones, each zone width) have been optimized, and in that optimum design signal-to-background ratio is 4 times better than conventional two layers FPZP

  11. A Fresnel collector process heat experiment at Capitol Concrete Products

    Science.gov (United States)

    Hauger, J. S.

    1981-01-01

    An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.

  12. Nonimaging fresnel lenses. Design and performance of solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R. [Tokyo Univ. of Agriculture and Technology, Koganei-shi (Japan). BASE; Suzuki, A. [UNESCO, Paris (France). Natural Science Sector

    2001-07-01

    This book offers a detailed and comprehensive account of the engineering of the world's first nonimaging Fresnel lens solar concentrator. The book closes a gap in solar concentrator design, and describes nonimaging refractive optics and its numerical mathematics. The contents follow a systems approach that is absent in standard handbooks of optics or solar energy. The reader is introduced to the principles, theories, and advantages of nonimaging optics from the standpoint of concentrating sunlight (the solar concentrator idea). The book shows the reader how to find his or her own optical solution using the rules and methodologies covering the design and the assessment of the nonimaging lens. This novel solar concentrator is developed within the natural constraints presented by the sun and in relation to competitive solutions offered by other concentrators. (orig.)

  13. The Huygens probe is prepared for transport from the Skid Strip, CCAS

    Science.gov (United States)

    1997-01-01

    The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn, is prepared for transport from the Skid Strip, Cape Canaveral Air Station (CCAS), after being off-loaded from a plane. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface.

  14. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain

    Science.gov (United States)

    Yadav, Poonam Lata; Singh, Hukum

    2018-05-01

    To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

  15. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    International Nuclear Information System (INIS)

    Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam

    2015-01-01

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m 2 . When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system

  16. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  17. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    Science.gov (United States)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  18. Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces.

    Science.gov (United States)

    Liu, Yongquan; Liang, Zixian; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen

    2017-07-21

    Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form invariance in usual transformation methods. We demonstrate compact and simple-to-implement metasurfaces for shifting, transforming, and splitting a point source. The effects are measured to be broadband and robust against a change of source positions, with agreement from numerical simulations and the Huygens-Fresnel theory. The proposed method is potentially useful for applications such as nondestructive testing, high-resolution ultrasonography, and advanced signal modulation.

  19. Discrete ordinates solution of coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation

    International Nuclear Information System (INIS)

    Muresan, Cristian; Vaillon, Rodolphe; Menezo, Christophe; Morlot, Rodolphe

    2004-01-01

    The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method

  20. [System design of open-path natural gas leakage detection based on Fresnel lens].

    Science.gov (United States)

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  1. A teoria ondulatória de Huygens em livros didádicos para cursos superiores The wave theory of Huygensi in textbooks for undergraduate courses

    Directory of Open Access Journals (Sweden)

    Sidney Maia Araújo

    2009-01-01

    Full Text Available Este trabalho compara a teoria apresentada por Christiaan Huygens no Tratado sobre a Luz, no século XVII, com a versão que aparece em alguns livros didáticos de Física para cursos superiores, e estuda a percepção dos alunos acerca do desenvolvimento dessa teoria. As informações veiculadas nesses livros incorporam contribuições posteriores, que levam a uma visão inadequada da evolução dessa teoria e a atribuir ao passado concepções atuais.This paper compares the theory presented by Christiaan Huygens in his Treatise on Light, in the XVII century, with the version that appears in some textbooks of Physics for undergraduate courses, and analysis the perception of students concerning the development of this theory. As a result, we found that the information presented in these books incorporated later contributions, which leads students to an incorrect view of the evolution of this theory and to attribute current conceptions to the past.

  2. Aplikasi Termoelektrik Generator Sebagai Sumber Energi Listrik Dengan Lensa Fresnel Sebagai Kolektor Panas Matahari

    OpenAIRE

    Simanjuntak, Jerri

    2015-01-01

    It has been designed a thermoelectric generator to produce electricity. By utilizing solar heat as the hot side of the peltier element. Fresnel Lens is used to collect sunlight towards the aluminium plate which is directly on the hot side of the peltier element. The working principle of thermoelectric generator according to the Seebeck effect, where the presence of the temperature difference between the hot side and a cold side peltier there will be a flow of current to produce a voltage.Test...

  3. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  4. Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.

    Science.gov (United States)

    Williams, Logan A; Nehmetallah, Georges; Aylo, Rola; Banerjee, Partha P

    2015-02-20

    Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.

  5. Fresnel: O formulador matemático da teoria ondulatória da luz

    OpenAIRE

    Bassalo, José Maria Filardo

    1988-01-01

    Neste artigo, apresentamos alguns aspectos da vida de Fresnel, engenheiro e físico francês que se notabilizou pela formulação matemática da teoria ondulatória da luz, e cujo bicentenário de nascimento transcorre neste ano de 1988. Realçamos, neste trabalho, suas principais pesquisas relacionadas com o estudo da difração, dupla-refração e reflexão da luz, nas quais utilizou a idéia revolucionária de transversalidade da onda luminosa para deduzir equações, as quais explicaram alg...

  6. Generation of Binary Off-axis Digital Fresnel Hologram with Enhanced Quality

    Directory of Open Access Journals (Sweden)

    Peter Wai Ming Tsang

    2015-06-01

    Full Text Available The emergence of high resolution printer and digital micromirror device (DMD has enabled real, off-axis holograms to be printed, or projected onto a screen. As most printers and DMD can only reproduce binary dots, the pixels in a hologram have to be truncated to 2 levels. However, direct binarizing a hologram will lead to severe degradation on its reconstructed image. In this paper, a method for generating binary off-axis digital Fresnel hologram is reported. A hologram generated with the proposed method is referred to as the "Enhanced Sampled Binary Hologram" (ESBH. The reconstructed image of the ESBH is superior in visual quality as compare with the one obtained with existing technique, and also resistant to noise contamination.

  7. Laser confocal microscope noise evaluation on injection compression moulded (ICM) transparent polymer Fresnel lenses

    DEFF Research Database (Denmark)

    Loaldi, D.; Calaon, Matteo; Quagliotti, Danilo

    , on an injection compression moulded (ICM) Fresnel lens, is defined. A set of two different objectives is considered, i.e. a standard series (SO), against a long working distance one (LWD); two different magnifications objectives, 50x and 100x and the use or not of a dark environment. The noise evaluation...... are measuring working distance, objective magnification and room lighting. The result confirms a strong difference of noise, using the considered objectives. The most interesting result is that the performance of SO 50x objective is better than LWD 100x....

  8. Physical modeling and characterization of thermo-acoustic loudspeakers made of silver nano-wire films

    Science.gov (United States)

    La Torraca, P.; Larcher, L.; Bobinger, M.; Pavan, P.; Seeber, B.; Lugli, P.

    2017-06-01

    Recent developments of ultra-low heat capacity nanostructured materials revived the interest in the thermo-acoustic (TA) loudspeaker technology, which shows important advantages compared to the classical dynamic loudspeakers as they feature a lower cost and weight, flexibility, conformability to the surface of various shapes, and transparency. The development of the TA loudspeaker technology requires accurate physical models connecting the material properties to the thermal and acoustic speaker's performance. We present here a combined theoretical and experimental analysis of TA loudspeakers, where the electro-thermal and the thermo-acoustic transductions are handled separately, thus allowing an in-depth description of both the pressure and temperature dynamics. The electro-thermal transduction is analyzed by accounting for all the heat flow processes taking place between the TA loudspeaker and the surrounding environment, with focus on their frequency dependence. The thermo-acoustic conversion is studied by solving the coupled thermo-acoustic equations, derived from the Navier-Stokes equations, and by exploiting the Huygens-Fresnel principle to decompose the TA loudspeaker surface into a dense set of TA point sources. A general formulation of the 3D pressure field is derived summing up the TA point source contributions via a Rayleigh integral. The model is validated against temperature and sound pressure level measured on the TA loudspeaker sample made of a Silver Nanowire random network deposited on a polyimide substrate. A good agreement is found between measurements and simulations, demonstrating that the model is capable of connecting material properties to the thermo-acoustic performance of the device, thus providing a valuable tool for the design and optimization of TA loudspeakers.

  9. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  10. Determination of scattering center of multipath signals using geometric optics and Fresnel zone concepts

    Directory of Open Access Journals (Sweden)

    Kamil Yavuz Kapusuz

    2014-06-01

    Full Text Available In this study, a method for determining scattering center (or center of scattering points of a multipath is proposed, provided that the direction of arrival of the multipath is known by the receiver. The method is based on classical electromagnetic wave principles in order to determine scattering center over irregular terrain. Geometrical optics (GO along with Fresnel zone concept is employed, as the receiver, the transmitter positions and irregular terrain data are assumed to be provided. The proposed method could be used at UHF bands, especially, operations of radars and electronic warfare applications.

  11. Stochastic techno-economic assessment based on Monte Carlo simulation and the Response Surface Methodology: The case of an innovative linear Fresnel CSP (concentrated solar power) system

    International Nuclear Information System (INIS)

    Bendato, Ilaria; Cassettari, Lucia; Mosca, Marco; Mosca, Roberto

    2016-01-01

    Combining technological solutions with investment profitability is a critical aspect in designing both traditional and innovative renewable power plants. Often, the introduction of new advanced-design solutions, although technically interesting, does not generate adequate revenue to justify their utilization. In this study, an innovative methodology is developed that aims to satisfy both targets. On the one hand, considering all of the feasible plant configurations, it allows the analysis of the investment in a stochastic regime using the Monte Carlo method. On the other hand, the impact of every technical solution on the economic performance indicators can be measured by using regression meta-models built according to the theory of Response Surface Methodology. This approach enables the design of a plant configuration that generates the best economic return over the entire life cycle of the plant. This paper illustrates an application of the proposed methodology to the evaluation of design solutions using an innovative linear Fresnel Concentrated Solar Power system. - Highlights: • A stochastic methodology for solar plants investment evaluation. • Study of the impact of new technologies on the investment results. • Application to an innovative linear Fresnel CSP system. • A particular application of Monte Carlo simulation and response surface methodology.

  12. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  13. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-01-01

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the imaging optics was in good agreement with the design value

  14. Development of Fresnel-based Concentrated Photovoltaic (CPV System with Uniform Irradiance

    Directory of Open Access Journals (Sweden)

    Irfan Ullah

    2014-12-01

    Full Text Available Different designs have been presented to achieve high concentration and uniformity for the concentrated photovoltaic (CPV system. Most of the designs have issues of low efficiency in terms of irradiance uniformity. To this end, we present a design methodology to increase irradiance uniformity over solar cell. The system consists of an eight-fold Fresnel lens as a primary optical element (POE and an optical lens, which consists of eight parts, as a secondary optical element (SOE. Sunlight is focused through the POE and then light is spread over cell through the SOE. In the design, maximum sunlight is passed over cell by minimizing losses. Results have shown that the proposed CPV design gives good irradiance uniformity. The concentration module based on this novel design is a promising option for the development of a cost-effective photovoltaic solar energy generation.

  15. Silence on Shangri-La: Attenuation of Huygens acoustic signals suggests surface volatiles

    Science.gov (United States)

    Lorenz, Ralph D.; Leese, Mark R.; Hathi, Brijen; Zarnecki, John C.; Hagermann, Axel; Rosenberg, Phil; Towner, Martin C.; Garry, James; Svedhem, Håkan

    2014-01-01

    Objective. Characterize and understand acoustic instrument performance on the surface of Titan. Methods. The Huygens probe measured the speed of sound in Titan's atmosphere with a 1 MHz pulse time-of-flight transducer pair near the bottom of the vehicle. We examine the fraction of pulses correctly received as a function of time. Results. This system returned good data from about 11 km altitude, where the atmosphere became thick enough to effectively transmit the sound, down to the surface just before landing: these data have been analyzed previously. After an initial transient at landing, the instrument operated nominally for about 10 min, recording pulses much as during descent. The fraction of pulses detected then declined and the transmitted sound ceased to be detected altogether, despite no indication of instrument or probe configuration changes. Conclusions. The most likely explanation appears to be absorption of the signal by polyatomic gases with relaxation losses at the instrument frequency, such as ethane, acetylene and carbon dioxide. These vapors, detected independently by the GCMS instrument, were evolved from the surface material by the warmth leaking from the probe, and confirm the nature of the surface materials as 'damp' with a cocktail of volatile compounds. Some suggestions for future missions are considered. Practice implications. None.

  16. Static Linear Fresnel Lenses as LCPV System in a Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; van Tuijl, B. A. J.; Janssen, H. J. J.; de Zwart, H. F.

    2011-12-01

    A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will significantly reduce the demand of cooling of the building. For an optimal performance it is beneficial to construct asymmetric roof elements with a steep inclination at the north side (the exact angle of course depends on the latitude of the building site). The Fresnel lens structure is oriented in upwards direction. In the current design, two of them are placed between an AR-coated double glass structure to prevent pollution and condensation on the lenses. Compared with a previous system, the number of lenses is reduced from 3 to 2 lenses, which reduces the costs of the system by limiting the number of receivers. By the upward facing of the lens structure, the focus quality is preserved over a much broader range of angles of incidence compared to a lens with downward facing structures. Each PMMA lens with a size of 1.20 m×1.60 m is composed of 12 `tiles' for easy production. The focal distance of the lens is 1,875 m and the concentration factor 50x. In most cases the focus line is thinner than 3 cm and the transmission is above 80%. The performance of these lenses with respect of the shape of the focal area and the position of the focal line has been analyzed with ray tracing techniques. From this analyses it was concluded that tracking of the receiver module is possible with two motors. One motor controls the distance between lens and receiver and one motor controls the translocation of the receivers parallel to the lens. The second conclusion was that the positions of the focal line are within the bounds of the greenhouse construction for almost the whole year. Only in winter, the focal line will be unreachable from time to time. A 480 m2 greenhouse with the LCPVT system

  17. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    Science.gov (United States)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  18. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    Directory of Open Access Journals (Sweden)

    Steven Bache

    Full Text Available Telecentric optical computed tomography (optical-CT is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc. The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS. Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm. DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  19. Twist phase-induced characteristics changes of a radially polarized Gaussian Schell-Model beam in a uniaxial crystal orthogonal to the optical axis

    Science.gov (United States)

    Cao, Pengfei; Fu, Wenyu

    2017-10-01

    Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.

  20. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator

    International Nuclear Information System (INIS)

    Yeh, Naichia

    2016-01-01

    This paper illustrates details about the solar radiation distribution on the target of a two-stage solar concentrator that combines the Fresnel lens (FL) and the compound flat concentrator (CFC). The paper starts with a review of some FL development milestones such as the two-stage systems and the comparisons of flat vs. curved lenses in addition to the most noteworthy FL-based solar energy application, concentration photovoltaic (CPV). Through the review of the FL based CPV and two-stage concentrators, this study leads to the development of an algorithm to explore the spectrum distribution insight on the receiver of a two-stage (FL plus CFC) solar concentration system. It established the potential for using a correctly positioned 2nd stage reflector of right dimension to selectively redirect the desired spectrum on the target area so as to enhance the concentration flux intensity and uniformity at the same time. The study also helped to chart out the approximate locations of certain spectrum segments on the FL's target area, which is useful for exploring the spectrum control mechanism via the Fresnel lenses. - Highlights: • Map out the approximate locations of spectrum segments on FL's focal area. • Use the 2nd stage reflector to selectively reflect the desired spectrum on target. • Explore the spectrum distribution insight on FL solar concentrators' target area.

  1. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    International Nuclear Information System (INIS)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    The fabrication and performance of multilayer Al 2 O 3 /Ta 2 O 5 Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported. Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al 2 O 3 /Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV

  2. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    Science.gov (United States)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  3. Cassini's Grand Finale Science Highlights

    Science.gov (United States)

    Spilker, Linda

    2017-10-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017

  4. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  5. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  6. Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis.

    Science.gov (United States)

    Gutiérrez-Vega, Julio C; Rodríguez-Masegosa, Rodolfo; Chávez-Cerda, Sabino

    2003-11-01

    A detailed study of the axicon-based Bessel-Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens-Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.

  7. Cassini's Grand Finale Overview

    Science.gov (United States)

    Spilker, L. J.

    2017-12-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand

  8. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  9. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  10. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  11. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  12. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  13. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    Science.gov (United States)

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  14. Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms

    Science.gov (United States)

    Kashter, Yuval; Rivenson, Yair; Stern, Adrian; Rosen, Joseph

    2015-01-01

    Creating a large-scale synthetic aperture makes it possible to break the resolution boundaries dictated by the wave nature of light of common optical systems. However, their implementation is challenging, since the generation of a large size continuous mosaic synthetic aperture composed of many patterns is complicated in terms of both phase matching and time-multiplexing duration. In this study we present an advanced configuration for an incoherent holographic imaging system with super resolution qualities that creates a partial synthetic aperture. The new system, termed sparse synthetic aperture with Fresnel elements (S-SAFE), enables significantly decreasing the number of the recorded elements, and it is free from positional constrains on their location. Additionally, in order to obtain the best image quality we propose an optimal mosaicking structure derived on the basis of physical and numerical considerations, and introduce three reconstruction approaches which are compared and discussed. The super-resolution capabilities of the proposed scheme and its limitations are analyzed, numerically simulated and experimentally demonstrated. PMID:26367947

  15. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, Daniel, E-mail: daniel.chemisana@macs.udl.cat [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain); Ignasi Rosell, Joan [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain)

    2011-09-15

    Highlights: {yields} The designed concentrator has an important potential for building integration. {yields} The device concentrates radiation toward a static receiver. {yields} Tracking performed by a single driver, representing an important mechanical advantage. {yields} The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  16. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    International Nuclear Information System (INIS)

    Chemisana, Daniel; Ignasi Rosell, Joan

    2011-01-01

    Highlights: → The designed concentrator has an important potential for building integration. → The device concentrates radiation toward a static receiver. → Tracking performed by a single driver, representing an important mechanical advantage. → The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  17. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    Science.gov (United States)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10

  18. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  19. The mini-dome Fresnel lens photovoltaic concentrator array - Current status of component and prototype panel testing

    Science.gov (United States)

    Piszczor, M. F.; Swartz, C. K.; O'Neill, M. J.; Mcdanal, A. J.; Fraas, L. M.

    1990-01-01

    NASA Lewis and ENTECH have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The emphasis of the program has shifted to fabrication and testing of the minidome Fresnel lens and other array components. Protototype lenses have been tested for optical efficiency, with results around 90 percent, and tracking error performance. The results of these tests have been very consistent with the predicted analytical performance. Work has also progressed in the fabrication of the array support structure. Recent advances in 30 percent efficient stacked cell technology will have a significant effect on the array performance. It is concluded that near-term array performance goals of 300 W/sq m and 100 W/kg are feasible.

  20. Visualizing light with electrons

    Science.gov (United States)

    Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.

    2014-03-01

    In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.

  1. A BRDF statistical model applying to space target materials modeling

    Science.gov (United States)

    Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen

    2017-10-01

    In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.

  2. Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor.

    Science.gov (United States)

    Kiuchi, Yuki; Taguchi, Yoshihiro; Nagasaka, Yuji

    2017-01-23

    This paper reports the development of an electrothermal microelectromechanical systems (MEMS) mirror with serpentine shape actuators. A micro Fresnel mirror with fringe-spacing tunability is required to realize a compact and high-speed diffusion sensor for biological samples whose diffusion coefficient changes significantly because of a conformational change. In this case, the measurement time-constant is dependent on the fringe-spacing and diffusion coefficient of the sample. In this study, a fringe-tunable MEMS mirror with an actuation voltage less than 10 V was developed. The characteristics of the fabricated mirror were investigated experimentally. A high-visibility optical interference fringe was successfully demonstrated using both an ultranarrow-linewidth solid-state laser and a low-cost compact laser diode. The experimental results demonstrated a distinct possibility of developing a measurement device using only simple and low-voltage optical components.

