WorldWideScience

Sample records for hurricanes including cyclones

  1. The hurricane-like Mediterranean cyclone of January 1995

    Science.gov (United States)

    Pytharoulis, Ioannis; Craig, George; Ballard, Susan

    2000-09-01

    The development of a hurricane-like vortex over the Mediterranean Sea was studied using (mainly) the UK Met. Office Unified Model. The Mediterranean cyclone formed in the morning of 15 January 1995 over the sea between Greece and Sicily. Strong convection was observed prior to its genesis. During the longest part of the cyclone's lifetime, strong surface fluxes and, as a result, deep convection existed in its vicinity. Its track was influenced by the surface fluxes and the flow in the wider region. The forecast of the mesoscale and limited-area models reproduced the general characteristics of the actual system as they appeared at the surface and upper-air charts and at the satellite imagery. The investigation of the cyclone's characteristics gave strong evidence (including an ‘eye’ and a warm core) to support the initial assertion that it was similar to tropical cyclones and some polar lows. Baroclinic instability does not seem particularly important, although the cyclone formed at the edge of a baroclinic zone. A numerical experiment showed the vortex did not develop in the absence of surface heat and moisture fluxes. Another experiment showed that sensible and latent heat fluxes were equally important in its development.

  2. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement

    Science.gov (United States)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Chikunov, Alexander V.; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2017-09-01

    Despite the dangers associated with tropical cyclones and their rainfall, the origin of the moisture in these storms, which include destructive hurricanes and typhoons, remains surprisingly uncertain. Existing studies have focused on the region 40-400 km from a cyclone's center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from cyclone center, we analyze precipitation, atmospheric moisture and movement velocities for severe tropical cyclones - North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40% compared to the local long-term mean. The inner radius of this dry footprint approximately coincides with the hurricane's radius of water self-sufficiency. We discuss how Carnot efficiency considerations do not constrain the power of such open systems. Our findings emphasize the incompletely understood role and importance of atmospheric moisture stocks and dynamics in the behavior of severe tropical cyclones.

  3. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  4. Environmental modeling, technology, and communication for land falling tropical cyclone/hurricane prediction.

    Science.gov (United States)

    Tuluri, Francis; Reddy, R Suseela; Anjaneyulu, Y; Colonias, John; Tchounwou, Paul

    2010-05-01

    Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (W(max)) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21-30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2-3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes.

  5. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  6. Strongest Tropical cyclones: 1980-2009: A 30-year collage of Hurricane Satellite (HURSAT) data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within...

  7. NOAA/National Hurricane Center Tropical Cyclone Forecasts WMS/WFS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prototype Web Map Service and Web Feature Service containing NOAA National Hurricane Center tropical cyclone forecast information for Atlantic and Pacific basins....

  8. Fuel for cyclones: How the water vapor budget of a hurricane depends on its motion

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Chikunov, Alexander V; Sheil, Douglas; Nobre, Antonio D; Li, Bai-Lian

    2016-01-01

    Tropical cyclones are fueled by water vapor. Here we estimate the oceanic evaporation within an Atlantic hurricane to be less than one sixth of the total moisture flux precipitating over the same area. So how does the hurricane get the remaining water vapor? Our analysis of TRMM rainfall, MERRA atmospheric moisture and hurricane translation velocities suggests that access to water vapor relies on the hurricane's motion -- as it moves through the atmosphere, the hurricane consumes the water vapor it encounters. This depletion of atmospheric moisture by the hurricane leaves a "dry footprint" of suppressed rainfall in its wake. The thermodynamic efficiency of hurricanes -- defined as kinetic energy production divided by total latent heat release associated with the atmospheric moisture supply -- remains several times lower than Carnot efficiency even in the most intense hurricanes. Thus, maximum observed hurricane power cannot be explained by the thermodynamic Carnot limit.

  9. Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2009-11-01

    A universal equation is obtained for air pressure and wind velocity in cyclones, hurricanes and tornadoes as dependent on the distance from the center of the considered wind pattern driven by water vapor condensation. The obtained theoretical estimates of the horizontal profiles of air pressure and wind velocity, eye and wind wall radius in hurricanes and tornadoes and maximum values of the radial, tangential and vertical velocity components are in good agreement with empirical evidence.

  10. Mechanisms for Secondary Eyewall Formation in Tropical Cyclones: A Case Study of Hurricane Katrina (2005)

    Science.gov (United States)

    Garcia-Rivera, J. M.; Lin, Y.

    2013-05-01

    The Weather Research and Forecast (WRF) model is used to simulate the last eyewall replacement cycle (ERC) of Hurricane Katrina (2005) just before it's landfall in the Louisiana coastline. In this study, we pursue a complete understanding of the physics behind the secondary eyewall formation (SEF) in tropical cyclones. The simulation results show the occurrence of the early stages of an ERC in the simulated storm just before landfall. This confirms that with the appropriate set of physics parameterization schemes, grid spacing and initial conditions, the numerical model is able to reproduce ERCs on certain tropical cyclones with no data assimilation or extra data inputs. Strong updrafts are observed to converge in a ring outside the primary eyewall of Hurricane Katrina (2005) suggesting SEF during that period. The increase of divergence outside the primary eyewall with an outer-ring of convergence forming above the boundary layer can be part of the mechanisms that lead to SEF. Also, potential vorticity (PV) field is analyzed for its possible relationship with the development of the secondary eyewall. This detailed study of the pre-ERC events in the inner-core of Hurricane Katrina can build the foundations for testing some of the existing hypotheses for the development of secondary eyewalls leading to new ideas behind their formation.

  11. A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-11

    This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimated stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.

  12. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    Science.gov (United States)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  13. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling

    Science.gov (United States)

    Aijaz, S.; Ghantous, M.; Babanin, A. V.; Ginis, I.; Thomas, B.; Wake, G.

    2017-05-01

    The effects of turbulence generated by nonbreaking waves have been investigated by testing and evaluating a new nonbreaking wave parameterization in a coupled hurricane-ocean-wave model. The MPI version of the Princeton Ocean Model (POM) with hurricane forcing is coupled with the WAVEWATCH-III (WW3) surface wave model. Hurricane Ivan is chosen as the test case due to its extreme intensity and availability of field data during its passage. The model results are validated against field observations of wave heights and sea surface temperatures (SSTs) from the National Data Buoy Centre (NDBC) during Hurricane Ivan and against limited in situ current and bottom temperature data. A series of numerical experiments is set up to examine the influence of the nonbreaking wave parameterization on the mixing of upper ocean. The SST response from the modeling experiments indicates that the nonbreaking wave-induced mixing leads to significant cooling of the SST and deepening of the mixed layer. It was found that the nondimensional constant b1 in the nonbreaking wave parameterization has different impacts on the weak and the strong sides of the storm track. A constant value of b1 leads to improved predictions on the strong side of the storm while a steepness-dependent b1 provides a better agreement with in situ observations on the weak side. A separate simulation of the intense tropical cyclone Olwyn in north-west Australia revealed the same trend for b1 on the strong side of the tropical cyclone.

  14. Tropical Cyclone Center Positions from Sequences of HDSS Sondes Deployed along High-Altitude Overpasses of Hurricane Joaquin in 2015, during the ONR Tropical Cyclone Intensity field program.

    Science.gov (United States)

    Creasey, R.; Elsberry, R. L.; Hendricks, E. A.