  3. 24-GHz LTCC Fractal Antenna Array SoP With Integrated Fresnel Lens

    KAUST Repository

    Ghaffar, Farhan A.

    2012-09-30

    A novel 24-GHz mixed low-temperature co-fired ceramic (LTCC) tape based system-on-package (SoP) is presented, which incorporates a fractal antenna array with an integrated grooved Fresnel lens. The four-element fractal array employs a relatively low dielectric constant substrate (CT707, εr = 6.4), whereas the lens has been realized on a high-dielectric-constant superstrate (CT765, εr = 68.7 ). The two (substrate and superstrate) are integrated through four corner posts to realize the required air gap (focal distance). The fractal array alone provides a measured gain of 8.9 dBi. Simulations predict that integration of this array with the lens increases the gain by 6 dB. Measurements reveal that the design is susceptible to LTCC fabrication tolerances. In addition to high gain, the SoP provides a bandwidth of 8%. The high performance and compact size (24 × 24 × 4.8 mm3 ) of the design makes it highly suitable for emerging wireless applications such as automotive radar front end.

  4. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    Patino, A; Durand, P-E; Fogret, E; Pellat-Finet, P

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  5. Evaluation of different operating strategies to integrate storage in a linear Fresnel ORC power plant

    Science.gov (United States)

    Zoschke, Theda; Seubert, Bernhard; Fluri, Thomas

    2017-06-01

    An existing linear Fresnel power plant with ORC process located in Ben Guerir, Morocco, is retrofitted with a thermal energy storage system and additional collector loops. Two different plant configurations are investigated in this paper. In the first configuration two separate solar fields are built and only the minor one can charge the storage. In the second configuration, there is only one large solar field which offers more flexibility. Two different control strategies are assessed by comparing simulation results. It shows that the simulations of the systems with two solar fields results in higher energy yields throughout the year, but the power production of the system with one solar field is much more flexible and demand oriented. Also it offers great potential for improvement when it comes to weather forecasting.

  6. Space-bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms.

    Science.gov (United States)

    Healy, John J; Sheridan, John T

    2011-05-01

    The product of the spatial and spatial frequency extents of a wave field has proven useful in the analysis of the sampling requirements of numerical simulations. We propose that the ratio of these quantities is also illuminating. We have shown that the distance at which the so-called "direct method" becomes more efficient than the so-called "spectral method" for simulations of Fresnel transforms may be written in terms of this space-bandwidth ratio. We have proposed generalizations of these algorithms for numerical simulations of general ABCD systems and derived expressions for the "transition space-bandwidth ratio," above which the generalization of the spectral method is the more efficient algorithm and below which the generalization of the direct method is preferable.

  7. Inexpensive Ultrasound Demonstrations as Analogs of Radio Diffraction in the field : Huygens Probe Bistatic experiment on Titan and the Sea Interferometer (Invited)

    Science.gov (United States)

    Lorenz, R. D.

    2013-12-01

    The wave nature of electromagnetic radiation can be exploited in a number of astronomical and remote sensing methods, but is often challenging to visualize in the classroom. One approach with conveniently-inexpensive components is to use sound as an analog. Readily-available ultrasonic transducers at 40 kHz can be driven with a 555 oscillator and received intensity detected with an op-amp and visualized with a digital voltmeter, a lightbulb, or even acoustically. The wavelength of 9mm is convenient for tabletop experiments, with a relevant example being Lloyds Mirror, the interference of a direct wave from a source just above a surface with the reflected wave. As a distant receiver moves in angle through this interference pattern, a series of peaks and nulls in recorded intensity can be interpreted as the height of the transmitter and the reflectivity (i.e. with some assumptions, the roughness) of the reflecting surface. This $10 experiment will be demonstrated at the poster. Such an observation was (serendipitously) made in 2005 after the landing of the Huygens probe on the surface of Titan, where the radio signal measured by Cassini as it set on the horizon as seen from the probe underwent sharp dips in strength that were inverted into a precise measurement of the post-impact probe height. A similar technique in reverse was applied a half century earlier in early Australian radio astronomy to measure the position and width of astrophysical sources from a single clifftop antenna. Ultrasound can be convenient to emulate other radio work, exploiting Doppler effects and (for pulsed sources, like those used in rangers for amateur robotics) propagation time rather than diffraction. Some experiments on tracking Frisbees as an analog for measuring planetary winds by tracking descent probes, and on bistatic delay/Doppler scatterometry as in the CYGNSS GPS-based experiment to measure hurricane winds via sea state, will also be discussed. Huygens probe on the surface of

  8. Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms

    Science.gov (United States)

    Hennelly, Bryan M.; Sheridan, John T.

    2005-05-01

    By use of matrix-based techniques it is shown how the space-bandwidth product (SBP) of a signal, as indicated by the location of the signal energy in the Wigner distribution function, can be tracked through any quadratic-phase optical system whose operation is described by the linear canonical transform. Then, applying the regular uniform sampling criteria imposed by the SBP and linking the criteria explicitly to a decomposition of the optical matrix of the system, it is shown how numerical algorithms (employing interpolation and decimation), which exhibit both invertibility and additivity, can be implemented. Algorithms appearing in the literature for a variety of transforms (Fresnel, fractional Fourier) are shown to be special cases of our general approach. The method is shown to allow the existing algorithms to be optimized and is also shown to permit the invention of many new algorithms.

  9. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Science.gov (United States)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  10. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.

    2004-01-01

    and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally...... tissue phantom. Such algorithm holds promise for improving OCT imagery and to extend the possibility for functional imaging....

  11. Far-field and Fresnel Liquid Crystal Geometric Phase Holograms via Direct-Write Photo-Alignment

    Directory of Open Access Journals (Sweden)

    Xiao Xiang

    2017-12-01

    Full Text Available We study computer-generated geometric-phase holograms (GPHs realized by photo-aligned liquid crystals, in both simulation and experiment. We demonstrate both far-field and Fresnel holograms capable of producing far-field and near-field images with preserved fidelity for all wavelengths. The GPHs are fabricated by patterning a photo-alignment layer (PAL using a direct-write laser scanner and coating the surface with a polymerizable liquid crystal (i.e., a reactive mesogen. We study various recording pixel sizes, down to 3 μm, that are easily recorded in the PAL. We characterize the fabricated elements and find good agreement with theory and numerical simulation. Because of the wavelength independent geometric phase, the (phase fidelity of the replay images is preserved for all wavelengths, unlike conventional dynamic phase holograms. However, governed by the diffraction equation, the size and location of a reconstructed image depends on the replay wavelength for far-field and near-field GPHs, respectively. These offer interesting opportunities for white-light holography.

  12. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  13. Design and analysis of a curved cylindrical Fresnel lens that produces high irradiance uniformity on the solar cell.

    Science.gov (United States)

    González, Juan C

    2009-04-10

    A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

  14. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    Science.gov (United States)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  15. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  16. Comparison of Fresnel zone plates and uniformly redundant arrays

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Cannon, T.M.; Miller, E.L.

    1978-01-01

    Several imaging systems in laser fusion, e-beam fusion, and astronomy employ a Fresnel zone plate (FZP) as a coded aperture. The recent development of uniformly redundant arrays (URAs) promises several improvements in these systems. The first advantage of the URA is the fact that its modulation transfer function (MTF) is the same as the MTF of a single pinhole, whereas the MTF of an FZP is an erratic function including some small values. This means that if inverse filtering is used, the URA will be less susceptible to noise. If a correlation analysis is used, the FZP will produce artifacts whereas the URA has no artifacts (assuming planar sources). Both the FZP and URA originated from functions which had flat MTFs. However, practical considerations in the implementation of the FZP detracted from its good characteristics whereas the URA was only mildly affected. The second advantage of the URA is that it better utilizes the available detector area. With the FZP, the aperture should be smaller than the detector in order to maintain the full angular resolution corresponding to the thinnest zone. The cyclic nature of the URA allows one to mosaic it in such a way that the entire detector area collects photons from all of the sources within the field of view while maintaining the full angular resolution. If the FZP is as large (or larger) than the detector, all parts of the source will not be resolved with the same resolution. The FZP does have some advantages, in particular its radial symmetry eases the alignment problem; it has a convenient optical decoding method; and higher diffraction order reconstruction might provide better spatial resolution

  17. Graphene-based THz modulator analyzed by equivalent circuit model

    DEFF Research Database (Denmark)

    Xiao, Binggang; Chen, Jing; Xie, Zhiyi

    2016-01-01

    A terahertz (THz) modulator based on graphene is proposed and analysed by use of equivalent transmission line of a homogeneous mediumand the local anisotropic model of the graphene conductivity. The result calculated by the equivalent circuit is consistent with that obtained byFresnel transfer...

  18. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2010-03-15

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)

  19. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    International Nuclear Information System (INIS)

    Velazquez, N.; Garcia-Valladares, O.; Sauceda, D.; Beltran, R.

    2010-01-01

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency.

  20. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  1. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    Science.gov (United States)

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.

  2. Descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe of Titan

    Science.gov (United States)

    Tomasko, Martin G.; Doose, Lyn R.; Smith, Peter H.; Fellows, C.; Rizk, B.; See, C.; Bushroe, M.; McFarlane, E.; Wegryn, E.; Frans, E.; Clark, R.; Prout, M.; Clapp, S.

    1996-10-01

    The Huygen's probe of the atmosphere of Saturn's moon Titan includes one optical instrument sensitive to the wavelengths of solar radiation. The goals of this investigation fall into four broad areas: 1) the measurement of the profile of solar heating to support an improved understanding of the thermal balance of Titan and the role of the greenhouse effect in maintaining Titan's temperature structure; 2) the measurement of the size, vertical distribution, and optical properties of the aerosol and cloud particles in Titan's atmosphere to support studies of the origin, chemistry, life cycles, and role in the radiation balance of Titan played by these particles; 3) the composition of the atmosphere, particularly the vertical profile of the mixing ratio of methane, a condensable constituent in Titan's atmosphere; and 4) the physical state, composition, topography, and physical processes at work in determining the nature of the surface of Titan and its interaction with Titan's atmosphere. In order to accomplish these objectives, the Descent Imager/Spectral Radiometer (DISR) instrument makes extensive use of fiber optics to bring the light from several different sets of foreoptics to a silicon CCD detector, to a pair of InGaAs linear array detectors, and to three silicon photometers. Together these detectors permit DISR to make panoramic images of the clouds and surface of Titan, to measure the spectrum of upward and downward streaming sunlight from 350 to 1700 nm at a resolving power of about 200, to measure the reflection spectrum of >= 3000 locations on the surface, to measure the brightness and polarization of the solar aureole between 4 and 30 degrees from the sun at 500 and 935 nm, to separate the direct and diffuse downward solar flux at each wavelength measured, and to measure the continuous reflection spectrum of the ground between 850 and 1600 nm using an onboard lamp in the last 100 m of the descent.

  3. Survey mirrors and lenses and their required surface accuracy. Volume 2. Concentrator optical performance software (COPS) user's manual. Final report for September 15, 1978-December 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)

  4. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    Science.gov (United States)

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

  5. Combinación de pantallas de cristal líquido para la modulación compleja de frentes de onda. Aplicación en reconstrucción de hologramas de Fresnel digitales.

    OpenAIRE

    Tudela Fernández, Raúl; Martín Badosa, Estela; Labastida i Juan, Ignasi, 1970-; Vallmitjana i Rico, Santiago; Carnicer González, Arturo

    2012-01-01

    En este trabajo se presentan distintas alternativas para obtener la modulación compleja completa de frentes de onda mediante la suma de la modulación introducida por dos pantallas de cristal líquido. Para los distintos métodos se presentan resultados simulados de reconstrucciones de hologramas de Fresnel digitales.

  6. High efficiency and flexible working distance digital in-line holographic microscopy based on Fresnel zone plate

    International Nuclear Information System (INIS)

    Tian, Peng; Yang, Fan; Li, Fanxing; Hu, Song; Yan, Wei; Hua, Yilei

    2017-01-01

    Traditional digital in-line holography suffers from twin-image noise problems and extremely short working distances between the object and light source. Here, we propose lensless Fourier transform digital in-line holographic microscopy based on a single optical element. A Fresnel zone plate is used to split the incident light into two parts: one is scattered along the original direction, the other is gathered at a focal point and the sample is put behind the focus. The interference fringe pattern, formed by the two beams, is recorded digitally by a CCD camera. A novel reconstruction algorithm is proposed to present the object image. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem, improving the image contrast with high efficiency, and increasing the flexibility of the working distance. Furthermore, a wide field of view and no contact make it a promising tool for the study of materials science, biology and microelectronics. (paper)

  7. Measurement of an electron-beam size with a beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Iida, K.; Nakamura, N.; Sakai, H.; Shinoe, K.; Takaki, H.; Fujisawa, M.; Hayano, H.; Nomura, M.; Kamiya, Y.; Koseki, T.; Amemiya, Y.; Aoki, N.; Nakayama, K.

    2003-01-01

    We present a non-destructive and real-time beam profile monitor using Fresnel zone plates (FZPs) and the measurement of an electron-beam size with this monitor in the KEK-Accelerator Test Facility (ATF) damping ring. The monitor system has the structure of a long-distance X-ray microscope, where two FZPs constitute an X-ray imaging optics. The synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is sufficiently high to measure the horizontal and vertical beam sizes of the ATF damping ring. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the X-ray imaging optics in the monitor system was in good agreement with the design value

  8. NASA 3D Models: Cassini

    Data.gov (United States)

    National Aeronautics and Space Administration — Cassini spacecraft from SPACE rendering package, built by Michael Oberle under NASA contract at JPL. Includes orbiter only, Huygens probe detached. Accurate except...

  9. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  10. Finite difference modelling of scattered hydrates and its implications in gas-hydrate exploration

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.

    coming from individual scatterers 12 . However, the scatterers which lie within the first Fresnel zone interfere constructively. Therefore, the BSR ampli- tude in a zero-offset section represents all the scatterers lying within the first Fresnel zone...

  11. The Outer Planets and their Moons Comparative Studies of the Outer Planets prior to the Exploration of the Saturn System by Cassini-Huygens

    CERN Document Server

    Encrenaz, T; Owen, T. C; Sotin, C

    2005-01-01

    This volume gives an integrated summary of the science related to the four giant planets in our solar system. It is the result of an ISSI workshop on «A comparative study of the outer planets before the exploration of Saturn by Cassini-Huygens» which was held at ISSI in Bern on January 12-16, 2004. Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, an...

  12. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.

    Science.gov (United States)

    Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad

    2017-12-01

    In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.

  13. Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

    NARCIS (Netherlands)

    Jin, Fengping; Yuan, Shengjun; De Raedt, Hans; Michielsen, Kristel; Miyashita, Seiji

    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The

  14. Radar observations of meteor trails, and their interpretation using Fresnel holography: a new tool in meteor science

    Directory of Open Access Journals (Sweden)

    W. G. Elford

    2004-01-01

    Full Text Available A Fresnel transform technique has been developed at Adelaide to analyse radar meteor echoes detected in the transverse mode. The genesis for this technique was the study of the structure of the scattering ionization immediately behind the head of the trail, in order to deduce the degree of fragmentation of the ablating meteoroid. The technique has been remarkably successful in not only giving insight into the fragmentation of meteoroids, but also revealing other significant features of the trails including diffusion, lateral motion of the trail during formation due to wind drift, and phase of the scattered signal in the vicinity of the head of the trail. A serendipitous outcome of the analysis is the measurement of the speed and deceleration of the meteoroid producing the trail to a precision far exceeding that available from any other method applied to transverse scatter data. Examples of the outcomes of the technique applied to meteor echoes obtained with a 54MHz narrow beam radar are presented.

  15. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography.

    Science.gov (United States)

    Jiang, Hongzhen; Zhao, Jianlin; Di, Jianglei; Qin, Chuan

    2009-10-12

    We propose an effective reconstruction method for correcting the joint misplacement of the sub-holograms caused by the displacement error of CCD in spatial synthetic aperture digital Fresnel holography. For every two adjacent sub-holograms along the motion path of CCD, we reconstruct the corresponding holographic images under different joint distances between the sub-holograms and then find out the accurate joint distance by evaluating the quality of the corresponding synthetic reconstructed images. Then the accurate relative position relationships of the sub-holograms can be confirmed according to all of the identified joint distances, with which the accurate synthetic reconstructed image can be obtained by superposing the reconstruction results of the sub-holograms. The numerical reconstruction results are in agreement with the theoretical analysis. Compared with the traditional reconstruction method, this method could be used to not only correct the joint misplacement of the sub-holograms without the limitation of the actually overlapping circumstances of the adjacent sub-holograms, but also make the joint precision of the sub-holograms reach sub-pixel accuracy.

  16. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  17. Temperature Buffer Test. Final THM modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan [Clay Technology AB, Lund (Sweden); Ledesma, Alberto; Jacinto, Abel [UPC, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code{sub B}right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code{sub B}right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  18. Temperature Buffer Test. Final THM modelling

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan; Ledesma, Alberto; Jacinto, Abel

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code B right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code B right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  19. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  20. Consequences of repeated discovery and benign neglect of non-interaction of waves (NIW)

    Science.gov (United States)

    Roychoudhuri, ChandraSekhar

    2017-08-01

    This paper presents the historical background behind the repeated discovery and repeated ignoring of the generic important property of all propagating waves, the Non-Interaction of Waves (NIW). The focus will be on the implications of NIW in most of the major optical phenomena with brief hints of importance. We argue that the prevailing postulate of wave-particle duality becomes unnecessary, once we accept NIW. Semi-classical model of treating light-matter interactions should be the preferred approach since the quantumness actually arises from within the structure of the energy levels (bands) in materials. Waves, and wave equations, do not support bullet-like propagation. We follow the historical trend starting from the tenth century physicist Alhazen, to the seventeenth century Newton and Huygens, then to the nineteenth century Young and Fresnel. Then we jump to twentieth century physicists Planck, Einstein, Bose, Dirac and Feynman. Had we recognized and appreciated NIW property of waves from the time of Alhazen, the evolutionary history of physics would have been dramatically different from what we have today. The prevailing dominance of the postulate of wave-particle duality is keeping us confused from seeking out actual reality; and hence, we should abandon this concept and search out better models. The paper demonstrates that NIW provides us with a platform for deeper understanding of the nature of EM waves that we have missed; it is not just semantics.

  1. Insights on landscape evolution and climatic forcing on Titan

    Science.gov (United States)

    Lucas, A.; Daudon, C.; Rodriguez, S.; Cornet, T.; Perron, J. T.

    2017-12-01

    The landscapes of Titan were observed for nearly 13 years by the Cassini spacecraft and Huygens probe. With dunes, mountains, seas, lakes, rivers..., the great morphological variety observed testifies to the geological richness that Titan shares with the Earth. In this study, we combine analysis of radar and hyperspectral data provided by the Cassini-Huygens mission, with models of valley and river network evolution to better understand the processes at work that sculpt these familiar landscapes. We develop quantitative criteria for comparing 3D morphologies obtained by numerical simulation with those derived for Titan by photogrammetry. These criteria are validated on Earth's landscapes. We simulate morphologies similar to those observed and show that landscapes at the equator and poles are mainly controlled by river incision and mass wasting such as landslides for which we quantify their respective contribution. Subsequently, we relate modeling to precipitation rates of methane and show values that are to be compared with general circulation model predictions (GCM). Our results also show a very young age of formation of the observed morphologies, less than a few million years. Finally, we provide new constraints on current amplitude of the tidal effects and organic precipitation rates from atmosphere chemistry.

  2. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  3. Average spreading and beam quality evolution of Gaussian array beams propagating through oceanic turbulence

    International Nuclear Information System (INIS)

    Zhi, Dong; Chen, Yizhu; Tao, Rumao; Ma, Yanxing; Zhou, Pu; Si, Lei

    2015-01-01

    The propagation properties of a radial Gaussian beam array through oceanic turbulence are studied analytically. The analytical expressions for the average intensity and the beam quality (power-in-the-bucket (PIB) and M 2 -factor) of a radial beam array in a turbulent ocean are derived based on an account of statistical optics methods, the extended Huygens-Fresnel principle, and the second order moments of the Wigner distribution function. The influences of w, ε, and χ T on the average intensity are investigated. The array divergence increases and the laser beam spreads as the salinity-induced dominant, ε decreased, and χ T increased. Further, the analytical expression of PIB and the M 2 -factor in the target plane is obtained. The changes of PIB and the M 2 -factor with three oceanic turbulence parameters indicate that the stronger turbulence with a larger w, smaller ε, and larger χ T results in the value of PIB decreasing, the value of the M 2 -factor increasing, and the beam quality degrading. (letter)

  4. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  5. New accurate theoretical line lists of 12CH4 and 13CH4 in the 0-13400 cm-1 range: Application to the modeling of methane absorption in Titan's atmosphere

    Science.gov (United States)

    Rey, Michaël; Nikitin, Andrei V.; Bézard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir G.

    2018-03-01

    The spectrum of methane is very important for the analysis and modeling of Titan's atmosphere but its insufficient knowledge in the near infrared, with the absence of reliable absorption coefficients, is an important limitation. In order to help the astronomer community for analyzing high-quality spectra, we report in the present work the first accurate theoretical methane line lists (T = 50-350 K) of 12CH4 and 13CH4 up to 13400 cm-1 ( > 0.75 μm). These lists are built from extensive variational calculations using our recent ab initio potential and dipole moment surfaces and will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). Validation of these lists is presented throughout the present paper. For the sample of lines where upper energies were available from published analyses of experimental laboratory 12CH4 spectra, small empirical corrections in positions were introduced that could be useful for future high-resolution applications. We finally apply the TheoRetS line list to model Titan spectra as observed by VIMS and by DISR, respectively onboard Cassini and Huygens. These data are used to check that the TheoReTS line lists are able to model observations. We also make comparisons with other experimental or theoretical line lists. It appears that TheoRetS gives very reliable results better than ExoMol and even than HITRAN2012, except around 1.6 μm where it gives very similar results. We conclude that TheoReTS is suitable to be used for the modeling of planetary radiative transfer and photometry. A re-analysis of spectra recorded by the DISR instrument during the descent of the Huygens probe suggests that the CH4 mixing ratio decreases with altitude in Titan's stratosphere, reaching a value of ∼10-2 above the 110 km altitude.

  6. Implementation of a multiangle soil moisture retrieval model using RADARSAT-2 imagery over arid Juyanze, northwest China

    Science.gov (United States)

    Yang, Liping; Li, Yanfei; Li, Qi; Sun, Xiaohui; Kong, Jinling; Wang, Le

    2017-07-01

    Accurate retrieval of soil moisture is important for understanding regional environmental changes and sustainable development in arid regions. Through numerical simulation and regression analysis based on advanced integral equation model (AIEM), the study aims to establish a multiangle soil moisture retrieval model based on RADARSAT-2 image in arid Juyanze. A combined roughness parameter Rs was established, and then the influences of roughness and soil moisture on the backscattering simulations were discussed. Finally, the empirical multiangle soil moisture retrieval model was implemented and validated in Juyanze. Inversion results show that the model has favorable validity. The coefficient of determination R2 between the inferred and measured soil moisture is 0.775 with a root-mean-square error (rmse) of 0.626%, implying better retrieval accuracy. Soil moisture varies from about 0.1% to 25% and is no more than 10% in most parts of this region, which is in reasonable agreement with the factual circumstances. The model directly relates the Fresnel reflection coefficient and soil moisture and is independent of ground roughness measurements. With a wider angular range, it has great potential for soil moisture evaluation in arid regions.

  7. A final size relation for epidemic models of vector-transmitted diseases

    OpenAIRE

    Fred Brauer

    2017-01-01

    We formulate and analyze an age of infection model for epidemics of diseases transmitted by a vector, including the possibility of direct transmission as well. We show how to determine a basic reproduction number. While there is no explicit final size relation as for diseases transmitted directly, we are able to obtain estimates for the final size of the epidemic.

  8. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Science.gov (United States)

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  9. Post-modelling of images from a laser-induced wavy boiling front

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R.S., E-mail: ramiz.matti@ltu.se [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden); University of Mosul, College of Engineering, Department of Mechanical Engineering, Mosul (Iraq); Kaplan, A.F.H. [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden)

    2015-12-01

    Highlights: • New method: post-modelling of high speed images from a laser-induced front. • From the images a wavy cavity and its absorption distribution is calculated. • Histograms enable additional statistical analysis and understanding. • Despite the complex topology the absorptivity is bound to 35–43%. • The new method visualizes valuable complementary information. - Abstract: Processes like laser keyhole welding, remote fusion laser cutting or laser drilling are governed by a highly dynamic wavy boiling front that was recently recorded by ultra-high speed imaging. A new approach has now been established by post-modelling of the high speed images. Based on the image greyscale and on a cavity model the three-dimensional front topology is reconstructed. As a second step the Fresnel absorptivity modulation across the wavy front is calculated, combined with the local projection of the laser beam. Frequency polygons enable additional analysis of the statistical variations of the properties across the front. Trends like shadow formation and time dependency can be studied, locally and for the whole front. Despite strong topology modulation in space and time, for lasers with 1 μm wavelength and steel the absorptivity is bounded to a narrow range of 35–43%, owing to its Fresnel characteristics.

  10. Washington State Nursing Home Administrator Model Curriculum. Final Report.

    Science.gov (United States)

    Cowan, Florence Kelly

    The course outlines presented in this final report comprise a proposed Fort Steilacoom Community College curriculum to be used as a statewide model two-year associate degree curriculum for nursing home administrators. The eight courses described are introduction to nursing, home administration, financial management of nursing homes, nursing home…

  11. Laser Beam and Resonator Calculations on Desktop Computers.

    Science.gov (United States)

    Doumont, Jean-Luc

    There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to

  12. On the radiative transfer problem in a spherical medium subject to Fresnel's reflective boundary conditions

    International Nuclear Information System (INIS)

    Mohammed, M.H.H.

    2012-01-01

    Radiation transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) and diffuse reflecting boundary is considered. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The solution of the problem containing an energy source in a medium of specular and diffuse reflecting boundaries is given in terms of the solution of the source-free problem. The source-free problem for anisotropic scattering through a homogeneous solid sphere and two concentric spheres is solved by using the Pomraning- Eddington approximation method. This method transform the integro-differential equation into two differential equations for the radiance g (x) and net flux q (x) which has an analytical solution in terms of the modified Bessel function. Two different weight functions are used to verify the boundary conditions and so, find the solution constants. The partial heat fluxes at the boundaries of a solid sphere and spherical shell of transparent and reflecting boundaries are calculated. The media are taken with or without internal black-body radiation. The calculations are carried out for various values of refractive index and different radii. The results are compared with those of the Galerkin technique

  13. Comment on "An Analysis of VLF Electric Field Spectra Measured in Titan's Atmosphere by The Huygens Probe" By J. A. Morente et al.

    Science.gov (United States)

    Grard, Rejean; Berthelin, Stephanie; Beghin, Christian; Hamelin, Michel; Berthelier, Jean-Jacques; Lopez-Moreno, Jose J.; Simoes, Fernando

    2011-01-01

    Morente et al. have recently revisited the VLF electric field measurements made with the Permittivity, Wave and Altimetry (PWA) instrument during the descent of the Huygens Probe through the atmosphere of Titan. They assert that they have identified several harmonics of the transverse resonance mode of the surface?]ionosphere cavity, which would prove the existence of an electrical activity in the atmosphere of the largest satellite of Saturn. We refute this finding on the basis that it results from an artifact due to an improper analysis of the data set. [2] The investigators of the Permittivity, Wave and Altimetry (PWA) experiment on the Huygens Probe have reported the extremely low frequency (ELF) and very low frequency (VLF) electric signals recorded during the descent through the atmosphere of Titan. The PWA data are archived in the Planetary Science Archive (PSA) of ESA, and an extensive description of the instrument is at the disposal of the scientific community. Morente and his coworkers have revisited this data set and reported the results of their investigations in two papers. In a first paper, they claim that they have detected in the ELF range (0.100 Hz) several harmonics of a global resonance allegedly generated by lightning activity in the spherical cavity guide formed by the surface of Titan and the inner boundary of the ionosphere, a phenomenon similar to the Schumann resonance observed at EartH In the second paper dedicated to the VLF electric signal recorded by PWA, in the range 0.10 kHz, they argue that they can also bring out the transverse resonance and its harmonics, a more local phenomenon that develops around the excitation source and whose frequency is controlled by the separation between Titan?fs surface and the inner ionospheric boundary. [3] The PWA investigators have analyzed the narrowband ELF signal at about 36 Hz effectively observed during the entire descent. They have not endorsed, however, the alternative approach of Morente et al

  14. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  15. Calculation of extreme wind atlases using mesoscale modeling. Final report

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake

    This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies as explai...

  16. Photovoltaic subsystem marketing and distribution model: programming manual. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Complete documentation of the marketing and distribution (M and D) computer model is provided. The purpose is to estimate the costs of selling and transporting photovoltaic solar energy products from the manufacturer to the final customer. The model adjusts for the inflation and regional differences in marketing and distribution costs. The model consists of three major components: the marketing submodel, the distribution submodel, and the financial submodel. The computer program is explained including the input requirements, output reports, subprograms and operating environment. The program specifications discuss maintaining the validity of the data and potential improvements. An example for a photovoltaic concentrator collector demonstrates the application of the model.

  17. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  18. Exploiting the dispersion of the double-negative-index fishnet metamaterial to create a broadband low-profile metallic lens.

    Science.gov (United States)

    Orazbayev, B; Pacheco-Peña, V; Beruete, M; Navarro-Cía, M

    2015-04-06

    Metamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.

  19. Superradiant MeV γ Scattered by a Room-Temperature Spinor Quantum Fluid

    Directory of Open Access Journals (Sweden)

    Yao Cheng

    2017-07-01

    Full Text Available Recent reports have revealed the rich long-lived Mossbauer phenomenon of 93mNb, in which it has long been speculated that the delocalized 93mNb undergoes Bose-Einstein condensation following an increase in the 93mNb density beyond the threshold of 1012 cm−3 at room temperature. We now report on the superradiant Rayleigh of the M4 γ at 662 keV scattered into end-fire modes along the long axis of the sample, as evidence of Bose-Einstein condensation. We observed the Arago (Poisson’s spot in order to demonstrate a near-field γ-ray diffraction from a mm-sized γ source, as well as a γ interference beyond the Huygens-Fresnel principle. During the 107-day monitoring period, seven Sisyphus cycles of mode hopping appeared in the superradiance, which demonstrates the optomechanic bistabilty provided by the collective interaction between the spinor quantum fluid and the impinging γs. Condensate-light interaction produces a pm matter-wave grating to become a Fabry-Pérot resonator with a Q-factor on the order of 1020, from which end-fired γs lase.

  20. Comparison of tree types of models for the prediction of final academic achievement

    Directory of Open Access Journals (Sweden)

    Silvana Gasar

    2002-12-01

    Full Text Available For efficient prevention of inappropriate secondary school choices and by that academic failure, school counselors need a tool for the prediction of individual pupil's final academic achievements. Using data mining techniques on pupils' data base and expert modeling, we developed several models for the prediction of final academic achievement in an individual high school educational program. For data mining, we used statistical analyses, clustering and two machine learning methods: developing classification decision trees and hierarchical decision models. Using an expert system shell DEX, an expert system, based on a hierarchical multi-attribute decision model, was developed manually. All the models were validated and evaluated from the viewpoint of their applicability. The predictive accuracy of DEX models and decision trees was equal and very satisfying, as it reached the predictive accuracy of an experienced counselor. With respect on the efficiency and difficulties in developing models, and relatively rapid changing of our education system, we propose that decision trees are used in further development of predictive models.

  1. Band structure of one-dimensional doped photonic crystal with three level atoms using the Fresnel coefficients method

    Science.gov (United States)

    Jafari, A.; Rahmat, A.; Bakkeshizadeh, S.

    2018-01-01

    We consider a one-dimensional photonic crystal (1DPC) composed of double-layered dielectrics. Electric permittivity and magnetic permeability of this crystal depends on the incident electromagnetic wave frequency. We suppose that three level atoms have been added to the second layer of each dielectric and this photonic crystal (PC) has been doped. These atoms can be added to the layer with different rates. In this paper, we have calculated and compared the band structure of the mentioned PC considering the effect of added atoms to the second layer with different rates through the Fresnel coefficients method. We find out that according to the effective medium theory, the electric permittivity of the second layer changes. Also the band structure of PC for both TE and TM polarizations changes, too. The width of bandgaps related to “zero averaged refractive index” and “Bragg” increases. Moreover, new gap branches appear in new frequencies at both TE and TM polarizations. In specific state, two branches of “zero permittivity” gap appear in the PC band structure related to TM polarization. With increasing the amount of the filling rate of total volume with three level atoms, we observe a lot of changes in the PC band structure.

  2. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  3. The mathematics of geometrical and physical optics. The k-funktion and its ramifications

    Energy Technology Data Exchange (ETDEWEB)

    Stavroudis, O.N. [Centro de Investigaciones en Optica, Leon, Guanajuato (Mexico)

    2006-07-01

    In this sequel to his book, 'The Optics of Rays, Wavefronts, and Caustics', Stavroudis not only covers his own research results, but also includes more recent developments. The book is divided into three parts, starting with basic mathematical concepts that are further applied in the book. Surface geometry is treated with classical mathematics, while the second part covers the k-function, discussing and solving the eikonal equation as well as Maxwell equations in this context. A final part on applications consists of conclusions drawn or developed in the first two parts of the book, discussing such topics as the Cartesian oval, the modern Schiefspiegler, Huygen's principle, and Maxwell's model of Gauss' perfect lens. From the contents: Part I: Preliminaries - Calculus of variations - Calculus of variations: differential geometry of space curves (helix and ellipse) - Fermat's principle and the ray equation for inhomogeneous isotropic media - Hilbert integral, the derivation of the Hamilton-Jacobi theory, and the eikonal equation - First-order partial differential equations. Part II: The k-Function - Calculation of surface differential geometry parameters - Ray tracing - Refraction of wavefronts at surfaces - Solution of the Maxwell equation in the context of the k-function. Part III: Applications - Pseudo Maxwell equations - Derivation and discussion of the Cartesian oval - The modern Schiefspiegler - Huygen's principle - Maxwell's model of Gauss' perfect lens. (orig.)

  4. Medicare Program; Cancellation of Advancing Care Coordination Through Episode Payment and Cardiac Rehabilitation Incentive Payment Models; Changes to Comprehensive Care for Joint Replacement Payment Model: Extreme and Uncontrollable Circumstances Policy for the Comprehensive Care for Joint Replacement Payment Model. Final rule; interim final rule with comment period.

    Science.gov (United States)

    2017-12-01

    This final rule cancels the Episode Payment Models (EPMs) and Cardiac Rehabilitation (CR) Incentive Payment Model and rescinds the regulations governing these models. It also implements certain revisions to the Comprehensive Care for Joint Replacement (CJR) model, including: Giving certain hospitals selected for participation in the CJR model a one-time option to choose whether to continue their participation in the model; technical refinements and clarifications for certain payment, reconciliation and quality provisions; and a change to increase the pool of eligible clinicians that qualify as affiliated practitioners under the Advanced Alternative Payment Model (Advanced APM) track. An interim final rule with comment period is being issued in conjunction with this final rule in order to address the need for a policy to provide some flexibility in the determination of episode costs for providers located in areas impacted by extreme and uncontrollable circumstances.

  5. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  6. Effective Classroom Management and Instruction: An Exploration of Models. Executive Summary of Final Report.

    Science.gov (United States)

    Evertson, Carolyn M.; And Others

    A summary is presented of the final report, "Effective Classroom Management and Instruction: An Exploration of Models." The final report presents a set of linked investigations of the effects of training teachers in effective classroom management practices in a series of school-based workshops. Four purposes were addressed by the study: (1) to…

  7. THE QUANTITATIVE MODEL OF THE FINALIZATIONS IN MEN’S COMPETITIVE HANDBALL AND THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Eftene Alexandru

    2009-10-01

    Full Text Available In the epistemic steps, we approach a competitive performance behavior model build after a quantitativeanalysis of certain data collected from the official International Handball Federation protocols on theperformance of the first four teams of the World Men's Handball Championship - Croatia 2009, duringsemifinals and finals.This model is a part of the integrative (global model of the handball game, which will be graduallyinvestigated during the following research.I have started the construction of this model from the premise that the finalization represents theessence of the game.The components of our model, in a prioritized order: shot at the goal from 9m- 15p; shot at the goalfrom 6m- 12p; shot at the goal from 7m- 12p; fast break shot at the goal - 11,5p; wing shot at the goal - 8,5p;penetration shot at the goal - 7p;

  8. Single-beam image encryption using spatially separated ciphertexts based on interference principle in the Fresnel domain

    Science.gov (United States)

    Wang, Qu; Guo, Qing; Lei, Liang; Zhou, Jinyun

    2014-12-01

    A new optical security system for image encryption based on optical interference principle and translation property of Fresnel transform (FrT) has been proposed in this article. The algorithm of this proposal is specially designed for single-beam optical decryption and can thoroughly resolve the silhouette problem existing in the previous interference-based scheme. Different from earlier schemes using interference of phase-only masks (POMs), the inverse FrT of primitive image is digitally decomposed into a random POM and a complex field distribution. Information associated with the primitive images can be completely smoothed away by the modulation of this random POM. Through the translation property of FrT, two linear phase-only terms are then used to modulate the obtained random POM and the complex distribution, respectively. Two complex ciphertexts are generated by performing digital inverse FrT again. One cannot recover any visible information of secret image using only one ciphertext. Moreover, to recover the primitive image correctly, the correct ciphertexts must be placed in the certain positions of input plane of decryption system, respectively. As additional keys, position center coordinates of ciphertexts can increase the security strength of this encryption system against brute force attacks greatly. Numerical simulations have been given to verify the performance and feasibility of this proposal. To further enhance the application value of this algorithm, an alternative approach based on Fourier transform has also been discussed briefly.

  9. On the synchronization of two metronomes and their related dynamics

    Science.gov (United States)

    Carranza, J. C.; Brennan, M. J.; Tang, B.

    2016-09-01

    Synchronization was first reported by Christiaan Huygens in 1665 when he observed anti-phase synchronization achieved by two pendulum clocks hanging on a common base. Since then researchers have tried to understand the results reported by Huygens using their own ways to reproduce his experiment and applying several methods of analysis. Each researcher has reported different results, even compared with those reported by Huygens. In this paper a simple model is proposed to study in-phase and anti-phase synchronization of two metronomes based on a normal mode analysis using van der Pol oscillators. The instantaneous frequency of the responses from both simulations and experimental data is used in the analysis. Unlike previous studies, measurements are made using videos and the time domain responses of the metronomes extracted by means of tracking software. Plots showing how the initial conditions lead to both synchronization states are also presented.