    2016-12-01

    A method is developed to calculate the zero wind center (ZWC) position from a sequence of Yankee High Density Sounding System (HDSS) dropwindsondes deployed during a high-altitude overpass of a tropical cyclone. The approach is similar to the Willoughby and Chelmow technique in that it utilizes the intersections of bearings normal to the wind directions across the center to locate the ZWC position. Average wind directions over 1 km layers are calculated from the highly accurate Global Positioning (GPS) lat./long. positions as the HDSS sonde falls from the 60,000 foot flight-level of the NASA WB57 to the ocean surface. An iterative procedure is used to also account for the storm translation, which is necessary to put these high-frequency HDSS observations into a storm-relative coordinate system. The Tropical Cyclone Intensity (TCI-15) mission into Hurricane Joaquin on 4 October 2015 is examined. The ZWC positions from two center overpasses indicate the vortex tilts from 1 km to 10 km elevation and rotates cyclonically.

  15. NOAA/National Hurricane Center Preliminary Best Track Tropical Cyclone Tracks WMS/WFS (Dynamic Filtering)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prototype Web Map Service and Web Feature Service containing NOAA National Hurricane Center preliminary 'best track' information for past storms for the Atlantic and...

  16. The great Louisiana hurricane of August 1812

    OpenAIRE

    Mock, Cary J.; Chenoweth, Michael; Altamirano, Isabel; Rodgers, Matthew D.; García Herrera, Ricardo

    2010-01-01

    Major hurricanes are prominent meteorological hazards of the U.S. Atlantic and Gulf coasts. However, the official modern record of Atlantic basin tropical cyclones starts at 1851, and it does not provide a comprehensive measure of the frequency and magnitude of major hurricanes. Vast amounts of documentary weather data extend back several centuries, but many of these have not yet been fully utilized for hurricane reconstruction. These sources include weather diaries, ship logbooks, ship prote...

  17. Hurricane Force Winds in Explosive Maritime Extratropical Cyclones: A Modeling and Observational Study of Their Evolution and Dynamics

    Science.gov (United States)

    Albright, Benjamin Scott

    Extratropical cyclones can be as powerful as tropical cyclones with winds reaching 33 m s-1 or even stronger. They can also be very large in scale, and impact life and property on the oceans as well as over the land if the storms make a landfall. Two conceptual models exist that attempt to explain how the extreme winds in the bent-back frontal zone of these cyclones occur. The first is a jet associated with the cold conveyor belt and the second is through a phenomenon known as a sting jet. Some of the objectives this thesis will address are: (1) The role of gradient wind is during the life-cycle of the cyclone, (2) how model results compare to actual observations, and (3) if the sting jet or cold conveyor belt jet are the only causes for high winds within the bent-back frontal zone, among others. This thesis will examine two case studies of extreme, extratropical cyclones that occurred over the North Atlantic Ocean. Extensive observations including dropsondes, Stepped Frequency Microwave Radiometer (SFMR) measurements from a NOAA WP-3D aircraft and satellite scatterometer measurements are used to compare with modeled results of the two case studies. The Weather Research and Forecasting (WRF) Model Version 3.4.1 and the NOAA Environmental Modeling System (NEMS) NMM-B Launcher are used to model the two case studies and for high resolution and sensitivity testing. Trajectories calculated by the Read/Interpolate/Plot program and cross sections are additional tools used in the study. Some of the major conclusions included identifying sting jets in each storm but they were found not to be the major cause of the highest winds within the bent-back frontal zone. A secondary stream of air that accelerates from the west of the rapidly intensifying cyclone into a low-level jet located within a larger pressure gradient force and thermal gradient was found to be the major source of the high winds. It is suggested that the findings and conclusions based on the results of this

  18. Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004)

    Science.gov (United States)

    Villarini, Gabriele; Smith, James A.; Baeck, Mary Lynn; Marchok, Timothy; Vecchi, Gabriel A.

    2011-12-01

    Rainfall and flooding associated with landfalling tropical cyclones are examined through empirical analyses of three hurricanes (Frances, Ivan, and Jeanne) that affected large portions of the eastern U.S. during September 2004. Three rainfall products are considered for the analyses: NLDAS, Stage IV, and TMPA. Each of these products has strengths and weaknesses related to their spatio-temporal resolution and accuracy in estimating rainfall. Based on our analyses, we recommend using the Stage IV product when studying rainfall distribution in landfalling tropical cyclones due to its fine spatial and temporal resolutions (about 4-km and hourly) and accuracy, and the capability of estimating rainfall up to 150 km from the coast. Lagrangian analyses of rainfall distribution relative to the track of the storm are developed to represent evolution of the temporal and spatial structure of rainfall. Analyses highlight the profound changes in rainfall distribution near landfall, the changing contributions to the rainfall field from eyewall convection, inner rain bands and outer rain bands, and the key role of orographic amplification of rainfall. We also present new methods for examining spatial extreme of flooding from tropical cyclones and illustrate the links between evolving rainfall structure and spatial extent of flooding.

  19. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    Science.gov (United States)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  20. The Dynamics of Tropical Cyclones

    Science.gov (United States)

    2016-06-07

    elucidate the physical mechanisms underlying changes in hurricane structure and intensity, including rapid deepening and eyewall replacement cycles; 7. To...interpreted and compared. Lectures on this work have been given by the PI at James Cook University in Townsville, the Australian Bureau of Meteorology Regional...tropical cyclone confirms the dominance of horizontal eddy fluxes at early times. The physical mechanism responsible for the differences between

  1. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  2. Using Proxy Records to Document Gulf of Mexico Tropical Cyclones from 1820-1915.

    Science.gov (United States)

    Pino, Jordan V; Rohli, Robert V; DeLong, Kristine L; Harley, Grant L; Trepanier, Jill C

    2016-01-01

    Observations of pre-1950 tropical cyclones are sparse due to observational limitations; therefore, the hurricane database HURDAT2 (1851-present) maintained by the National Oceanic and Atmospheric Administration may be incomplete. Here we provide additional documentation for HURDAT2 from historical United States Army fort records (1820-1915) and other archived documents for 28 landfalling tropical cyclones, 20 of which are included in HURDAT2, along the northern Gulf of Mexico coast. One event that occurred in May 1863 is not currently documented in the HURDAT2 database but has been noted in other studies. We identify seven tropical cyclones that occurred before 1851, three of which are potential tropical cyclones. We corroborate the pre-HURDAT2 storms with a tree-ring reconstruction of hurricane impacts from the Florida Keys (1707-2009). Using this information, we suggest landfall locations for the July 1822 hurricane just west of Mobile, Alabama and 1831 hurricane near Last Island, Louisiana on 18 August. Furthermore, we model the probable track of the August 1831 hurricane using the weighted average distance grid method that incorporates historical tropical cyclone tracks to supplement report locations.