  10. Search for the standard model Higgs boson in tau final states

    NARCIS (Netherlands)

    Abazov, V.M.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.; van Leeuwen, W.M.

    2009-01-01

    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron p(p)over-bar collider. We select two final states: tau(+/-) plus missing transverse energy and b jets, and tau(+)tau(-) plus

  11. Elastic scattering of 40Ar and 84Kr on 209Bi and 238U at 7.2 and 8.5 MeV/N

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.; Freiesleben, H.; Wolf, K.L.; Unik, J.P.; Viola, V.E. Jr.

    1976-01-01

    Cross sections for elastic scattering of 40 Ar on targets of 209 Bi and 238 U were measured at energies of 286 and 340 MeV. Cross sections for the elastic scattering of 84 Kr on 209 Bi were measured at energies of 600 and 712 MeV. These experimental elastic scattering data were fitted with optical and Fresnel models. The total reaction cross section deduced from the Fresnel model by the one-quarter point technique agrees within a few percent with the result from the optical model. The Fresnel interaction radius and the optical model strong absorption radius are found to be approximately equal and qualitatively reproduced by the sum of the half-density electron scattering radii of the two heavy ions and a constant of 3.2+-0.3 fm. A method of estimating total reaction cross sections for heavy ions is presented. Some observations on the real and imaginary potentials of very heavy ions are presented

  12. Continued development of modeling tools and theory for rf heating. Final report

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1998-01-01

    The work performed during the grant has been reported long before this date, specifically in: (1) the grant's annual performance report for 1991, MRC/WDC-R-277; (2) the published AIP Conference Proceedings number-sign 244, Radio Frequency Power in Plasmas, Charleston, SC 1991, ''Evaluation of Wave Dispersion, Mode-Conversion, and Damping for ECRH with Exact Relativistic Corrections,'' by D.N. Smithe and P.L. Colestock; and (3) an unpublished paper entitled ''Temperature Anisotropy and Rotation Upgrades to the ICRF Modules in SNAP and TRANSP'', presented at the 1992 ICRF Modeling and Theory Workshop, at the Princeton Plasma Physics Laboratory. This final report contains copies of number (1). The specifics of the grant's final months' activities, which to the authors recollection have never been reported to the DOE, are as follows. The original grant, which was to terminate August 15, 1991, was extended without additional funds to October 31, 1992. The primary reason for the extension was to permit attendance at the 1992 ICRF Modeling and Theory Workshop at the Princeton Plasma Physics Laboratory (PPPL), which was finally held August 17--18, 1992, after having been rescheduled several times during the summer of 1992. The body of this report contains copies of the 1991 annual report, which gives detailed discussion of the work accomplished

  13. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    Science.gov (United States)

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  14. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  15. Windfield and trajectory models for tornado-propelled objects. Final report

    International Nuclear Information System (INIS)

    Redmann, G.H.; Radbill, J.R.; Marte, J.E.; Dergarabedian, P.; Fendell, F.E.

    1983-03-01

    This is the final report of a three-phased research project to develop a six-degree-of-freedom mathematical model to predict the trajectories of tornado-propelled objects. The model is based on the meteorological, aerodynamic, and dynamic processes that govern the trajectories of missiles in a tornadic windfield. The aerodynamic coefficients for the postulated missiles were obtained from full-scale wind tunnel tests on a 12-inch pipe and car and from drop tests. Rocket sled tests were run whereby the 12-inch pipe and car were injected into a worst-case tornado windfield in order to verify the trajectory model. To simplify and facilitate the use of the trajectory model for design applications without having to run the computer program, this report gives the trajectory data for NRC-postulated missiles in tables based on given variables of initial conditions of injection and tornado windfield. Complete descriptions of the tornado windfield and trajectory models are presented. The trajectory model computer program is also included for those desiring to perform trajectory or sensitivity analyses beyond those included in the report or for those wishing to examine other missiles and use other variables

  16. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  17. Formation of the reflected and refracted s-polarized electromagnetic waves in the Fresnel problem for the boundary vacuum-metamaterial from the viewpoint of molecular optics

    Science.gov (United States)

    Averbukh, B. B.; Averbukh, I. B.

    2016-11-01

    The refraction of a plane s-polarized electromagnetic wave on the vacuum-metamaterial interface is considered. Point particles with electric and magnetic dipole polarizabilities are scattering elements of a medium. The medium consists of plane-parallel monolayers of electric or magnetic dipoles or Huygens elements influencing one another. Dipole fields are completely taken into account. The fields inside the medium and the reflected fields are calculated. The extinction theorem is analyzed in detail. The mechanism of rotation of the magnetic field vector during refraction is elucidated. A reason for the absence of the fourth wave propagating from the medium toward the boundary in the conventionally employed boundary conditions is elucidated. It is shown that, under certain conditions, this medium can behave as possessing a unity refractive index or zero refractive index at a preset frequency. In the case of a metamaterial layer of finite thickness shows the output region of the existence of backward waves outside metamaterial layer. It is shown that the refraction of the field in a homogeneous medium after the dielectric corresponds to Fermat's principle, and the interference nature of Fermat's principle is justified.

  18. SEMI-EMPIRICAL WHITE DWARF INITIAL-FINAL MASS RELATIONSHIPS: A THOROUGH ANALYSIS OF SYSTEMATIC UNCERTAINTIES DUE TO STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Salaris, Maurizio; Serenelli, Aldo; Weiss, Achim; Miller Bertolami, Marcelo

    2009-01-01

    Using the most recent results about white dwarfs (WDs) in ten open clusters, we revisit semiempirical estimates of the initial-final mass relation (IFMR) in star clusters, with emphasis on the use of stellar evolution models. We discuss the influence of these models on each step of the derivation. One intention of our work is to use consistent sets of calculations both for the isochrones and the WD cooling tracks. The second one is to derive the range of systematic errors arising from stellar evolution theory. This is achieved by using different sources for the stellar models and by varying physical assumptions and input data. We find that systematic errors, including the determination of the cluster age, are dominating the initial mass values, while observational uncertainties influence the final mass primarily. After having determined the systematic errors, the initial-final mass relation allows us finally to draw conclusions about the physics of the stellar models, in particular about convective overshooting.

  19. 78 FR 70598 - Submission for Review: Request for External Review (3206-NEW); Model Notice of Final Internal...

    Science.gov (United States)

    2013-11-26

    ... notice to enrollees about the result of any final internal adverse benefit determination, their external... OFFICE OF PERSONNEL MANAGEMENT Submission for Review: Request for External Review (3206-NEW); Model Notice of Final Internal Adverse Benefit Determination and Case Intake Form AGENCY: U.S. Office of...

  20. Optical asymmetric cryptography using a three-dimensional space-based model

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method

  1. Single Sign-on Authentication server (part of CLARIN infrastructure)

    NARCIS (Netherlands)

    de Jong, H.A.; Maas, M.

    2013-01-01

    The Huygens Single Sign-on server allows federated logins (authentication) via SURFconext affiliates thus facilitating all connected (academic / research) institutes to use online Huygens ING software services.

  2. Solar Pumped Nd:YAG Laser with Fresnel Lens%使用菲涅耳透镜的太阳光抽运Nd:YAG激光器

    Institute of Scientific and Technical Information of China (English)

    罗萍萍; 刘诚; 徐鹏; 赵长明; 杨苏辉; 钱燕雷

    2011-01-01

    太阳能是规模最大的可再生能源,为充分利用这一资源,太阳光直接抽运激光器是一种明智的选择.提出并搭建了采用两级会聚系统的太阳光抽运激光器系统.使用菲涅耳透镜作为大口径成像型第一级会聚系统,漫反射锥形聚光腔作为非成像型第二级会聚系统提高入射太阳光到工作物质的耦合效率.采用Nd:YAG晶体作为工作物质,获得了2.85 W的激光输出,从太阳光到激光的转换效率为0.43%.从菲涅耳透镜会聚效率、聚光腔内激光棒轴线上的功率分布等会聚系统方面和激光输出特性方面分析了该太阳光抽运激光器的性能;探讨了转换效率低的原因,并提出了相应的改进措施.%Solar energy is the most abundant renewable energy among all kinds of energy sources, solar pumped laser can be the best choice in terms of the fully utilization of solar energy. The solar pumped laser with two stage sunlight concentration system is designed and constructed. A Fresnel lens with large diameter is adopted as a primary optical concentration device? And a cone type diffuse pumping chamber functions as a secondary concentrator is used to enhance the couple efficiency between the incident solar power and laser media. Output laser power is up to 2. 85 W, with the use of Nd! YAG crystal as laser media, and 0. 43% optical conversion efficiency is achieved. The performance of solar pumped laser is discussed by the concentration efficiency of Fresnel lens and the power distribution along the axis of laser rod in the cavity, as well as the laser characteristic. The reasons for low efficiency are discussed, and improvement approaches are presented.

  3. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    CERN Document Server

    Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei

    2004-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  4. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    International Nuclear Information System (INIS)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC

    2006-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system

  5. Meson dynamics beyond the quark model: a study of final state interactions

    International Nuclear Information System (INIS)

    Au, K.L.; Pennington, M.R.; Morgan, D.

    1986-09-01

    A scalar glueball is predicted in the 1 GeV mass region. The present analysis is concerned with experimental evidence for such a state. Recent high statistics results on central dimeson production at the ISR enable the authors to perform an extensive new coupled channel analysis of I = O S-wave ππ and KK-bar final states. This unambiguously reveals three resonances in the 1 GeV region - S 1 (991), S 2 (988) and epsilon(900) - where the naive quark model expects just two. These new features are discussed including how they may be confirmed experimentally and their present interpretation. The S 1 (991) is a plausible candidate for the scalar glueball. Other production reactions are examined (heavy flavour decays and γγ reactions) which lead to the same final states. (author)

  6. Final Thesis Models in European Teacher Education and Their Orientation towards the Academy and the Teaching Profession

    Science.gov (United States)

    Råde, Anders

    2014-01-01

    This study concerns different final thesis models in the research on teacher education in Europe and their orientation towards the academy and the teaching profession. In scientific journals, 33 articles support the occurrence of three models: the portfolio model, with a mainly teaching-professional orientation; the thesis model, with a mainly…

  7. Deformable mirror study. Final report, 21 July 1980-15 May 1981

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1981-03-01

    The beam quality of a baseline system similar to the Helios system at Los Alamos Scientific Laboratory was analyzed with a two-dimensional beam train code based on a Fresnel propagator. The other components of the code include: (a) characterization of phase aberrations either in terms of Zernike polynomials synthesized directly from optical component interferograms when available, or by constructing a random wave front with specified statistics; (b) non-diffractive linear amplification via the Frantz-Nodvik equations; and (c) correction of accumulated phase aberration with continuous deformable mirrors whose surface is modeled by bicubic splines through the actuator points. The technical contents of this report will be presented in 4 sections. Section II will describe the physical optics of beam train propagation. A heuristic physical argument defining the zeroth order efficacy of adaptive optics to correct phase aberration is then derived. The results of applying the diffraction computer code to one beam line of the Helios laser system are described. The wave length scalability of deformable mirrors and efficacy of deformable mirror adaptive optics to correct phase aberration at UV wave lengths are then described

  8. Model Orlando regionally efficient travel management coordination center (MORE TMCC), phase II : final report.

    Science.gov (United States)

    2012-09-01

    The final report for the Model Orlando Regionally Efficient Travel Management Coordination Center (MORE TMCC) presents the details of : the 2-year process of the partial deployment of the original MORE TMCC design created in Phase I of this project...

  9. Analysis of Final Energy Demand by Sector in Malaysia using MAED Model

    International Nuclear Information System (INIS)

    Kumar, M.; Muhammed Zulfakar Mohd Zolkaffly; Alawiah Musa

    2011-01-01

    Energy supply security is important in ensuring a long term supply to fulfill the growing energy demand. This paper presents the use of IAEA energy planning tool, Model for Analysis of Energy Demand (MAED) to analyze, simulate and compare final energy demand by five different sectors in Malaysia under some assumptions, bounds and restrictions and the outcome can be used for planning of energy supply in future. (author)

  10. A technique for the radar cross-section estimation of axisymmetric plasmoid

    International Nuclear Information System (INIS)

    Naumov, N D; Petrovskiy, V P; Sasinovskiy, Yu K; Shkatov, O Yu

    2015-01-01

    A model for the radio waves backscattering from both penetrable plasma and reflecting plasma is developed. The technique proposed is based on Huygens's principle and reduces the radar cross-section estimation to numerical integrations. (paper)

  11. Microwave modeling of laser plasma interactions. Final report

    International Nuclear Information System (INIS)

    1983-08-01

    For a large laser fusion targets and nanosecond pulse lengths, stimulated Brillouin scattering (SBS) and self-focusing are expected to be significant problems. The goal of the contractual effort was to examine certain aspects of these physical phenomena in a wavelength regime (lambda approx.5 cm) more amenable to detailed diagnostics than that characteristic of laser fusion (lambda approx.1 micron). The effort was to include the design, fabrication and operation of a suitable experimental apparatus. In addition, collaboration with Dr. Neville Luhmann and his associates at UCLA and with Dr. Curt Randall of LLNL, on analysis and modelling of the UCLA experiments was continued. Design and fabrication of the TRW experiment is described under ''Experiment Design'' and ''Experimental Apparatus''. The design goals for the key elements of the experimental apparatus were met, but final integration and operation of the experiment was not accomplished. Some theoretical considerations on the interaction between Stimulated Brillouin Scattering and Self-Focusing are also presented

  12. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    The development of microwave remote sensing models for the monitoring of vegetation has received wide attention in recent years. For vegetation in the tropics, it is necessary to consider a dense medium model for the theoretical modelling of the microwave interaction with the vegetation medium....... In this paper, a multilayer model based on the radiative transfer theory for a dense vegetation medium is developed where the coherence effects and near field interaction effects of closely spaced leaves and branches are considered by incorporating the Dense Medium Phase and Amplitude Correction Theory (DM......-PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...

  13. Towards an Editable, Versionized LOD Service for Library Data

    Directory of Open Access Journals (Sweden)

    Felix Ostrowski

    2013-02-01

    Full Text Available The Northrhine-Westphalian Library Service Center (hbz launched its LOD service lobid.org in August 2010 and has since then continuously been improving the underlying conversion processes, data models and software. The present paper first explains the background and motivation for developing lobid.org . It then describes the underlying software framework Phresnel which is written in PHP and which provides presentation and editing capabilities of RDF data based on the Fresnel Display Vocabulary for RDF. The paper gives an overview of the current state of the Phresnel development and discusses the technical challenges encountered. Finally, possible prospects for further developing Phresnel are outlined.

  14. Final-year diagnostic radiography students' perception of role models within the profession.

    Science.gov (United States)

    Conway, Alinya; Lewis, Sarah; Robinson, John

    2008-01-01

    Within a clinical education setting, the value of role models and prescribed mentors can be seen as an important influence in shaping the student's future as a diagnostic radiographer. A study was undertaken to create a new understanding of how diagnostic radiography students perceive role models and professional behavior in the workforce. The study aimed to determine the impact of clinical education in determining modeling expectations, role model identification and attributes, and the integration of academic education and "hands-on" clinical practice in preparing diagnostic radiography students to enter the workplace. Thirteen final-year (third-year) diagnostic radiography students completed an hour-long interview regarding their experiences and perceptions of role models while on clinical placement. The key concepts that emerged illustrated that students gravitate toward radiographers who enjoy sharing practical experiences with students and are good communicators. Unique to diagnostic radiography, students made distinctions about the presence of role models in private versus public service delivery. This study gives insight to clinical educators in diagnostic radiography and wider allied health into how students perceive role models, interact with preceptors, and combine real-life experiences with formal learning.

  15. Modelling of air quality for Winter and Summer episodes in Switzerland. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andreani-Aksoyoglu, S.; Keller, J.; Barmpadimos, L.; Oderbolz, D.; Tinguely, M.; Prevot, A. [Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry, Villigen (Switzerland); Alfarra, R. [University of Manchester, Manchester (United Kingdom); Sandradewi, J. [Jisca Sandradewi, Hoexter (Germany)

    2009-05-15

    This final report issued by the General Energy Research Department and its Laboratory of Atmospheric Chemistry at the Paul Scherrer Institute (PSI) reports on the results obtained from the modelling of regional air quality for three episodes, January-February 2006, June 2006 and January 2007. The focus of the calculations is on particulate matter concentrations, as well as on ozone levels in summer. The model results were compared with the aerosol data collected by an Aerosol Mass Spectrometer (AMS), which was operated during all three episodes as well as with the air quality monitoring data from further monitoring programs. The air quality model used in this study is described and the results obtained for various types of locations - rural, city, high-altitude and motorway-near - are presented and discussed. The models used are described.

  16. Solar-Pumped TEM₀₀ Mode Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-10-21

    Here we show a significant advance in solar-pumped laser beam brightness by utilizing a 1.0 m diameter Fresnel lens and a 3 mm diameter Nd:YAG single-crystal rod. The incoming solar radiation is firstly focused by the Fresnel lens on a solar tracker. A large aspheric lens and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation along the thin laser rod within a V-shaped pumping cavity. 2.3 W cw TEM₀₀ (M² ≤ 1.1) solar laser power is finally produced, attaining 1.9 W laser beam brightness figure of merit, which is 6.6 times higher than the previous record. For multimode operation, 8.1 W cw laser power is produced, corresponding to 143% enhancement in collection efficiency.

  17. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Søndergaard, Hans

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way....

  18. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  19. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    Science.gov (United States)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  20. A final state interaction model for K and eta decay into three pions

    International Nuclear Information System (INIS)

    Angus, A.G.

    1973-07-01

    The Khuri-Treiman model is adapted in a relativistic formalism with the electromagnetic mass differences of the pions in the final state taken into account to produce new predictions for the relative decay rates and the slope parameters of the four reactions K→3x and the two reactions eta→3x. The pion-pion interaction is investigated in terms of the N/D method and as well as the normal pure pole approximations for the N functions. The Khuri-Treiman equations are solved for the best solutions from both the pure pole and the mixed pole and cut models. (author)

  1. An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios (Final Report, 2008)

    Science.gov (United States)

    EPA announced the availability of the final report, An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios. This report investigates the potential dioxin exposure to artists/hobbyists who use ball clay to make pottery and related products. Derm...

  2. The hadronic final state in the deep inelastic electron-proton scattering. A comparison between the ZEUS data measured 1992 and theoretical models

    International Nuclear Information System (INIS)

    Schneider, J.L.

    1993-12-01

    The hadronic final state in deep inelastic e - P collisions has been studied with the 1992 data from the ZEUS detector at HERA. The hadronic final state is described by event topology variables like thrust and sphericity and also by variables like multiplicity and transverse momentum. These quantities require the reconstruction of the particle four moments which are calculated from calorimeter cell clusters (condensates). A detailed Monte-Carlo comparison between final state particles and condensates is presented. ZEUS data and model predictions are compared in the γ * P system. Good agreement between data and models is found in the x-Feynman and transverse momentum spectra and in the seagull plot. Mean thrust and sphericity are measured as functions of the invariant mass W of the hadronic final state. They significantly deviate from the model predictions, as do the mean multiplicities, which exceed the model predictions by about 1 unit. (orig.)

  3. [Modeling and Simulation of Spectral Polarimetric BRDF].

    Science.gov (United States)

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  4. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    Science.gov (United States)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  5. Hadron final states in deep inelastic processes

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1976-05-01

    Lectures are presented dealing mainly with the description and discussion of hadron final states in electroproduction, colliding beams, and neutrino reactions from the point of view of the simple parton model. Also the space-time evolution of final states in the parton model is considered. It is found that the picture of space-time evolution of hadron final states in deep inelastic processes isn't totally trivial and that it can be made consistent with the hypotheses of the parton model. 39 references

  6. A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1

    Science.gov (United States)

    Rabin, Sam S.; Ward, Daniel S.; Malyshev, Sergey L.; Magi, Brian I.; Shevliakova, Elena; Pacala, Stephen W.

    2018-03-01

    This study describes and evaluates the Fire Including Natural & Agricultural Lands model (FINAL) which, for the first time, explicitly simulates cropland and pasture management fires separately from non-agricultural fires. The non-agricultural fire module uses empirical relationships to simulate burned area in a quasi-mechanistic framework, similar to past fire modeling efforts, but with a novel optimization method that improves the fidelity of simulated fire patterns to new observational estimates of non-agricultural burning. The agricultural fire components are forced with estimates of cropland and pasture fire seasonality and frequency derived from observational land cover and satellite fire datasets. FINAL accurately simulates the amount, distribution, and seasonal timing of burned cropland and pasture over 2001-2009 (global totals: 0.434×106 and 2.02×106 km2 yr-1 modeled, 0.454×106 and 2.04×106 km2 yr-1 observed), but carbon emissions for cropland and pasture fire are overestimated (global totals: 0.295 and 0.706 PgC yr-1 modeled, 0.194 and 0.538 PgC yr-1 observed). The non-agricultural fire module underestimates global burned area (1.91×106 km2 yr-1 modeled, 2.44×106 km2 yr-1 observed) and carbon emissions (1.14 PgC yr-1 modeled, 1.84 PgC yr-1 observed). The spatial pattern of total burned area and carbon emissions is generally well reproduced across much of sub-Saharan Africa, Brazil, Central Asia, and Australia, whereas the boreal zone sees underestimates. FINAL represents an important step in the development of global fire models, and offers a strategy for fire models to consider human-driven fire regimes on cultivated lands. At the regional scale, simulations would benefit from refinements in the parameterizations and improved optimization datasets. We include an in-depth discussion of the lessons learned from using the Levenberg-Marquardt algorithm in an interactive optimization for a dynamic global vegetation model.

  7. Model-Independent Analysis of the Neutron-Proton Final-State Interaction Region in the $\\pi\\pi \\to pn\\pi^+$ Reaction

    CERN Document Server

    Uzikov, Yu N

    2001-01-01

    Experimental data on the \\pi\\pi\\to pn\\pi^+ reaction measured in an exclusive two-arm experiment at 800 MeV show a narrow peak arising from the strong proton-neutron final-state interaction. It was claimed, within the framework of a certain model, that this peak contained up to a 25 % spin-singlet final-state contribution. By comparing the data with those of \\pi\\pi\\to d\\pi^+ in a largely model-independent way, it is here demonstrated that at all the angles measured the whole of the peak could be explained as being due to spin-triplet final states, with the spin-singlet being at most a few percent. Good qualitative agreement with the measured proton analysing power is also found within this approach.

  8. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  9. Final technical report for DE-SC00012633 AToM (Advanced Tokamak Modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Christopher [Univ. of California, San Diego, CA (United States); Orlov, Dmitri [Univ. of California, San Diego, CA (United States); Izzo, Valerie [Univ. of California, San Diego, CA (United States)

    2018-02-05

    This final report for the AToM project documents contributions from University of California, San Diego researchers over the period of 9/1/2014 – 8/31/2017. The primary focus of these efforts was on performing validation studies of core tokamak transport models using the OMFIT framework, including development of OMFIT workflow scripts. Additional work was performed to develop tools for use of the nonlinear magnetohydrodynamics code NIMROD in OMFIT, and its use in the study of runaway electron dynamics in tokamak disruptions.

  10. MODELLING AND RECONSTRUCTION OF GABOR-TYPE HOLOGRAMS

    Directory of Open Access Journals (Sweden)

    GABRIEL J. LORA

    2011-01-01

    Full Text Available Los procesos de modelación y reconstrucción de hologramas se soportan en el cálculo de la integral de difracción en su formulación de kirchhoff-fresnel o rayleight-sommerfeld. Dicha integral puede ser evaluada numéricamente por medio de diferentes formalismos: teorema de convolución, espectro angular y transformada de fresnel, entre otras. En este trabajo se presenta la modelación de hologramas en línea tipo gabor de partículas opacas de diferentes diámetros. Estos hologramas son reconstruidos por el cálculo numérico de la difracción que sufre una onda esférica cuando ilumina el holograma. El proceso de modelación reconstrucción se utiliza para estudiar el desempeño de la microscopia holográfi ca digital en línea en función del cambio en la concentración de monocapas mono-dispersadas de esferas opacas.

  11. Efficient polarimetric BRDF model.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.

  12. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  13. Uncertainty and Variability in Physiologically-Based Pharmacokinetic (PBPK) Models: Key Issues and Case Studies (Final Report)

    Science.gov (United States)

    EPA announced the availability of the final report, Uncertainty and Variability in Physiologically-Based Pharmacokinetic (PBPK) Models: Key Issues and Case Studies. This report summarizes some of the recent progress in characterizing uncertainty and variability in physi...

  14. Cassini revisited by the Cassini-Huygens probe: dynamical and photometric study of the rings with the ISS images

    International Nuclear Information System (INIS)

    Deau, Estelle

    2007-12-01

    In the Solar system, the planetary rings represent a fantastic opportunity of studying a majority of phenomena taking place in the thin discs. One can find discs at all redshifts and on all scales of the Universe. Planetary discs are very different: among the Jovian rings, one finds a halo of fine and diffuse dust; the rings of Uranus are very compact, like radially confined strings and the system of rings of Neptune consists of azimuthally stable arcs. However our interest goes on Saturn which has the most complex and widest system of rings known to date: 484 000 km and a vertical extension which increases with the distance to Saturn (typically less than 1 km to 10 000 km). The interest of such a matter organization around Saturn plus its many moons (more than one forty including 8 of a size of several hundreds kilometers) gave birth to the exploration mission CASSINI, supposed to allow the development and the refinement of models set up at the flybies of the two interplanetary probes VOYAGER. The CASSINI Mission began its nominal tour on January, 15 2005 after the orbital insertion the 1 July 2004 and the dropping of HUYGENS probe on january, 14 2005 on Titan's surface. The purpose of this thesis consists to revisit two subjects unsolved of long date in the photometric and dynamic behaviours of the Saturn's rings. In a first part, we try to solve the problem of accretion of matter within the Roche limit by studying the F ring. This ring, since its discovery in 1979 by Pioneer 11, is involved in a most various dynamic theories to explain its complex multi-radial structure and its variable azimuthal structure. We showed that the multi-radial structure of this ring can be understood by the existence of a spiral which is rolled up around a central area, bright, eccentric and inclined: the core. The lifespan of this spiral is not the same one as the core, suggesting that the processes which create the spiral are periodic. Moreover, we showed that the structure of the

  15. Analysis of elastic wave propagation through anisotropic stainless steel using elastodynamic FEM and ultrasonic beam model

    International Nuclear Information System (INIS)

    Cho, Seog Je; Jeong, Hyun Jo

    1999-01-01

    The wave propagation problem in anisotropic media is modeled by the Gauss-Hermite beam and tile finite element method and their results are compared. Gauss-Hermite mettled is computationally fast and simple, and explicitly incorporates beam spreading. In the 2-D model problem chosen, the ultrasonic beam leaves a transducer, propagates through a layer of ferritic steel and through a planar interface into a region of columnar cast stainless steel with two directions. After propagation to a reference plane, comparison .if made of the time-domain waveforms predicted by tile two models. The predictions of the two models are found to be in good agreement near the center of the beam, with deviations developing as one moves away from tile central ray. These are interpreted to be a consequence of the Fresnel approximation, made in the Gauss-Hermite model.

  16. Project ANSICHT. Final repository concept and backfilling and sealing concept for the final repository site model SUeD; Projekt ANSICHT. Endlagerkonzept sowie Verfuell- und Verschlusskonzept fuer das Endlagerstandortmodell SUeD. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, Michael; Lommerzheim, Andree

    2015-08-03

    In the frame of ANSICHT the methodology for the demonstration of safe enclosure for high-level heat generating radioactive wastes is described. The report is based on the safety requirements for final repository concepts and shows a first backfilling and sealing concept that was developed for the final repository site model SUeD. The final repository model SUeD is based on a horizontal line storage concept, the Gorleben (VSG) and ERATO container concept and the mine layout were adopted and adapted to the given conditions. The backfill and sealing concept includes migration barriers, line closures and shaft closures in the frame of a redundant and diverse enclosure system. For all technical and geotechnical barrier components the long-term functional requirements were defined. The backfilling concept of underground cavities considers the variety of possible cavities in the line and infrastructure areas.

  17. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin; Vanderborght, Jan P.; Kostov, K. G.; Jadoon, Khan; Weihermü ller, Lutz; Jackson, Thomas J.; Bindlish, Rajat; Pachepsky, Ya A.; Schwank, Mike; Vereecken, Harry

    2014-01-01

    model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related

  18. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  19. A predictive mathematical model for the calculation of the final mass of Graves' disease thyroids treated with 131I

    Science.gov (United States)

    Traino, Antonio C.; Di Martino, Fabio; Grosso, Mariano; Monzani, Fabio; Dardano, Angela; Caraccio, Nadia; Mariani, Giuliano; Lazzeri, Mauro

    2005-05-01

    Substantial reductions in thyroid volume (up to 70-80%) after radioiodine therapy of Graves' hyperthyroidism are common and have been reported in the literature. A relationship between thyroid volume reduction and outcome of 131I therapy of Graves' disease has been reported by some authors. This important result could be used to decide individually the optimal radioiodine activity A0 (MBq) to administer to the patient, but a predictive model relating the change in gland volume to A0 is required. Recently, a mathematical model of thyroid mass reduction during the clearance phase (30-35 days) after 131I administration to patients with Graves' disease has been published and used as the basis for prescribing the therapeutic thyroid absorbed dose. It is well known that the thyroid volume reduction goes on until 1 year after therapy. In this paper, a mathematical model to predict the final mass of Graves' diseased thyroids submitted to 131I therapy is presented. This model represents a tentative explanation of what occurs macroscopically after the end of the clearance phase of radioiodine in the gland (the so-called second-order effects). It is shown that the final thyroid mass depends on its basal mass, on the radiation dose absorbed by the gland and on a constant value α typical of thyroid tissue. α has been evaluated based on a set of measurements made in 15 reference patients affected by Graves' disease and submitted to 131I therapy. A predictive equation for the calculation of the final mass of thyroid is presented. It is based on macroscopic parameters measurable after a diagnostic 131I capsule administration (0.37-1.85 MBq), before giving the therapy. The final mass calculated using this equation is compared to the final mass of thyroid measured 1 year after therapy administration in 22 Graves' diseased patients. The final masses calculated and measured 1 year after therapy are in fairly good agreement (R = 0.81). The possibility, for the physician, to decide a

  20. A predictive mathematical model for the calculation of the final mass of Graves' disease thyroids treated with 131I

    International Nuclear Information System (INIS)

    Traino, Antonio C; Martino, Fabio Di; Grosso, Mariano; Monzani, Fabio; Dardano, Angela; Caraccio, Nadia; Mariani, Giuliano; Lazzeri, Mauro

    2005-01-01

    Substantial reductions in thyroid volume (up to 70-80%) after radioiodine therapy of Graves' hyperthyroidism are common and have been reported in the literature. A relationship between thyroid volume reduction and outcome of 131 I therapy of Graves' disease has been reported by some authors. This important result could be used to decide individually the optimal radioiodine activity A 0 (MBq) to administer to the patient, but a predictive model relating the change in gland volume to A 0 is required. Recently, a mathematical model of thyroid mass reduction during the clearance phase (30-35 days) after 131 I administration to patients with Graves' disease has been published and used as the basis for prescribing the therapeutic thyroid absorbed dose. It is well known that the thyroid volume reduction goes on until 1 year after therapy. In this paper, a mathematical model to predict the final mass of Graves' diseased thyroids submitted to 131 I therapy is presented. This model represents a tentative explanation of what occurs macroscopically after the end of the clearance phase of radioiodine in the gland (the so-called second-order effects). It is shown that the final thyroid mass depends on its basal mass, on the radiation dose absorbed by the gland and on a constant value α typical of thyroid tissue. α has been evaluated based on a set of measurements made in 15 reference patients affected by Graves' disease and submitted to 131 I therapy. A predictive equation for the calculation of the final mass of thyroid is presented. It is based on macroscopic parameters measurable after a diagnostic 131 I capsule administration (0.37-1.85 MBq), before giving the therapy. The final mass calculated using this equation is compared to the final mass of thyroid measured 1 year after therapy administration in 22 Graves' diseased patients. The final masses calculated and measured 1 year after therapy are in fairly good agreement (R = 0.81). The possibility, for the physician, to

  1. Non-dissipative electromagnetic media with two Lorentz null cones

    International Nuclear Information System (INIS)

    Dahl, Matias F.

    2013-01-01

    We study Maxwell’s equations on a 4-manifold where the electromagnetic medium is modeled by an antisymmetric (2/2 )-tensor with 21 real coefficients. In this setting the Fresnel surface is a fourth-order polynomial surface that describes the dynamical response of the medium in the geometric optics limit. For example, in an isotropic medium the Fresnel surface is a Lorentz null cone. The contribution of this paper is the pointwise description of all electromagnetic medium tensors κ with real coefficients that satisfy the following three conditions: (i)medium κ is invertible, (ii)medium κ is skewon-free, or non-dissipative, (iii)the Fresnel surface of κ is the union of two distinct Lorentz null cones. We show that there are only three classes of media with these properties and give explicit expressions in local coordinates for each class. - Highlights: ► We find two new electromagnetic media classes for which the Fresnel surface decomposes into two light cones. ► In a suitable setting we classify all electromagnetic media where this is the case. ► We find an electromagnetic medium tensor with three different signal speeds in one direction. ► The work is related to [5], which classifies all media with one light cone (in a suitable setting).

  2. Development Of Robust IFE Laser Mirrors and Multi-Scale Modeling Of Pulsed Radiation Effects. Final Report

    International Nuclear Information System (INIS)

    Ghoniem, Nasr M.

    2009-01-01

    The following has been achieved: (1) Final design of a Deformable Grazing Incidence Mirror, (2) Formulation of a new approach to model surface roughening under laser illumination, and (3) Modeling of radiation hardening under IFE conditions. We discuss here progress made in each one of these areas. The objectives of the Grazing Incidence Metal Mirror (GIMM) are: (1) to reflect the incident laser beam into the direction of the target; (2) to focus the incident beam directly onto the target (3) to withstand the thermomechanical and damage induced by laser beams; (4) to correct the reflective surface so that the focus is permanently on the target; (5) to have a full range of motion so it can be placed anywhere relative to the target. The design was described in our progress report of the period August 15, 2003 through April 15, 2004. In the following, we describe further improvements of the final design.

  3. Rayleigh's, Stoneley's, and Scholte's Interface Waves in Elastic Models Using a Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Esteban Flores-Mendez

    2012-01-01

    Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.

  4. Aerosols: The key to understanding Titan's lower ionosphere

    Science.gov (United States)

    Molina-Cuberos, G. J.; Cardnell, S.; García-Collado, A. J.; Witasse, O.; López-Moreno, J. J.

    2018-04-01

    The Permittivity Wave and Altimetry system on board the Huygens probe observed an ionospheric hidden layer at a much lower altitude than the main ionosphere during its descent through the atmosphere of Titan, the largest satellite of Saturn. Previous studies predicted a similar ionospheric layer. However, neither previous nor post-Huygens theoretical models have been able to reproduce the measurements of the electrical conductivity and charge densities reported by the Mutual Impedance (MI) and Relaxation Probe (RP) sensors. The measurements were made from an altitude of 140 km down to the ground and show a maximum of charge densities of ≈ 2 ×109 m-3 positive ions and ≈ 450 ×106 m-3 electrons at approximately 65 km. Such a large difference between positive and negative charge densities has not yet been understood. Here, by making use of electron and ion capture processes in to aerosols, we are able to model both electron and positive ion number densities and to reconcile experimental data and model results.

  5. Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Palencia, Jose Enrique; /Fermilab

    2009-01-01

    We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.

  6. Mathematic model of regional economy development by the final result of labor resources

    Science.gov (United States)

    Zaitseva, Irina; Malafeev, Oleg; Strekopytov, Sergei; Bondarenko, Galina; Lovyannikov, Denis

    2018-04-01

    This article presents the mathematic model of regional economy development based on the result of labor resources. The solution of a region development-planning problem is considered for the period of long-lasting planning taking into account the beginning and the end of the planned period. The challenge is to find the distribution of investments in the main and additional branches of the regional economy, which will provide simultaneous transaction of all major sectors of the regional economy from the given condition to the predetermined final state.

  7. Study of GMSB models with photon final states using the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Terwort, Mark

    2009-11-30

    Models with gauge mediated supersymmetry breaking (GMSB) provide a possible mechanism to mediate supersymmetry breaking to the electroweak scale. In these models the lightest-supersymmetric particle is the gravitino, while the next-to-lightest supersymmetric particle is either the lightest neutralino or a slepton. In the former case final states with large missing transverse energy from the gravitinos, multiple jets and two hard photons are expected in pp-collisions at the LHC. Depending on the lifetime of the neutralino the photons might not point back to the interaction vertex, which requires dedicated search strategies. Additionally, this feature can be used to measure the neutralino lifetime using either the timing information from the electromagnetic calorimeter or the reconstructed photon direction. Together with the measurements of kinematic endpoints in invariant mass distributions, the lifetime can be used as input for fits of the GMSB model and for the determination of the underlying parameters. The signal selection and the discovery potential for GMSB models with photons in the nal state are discussed using simulated data of the ATLAS detector. In addition, the measurement of supersymmetric particle masses and of the neutralino lifetime as well as the results of the global GMSB fits are presented. (orig.)

  8. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  9. Linear Fresnel zone plate based two-state alignment system for 0.25 micron x-ray lithography

    International Nuclear Information System (INIS)

    Chen, G.

    1993-01-01

    X-ray lithography has proven to be a cost effective and promising technique for fabricating Integrated Circuits (ICs) with minimum feature sizes of less than 0.25 μm. Since IC fabrication is a multilevel process, to preserve the functionality of devices, circuit patterns printed at each lithography level must match existing patterns on the wafer with an accuracy of less than 1/3 ∼ 1/5 of the minimum feature size. An alignment system is used to position the mask relative to the wafer so that mask circuit patterns can be printed on the wafer at the designed position. As the minimum printed feature size shrinks, the overlay requirements of a lithography tool become more stringent. A stepper for 0.25 μm feature device fabrication requires an overlay accuracy of 0.075 μm, of which only 0.05 μm (mean + 3σ) is allocated to its alignment system. This thesis presents the development of a linear Fresnel zone late based two-state alignment (TSA) method for a 0.25 μm x-ray lithography tool. The authors first analyze the overlay requirement in a lithography process and the error allocation to the alignment system for a 0.25 μ feature x-ray lithography tool. They then describe the principle of the two-state alignment, its computer simulation and the optimal alignment mark design. They carried out an optical bench test for the one-axes alignment setup and experimentally evaluated the performance of the system. They developed a three-axes TSA system and integrated the system with the ES-3 x-ray beamline to construct the CXrL aligner, an experimental x-ray exposure system in CXrL. They measured the alignment accuracy of the exposure system to be better than 0.035 μm (3σ) on both metal and dielectric alignment mark substrates. They also studied the effect of processing coatings on the alignment signal with different wafer mark substrates. They successfully printed the 0.5 μm gate level patterns for the first NMOS test chip at CXrL

  10. Tests of the Standard Model with Multi boson final states at the ATLAS Detector

    CERN Document Server

    Gonella, Giulia; The ATLAS collaboration

    2018-01-01

    Measurements of the cross sections of the production of pairs of electroweak gauge bosons at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model- independent means to search for new physics at the TeV scale. The ATLAS collaboration has performed detailed measurements of integrated and differential cross sections of the production of heavy di-boson pairs in fully-leptonic and semi-leptonic final states at centre-of-mass energies of 13 TeV. The results are compared to predictions and provide constraints on new physics, by setting limits on anomalous triple gauge couplings. Some analyses in this area will be reviewed and their main results summarised.