  3. A Reassessment of the Integrated Impact of Tropical Cyclones on Surface Chlorophyll in the Western Subtropical North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    2015-02-28

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  4. Hurricane Sandy science plan: impacts of storm surge, including disturbed estuarine and bay hydrology

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers

  5. Hurricanes and Climate: the U.S. CLIVAR Working Group on Hurricanes

    Science.gov (United States)

    Walsh, Kevin; Camargo, Suzana J.; Vecchi, Gabriel A.; Daloz, Anne Sophie; Elsner, James; Emanuel, Kerry; Horn, Michael; Lim, Young-Kwon; Roberts, Malcolm; Patricola, Christina; Scoccimarro, Enrico; Sobel, Adam; Strazzo, Sarah; Villarini, Gabriele; Wehner, Michael; Zhao, Ming; Kossin, Jim; Larow, Tim; Oouchi, Kazuyoshi; Schubert, Siegfried; Wang, Hui; Bacmeister, Julio; Chang, Ping; Chauvin, Fabrice; Jablonowski, Christine

    2015-01-01

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. The idealized experiments of the Hurricane Working Group of U.S. CLIVAR, combined with results from other model simulations, have suggested relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity. Systematic differences are shown between experiments in which only sea surface temperature is increases versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate a decrease in numbers. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.

  6. APR-2 Tropical Cyclone Observations

    Science.gov (United States)

    Durden, S. L.; Tanelli, S.

    2011-01-01

    The Second Generation Airborne Precipitation Radar (APR-2) participated in the Genesis and Rapid Intensification Processes (GRIP) experiment in August and September of 2010, collecting a large volume of data in several tropical systems, including Hurricanes Earl and Karl. Additional measurements of tropical cyclone have been made by APR-2 in experiments prior to GRIP (namely, CAMEX-4, NAMMA, TC4); Table 1 lists all the APR-2 tropical cyclone observations. The APR-2 observations consist of the vertical structure of rain reflectivity at 13.4 and 35.6 GHz, and at both co-polarization and crosspolarization, as well as vertical Doppler measurements and crosswind measurements. APR-2 normally flies on the NASA DC-8 aircraft, as in GRIP, collecting data with a downward looking, cross-track scanning geometry. The scan limits are 25 degrees on either side of the aircraft, resulting in a roughly 10-km swath, depending on the aircraft altitude. Details of the APR-2 observation geometry and performance can be found in Sadowy et al. (2003).The multiparameter nature of the APR-2 measurements makes the collection of tropical cyclone measurements valuable for detailed studies of the processes, microphysics and dynamics of tropical cyclones, as well as weaker systems that are associated with tropical cyclone formation. In this paper, we give a brief overview of how the APR-2 data are processed. We also discuss use of the APR-2 cross-track winds to estimate various quantities of interest in in studies of storm intensification. Finally, we show examples of the standard products and derived information.

  7. Historical North Atlantic Tropical Cyclone Tracks 1851-2005, Geographic NAD83, NOAA (2006) [atlantic_hurricane_tracks_1851_2005_NOAA_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — This Historical North Atlantic Tropical Cyclone Tracks file contains the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and intensities for all subtropical...

  8. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  9. The NASA Cyclone Global Navigation Satellite System (CYGNSS): A Constellation of Bi-static Ocean Scatterometer Microsatellites to Probe the Inner Core of Hurricanes

    Science.gov (United States)

    Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.

    2014-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.

  10. Tropical cyclone statistics in the Northeastern Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Vadillo, E. [Universidad Autonoma de Baja California Sur (UABCS), La Paz, Baja California Sur (Mexico); Zaytsev, O. [Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico)]. E-mail: ozaytsev@ipn.mx; Morales-Perez, R. [Instituto Mexicano de Tecnologia del Agua (IMTA), Jiutepec, Morelos (Mexico)

    2007-04-15

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15 degrees Celsius N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes 198 and 7.4 tropical storms. The analysis shows great geographical variability of cyclone tracks, and that there were a considerable number of hurricane strikes along the Mexican coast. About 50% of the tropical cyclones formed turned north to northeast. It was rare that any passed further north than 30 degrees Celsius N in latitude because of the cold California Current. Hurricane tracks that affected the NE Pacific may be separated into 5 groups. We compared the historical record of the sea surface temperature (SST), related with the El Nino events with a data set of tropical cyclones, including frequency, intensity, trajectory, and duration. Although the statistical dependence between the frequencies of tropical cyclones of the most abundant categories, 1 and 2, over this region and SST data was not convincing, the percentage of high intensity hurricanes and hurricanes with a long life-time (greater than 12 days) was more during El Nino years than in non-El Nino years. [Spanish] La principal region de la formacion de ciclones en el oceano Pacifico Este es el Golfo de Tehuantepec, entre los 8 y los 15 grados Celsius N. En su fase inicial los ciclones se mueven hacia el oeste y el noroeste. El analisis historico de los ciclones que se han generado durante los ultimos 38 anos (de 1966 a 2004) muestra un promedio de 16.2 ciclones por ano, consistentes en 8.8 huracanes y 7.4 tormentas tropicales. El analisis muestra una gran variabilidad geografica en la trayectoria de los ciclones, de los cuales un gran numero impacta las

  11. Hurricane Safety

    Science.gov (United States)

    ... English Hurricane Safety Checklist - Arabic Hurricane Safety Checklist - Chinese Hurricane Safety Checklist - French Hurricane Safety Checklist - Haitian ... Cross serves in the US, its territories and military installations around the world. Please try again. Your ...

  12. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda

    Science.gov (United States)

    Black, W. J.; Dickey, T. D.

    2008-08-01

    A circular region within a radius of 400 km of Bermuda has been struck by 188 tropical storms or hurricanes from 1851 through 2005 and by 20 since 1995. Here we describe new direct and remote sensing observations and analyses of recent events near the Bermuda Testbed Mooring including Hurricane Fabian (2003), Tropical Storm Harvey (2005) and Hurricane Nate (2005). The most impressive upper ocean response of the recent events was produced by Hurricane Fabian when SST cooling exceeded 3.5°C, vertical mixing occurred to a depth of greater than 130 m, and upper ocean currents reached 100 cm s-1. Fabian also triggered an ocean color event visible in SeaWiFS satellite images. Related implications include improved estimates of the roles of tropical cyclones in driving meridional overturning circulation (MOC) and testing of hypotheses concerning warming of the tropical oceans which could cause more intense tropical storms and hurricanes.

  13. The effects of hurricanes on birds, with special reference to Caribbean islands

    Science.gov (United States)

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  14. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Directory of Open Access Journals (Sweden)

    A. D. Jayakaran

    2013-09-01

    Full Text Available Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  15. Black Swan Tropical Cyclones

    Science.gov (United States)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  16. Atlantic Hurricane Activity: 1851-1900

    Science.gov (United States)

    Landsea, C. W.