  11. An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin.

    Science.gov (United States)

    Adabi, Saba; Fotouhi, Audrey; Xu, Qiuyun; Daveluy, Steve; Mehregan, Darius; Podoleanu, Adrian; Nasiriavanaki, Mohammadreza

    2018-05-01

    Optical coherence tomography (OCT) of skin delivers three-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer-Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens-Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. 1993-1994 Final technical report for establishing the SECME Model in the District of Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, R.G.

    1995-12-31

    This is the final report for a program to establish the SECME Model in the District of Columbia. This program has seen the development of a partnership between the District of Columbia Public Schools, the University of the District of Columbia, the Department of Energy, and SECME. This partnership has demonstrated positive achievement in mathematics and science education and learning in students within the District of Columbia.

  13. 1993-1994 Final technical report for establishing the SECME Model in the District of Columbia

    International Nuclear Information System (INIS)

    Vickers, R.G.

    1995-01-01

    This is the final report for a program to establish the SECME Model in the District of Columbia. This program has seen the development of a partnership between the District of Columbia Public Schools, the University of the District of Columbia, the Department of Energy, and SECME. This partnership has demonstrated positive achievement in mathematics and science education and learning in students within the District of Columbia

  14. Transport in biosphere of radionuclides released from finally disposed nuclear waste - background information for transport and dose model

    International Nuclear Information System (INIS)

    Hulmi, R.; Savolainen, I.

    1981-07-01

    An outline is made about the biosphere transport and dose models employed in the estimation of doses due to releases from finally disposed nuclear waste. The models often divide into two parts; the first one describes the transport of radionuclides in those parts of biosphere where the time scale is large (e.g. soil, sea and sea sediment), the second part of the model describes the transport of nuclides in the systems where the time scale is small (e.g. food chains, plants and animals). The description of biosphere conditions includes remarkable uncertainty due to the complexity of the biosphere and its ecosystems. Therefore studies of scenario type are recommended: some values of parametres describing the conditions are assumed, and the consequences are estimated by using these values. The effect of uncertainty in various factors on the uncertainty of final results should be investigated with the employment of alternative scenarios and parametric sensitivity studies. In addition to the ordinary results, intermediate results should be presented. A proposal for the structure of a transport and dose program based on dynamic linear compartment model is presented and mathematical solution alternatives are studied also

  15. Medicare Program; Advancing Care Coordination Through Episode Payment Models (EPMs); Cardiac Rehabilitation Incentive Payment Model; and Changes to the Comprehensive Care for Joint Replacement Model (CJR). Final rule.

    Science.gov (United States)

    2017-01-03

    This final rule implements three new Medicare Parts A and B episode payment models, a Cardiac Rehabilitation (CR) Incentive Payment model and modifications to the existing Comprehensive Care for Joint Replacement model under section 1115A of the Social Security Act. Acute care hospitals in certain selected geographic areas will participate in retrospective episode payment models targeting care for Medicare fee-forservice beneficiaries receiving services during acute myocardial infarction, coronary artery bypass graft, and surgical hip/femur fracture treatment episodes. All related care within 90 days of hospital discharge will be included in the episode of care. We believe these models will further our goals of improving the efficiency and quality of care for Medicare beneficiaries receiving care for these common clinical conditions and procedures.

  16. Beyond Standard Model searches in jets plus missing transverse energy final states with the ATLAS experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414488; Alviggi, Mariagrazia; Conventi, Francesco

    Dark Matter (DM) is currently one of the most challenging goal in the LHC programme: if DM exists it can be pair-produced in proton-proton collisions. Since its weakly-interacting nature, final signatures with high missing momentum and Standard Model (SM) particles are employed in these searches. This thesis presents results on signatures involving bottom quarks in final states, described in models where DM production occurs via massive spin-0 mediators (scalar or pseudoscalar) with a coupling to SM particles proportional to their masses. These collider searches provide an interesting complementarity to DM direct and indirect detection experiments, covering the parameter space with low DM masses. The results shown in the thesis are obtained on the data collected by the ATLAS experiment in 2015 and 2016.

  17. A plane-wave final-state theory of ATI

    International Nuclear Information System (INIS)

    Parker, J.S.; Clark, C.W.

    1993-01-01

    A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude

  18. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Final Report, Version 2)

    Science.gov (United States)

    EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing developmen...

  19. Forecasting wind-driven wildfires using an inverse modelling approach

    Directory of Open Access Journals (Sweden)

    O. Rios

    2014-06-01

    Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.

  20. Predictive-property-ranked variable reduction in partial least squares modelling with final complexity adapted models: comparison of properties for ranking.

    Science.gov (United States)

    Andries, Jan P M; Vander Heyden, Yvan; Buydens, Lutgarde M C

    2013-01-14

    The calibration performance of partial least squares regression for one response (PLS1) can be improved by eliminating uninformative variables. Many variable-reduction methods are based on so-called predictor-variable properties or predictive properties, which are functions of various PLS-model parameters, and which may change during the steps of the variable-reduction process. Recently, a new predictive-property-ranked variable reduction method with final complexity adapted models, denoted as PPRVR-FCAM or simply FCAM, was introduced. It is a backward variable elimination method applied on the predictive-property-ranked variables. The variable number is first reduced, with constant PLS1 model complexity A, until A variables remain, followed by a further decrease in PLS complexity, allowing the final selection of small numbers of variables. In this study for three data sets the utility and effectiveness of six individual and nine combined predictor-variable properties are investigated, when used in the FCAM method. The individual properties include the absolute value of the PLS1 regression coefficient (REG), the significance of the PLS1 regression coefficient (SIG), the norm of the loading weight (NLW) vector, the variable importance in the projection (VIP), the selectivity ratio (SR), and the squared correlation coefficient of a predictor variable with the response y (COR). The selective and predictive performances of the models resulting from the use of these properties are statistically compared using the one-tailed Wilcoxon signed rank test. The results indicate that the models, resulting from variable reduction with the FCAM method, using individual or combined properties, have similar or better predictive abilities than the full spectrum models. After mean-centring of the data, REG and SIG, provide low numbers of informative variables, with a meaning relevant to the response, and lower than the other individual properties, while the predictive abilities are

  1. Final Report. Fumex-III. Improvement of Models Used for Fuel Behaviour Simulation

    International Nuclear Information System (INIS)

    Kulacsy, Katalin

    2013-01-01

    The FUMEX-III coordinated research programme organised by the IAEA was the first FUMEX exercise in which AEKI (Hungarian Academy of Sciences KFKI Atomic Energy Research Institute) took part with the partial support of Paks NPP. The aim of the participation was to test the code FUROM developed at AEKI against not only measurements but also other fuel behaviour simulation codes, to share and discuss modelling experience and issues, and to establish acquaintance with fuel modellers in other countries. Among the numerous cases proposed for the programme, AEKI chose to simulate normal operation up to high burn-up and ramp tests, with special interest in VVER rods and PWR rods with annular pellets. The US PWR 16x16, the SPC RE GINNA, the Kola3-MIR, the IFA-519.9 cases and the AREVA idealised rod were thus selected. The present Final Report gives a short description of the FUROM models relevant to the selected cases, presents the results for the 5 cases and summarises the conclusions of the FUMEX-III programme. The input parameters used for the simulations can be found in the Appendix at the end of the Report. Observations concerning the IFPE datasets are collected for each dataset in their respective Sections for possible use in the IFPE database. (author)

  2. Workplace immersion in the final year of an undergraduate medicine course: the views of final year students and recent graduates.

    Science.gov (United States)

    Sen Gupta, Tarun; Hays, Richard; Woolley, Torres; Kelly, Gill; Jacobs, Harry

    2014-06-01

    Most medical schools require formal competence assessment of students immediately prior to graduation, but variation exists in the approach to endpoint assessments. This article reports perceptions of senior students and graduates from a school with a six-year program which has introduced final year workplace immersion placements following a barrier examination at the end of the penultimate Year 5. Final year students (22) and recent graduates (4) attended focus groups and in-depth interviews exploring their perceptions of the value of the curriculum experience during the final two years, the structure and timing of assessment, and their preparation for internship. Participants felt that the penultimate year was more pressured, and focused on passing "artificial" examinations. In contrast, the final year was more relaxed, building skills for postgraduate work and later career development. As a result, students felt well prepared for internship with some indication that the self-directed nature of the final year promoted a lifelong learning approach. The final year workplace immersion model was regarded positively by senior students of this medical school. This model may be a better way of preparing students to be junior doctors than a traditional final year heavy on theoretical learning and assessment.

  3. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  4. DECOVALEX III PROJECT. Modelling of FEBEX In-Situ Test. Task1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E.E.; Alcoverro, J. [Univ. Politecnica de Catalunya, Barcelona (Spain)] (comps.)

    2005-02-15

    Task 1 of DECOVALEX III was conceived as a benchmark exercise supported by all field and laboratory data generated during the performance of the FEBEX experiment designed to study thermo-hydro-mechanical and thermo-hydro-geochemical processes of the buffer and rock in the near field. The task was defined as a series of three successive blind prediction exercises (Parts A, B and C), which cover the behaviour of both the rock and bentonite barrier. Research teams participating in the FEBEX task were given, for each of the three parts, a set of field and laboratory data theoretically sufficient to generate a proper model and were asked to submit predictions, at given locations and time, for some of the measured variables. The merits and limitations of different modeling approaches were therefore established. The teams could perform additional calculations, once the actual 'solution' was disclosed. Final calculations represented the best approximation that a given team could provide, always within the general time constraints imposed by the General DECOVALEX III Organization. This report presents the works performed for Task 1. It contains the case definitions and evaluations of modelling results for Part A, B and C, and the overall evaluation of the works performed. The report is completed by a CD-ROM containing a set of final reports provided by the modeling teams participating in each of the three parts defined. These reports provide the necessary details to better understand the nature of the blind or final predictions included in this report. The report closes with a set of conclusions, which provides a summary of the main findings and highlights the lessons learned, some of which were summarized below. The best predictions of the water inflow into the excavated tunnel are found when the hydro geological model is properly calibrated on the basis of other known flow measurements in the same area. The particular idealization of the rock mass (equivalent

  5. DECOVALEX III PROJECT. Modelling of FEBEX In-Situ Test. Task1 Final Report

    International Nuclear Information System (INIS)

    Alonso, E.E.; Alcoverro, J.

    2005-02-01

    Task 1 of DECOVALEX III was conceived as a benchmark exercise supported by all field and laboratory data generated during the performance of the FEBEX experiment designed to study thermo-hydro-mechanical and thermo-hydro-geochemical processes of the buffer and rock in the near field. The task was defined as a series of three successive blind prediction exercises (Parts A, B and C), which cover the behaviour of both the rock and bentonite barrier. Research teams participating in the FEBEX task were given, for each of the three parts, a set of field and laboratory data theoretically sufficient to generate a proper model and were asked to submit predictions, at given locations and time, for some of the measured variables. The merits and limitations of different modeling approaches were therefore established. The teams could perform additional calculations, once the actual 'solution' was disclosed. Final calculations represented the best approximation that a given team could provide, always within the general time constraints imposed by the General DECOVALEX III Organization. This report presents the works performed for Task 1. It contains the case definitions and evaluations of modelling results for Part A, B and C, and the overall evaluation of the works performed. The report is completed by a CD-ROM containing a set of final reports provided by the modeling teams participating in each of the three parts defined. These reports provide the necessary details to better understand the nature of the blind or final predictions included in this report. The report closes with a set of conclusions, which provides a summary of the main findings and highlights the lessons learned, some of which were summarized below. The best predictions of the water inflow into the excavated tunnel are found when the hydro geological model is properly calibrated on the basis of other known flow measurements in the same area. The particular idealization of the rock mass (equivalent porous media

  6. ‘Een filosofisch geschriftje’: Christiaan Huygens’ gedachten over God in zijn Cosmotheoros en andere geschriften

    Directory of Open Access Journals (Sweden)

    Nienke Smit

    2014-03-01

    Full Text Available Although much has been written about Christiaan Huygens (1629–1695, his religious views are almost neglected in historical research. Some scholars have come to the conclusion that God played no part at all in the worldview of this great mathematician. Although Huygens has never written a book exclu- sively devoted to the subject of God, he did leave us some notes in which he explicitly expresses his views about God and the divine. This article focuses on Huygens’ philosophical writings and especially on his last completed work Cosmotheoros (1698, in which he discusses the possibility of extra-terres- trial life. In this book God is an important subject. Huygens’ thoughts show a strong belief in an underlying logic behind the construction of the universe. According to Huygens, the idea that the earth is just a planet among other planets, logically implies that these other planets should have a similar nature as the earth and are inhabited by ‘rational beings’. Eve- rything in the universe is created for a reason, so God would not have created anything for no purpose. Huygens can’t imagine the world being created without a great intelligent deity, but he denies that God has a direct influence on the course of events on earth. Therefore, in his view, the existence of miracles is impossible. This article presents a new perspective on Christiaan Huygens and shows that the concept of God was actually a crucial element in his understanding of the world.

  7. Mine-by experiment final design report

    International Nuclear Information System (INIS)

    Read, R.S.; Martin, C.D.

    1991-12-01

    The Underground Research Laboratory (URL) Mine-by Experiment is designed to provide information on rock mass response to excavation that will be used to assess important aspects of the design of a nuclear fuel waste disposal vault in a granitic pluton. The final experiment design is the result of a multidisciplinary approach, drawing on experience gained at other sites as well as the URL, and using both internal expertise and the external consultants. The final experiment design, including details on characterization, construction, instrumentation, and numerical modelling, is presented along with final design drawings

  8. X-Ray Reflectivity from the Surface of a Liquid Crystal:

    DEFF Research Database (Denmark)

    Pershan, P.S.; Als-Nielsen, Jens Aage

    1984-01-01

    X-ray reflectivity from the surface of a nematic liquid crystal is interpreted as the coherent superposition of Fresnel reflection from the surface and Bragg reflection from smectic order induced by the surface. Angular dependence of the Fresnel effect yields information on surface structure....... Measurement of the intensity of diffuse critical scattering relative to the Fresnel reflection yields the absolute value of the critical part of the density-density correlation function....

  9. Thin Film Flat Panel Off-Axis Solar Concentrator with Flux Distribution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Relatively small concentric thin film FRESNEL lenses and fresnel-like Multiple Parabolic Reflecting Surface (MPRS) reflectors have been successfully produced from...

  10. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  11. Elastodynamic models for extending GTD to penumbra and finite size flaws

    International Nuclear Information System (INIS)

    Djakou, A Kamta; Darmon, M; Potel, C

    2016-01-01

    The scattering of elastic waves from an obstacle is of great interest in ultrasonic Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular reflection and diffraction. This paper is especially focused on possible improvements of the Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid for a canonical infinite edge and not for a finite one and presents discontinuities around the direction of specular reflection. In order to address the first drawback, a 3D hybrid method using both GTD and Huygens secondary sources has been developed to deal with finite flaws. ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also been developed in elastodynamics to deal with small flaws. Experimental validation of these methods has been performed. As to the second drawback, a GTD uniform correction, the UTD (Uniform Theory of Diffraction) has been developed in the view of designing a generic model able to correctly simulate both specular reflection and diffraction. A comparison has been done between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which is another uniform solution of GTD. (paper)

  12. A model-independent analysis of final-state interactions in {overline{B}}_{d/s}^0to J/ψ π π

    Science.gov (United States)

    Daub, J. T.; Hanhart, C.; Kubis, B.

    2016-02-01

    Exploiting B-meson decays for Standard Model tests and beyond requires a precise understanding of the strong final-state interactions that can be provided model-independently by means of dispersion theory. This formalism allows one to deduce the universal pion-pion final-state interactions from the accurately known ππ phase shifts and, in the scalar sector, a coupled-channel treatment with the kaon-antikaon system. In this work an analysis of the decays {overline{B}}_d^0to J/ψ {π}+{π}- and {overline{B}}_s^0to J/ψ {π}+{π}- is presented. We find very good agreement with the data up to 1.05 GeV in the ππ invariant mass, with a number of parameters reduced significantly compared to a phenomenological analysis. In addition, the phases of the amplitudes are correct by construction, a crucial feature for many CP violation measurements in heavy-meson decays.

  13. Abelian Chern-Simons theory and linking numbers via oscillatory integrals

    International Nuclear Information System (INIS)

    Albeverio, S.; Schaefer, J.

    1994-06-01

    We introduce a rigorous mathematical model of abelian Chern-Simons theory based on the theory of infinite dimensional oscillatory integrals developed by Albeverio and Hoeegh-Krohn. We construct a gauge-fixed Chern-Simons path integral as a Fresnel integral in a certain Hilbert space. Wilson loop variables are defined as Fresnel integrable functions and it is shown in this context that the expectation value of products of Wilson loops w.r.t. the Chern-Simons path integral is a topological invariant which can be computed in terms of pairwise linking numbers of the loops, as conjectured by Witten. We also propose a lattice Chern-Simons action which converges to the continuum limit. (orig.)

  14. A search for beyond the Standard Model physics using a final state with light and boosted muon pairs at CMS experiment

    CERN Document Server

    Castaneda Hernandez, Alfredo Martin

    2017-01-01

    A search for new physics phenomena is presented using a final state with multi-muons, the topology studied considers pairs of opposite sign muons (dimuons) with a low invariant mass and potentially produced far from the interaction point (displaced). Several beyond the Standard Model scenarios fit into this category, including those predicting Dark matter particles (i.e. dark photons) which weakly interact with SM particles via a kinetic mixing parameter and could have a non-negligible lifetime. Other scenario is the Next-to-Minimal Supersymmetric Standard Model (NMSSM) that extends the higgs sector introducing new light bosons that can decay to muon pairs. The data analyzed corresponds to the one collected by CMS experiment during 2015 using 13 TeV collision energy. This search constrains a large, previously unconstrained area of the parameter space for each mode and allows for an easy reinterpretation for new physics models with similar final state.

  15. CFD modelling of axial mixing in the intermediate and final rinses of cleaning-in-place procedures of straight pipes

    DEFF Research Database (Denmark)

    Yang, Jifeng; Jensen, Bo Boye Busk; Nordkvist, Mikkel

    2018-01-01

    The intermediate and final rinses of straight pipes, in which water replaces a cleaning agent of similar density and viscosity, are modelled using Computational Fluid Dynamic (CFD) methods. It is anticipated that the displacement process is achieved by convective and diffusive transport. The simu...