    2001-12-01

    & positions) {* }{* } HURDAT meta-file: A text file with detailed information about each suggested change proposed in the revised HURDAT. {* }{* }{* } A ``center fix" file: This file is composed of actual observations of tropical cyclone positions and intensity estimates from the following platforms: aircraft, satellite, radar, and synoptic. All changes made to HURDAT will be approved by a NHC Committee as this database is one that is officially maintained by them. At the conference, results will be shown including a revised climatology of U.S. hurricane strikes back to 1851. >http://www.aoml.noaa.gov/hrd/hurdat/index.html

  17. Reduced death rates from cyclones in Bangladesh: what more needs to be done?

    Science.gov (United States)

    Haque, Ubydul; Hashizume, Masahiro; Kolivras, Korine N; Overgaard, Hans J; Das, Bivash; Yamamoto, Taro

    2012-02-01

    Tropical storms, such as cyclones, hurricanes and typhoons, present major threats to coastal communities. Around two million people worldwide have died and millions have been injured over the past two centuries as a result of tropical storms. Bangladesh is especially vulnerable to tropical cyclones, with around 718 000 deaths from them in the past 50 years. However, cyclone-related mortality in Bangladesh has declined by more than 100-fold over the past 40 years, from 500 000 deaths in 1970 to 4234 in 2007. The main factors responsible for these reduced fatalities and injuries are improved defensive measures, including early warning systems, cyclone shelters, evacuation plans, coastal embankments, reforestation schemes and increased awareness and communication. Although warning systems have been improved, evacuation before a cyclone remains a challenge, with major problems caused by illiteracy, lack of awareness and poor communication. Despite the potential risks of climate change and tropical storms, little empirical knowledge exists on how to develop effective strategies to reduce or mitigate the effects of cyclones. This paper summarizes the most recent data and outlines the strategy adopted in Bangladesh. It offers guidance on how similar strategies can be adopted by other countries vulnerable to tropical storms. Further research is needed to enable countries to limit the risks that cyclones present to public health.

  18. Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry

    Science.gov (United States)

    Shepherd, Tristan J.; Walsh, Kevin J.

    2017-08-01

    This study investigates the effect of the choice of convective parameterization (CP) scheme on the simulated tracks of three intense tropical cyclones (TCs), using the Weather Research and Forecasting (WRF) model. We focus on diagnosing the competing influences of large-scale steering flow, beta drift and convectively induced changes in track, as represented by four different CP schemes (Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ), Grell-3D (G-3), and the Tiedtke (TD) scheme). The sensitivity of the results to initial conditions, model domain size and shallow convection is also tested. We employ a diagnostic technique by Chan et al. (J Atmos Sci 59:1317-1336, 2002) that separates the influence of the large-scale steering flow, beta drift and the modifications of the steering flow by the storm-scale convection. The combined effect of the steering flow and the beta drift causes TCs typically to move in the direction of the wavenumber-1 (WN-1) cyclonic potential vorticity tendency (PVT). In instances of asymmetrical TCs, the simulated TC motion does not necessarily match the motion expected from the WN-1 PVT due to changes in the convective pattern. In the present study, we test this concept in the WRF simulations and investigate whether if the diagnosed motion from the WN-1 PVT and the TC motion do not match, this can be related to the emerging evolution of changes in convective structure. Several systematic results are found across the three cyclone cases. The sensitivity of TC track to initial conditions (the initialisation time and model domain size) is less than the sensitivity of TC track to changing the CP scheme. The simulated track is not overly sensitive to shallow convection in the KF, BMJ, and TD schemes, compared to the track difference between CP schemes. The G3 scheme, however, is highly sensitive to shallow convection being used. Furthermore, while agreement between the simulated TC track direction and the WN-1 diagnostic is usually good, there are

  19. Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry

    Science.gov (United States)

    Shepherd, Tristan J.; Walsh, Kevin J.

    2016-08-01

    This study investigates the effect of the choice of convective parameterization (CP) scheme on the simulated tracks of three intense tropical cyclones (TCs), using the Weather Research and Forecasting (WRF) model. We focus on diagnosing the competing influences of large-scale steering flow, beta drift and convectively induced changes in track, as represented by four different CP schemes (Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ), Grell-3D (G-3), and the Tiedtke (TD) scheme). The sensitivity of the results to initial conditions, model domain size and shallow convection is also tested. We employ a diagnostic technique by Chan et al. (J Atmos Sci 59:1317-1336, 2002) that separates the influence of the large-scale steering flow, beta drift and the modifications of the steering flow by the storm-scale convection. The combined effect of the steering flow and the beta drift causes TCs typically to move in the direction of the wavenumber-1 (WN-1) cyclonic potential vorticity tendency (PVT). In instances of asymmetrical TCs, the simulated TC motion does not necessarily match the motion expected from the WN-1 PVT due to changes in the convective pattern. In the present study, we test this concept in the WRF simulations and investigate whether if the diagnosed motion from the WN-1 PVT and the TC motion do not match, this can be related to the emerging evolution of changes in convective structure. Several systematic results are found across the three cyclone cases. The sensitivity of TC track to initial conditions (the initialisation time and model domain size) is less than the sensitivity of TC track to changing the CP scheme. The simulated track is not overly sensitive to shallow convection in the KF, BMJ, and TD schemes, compared to the track difference between CP schemes. The G3 scheme, however, is highly sensitive to shallow convection being used. Furthermore, while agreement between the simulated TC track direction and the WN-1 diagnostic is usually good, there are

  20. Hurricane Data Analysis Tool

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of

  1. African Dust Influence on Atlantic Hurricane Activity and the Peculiar Behaviour of Category 5 Hurricanes

    CERN Document Server

    Herrera, Victor M Velasco; H., Graciela Velasco; Gonzalez, Laura Luna

    2010-01-01

    We study the specific influence of African dust on each one of the categories of Atlantic hurricanes. By applying wavelet analysis, we find a strong decadal modulation of African dust on Category 5 hurricanes and an annual modulation on all other categories of hurricanes. We identify the formation of Category 5 hurricanes occurring mainly around the decadal minimum variation of African dust and in deep water areas of the Atlantic Ocean, where hurricane eyes have the lowest pressure. According to our results, future tropical cyclones will not evolve to Category 5 until the next decadal minimum that is, by the year 2015 +/- 2.

  2. Toward improving hurricane forecasts using the JPL Tropical Cyclone Information System (TCIS): A framework to address the issues of Big Data

    Science.gov (United States)

    Hristova-Veleva, S. M.; Boothe, M.; Gopalakrishnan, S.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; montgomery, M. T.; Niamsuwan, N.; Tallapragada, V. S.; Tanelli, S.; Turk, J.; Vukicevic, T.

    2013-12-01

    Accurate forecasting of extreme weather requires the use of both regional models as well as global General Circulation Models (GCMs). The regional models have higher resolution and more accurate physics - two critical components needed for properly representing the key convective processes. GCMs, on the other hand, have better depiction of the large-scale environment and, thus, are necessary for properly capturing the important scale interactions. But how to evaluate the models, understand their shortcomings and improve them? Satellite observations can provide invaluable information. And this is where the issues of Big Data come: satellite observations are very complex and have large variety while model forecast are very voluminous. We are developing a system - TCIS - that addresses the issues of model evaluation and process understanding with the goal of improving the accuracy of hurricane forecasts. This NASA/ESTO/AIST-funded project aims at bringing satellite/airborne observations and model forecasts into a common system and developing on-line tools for joint analysis. To properly evaluate the models we go beyond the comparison of the geophysical fields. We input the model fields into instrument simulators (NEOS3, CRTM, etc.) and compute synthetic observations for a more direct comparison to the observed parameters. In this presentation we will start by describing the scientific questions. We will then outline our current framework to provide fusion of models and observations. Next, we will illustrate how the system can be used to evaluate several models (HWRF, GFS, ECMWF) by applying a couple of our analysis tools to several hurricanes observed during the 2013 season. Finally, we will outline our future plans. Our goal is to go beyond the image comparison and point-by-point statistics, by focusing instead on understanding multi-parameter correlations and providing robust statistics. By developing on-line analysis tools, our framework will allow for consistent

  3. The Hurricane and Its Impact

    Science.gov (United States)

    Burpee, Robert W.

    Recent population increases in coastal regions of the tropics and subtropics have greatly enhanced man's vulnerability to tropical cyclones. Thus, this book on hurricanes by Robert H. Simpson and Herbert Riehl, two of the leading contributors to hurricane research during the last 35 years, comes along when people of differing backgrounds want to learn more about hurricanes. In the 20 years since Dunn and Miller published Atlantic Hurricanes, technical advances in weather satellites, computer modeling and data processing, and research aircraft have substantially increased the tropical meteorologist's understanding of hurricane structure and dynamics. During this same time, field experiments have led to detailed knowledge of the atmospheric environment within which tropical cyclones are initiated. The authors have attempted to describe many aspects of hurricanes for readers that range from students of meteorology to those concerned with planning for natural hazards in the coastal zone. Because Simpson and Riehl have addressed such a wide audience, many readers with a knowledge of atmospheric science will find that the book is overly descriptive, while readers without some background in physics will find it is too technical.

  4. Training on Eastern Pacific tropical cyclones for Latin American students

    Science.gov (United States)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  5. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  6. Using new satellite data would improve hurricane forecasts

    National Research Council Canada - National Science Library

    Schultz, Colin

    2013-01-01

    To track and forecast the development of dangerous tropical cyclones, the National Weather Service's National Centers for Environmental Prediction uses a model known as the Hurricane Weather Research and Forecasting (HWRF) system...

  7. Tropical cyclone statistics in the Northeastern Pacific

    OpenAIRE

    Romero Vadillo, E; Zaitsev, Oleg; Morales Pérez., R

    2007-01-01

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15° N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes and 7.4 tropical storms. The analysis shows great geographical v...

  8. The Hurricane-Flood-Landslide Continuum: Forecasting Hurricane Effects at Landfall

    Science.gov (United States)

    Negri, A.; Golden, J. H.; Updike, R.

    2004-01-01

    Hurricanes, typhoons, and cyclones strike Central American, Caribbean, Southeast Asian and Pacific Island nations even more frequently than the U.S. The global losses of life and property from the floods, landslides and debris flows caused by cyclonic storms are staggering. One of the keys to reducing these losses, both in the U.S. and internationally, is to have better forecasts of what is about to happen from several hours to days before the event. Particularly in developing nations where science, technology and communication are limited, advance-warning systems can have great impact. In developing countries, warnings of even a few hours or days can mitigate or reduce catastrophic losses of life. With the foregoing needs in mind, we propose an initial project of three years total duration that will aim to develop and transfer a warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispanola. The Hurricane-Flood-Landslide Continuum will include satellite observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict near-future runoff, and streamflow changes in affected regions, and landslide models to warn when and where landslides and debris flows are imminent. Since surface communications are likely to be interrupted during these crises, the project also includes the capability to communicate disaster information via satellite to vital government officials in Puerto Rico, Haiti, and Dominican Republic.

  9. Hurricane Footprints in Global Climate Models

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2008-11-01

    Full Text Available This paper addresses the identification of hurricanes in low-resolution global climate models (GCM. As hurricanes are not fully resolvable at the coarse resolution of the GCMs (typically 2.5 × 2.5 deg, indirect methods such as analyzing the environmental conditions favoring hurricane formation have to be sought. Nonetheless, the dynamical cores of the models have limitations in simulating hurricane formation, which is a far from fully understood process. Here, it is shown that variations in the specific entropy rather than in dynamical variables can be used as a proxy of the hurricane intensity as estimated by the Accumulated Cyclone Energy (ACE. The main application of this research is to ascertain the changes in the hurricane frequency and intensity in future climates.

  10. The trauma signature of 2016 Hurricane Matthew and the psychosocial impact on Haiti

    Science.gov (United States)

    Shultz, James M.; Cela, Toni; Marcelin, Louis Herns; Espinola, Maria; Heitmann, Ilva; Sanchez, Claudia; Jean Pierre, Arielle; Foo, Cheryl YunnShee; Thompson, Kip; Klotzbach, Philip; Espinel, Zelde; Rechkemmer, Andreas

    2016-01-01

    ABSTRACT Background. Hurricane Matthew was the most powerful tropical cyclone of the 2016 Atlantic Basin season, bringing severe impacts to multiple nations including direct landfalls in Cuba, Haiti, Bahamas, and the United States. However, Haiti experienced the greatest loss of life and population disruption. Methods. An established trauma signature (TSIG) methodology was used to examine the psychological consequences of Hurricane Matthew in relation to the distinguishing features of this event. TSIG analyses described the exposures of Haitian citizens to the unique constellation of hazards associated with this tropical cyclone. A hazard profile, a matrix of psychological stressors, and a “trauma signature” summary for the affected population of Haiti - in terms of exposures to hazard, loss, and change - were created specifically for this natural ecological disaster. Results. Hazard characteristics of this event included: deluging rains that triggered mudslides along steep, deforested terrain; battering hurricane winds (Category 4 winds in the “eye-wall” at landfall) that dismantled the built environment and launched projectile debris; flooding “storm surge” that moved ashore and submerged villages on the Tiburon peninsula; and pummeling wave action that destroyed infrastructure along the coastline. Many coastal residents were left defenseless to face the ravages of the storm. Hurricane Matthew's slow forward progress as it remained over super-heated ocean waters added to the duration and degree of the devastation. Added to the havoc of the storm itself, the risks for infectious disease spread, particularly in relation to ongoing epidemics of cholera and Zika, were exacerbated. Conclusions. Hurricane Matthew was a ferocious tropical cyclone whose meteorological characteristics amplified the system's destructive force during the storm's encounter with Haiti, leading to significant mortality, injury, and psychological trauma.

  11. The trauma signature of 2016 Hurricane Matthew and the psychosocial impact on Haiti.

    Science.gov (United States)

    Shultz, James M; Cela, Toni; Marcelin, Louis Herns; Espinola, Maria; Heitmann, Ilva; Sanchez, Claudia; Jean Pierre, Arielle; Foo, Cheryl YunnShee; Thompson, Kip; Klotzbach, Philip; Espinel, Zelde; Rechkemmer, Andreas

    2016-01-01

    Background. Hurricane Matthew was the most powerful tropical cyclone of the 2016 Atlantic Basin season, bringing severe impacts to multiple nations including direct landfalls in Cuba, Haiti, Bahamas, and the United States. However, Haiti experienced the greatest loss of life and population disruption. Methods. An established trauma signature (TSIG) methodology was used to examine the psychological consequences of Hurricane Matthew in relation to the distinguishing features of this event. TSIG analyses described the exposures of Haitian citizens to the unique constellation of hazards associated with this tropical cyclone. A hazard profile, a matrix of psychological stressors, and a "trauma signature" summary for the affected population of Haiti - in terms of exposures to hazard, loss, and change - were created specifically for this natural ecological disaster. Results. Hazard characteristics of this event included: deluging rains that triggered mudslides along steep, deforested terrain; battering hurricane winds (Category 4 winds in the "eye-wall" at landfall) that dismantled the built environment and launched projectile debris; flooding "storm surge" that moved ashore and submerged villages on the Tiburon peninsula; and pummeling wave action that destroyed infrastructure along the coastline. Many coastal residents were left defenseless to face the ravages of the storm. Hurricane Matthew's slow forward progress as it remained over super-heated ocean waters added to the duration and degree of the devastation. Added to the havoc of the storm itself, the risks for infectious disease spread, particularly in relation to ongoing epidemics of cholera and Zika, were exacerbated. Conclusions. Hurricane Matthew was a ferocious tropical cyclone whose meteorological characteristics amplified the system's destructive force during the storm's encounter with Haiti, leading to significant mortality, injury, and psychological trauma.