  16. Analytic Theory of Titans Schumann Resonance: Constraints on Ionospheric Conductivity and Buried Water Ocean

    Science.gov (United States)

    Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando

    2013-01-01

    This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while

  17. The Spot of Arago and Its Role in Aberration Analysis.

    Science.gov (United States)

    1983-12-01

    Finally, my family and in- laws were always there with patience, love and support. This thesis would have been impossible were it not for my wife...five was chosen to judge the entries. The panel members were Laplace, Biot, Arago, Sime6n Denis Poisson and Joseph - Louis Gay- Lussac . Laplace, Biot and...Poisson were staunch adherents of P the particle theory of light while Arago advocated Fresnel’s view. P - *..*. ..-. 9 Gay- Lussac , a chemist, was

  18. Probabilistic modelling of the damage of geological barriers of the nuclear waste deep storage - ENDOSTON project, final report

    International Nuclear Information System (INIS)

    2010-01-01

    As the corrosion of metallic casings of radioactive waste storage packages releases hydrogen under pressure, and as the overpressure disturbs the stress fields, the authors report the development of methodologies and numerical simulation tools aimed at a better understanding of the mechanisms of development and propagation of crack networks in the geological barrier due to this overpressure. They present a probabilistic model of the formation of crack networks in rocks, with the probabilistic post-processing of a finite element calculation. They describe the modelling of crack propagation and damage in quasi-brittle materials. They present the ENDO-HETEROGENE model for the formation and propagation of cracks in heterogeneous media, describe the integration of the model into the Aster code, and report the model validation (calculation of the stress intensity factor, grid dependence). They finally report a test case of the ENDO-HETEROGENE model

  19. Updated Results from the Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.; Ridley, A.

    2006-05-01

    This paper presents updated results from the Michigan Titan Thermospheric General Circulation Model (TTGCM) that was recently unveiled in operational form (Bell et al 2005 Spring AGU). Since then, we have incorporated a suite of chemical reactions for the major neutral constituents in Titan's upper atmosphere (N2, CH4). Additionally, some selected minor neutral constituents and major ionic species are also supported in the framework. At this time, HCN, which remains one of the critical thermally active species in the upper atmosphere, remains specified at all altitudes, utilizing profiles derived from recent Cassini-Huygen's measurements. In addition to these improvements, a parallel effort is underway to develop a non-hydrostatic Titan Thermospheric General Circulation Model for further comparisons. In this work, we emphasize the impacts of self-consistent chemistry on the results of the updated TTGCM relative to its frozen chemistry predecessor. Meanwhile, the thermosphere's thermodynamics remains determined by the interplay of solar EUV forcing and HCN rotational cooling, which is calculated by a full line- by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition to these primary drivers, a treatment of magnetospheric heating is further tested. The model's results will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  20. Respiratory trace deposition models. Final report

    International Nuclear Information System (INIS)

    Yeh, H.C.

    1980-03-01

    Respiratory tract characteristics of four mammalian species (human, dog, rat and Syrian hamster) were studied, using replica lung casts. An in situ casting techniques was developed for making the casts. Based on an idealized branch model, over 38,000 records of airway segment diameters, lengths, branching angles and gravity angles were obtained from measurements of two humans, two Beagle dogs, two rats and one Syrian hamster. From examination of the trimmed casts and morphometric data, it appeared that the structure of the human airway is closer to a dichotomous structure, whereas for dog, rat and hamster, it is monopodial. Flow velocity in the trachea and major bronchi in living Beagle dogs was measured using an implanted, subminiaturized, heated film anemometer. A physical model was developed to simulate the regional deposition characteristics proposed by the Task Group on Lung Dynamics of the ICRP. Various simulation modules for the nasopharyngeal (NP), tracheobronchial (TB) and pulmonary (P) compartments were designed and tested. Three types of monodisperse aerosols were developed for animal inhalation studies. Fifty Syrian hamsters and 50 rats were exposed to five different sizes of monodisperse fused aluminosilicate particles labeled with 169 Yb. Anatomical lung models were developed for four species (human, Beagle dog, rat and Syrian hamster) that were based on detailed morphometric measurements of replica lung casts. Emphasis was placed on developing a lobar typical-path lung model and on developing a modeling technique which could be applied to various mammalian species. A set of particle deposition equations for deposition caused by inertial impaction, sedimentation, and diffusion were developed. Theoretical models of particle deposition were developed based on these equations and on the anatomical lung models

  1. A model independent search for new physics in final states containing leptons at the D0 experiment

    International Nuclear Information System (INIS)

    Piper, Joel Michael

    2009-01-01

    The standard model is known to be the low energy limit of a more general theory. Several consequences of the standard model point to a strong probability of new physics becoming experimentally visible in high energy collisions of a few TeV, resulting in high momentum objects. The specific signatures of these collisions are topics of much debate. Rather than choosing a specific signature, this analysis broadly searches the data, preferring breadth over sensitivity. In searching for new physics, several different approaches are used. These include the comparison of data with standard model background expectation in overall number of events, comparisons of distributions of many kinematic variables, and finally comparisons on the tails of distributions that sum the momenta of the objects in an event. With 1.07 fb -1 at the D0 experiment, we find no evidence of physics beyond the standard model. Several discrepancies from the standard model were found, but none of these provide a compelling case for new physics.

  2. A model independent search for new physics in final states containing leptons at the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Joel Michael [Michigan State Univ., East Lansing, MI (United States)

    2009-01-01

    The standard model is known to be the low energy limit of a more general theory. Several consequences of the standard model point to a strong probability of new physics becoming experimentally visible in high energy collisions of a few TeV, resulting in high momentum objects. The specific signatures of these collisions are topics of much debate. Rather than choosing a specific signature, this analysis broadly searches the data, preferring breadth over sensitivity. In searching for new physics, several different approaches are used. These include the comparison of data with standard model background expectation in overall number of events, comparisons of distributions of many kinematic variables, and finally comparisons on the tails of distributions that sum the momenta of the objects in an event. With 1.07 fb-1 at the D0 experiment, we find no evidence of physics beyond the standard model. Several discrepancies from the standard model were found, but none of these provide a compelling case for new physics.

  3. Research on the Multiple Factors Influencing Human Identification Based on Pyroelectric Infrared Sensors

    Science.gov (United States)

    Lou, Ping; Hu, Jianmin

    2018-01-01

    Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908

  4. Deformation effects in the heavy ion quarter-point angle

    International Nuclear Information System (INIS)

    Almeida, F.I.A. de; Hussein, M.S.

    1984-01-01

    The effects of static and dynamic deformation on the heavy-ion elastic scattering quarter-point angle are discussed and analyzed in the sudden approximation. Simple expressions are derived within the Fresnel model and applications to several heavy-ion systems are presented. (Author) [pt

  5. FEL-Oscillator simulations with Genesis 1.3

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Verschuur, Jeroen W.J.; Volokhine, I.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral,

  6. Deep inelastic final states

    International Nuclear Information System (INIS)

    Girardi, G.

    1980-11-01

    In these lectures we attempt to describe the final states of deep inelastic scattering as given by QCD. In the first section we shall briefly comment on the parton model and give the main properties of decay functions which are of interest for the study of semi-inclusive leptoproduction. The second section is devoted to the QCD approach to single hadron leptoproduction. First we recall basic facts on QCD log's and derive after that the evolution equations for the fragmentation functions. For this purpose we make a short detour in e + e - annihilation. The rest of the section is a study of the factorization of long distance effects associated with the initial and final states. We then show how when one includes next to leading QCD corrections one induces factorization breaking and describe the double moments useful for testing such effects. The next section contains a review on the QCD jets in the hadronic final state. We begin by introducing the notion of infrared safe variable and defining a few useful examples. Distributions in these variables are studied to first order in QCD, with some comments on the resummation of logs encountered in higher orders. Finally the last section is a 'gaullimaufry' of jet studies

  7. Search for Higgs Boson of Minimal Standard Model in the hadronic final states with the detector ALEPH at LEP 2; Recherche du boson de Higgs du Modele Standard Minimal dans les etats finals hadroniques avec le detecteur ALEPH a LEP 2

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, Olivier [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-04-16

    In the Standard Model framework of the particle physics the mass of fermions and electroweak gauge boson mass is related to a scalar sector. In the Minimal Version of the Standard Model, a neutral scalar particle is predicted: the Higgs boson. Its mass is a free parameter of the model. The search for this boson has been actively performed at the LEP collider and it has been extended by the recent increase of its energy (LEP 2). In addition, due to the increase of the signal to background ratio at LEP 2, the data analysis has been extended to new channels. This is particularly the case of the dominant, HZ {yields} hadrons, channel leading to 65% of the e{sup +}e{sup -} {yields} HZ production process final states at LEP. The aim of the work presented in this document, is the search of the Minimal Standard Model Higgs boson in the fully hadronic final state data recorded by the ALEPH detector at LEP 2 energies. A selection tool based on an artificial neural network multi-variate method, has been developed in order to separate the signal process from known Standard Model background processes. The neural network method allows to combine non-linearly the information describing the signal, and to reach performances better than those obtained by classical method based on cuts. No evidence of signal has been seen in the data collected by ALEPH up to {radical}s = 189 GeV. Thirty-two candidates has been selected in agreement with the 26.3 events expected for the background processes. Combining all channels from Higgs boson search, the limit m{sub H} > 90.2 GeV/c{sup 2} is obtained with a 95% confidence level. (author)

  8. CST receiver tube qualification, Phase 1, Investigation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mack, I.; Rossy, J.-P.

    2010-05-15

    In this report the different application possibilities for concentrated solar thermal (CST) systems are studied. Further, the possible measuring methods for characterising and qualifying the receivers with their embedded absorber tubes are investigated. The investigations show that CST systems can be used as an environmentally friendly alternative to fossil fuels in many applications. The best known one is the generation of electrical power, but concentrated solar energy can also be used for desalination, industrial process heat, and for cooling of buildings. Industrial process heat is a large potential area with temperature in the range of 120 {sup o}C to over 400 {sup o}C. Heat below 400 {sup o}C can be provided by various parabolic trough and Fresnel systems, which are optimised for the temperature required. In order to further increase the usage of CST systems, it is of great importance to provide standards for the qualification and characterisation of the different components of the CST systems. Huge efforts are currently made to define a standard for evacuated receiver tubes. For the characterisation of the black absorber tubes the development is still at the beginning, although the need here is also given. (authors)

  9. Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York City wastewater treatment plants.

    Science.gov (United States)

    Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2012-01-01

    New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.

  10. Use on non-conjugate prior distributions in compound failure models. Final technical report

    International Nuclear Information System (INIS)

    Shultis, J.K.; Johnson, D.E.; Milliken, G.A.; Eckhoff, N.D.

    1981-12-01

    Several theoretical and computational techniques are presented for compound failure models in which the failure rate or failure probability for a class of components is considered to be a random variable. Both the failure-on-demand and failure-rate situation are considered. Ten different prior families are presented for describing the variation or uncertainty of the failure parameter. Methods considered for estimating values for the prior parameters from a given set of failure data are (1) matching data moments to those of the prior distribution, (2) matching data moments to those of the compound marginal distribution, and (3) the marginal maximum likelihood method. Numerical methods for computing the parameter estimators for all ten prior families are presented, as well as methods for obtaining estimates of the variances and covariance of the parameter estimators, it is shown that various confidence, probability, and tolerance intervals can be evaluated. Finally, to test the resulting failure models against the given failure data, generalized chi-squage and Kolmogorov-Smirnov goodness-of-fit tests are proposed together with a test to eliminate outliers from the failure data. Computer codes based on the results presented here have been prepared and are presented in a companion report

  11. The problem of focusing and real images

    International Nuclear Information System (INIS)

    Mihas, Pavlos

    2008-01-01

    A historical discussion of the theories which deal with the formation of real images in mirrors and lenses is presented in this paper. Speculations on mirrors appeared as early as Plato. Euclid's, Hero's and Ptolemy's approaches to visual rays are described. The theory on burning mirrors starts with Diocles and later was continued by the Arabs. Al Haytham extensively studied the reflection of light rays on concave mirrors. Huygens tried to find a shorter way to do the calculations. With lenses Kepler gave a new way of finding the position of images by using approximations. Huygens also gave a solution for the shape of a 'perfect' lens. Huygens' principle on waves can be combined with Fermat's principle to explain the formation of images. These theories can be used in education to help students better understand the formation of images, the propagation of waves and the properties of lenses

  12. Stardust Final Conference

    CERN Document Server

    Minisci, Edmondo; Summerer, Leopold; McGinty, Peter

    2018-01-01

    Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and A...

  13. Final Project Report Load Modeling Transmission Research

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bravo, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yinger, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chassin, Dave [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Huang, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hiskens, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Venkataramanan, Giri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-31

    The research presented in this report primarily focuses on improving power system load models to better represent their impact on system behavior. The previous standard load model fails to capture the delayed voltage recovery events that are observed in the Southwest and elsewhere. These events are attributed to stalled air conditioner units after a fault. To gain a better understanding of their role in these events and to guide modeling efforts, typical air conditioner units were testing in laboratories. Using data obtained from these extensive tests, new load models were developed to match air conditioner behavior. An air conditioner model is incorporated in the new WECC composite load model. These models are used in dynamic studies of the West and can impact power transfer limits for California. Unit-level and systemlevel solutions are proposed as potential solutions to the delayed voltage recovery problem.

  14. On the Scaled Fractional Fourier Transformation Operator

    International Nuclear Information System (INIS)

    Hong-Yi, Fan; Li-Yun, Hu

    2008-01-01

    Based on our previous study [Chin. Phys. Lett. 24 (2007) 2238] in which the Fresnel operator corresponding to classical Fresnel transform was introduced, we derive the fractional Fourier transformation operator, and the optical operator method is then enriched

  15. A model-independent analysis of final-state interactions in B̄{sub d/s}{sup 0}→J/ψππ

    Energy Technology Data Exchange (ETDEWEB)

    Daub, J.T. [Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) andBethe Center for Theoretical Physics, Universität Bonn,D-53115 Bonn (Germany); Hanhart, C. [Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Kubis, B. [Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) andBethe Center for Theoretical Physics, Universität Bonn,D-53115 Bonn (Germany)

    2016-02-01

    Exploiting B-meson decays for Standard Model tests and beyond requires a precise understanding of the strong final-state interactions that can be provided model-independently by means of dispersion theory. This formalism allows one to deduce the universal pion-pion final-state interactions from the accurately known ππ phase shifts and, in the scalar sector, a coupled-channel treatment with the kaon-antikaon system. In this work an analysis of the decays B̄{sub d}{sup 0}→J/ψπ{sup +}π{sup −} and B̄{sub s}{sup 0}→J/ψπ{sup +}π{sup −} is presented. We find very good agreement with the data up to 1.05 GeV in the ππ invariant mass, with a number of parameters reduced significantly compared to a phenomenological analysis. In addition, the phases of the amplitudes are correct by construction, a crucial feature for many CP violation measurements in heavy-meson decays.

  16. Analysis of the Correlation between GDP and the Final Consumption

    Directory of Open Access Journals (Sweden)

    Constantin ANGHELACHE

    2011-09-01

    Full Text Available This paper presents the results of the researches performed by the author regarding the evolution of Gross Domestic Product. One of the main aspects of GDP analysis is the correlation with the final consumption, an important macroeconomic indicator. The evolution of the Gross Domestic Product is highly influenced by the evolution of the final consumption. To analyze the correlation, the paper proposes the use of the linear regression model, as one of the most appropriate instruments for such scientific approach. The regression model described in the article uses the GDP as resultant variable and the final consumption as factorial variable.

  17. A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation

    International Nuclear Information System (INIS)

    Chuan-Mei, Xie; Shao-Long, Wan; Hong-Yi, Fan

    2010-01-01

    Based on the displacement-squeezing related squeezed coherent state representation |z) g and using the technique of integration within an ordered product of operators, this paper finds a generalized Fresnel operator, whose matrix element in the coordinate representation leads to a generalized Collins formula (Huygens–Fresnel integration transformation describing optical diffraction). The generalized Fresnel operator is derived by a quantum mechanical mapping from z to sz - rz * in the |z) g representation, while |z) g in phase space is graphically denoted by an ellipse. (classical areas of phenomenology)

  18. NONLINEAR DYNAMICAL SYSTEMS - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  19. Modeling the Pan-Arctic terrestrial and atmospheric water cycle. Final report; FINAL

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    2001-01-01

    This report describes results of DOE grant DE-FG02-96ER61473 to Iowa State University (ISU). Work on this grant was performed at Iowa State University and at the University of New Hampshire in collaboration with Dr. Charles Vorosmarty and fellow scientists at the University of New Hampshire's (UNH's) Institute for the Study of the Earth, Oceans, and Space, a subcontractor to the project. Research performed for the project included development, calibration and validation of a regional climate model for the pan-Arctic, modeling river networks, extensive hydrologic database development, and analyses of the water cycle, based in part on the assembled databases and models. Details appear in publications produced from the grant

  20. Distress modeling for DARWin-ME : final report.

    Science.gov (United States)

    2013-12-01

    Distress prediction models, or transfer functions, are key components of the Pavement M-E Design and relevant analysis. The accuracy of such models depends on a successful process of calibration and subsequent validation of model coefficients in the ...

  1. Development of generalised model for grate combustion of biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, L.

    2007-02-15

    This project has been divided into two main parts, one of which has focused on modelling and one on designing and constructing a grate fired biomass test rig. The modelling effort has been defined due to a need for improved knowledge of the transport and conversion processes within the bed layer for two reasons: 1) to improve emission understanding and reduction measures and 2) to improve boundary conditions for CFD-based furnace modelling. The selected approach has been based on a diffusion coefficient formulation, where conservation equations for the concentration of fuel are solved in a spatially resolved grid, much in the same manner as in a finite volume CFD code. Within this porous layer of fuel, gas flows according to the Ergun equation. The diffusion coefficient links the properties of the fuel to the grate type and vibration mode, and is determined for each combination of fuel, grate and vibration mode. In this work, 3 grates have been tested as well as 4) types of fuel, drinking straw, wood beads, straw pellets and wood pellets. Although much useful information and knowledge has been obtained on transport processes in fuel layers, the model has proved to be less than perfect, and the recommendation is not to continue along this path. New visual data on the motion of straw on vibrating grates indicate that a diffusion governed motion does not very well represent the transport. Furthermore, it is very difficult to obtain the diffusion coefficient in other places than the surface layer of the grate, and it is not likely that this is representative for the motion within the layer. Finally, as the model complexity grows, model turnover time increases to a level where it is comparable to that of the full furnace model. In order to proceed and address the goals of the first paragraph, it is recommended to return to either a walking column approach or even some other, relatively simple method of prediction, and combine this with a form of randomness, to mimic the

  2. Mathematical models for atmospheric pollutants. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; Barrager, S.M.

    1979-08-01

    The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes

  3. Medicare Program; Merit-Based Incentive Payment System (MIPS) and Alternative Payment Model (APM) Incentive Under the Physician Fee Schedule, and Criteria for Physician-Focused Payment Models. Final rule with comment period.