  12. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013: Part 1

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    A tropical cyclone is described as a warm-core, nonfrontal, synoptic-scale system that originates over tropical or subtropical waters, having organized deep convection and closed surface wind circulation (counterclockwise in the Northern Hemisphere) about a well defined center. When its sustained wind speed equals 34-63 kt, it is called a tropical (or subtropical) storm and is given a name (i.e., alternating male and female names, beginning in 1979); when its sustained wind speed equals 64-95 kt, it is called a hurricane (at least in the Eastern Pacific and North Atlantic basin); and when its sustained wind speed equals 96 kt or higher, it is called an intense or major hurricane (i.e., categories 3-5 on the Saffir-Simpson Hurricane Wind Scale). Although tropical cyclones have been reported and described since the voyages of Columbus, a detailed record of their occurrences extends only from 1851 to the present, with the most reliable portion extending only from about 1945 to the present, owing to the use of near-continuous routine reconnaissance aircraft monitoring flights and the use of satellite imagery (beginning in 1960; see Davis). Even so, the record may still be incomplete, possibly missing at least one tropical cyclone per yearly hurricane season, especially prior to the use of continuous satellite monitoring. In fact, often an unnamed tropical cyclone is included in the year-end listing of events at the conclusion of the season, following post-season analysis (e.g., as happened in 2011 and 2013, each having one unnamed event). In this two-part Technical Publication (TP), statistical aspects of the North Atlantic basin tropical cyclones are examined for the interval 1960-2013, the weather satellite era. Part 1 examines some 25 parameters of tropical cyclones (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.), while part 2 examines the relationship of these parameters against specific climate-related factors. These studies are

  13. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  14. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    Science.gov (United States)

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  15. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    Science.gov (United States)

    Wilson, Robert M.

    2016-01-01

    This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed () and average lowest pressure (); (4) average genesis location in terms of north latitudinal () and west longitudinal () positions; (5) sum and average power dissipation index (); (6) sum and average accumulated cyclone energy (); (7) sum and average number of storm days (); (8) sum of the number of hurricane days (NHD) and number of major hurricane days (NMHD); (9) net tropical cyclone activity index (NTCA); (10) largest individual storm (LIS) PWS, LP, PDI, ACE, NSD, NHD, NMHD; and (11) number of category 4 and 5 hurricanes (N4/5). Also examined are the December-May (D-M) and June-November (J-N) averages and 10-year moving average values of several climatic factors, including the (1

  16. Geologic effects of hurricanes

    Science.gov (United States)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  17. Dynamics and Predictability of Hurricane Dolly (2008)

    Science.gov (United States)

    Fang, J.; Zhang, F.; Weng, Y.

    2008-12-01

    Through several cloud-resolving simulations with the Weather Research and Forecast (WRF-ARW) model, this study examines the dynamics and predictability of Hurricane Dolly (2008) with an emphasis on its initial development (around the time being declared as a tropical storm) and subsequent rapid intensification entering into the Gulf of Mexico. These WRF simulations include three that are directly initialized with the operational NCEP GFS analyses at 06, 12 and 18Z 20 July 2008, respectively (EXP06, EXP12, EXP18) and another the same as EXP06 except that the airborne Doppler velocity observations by a NOAA P3 aircraft during 12-15Z are assimilated with an ensemble-Kalman filter (ENKF06). Among the four experiments, only EXP06 fails to capture the rapid intensification and fails to develop the tropical storm into a mature hurricane. Preliminary comparison between the simulated fields of EXP06 and the GFS analysis at 12Z (e.g., IC of EXP12) indicates that large scale features favorable to the tropical cyclogenesis cannot be properly simulated in EXP06. The initial disturbance is rather weak positioned too far south-west that is far away from the primary convective. However, after the airborne radar data during 12-15Z are assimilated into the model, (from EXP06 into ENKF06), the ENKF06 simulation is greatly improved in that a well-organized warm-core vortex appears at the low level right after radar assimilation, which subsequently developed into a hurricane consistent with timing, track and intensity of observations. Interestingly, there are significant differences in the initial vortex position, structure and evolution among the three simulations (EXP12, EXP18, ENKF06) that all eventually develop a mature hurricane along the observed track (before landfall) with right timing after enters into the Gulf of Mexico. At 18Z 20 July, there is no apparent initial low-level cyclonic vortex in EXP12 and EXP18 (that is assimilated into ENKF06 due to radar observations

  18. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  19. Genesis of tornadoes associated with hurricanes

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  20. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...... for hurricane generates seas by Young (1998, 2003, and 2006), requiring maximum wind speeds, forward velocity and radius to maximum wind speed. An averaged radius to maximum sustained wind speeds, according to Hsu et al. (1998) and averaged forward speed of cyclonic storms are applied in the initial state...

  1. Tropical Cyclone Information System

    Science.gov (United States)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  2. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.;

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...

  3. A tropical cyclone dynamic initialization technique using high temporal and spatial density atmospheric motion vectors and airborne field campaign data

    Science.gov (United States)

    Hendricks, E. A.; Bell, M. M.; Elsberry, R. L.; Velden, C.

    2016-12-01

    A new tropical cyclone dynamic initialization technique is described and tested. The technique uses the triple-nested Coupled Ocean-Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) (with horizontal grid spacings of 45-,15-, and 5-km, respectively) in conjunction with the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI). A proof-of-concept demonstration of this technique is given for Hurricane Joaquin from the Office of Naval Research (ONR) Tropical Cyclone Intensity (TCI) field program conducted in 2015. High spatial and temporal resolution atmospheric motion vectors (AMVs), dropwindsondes from the Yankee Environmental Systems High Definition Sounding System (HDSS), and surface wind speed retrievals from the Hurricane Imaging Radiometer (HIRAD) are ingested into SAMURAI to produce increments, which are then used by the COAMPS-TC dynamic initialization scheme to produce consistent dynamic and thermodynamically balanced fields. This high temporal resolution (order of 10-15 minutes) incremental dynamic initialization procedure has advantages over conventional methods in that a bogus vortex is not used, and existing asymmetries (including convective heating and upper and low level wind asymmetries) that exist in the TC are retained. The use of dynamic initialization also ensures improved vortex and environment balance, and consistency with the model physics. A preliminary verification of this new TC initialization scheme will be presented for the initialization and forecast of Hurricane Joaquin (2015).

  4. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013. Part 2

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    This Technical Publication (TP) is part 2 of a two-part study of the North Atlantic basin tropical cyclones that occurred during the weather satellite era, 1960-2013. In particular, this TP examines the inferred statistical relationships between 25 tropical cyclone parameters and 9 specific climate-related factors, including the (1) Oceanic Niño Index (ONI), (2) Southern Oscillation Index (SOI), (3) Atlantic Multidecadal Oscillation (AMO) index, (4) Quasi-Biennial Oscillation (QBO) index, (5) North Atlantic Oscillation (NAO) index of the Climate Prediction Center (CPC), (6) NAO index of the Climate Research Unit (CRU), (7) Armagh surface air temperature (ASAT), (8) Global Land-Ocean Temperature Index (GLOTI), and (9) Mauna Loa carbon dioxide (CO2) (MLCO2) index. Part 1 of this two-part study examined the statistical aspects of the 25 tropical cyclone parameters (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.) and provided the results of statistical testing (i.e., runs-testing, the t-statistic for independent samples, and Poisson distributions). Also, the study gave predictions for the frequencies of the number of tropical cyclones (NTC), number of hurricanes (NH), number of major hurricanes (NMH), and number of United States land-falling hurricanes (NUSLFH) expected for the 2014 season, based on the statistics of the overall interval 1960-2013, the subinterval 1995-2013, and whether the year 2014 would be either an El Niño year (ENY) or a non-El Niño year (NENY).

  5. Hurricane! Coping With Disaster

    Science.gov (United States)

    Lifland, Jonathan

    A new AGU book, Hurricane! Coping With Disaster, analyzes the progress made in hurricane science and recounts how advances in the field have affected the public's and the scientific community's understanding of these storms. The book explores the evolution of hurricane study, from the catastrophic strike in Galveston, Texas in 1900—still the worst natural disaster in United States history—to today's satellite and aircraft observations that track a storm's progress and monitor its strength. In this issue, Eos talks with Robert Simpson, the books' senior editor.Simpson has studied severe storms for more than 60 years, including conducting one of the first research flights through a hurricane in 1945. He was the founding director of the (U.S.) National Hurricane Research Project and has served as director of the National Hurricane Center. In collaboration with Herbert Saffir, Simpson helped design and implement the Saffir/Simpson damage potential scale that is widely used to identify potential damage from hurricanes.

  6. The Role of Interacting Cyclones in Modifying Tropical Cyclone Landfall Threat: Fujiwhara vs. enhanced Beta drift?

    Science.gov (United States)

    Hart, R. E.

    2013-12-01

    The recent impacts of tropical cyclones (TCs) Irene and Sandy have brought to the forefront the question of the true return period of landfalls in that region. Given the relatively short period of record of observations, those seeking robust return estimates often generate stochastic event sets. While the details of methods for generating those sets are generally not published (with an exception being Emanuel 2006), presentations have suggested that each member (TC event) of a stochastic set does not impact other TC members. Such an approach has the benefit of relative simplicity as well as rapidity of production, as each TC member can be produced without concern about simultaneous TCs in the basin. Given most real-world TCs are separated by several days or more, and distances of 2000km or more, this approach is seemingly well-founded for the majority of TC climatology. Yet, there have been many examples of TC-TC Fujiwhara interaction across the globe. While the interaction is much more common in the western Pacific, it is not unheard of in the Atlantic - with Connie and Diane in 1955 as two examples of such interaction but largely away from land. Further, the northeast U.S. coast can be threatened through such TC-TC interactions. The historic 1893 New York City Hurricane took an unusual NNW track (and landfall location) possibly as a consequence of interaction with one if not two additional nearby TCs. Numerical model (WRF) simulations of this case revealed exceptional difficulty in track prediction, illustrating further the complexity of the interaction. Interaction is not necessarily limited to another TC. Occasionally, a TC will interact with an occluded cold-core cyclone, which can then take the TC on a highly unusual track. Such interactions by their nature occur most often early or late in the TC season. Examples of TC-nonTC interaction include the 1938 New England Hurricane, Hurricane Hazel from 1950, and most recently, Hurricane Sandy, all of which had

  7. Cyclone and after...

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    been described with reference to a series of satellite imageries. The role of cyclone detection radar network in detection of cyclone and their use in early warning have been described with reference to radar pictures of some typical cyclones...

  8. Dynamic Hurricane Data Analysis Tool

    Science.gov (United States)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  9. Hurricane Season

    Institute of Scientific and Technical Information of China (English)

    JENNIFER; JETT

    2008-01-01

    Three years after Katrina,the United States isdetermined not to repeatits mistakes This year has seen an unusually activeand deadly hurricane season, asstorms line up in the Atlantic Oceanto pummel the Caribbean and UnitedStates coastline.

  10. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    Science.gov (United States)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due

  11. Temporal clustering of tropical cyclones and its ecosystem impacts.

    Science.gov (United States)

    Mumby, Peter J; Vitolo, Renato; Stephenson, David B

    2011-10-25

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another.

  12. Chlorophylls and Phycoerythrins as Markers of Environmental Forcings Including Cyclone Erica Effect (March 2003 on Phytoplankton in the Southwest Lagoon of New Caledonia and Oceanic Adjacent Area

    Directory of Open Access Journals (Sweden)

    J. Neveux

    2009-01-01

    Full Text Available Spatio-temporal variations of chlorophylls and phycoerythrins, inferred by spectrofluorometric methods, were studied from April 2002 to June 2003 in the southwest lagoon and oceanic waters of New Caledonia. Trade winds blew 75% of the time and appeared as the main factor influencing surface Tchla (sum of monovinyl- and divinyl-chlorophyll a variations in the ocean, near the barrier reef. Lagoon and oceanic waters differed in the composition of picoplanktonic cyanobacteria with a relative dominance of Prochlorococcus and high-phycourobilin Synechococcus in the ocean, and a relative dominance of high-phycoerythrobilin Synechococcus in the lagoon. Main pigment variations in the lagoon were associated with cyclone Erica in March 2003 and showed a 5-6 fold Tchla increase around Nouméa. The cyclone stimulated mainly diatom growth as indicated by the high chlorophyll (c1+c2/chlorophyll a ratio and by the lowest values for the other pigment ratios. The relative importance of divinyl-chlorophyll a concentration and fluorescence excitation spectra of phycoerythrins appeared as useful tools for characterizing lagoon-ocean exchanges.

  13. Impact of the hurricanes Gustav and Ike in the karst areas of the Vi

    Science.gov (United States)

    Farfàn Gonzalez, H.; Corvea Porras, J. L.; Martinez Maquiera, Y.; Diaz Guanche, C.; Aldana Vilas, C.; de Bustamante, I.; Parise, M.

    2009-04-01

    Among the many natural hazards affecting the island of Cuba, the hydro-meteorological hazards include extreme rainstorms, tropical cyclones and hurricanes. At Cuba, as in the rest of the Caribbean Islands, the cyclonic period generally starts at the beginning of June and ends in late November; during this time period, hurricanes represent the most powerful expression of the tropical cyclones. As shown by historical data, the effects of hurricanes interest the whole island, with a particular focus at its western regions. Intensity of these events causes severe damage to the environment and the society. Hurricanes are classified into five categories according to the Saffir-Simpson Hurricane Scale, essentially on the basis of the velocity reached by the winds. In this scale, category I is the less intense, and V the highest. In 2008, two strong hurricanes affected the province of Pinar del Rio, in western Cuba, during August and September, with a 10-days interval between the two events. Many effects were produced by the passage of the hurricanes, especially in the karst areas of the Viñales National Park. The first hurricane (named Gustavo) was registered on August 30, 2008. Classified as category IV, it hit the area with wind velocities over 250 km/h, gusts over 300 km/h, and a total rainfall of approximately 100 mm. The hurricane affected the southern slope of the area of mogotes, that is the isolated cone or tower left by intense development of karst processes in tropical climate conditions. The vegetation cover was strongly hit, and largely stripped away, thus exposing several situations of hazards in karst that were previously undetected. Local flooding was also recorded, generally in the lowest topographic areas, and with short duration, due to bedrock characteristics. Ten days after Gustavo, the second hurricane (named Ike) affected the whole Cuba on September 9, 2008. Even though classified as category I, it caused severe damage to the man-made environment

  14. The Impact of Hurricane Katrina on the United States Tourism Industry

    Directory of Open Access Journals (Sweden)

    Nemanja Tomić

    2013-01-01

    Full Text Available The goal of this paper is to present hurricane Katrina in all its stages, from the beginning to the end and to highlight the economic, environmental and social consequences that occurred in the hurricane aftermath with a focus on the tourism industry. This paper also briefly explains the basic mechanism of tropical cyclones and hurricanes and their occurrences through a detailed explanation of hurricane Katrina and its effects on the United States. Some attention is also given to the immense damage and aftermath which is the largest ever made by any hurricane.