    Science.gov (United States)

    2016-11-04

    The Medicare Access and CHIP Reauthorization Act of 2015 (MACRA) repeals the Medicare sustainable growth rate (SGR) methodology for updates to the physician fee schedule (PFS) and replaces it with a new approach to payment called the Quality Payment Program that rewards the delivery of high-quality patient care through two avenues: Advanced Alternative Payment Models (Advanced APMs) and the Merit-based Incentive Payment System (MIPS) for eligible clinicians or groups under the PFS. This final rule with comment period establishes incentives for participation in certain alternative payment models (APMs) and includes the criteria for use by the Physician-Focused Payment Model Technical Advisory Committee (PTAC) in making comments and recommendations on physician-focused payment models (PFPMs). Alternative Payment Models are payment approaches, developed in partnership with the clinician community, that provide added incentives to deliver high-quality and cost-efficient care. APMs can apply to a specific clinical condition, a care episode, or a population. This final rule with comment period also establishes the MIPS, a new program for certain Medicare-enrolled practitioners. MIPS will consolidate components of three existing programs, the Physician Quality Reporting System (PQRS), the Physician Value-based Payment Modifier (VM), and the Medicare Electronic Health Record (EHR) Incentive Program for Eligible Professionals (EPs), and will continue the focus on quality, cost, and use of certified EHR technology (CEHRT) in a cohesive program that avoids redundancies. In this final rule with comment period we have rebranded key terminology based on feedback from stakeholders, with the goal of selecting terms that will be more easily identified and understood by our stakeholders.

  4. Reading, Writing & Rings: Science Literacy for K-4 Students

    Science.gov (United States)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  5. Constraints on models for the Higgs boson with exotic spin and parity in VH → Vbb final states.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Borysova, M; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Fauré, A; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Gogota, O; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Savitskyi, M; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2014-10-17

    We present constraints on models containing non-standard-model values for the spin J and parity P of the Higgs boson H in up to 9.7 fb(-1) of pp collisions at sqrt[s] = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. These are the first studies of Higgs boson J(P) with fermions in the final state. In the ZH → ℓℓbb, WH → ℓνbb, and ZH → ννbb final states, we compare the standard model (SM) Higgs boson prediction, J(P) = 0(+), with two alternative hypotheses, J(P) = 0(-) and J(P) = 2(+). We use a likelihood ratio to quantify the degree to which our data are incompatible with non-SM J(P) predictions for a range of possible production rates. Assuming that the production rate in the signal models considered is equal to the SM prediction, we reject the J(P) = 0(-) and J(P) = 2(+) hypotheses at the 97.6% CL and at the 99.0% CL, respectively. The expected exclusion sensitivity for a J(P) = 0(-) (J(P) = 2(+)) state is at the 99.86% (99.94%) CL. Under the hypothesis that our data are the result of a combination of the SM-like Higgs boson and either a J(P) = 0(-) or a J(P) = 2(+) signal, we exclude a J(P) = 0(-) fraction above 0.80 and a J(P) = 2(+) fraction above 0.67 at the 95% CL. The expected exclusion covers J(P) = 0(-) (J(P) = 2(+)) fractions above 0.54 (0.47).

  6. Repository simulation model: Final report

    International Nuclear Information System (INIS)

    1988-03-01

    This report documents the application of computer simulation for the design analysis of the nuclear waste repository's waste handling and packaging operations. The Salt Repository Simulation Model was used to evaluate design alternatives during the conceptual design phase of the Salt Repository Project. Code development and verification was performed by the Office of Nuclear Waste Isolation (ONWL). The focus of this report is to relate the experience gained during the development and application of the Salt Repository Simulation Model to future repository design phases. Design of the repository's waste handling and packaging systems will require sophisticated analysis tools to evaluate complex operational and logistical design alternatives. Selection of these design alternatives in the Advanced Conceptual Design (ACD) and License Application Design (LAD) phases must be supported by analysis to demonstrate that the repository design will cost effectively meet DOE's mandated emplacement schedule and that uncertainties in the performance of the repository's systems have been objectively evaluated. Computer simulation of repository operations will provide future repository designers with data and insights that no other analytical form of analysis can provide. 6 refs., 10 figs

  7. Physics with Tau Lepton Final States in ATLAS

    Directory of Open Access Journals (Sweden)

    Pingel Almut M.

    2013-05-01

    Full Text Available The ATLAS detector records collisions from two high-energetic proton beams circulating in the LHC. An integral part of the ATLAS physics program are analyses with tau leptons in the final state. Here an overview is given over the studies done in ATLAS with hadronically-decaying final state tau leptons: Standard Model cross-section measurements of Z → ττ, W → τν and tt̅ → bb̅ e/μν τhadν; τ polarization measurements in W → τν decays; Higgs searches and various searches for physics beyond the Standard Model.

  8. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.

    2013-11-01

    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the μ+μ- final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb-1 of proton–proton collisions at √s = 7 TeV, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. Finally, the results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25–3.55 GeV/c2.

  9. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  10. The problem of focusing and real images

    Energy Technology Data Exchange (ETDEWEB)

    Mihas, Pavlos [Department of Elementary Education, Demokritus University, Nea Chili, Alexandroupolis, Gr-68100 (Greece)], E-mail: pmichas@eled.duth.gr

    2008-05-15

    A historical discussion of the theories which deal with the formation of real images in mirrors and lenses is presented in this paper. Speculations on mirrors appeared as early as Plato. Euclid's, Hero's and Ptolemy's approaches to visual rays are described. The theory on burning mirrors starts with Diocles and later was continued by the Arabs. Al Haytham extensively studied the reflection of light rays on concave mirrors. Huygens tried to find a shorter way to do the calculations. With lenses Kepler gave a new way of finding the position of images by using approximations. Huygens also gave a solution for the shape of a 'perfect' lens. Huygens' principle on waves can be combined with Fermat's principle to explain the formation of images. These theories can be used in education to help students better understand the formation of images, the propagation of waves and the properties of lenses.

  11. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  12. Surface-enhanced chiroptical spectroscopy with superchiral surface waves.

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2018-07-01

    We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.

  13. Reflection of a polarized light cone

    Science.gov (United States)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  14. Fresnel's Lighthouse Lenses

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2007-01-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  15. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996-Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer; FINAL

    International Nuclear Information System (INIS)

    Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K

    2001-01-01

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty

  16. Search for non-standard model signatures in the WZ/ZZ final state at CDF Run II

    International Nuclear Information System (INIS)

    Norman, Matthew

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high (cflx s). Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  17. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Matthew [Univ. of California, San Diego, CA (United States)

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  18. Padrão de difração de um conjunto de n fendas não simétricas e de larguras arbitrárias

    OpenAIRE

    Reis, Daniel M.; Santos, Edson M.; Andrade-Neto, A.V.

    2015-01-01

    Neste trabalho investigamos o padrão de difração no regime de Fresnel (campo próximo) e de Fraunhofer (campo distante) para um conjunto de nfendas não simétricas e de larguras diferentes. Partindo da fórmula de difração de Fresnel-Kirchhoff conseguimos obter uma expressão para a intensidade da onda difratada por um conjunto de n fendas de tamanhos arbitrários onde é possível observar a transição do regime de Fresnel para o regime de Fraunhofer. In this work we investigated the diffraction ...

  19. Cost estimates for flat plate and concentrator collector arrays

    Science.gov (United States)

    Shimada, K.

    1982-01-01

    The current module and installation costs for the U.S. National Photovoltaic Program's grid-connected systems are significantly higher than required for economic viability of this alternative. Attention is accordingly given to the prospects for installed module cost reductions in flat plate, linear focus Fresnel concentrator, and point focus Fresnel concentrator candidate systems. Cost projections indicate that all three systems would meet near-term and midterm goals, provided that module costs of $2.80/W(p) and $0.70/W(p), respectively, are met. The point focus Fresnel system emerges as the most viable for the near term.

  20. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    International Nuclear Information System (INIS)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-01

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  1. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    Energy Technology Data Exchange (ETDEWEB)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-15

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  2. JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields

    Science.gov (United States)

    Piedrahita-Quintero, Pablo; Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2017-05-01

    JDiffraction, a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields, is presented. Angular spectrum, Fresnel transform, and Fresnel-Bluestein transform are the numerical algorithms implemented in the methods and functions of the library to compute the scalar propagation of the complex wavefield. The functionality of the library is tested with the modeling of easy to forecast numerical experiments and also with the numerical reconstruction of a digitally recorded hologram. The performance of JDiffraction is contrasted with a library written for C++, showing great competitiveness in the apparently less complex environment of JAVA language. JDiffraction also includes JAVA easy-to-use methods and functions that take advantage of the computation power of the graphic processing units to accelerate the processing times of 2048×2048 pixel images up to 74 frames per second.

  3. MARKETING RELATIONSHIP AND TRADING IN THE RELATIONSHIP BETWEEN SERVICE PROVIDERS, HEALTH OPERATORS AND FINAL CUSTOMER: THE SEARCH FOR AN INTEGRATING MODEL

    Directory of Open Access Journals (Sweden)

    Nilda Catalina, Tañski

    2012-01-01

    Full Text Available The marketing relationship finds similarities with the concept of cooperative bargaining, the purpose of this is to find solutions to mutual gains with long-term vision. Within this approach, we sought to build an integrative model of relationship marketing and negotiation in the relationship between service providers, health operators and final customers in the health plan market in Brazil, this relationship is complex, full of conflicts and stagnation. It was first used, first, as an exploratory research of direct observation of the phenomenon referred to relationship marketing, trading and health insurance to increase employment opportunities. Then, the method of data collection was in that environment through online questionnaires using the survey method, in the representative sector. The type of sample used, where n = 217 and the confidence level was 95%, not intentional probabilistic. In the final, it was concluded that the initially proposed model was fully accepted, taking into account the choice of methodology, then achieving the main objective of this study.

  4. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  5. Cosmology Without Finality

    Science.gov (United States)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  6. Final-state interactions and relativistic effects in the quasielastic (e,e') reaction

    International Nuclear Information System (INIS)

    Chinn, C.R.; Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545); Picklesimer, A.; Van Orden, J.W.

    1989-01-01

    The longitudinal and transverse response functions for the inclusive quasielastic (e,e') reaction are analyzed in detail. A microscopic theoretical framework for the many-body reaction provides a clear conceptual (nonrelativistic) basis for treating final-state interactions and goes far beyond simple plane-wave or Hermitean potential models. The many-body physics of inelastic final-state channels as described by optical and multiple scattering theories is properly included by incorporating a full complex optical potential. Explicit nonrelativistic and relativistic momentum-space calculations quantitatively demonstrate the importance of such a treatment of final-state interactions for both the transverse and longitudinal response. Nonrelativistic calculations are performed using final-state interactions based on phenomenology, local density models, and microscopic multiple scattering theory. Relativistic calculations span a similar range of models and employ Dirac bound-state wave functions. The theoretical extension to relativistic dynamics is of course not clear, but is done in obvious parallel to elastic proton scattering. Extensive calculations are performed for 40 Ca at momentum transfers of 410, 550, and 700 MeV/c. A number of interesting physical effects are observed, including significant relativistic suppressions (especially for R L ), large off-shell and virtual pair effects, enhancement of the tails of the response by the final-state interactions, and large qualitative and even shape distinctions between the predictions of the various models of the final-state interactions. None of the models is found to be able to simultaneously predict the data for both response functions. This strongly suggests that additional physical mechanisms are of qualitative importance in inclusive quasielastic electron scattering

  7. Final theory spiral-field-model. Basic ideas for a compatible physics and a consistent nature science

    International Nuclear Information System (INIS)

    Hartje, U.A.J.

    2005-01-01

    This script contains theses for an universal 'Spiral-Field-Theory' that are capable to dissolve problems in parallel from different areas which are far from each other. Starting point is the stuck principle discussion about the relationships between the Classic Physics and the Quantum Physics. Aim is the clarification of questions which remained open. In 1925 Max Planck had formulated as follows: 'The research of physics can not rest, so long not has been together-welded: on the one hand the mechanics and the electrodynamics with on the other hand the lesson of the stationary one and the radiating heat to a sole unitary theory'. The Spiral-Field-Model develops a supporting structure from General Field into which they will class the secure knowledge from experiments and well-proved theories. The most important thing of this new Final Theory is the detailed generating of all nature courses of phenomena exclusively from radiation and that in the direct meaning of the word. In the final effect the two great disciplines of the physics which are drifted from each other, become bonded together to a super ordinate theoretical building of the nature sciences. (orig.)

  8. UOP FIN 571 Final Exam Guide New

    OpenAIRE

    ADMIN

    2018-01-01

    UOP FIN 571 Final Exam Guide New Check this A+ tutorial guideline at http://www.fin571assignment.com/fin-571-uop/fin-571-final-exam-guide -latest For more classes visit http://www.fin571assignment.com Question 1 The underlying assumption of the dividend growth model is that a stock is worth: A. An amount computed as the next annual dividend divided by the required rate of return. B. An amount computed as the next annual dividend divided by the ma...

  9. Mathematical model of a NiOOH/metal hydride cell. Final report, September 15, 1993--November 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    White, R.E.; Popov, B.N.

    1996-12-31

    One of the objectives of work on the nickel/metal hydride cell has been to develop a mathematical model of the performance of the cell. This is a summary of work to date and is meant to be a Final Report of the BES project. Mathematical model of the nickel/metal hydride cell depends on the kinetics, thermodynamics, and transport properties of the metal hydride electrode. Consequently, investigations were carried out to determine: (1) the exchange current density and the equilibrium potential as a function of hydrogen content in the electrode; (2) the hydrogen diffusion coefficient in the bulk of the alloy; (3) the hydrogen reaction rate order; (4) the symmetry factor for hydrogen evolution reaction and (5) to determine the reaction mechanisms of the hydrogen charge and discharge processes including overcharge and overdischarge mechanism.

  10. Fleet replacement modeling : final report, July 2009.

    Science.gov (United States)

    2009-07-01

    This project focused on two interrelated areas in equipment replacement modeling for fleets. The first area was research-oriented and addressed a fundamental assumption in engineering economic replacement modeling that all assets providing a similar ...

  11. Software package r3t. Model for transport and retention in porous media. Final report

    International Nuclear Information System (INIS)

    Fein, E.

    2004-01-01

    In long-termsafety analyses for final repositories for hazardous wastes in deep geological formations the impact to the biosphere due to potential release of hazardous materials is assessed for relevant scenarios. The model for migration of wastes from repositories to men is divided into three almost independent parts: the near field, the geosphere, and the biosphere. With the development of r 3 t the feasibility to model the pollutant transport through the geosphere for porous or equivalent porous media in large, three-dimensional, and complex regions is established. Furthermore one has at present the ability to consider all relevant retention and interaction effects which are important for long-term safety analyses. These are equilibrium sorption, kinetically controlled sorption, diffusion into immobile pore waters, and precipitation. The processes of complexing, colloidal transport and matrix diffusion may be considered at least approximately by skilful choice of parameters. Speciation is not part of the very recently developed computer code r 3 t. With r 3 t it is possible to assess the potential dilution and the barrier impact of the overburden close to reality

  12. Production application of injection-molded diffractive elements

    Science.gov (United States)

    Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.

    1995-12-01

    We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.

  13. A TRANSMISSION SPECTRUM OF TITAN'S NORTH POLAR ATMOSPHERE FROM A SPECULAR REFLECTION OF THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Jason W. [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States); Clark, Roger N. [United States Geological Survey, Denver, CO 80225 (United States); Sotin, Christophe; Buratti, Bonnie J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Ádámkovics, Máté [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States); Appéré, Thomas; Rodriguez, Sebastien [Laboratoire AIM, Université Paris Diderot, Paris 7/CNRS/CEA-Saclay, DSM-IRFU/SAp, F-91191 Gif sur Yvette (France); Soderblom, Jason M. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Brown, Robert H. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Baines, Kevin H. [Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, 53706 (United States); Le Mouélic, Stéphane [Laboratoire de Planétologie et Géodynamique, Université de Nantes, F-44322 Nantes (France); Nicholson, Philip D., E-mail: jwbarnes@uidaho.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2013-11-10

    Cassini/VIMS T85 observations of a solar specular reflection off of Kivu Lacus (87.°4N 241.°1E) provide an empirical transmission spectrum of Titan's atmosphere. Because this observation was acquired from short range (33,000 km), its intensity makes it visible within the 2.0, 2.7, and 2.8 μm atmospheric windows in addition to the 5 μm window where all previous specular reflections have been seen. The resulting measurement of the total one-way normal atmospheric optical depth (corresponding to haze scattering plus haze and gas absorption) provides strong empirical constraints on radiative transfer models. Using those models, we find that the total haze column abundance in our observation is 20% higher than the Huygens equatorial value. Ours is the first measurement in the 2-5 μm wavelength range that probes all the way to the surface in Titan's arctic, where the vast majority of surface liquids are located. The specular technique complements other probes of atmospheric properties such as solar occultations and the direct measurements from Huygens. In breaking the degeneracy between surface and atmospheric absorptions, our measured optical depths will help to drive future calculations of deconvolved surface albedo spectra.

  14. Final/Progress Report for Instrumentation Grant

    International Nuclear Information System (INIS)

    None

    1997-01-01

    The major piece of equipment was a Furnace Model 1000 used during the Nitrate to Ammonia and Ceramic (NAC) process to sinter the ceramic final product. NAC is a new technology to immobilize liquid radioactive waste simulants. The grant also funded related control and measuring equipment

  15. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  16. ALINET: a model for assessing energy conservation opportunities in the food processing industry. Final technical report, September 1977-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Levis, A H; Ducot, E R; Levis, I S; Webster, T F

    1979-12-01

    ALINET is a network model designed for the analysis of energy use in the food processing and distribution sector and for the evaluation of the potential effectiveness of energy conserving technologies. The conceptual framework of the model, as well as the design and implementation of the computer software are described. The wheat system at the national, state, and facility-specific level is used to illustrate the model's operation and use. A pilot project, carried out in cooperation with industry, is described in which energy use in (a) hard wheat milling, and (b) durum milling and pasta manufacture is analyzed. Finally, the introduction of an alternative technology for pasta drying is assessed in terms of energy conservation and cost. Recommendation for further applications and institutionalization of the model are made.

  17. Final Technical Report - SciDAC Cooperative Agreement: Center for Extended Magnetohydrodynamic Modeling/ Transport and Dynamics in Torodial Fusion System

    International Nuclear Information System (INIS)

    Schanck, Dalton D.

    2010-01-01

    Final technical report for research performed by Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Extended MHD Modeling, DE-FC02-06ER54870, for the period 7/1/06 to 2/15/08. Principal results for this period are: 1. Development of a model for computational modeling for the primitive form of the extended MMD equations. This was reported as Phys. Plasmas 13, 058103 (2006). 2. Comparison between the NIMROD and M3D codes for simulation of the nonlinear sawtooth crash in the CDXU tokamak. This was reported in Phys. Plasmas 14, 056105 (2006). 3. Demonstration of 2-fluid and gyroviscous stabilization of interchange modes using computational extended MHD models. This was reported in Phys. Rev. Letters 101, 085005 (2008). Each of these publications is attached as an Appendix of this report. They should be consulted for technical details.

  18. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Held, Isaac [Princeton Univ., NJ (United States); Balaji, V. [Princeton Univ., NJ (United States); Fueglistaler, Stephan [Princeton Univ., NJ (United States)

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  19. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    Science.gov (United States)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  20. Application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal. Final report; Anwendung und Weiterentwicklung von Modellen fuer Endlagersicherheitsanalysen auf die Freigabe radioaktiver Stoffe zur Deponierung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Larue, Juergen; Seher, Holger; Weiss, Dietmar

    2014-08-15

    The project of application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal is aimed to study the long-term safety using repository-specific simulation programs with respect to radiation exposure for different scenarios. It was supposed to investigate whether the 10 micro Sv criterion can be guaranteed under consideration of human intrusion scenarios. The report covers the following issues: selection and identification of models and codes and the definition of boundary conditions; applicability of conventional repository models for long-term safety analyses; modeling results for the pollutant release and transport and calculation of radiation exposure; determination of the radiation exposure.