  15. Intensive longleaf pine management for hurricane recovery: fourth-year results

    Science.gov (United States)

    David S. Dyson; Dale G. Brockway

    2015-01-01

    The frequency and intensity of hurricanes affecting the United States has been projected to increase during coming decades, and this rising level of cyclonic storm activity is expected to substantially damage southeastern forests. Although hurricane damage to forests in this region is not new, recent emphasis on longleaf pine (Pinus palustris Mill...

  16. Impacts of tropical cyclones on Fiji and Samoa

    Science.gov (United States)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  17. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  18. Scenarios in the development of Mediterranean cyclones

    Directory of Open Access Journals (Sweden)

    M. Romem

    2007-07-01

    Full Text Available The Mediterranean is one of the most cyclogenetic regions in the world. The cyclones are concentrated along its northern coasts and their tracks are oriented more or less west-east, with several secondary tracks connecting them to Europe and to North Africa. The aim of this study is to examine scenarios in the development of Mediterranean cyclones, based on five selected winter seasons (October–March. We detected the cyclones subjectively using 6-hourly Sea-Level Pressure maps, based on the NCAR/NCEP reanalysis archive.

    HMSO (1962 has shown that most Mediterranean cyclones (58% enter the Mediterranean from the Atlantic Ocean (through Biscay and Gibraltar, and from the south-west, the Sahara Desert, while the rest are formed in the Mediterranean Basin itself. Our study revealed that only 13% of the cyclones entered the Mediterranean, while 87% were generated in the Mediterranean Basin. The entering cyclones originate in three different regions: the Sahara Desert (6%, the Atlantic Ocean (4%, and Western Europe (3%.

    The cyclones formed within the Mediterranean Basin were found to generate under the influence of external cyclonic systems, i.e. as "daughter cyclones" to "parent cyclones" or troughs. These parent systems are located in three regions: Europe (61%, North Africa and the Red Sea (34.5% and the Mediterranean Basin itself (4.5%. The study presents scenarios in the development of Mediterranean cyclones during the winter season, emphasizing the cyclogenesis under the influence of various external forcing.

    The large difference with respect to the findings of HMSO (1962 is partly explained by the dominance of spring cyclones generating in the Sahara Desert, especially in April and May that were not included in our study period.

  19. Genesis and maintenance of "Mediterranean hurricanes"

    Directory of Open Access Journals (Sweden)

    K. Emanuel

    2005-01-01

    Full Text Available Cyclonic storms that closely resemble tropical cyclones in satellite images occasionally form over the Mediterranean Sea. Synoptic and mesoscale analyses of such storms show small, warm-core structure and surface winds sometimes exceeding 25ms-1 over small areas. These analyses, together with numerical simulations, reveal that in their mature stages, such storms intensify and are maintained by a feedback between surface enthalpy fluxes and wind, and as such are isomorphic with tropical cyclones. In this paper, I demonstrate that a cold, upper low over the Mediterranean can produce strong cyclogenesis in an axisymmetric model, thereby showing that baroclinic instability is not necessary during the mature stages of Mediterranean hurricanes.

  20. Cyclone reactor

    Science.gov (United States)

    Converse, Alvin O.; Grethlein, Hans E.; Holland, Joseph E.

    1989-04-04

    A system is provided to produce sugars from a liquid-solid mixture containing biomass, and an acid, wherein the mixture is heated to an appropriate temperature to achieve hydrolysis. The liquid-solid mixture is introduced as a stream into the circular-cylindrical chamber of a cyclone reaction vessel and steam is introduced to the vessel to provide the necessary heat for hydrolysis as well as to establish the liquid-solid mixture in a rotary flow field whereby the liquids and solids of the mixture move along spiral paths within the chamber. The liquid-solid mixture may be introduced at the periphery of the chamber to spiral down toward and be discharged at or near the center of the chamber. Because of differing mass, the solid particles in the mixture move radially inward at a different rate than the liquid and that rate is controlled to maximize the hydrolysis of the solids and to minimize the decomposition of sugars, thus formed.

  1. Interactions Between Vestige Atlantic Tropical Cyclones and Mid-Latitude Storms Over Mediterranean Basin

    Science.gov (United States)

    Smith, Eric A.; Mehta, Amita; Mugnai, Alberto; Tripoli, Gregory J.

    2007-01-01

    One of the more interesting tropical-mid-latitude interactions is one that has important effects on precipitation within the Mediterranean basin. This interaction consists of an Atlantic tropical cyclone vestige whose original disturbance travels eastward and northward across Atlantic basin, eventually intermingling with a mid-latitude cyclone entering southern Europe and/or the \\bestern Mediterranean Sea. The period for these interactions is from mid-September through November. If the tropical cyclone and its vestige is able to make the eastward Atlantic transit within the low to mid-levels, or if an upper level potential vorticity perturbation Cjet streak) emitted by a Hurricane in its latter stages within the central Atlantic is able to propagate into and along the longwave pattern affecting the western Mediterranean Sea (MED), then there is the prospect for the tropical cyclone remnant to produce a major modification of the mid-latitude storm system preparing to affect the MED region. For such an occurrence to take place, it is necessary for an amplifying baroclinic perturbation to be already situated to the rear of a longwave trough, or to be excited by the emitted jet streak to the rear of a longwave trough -- in either case, preparing to affect the western MED. The Algiers City flood of 9-10 November 2001, which killed some 700 people, was produced by a Mediterranean cyclone that had been influenced by two vestige Atlantic tropical cyclones, 1,orenzo and Noel. A published modeling study involving various of this study's authors has already described the dynamical development of the Algiers storm as it amplified from a developing baroclinic disturbance in the Rossby wave train, into a northern Africa hazardous flood system, then lingered in the western MED as a semi-intense warm core cyclone. In our new modeling experiments, we investigate the impact of what might have happened in the eventual precipitation field. had the main features of the tropical

  2. Characteristics of cyclone climatology and variability in the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    WEI Lixin; QIN Ting

    2016-01-01

    A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979–2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55°–67°S, and cyclone density has generally increased in north of this band for 1979–2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979–2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45°–55°S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.

  3. Sensitivity of Tropical-Cyclone Models to the Surface Drag Coefficient in Different Boundary-Layer Schemes

    Science.gov (United States)

    2014-04-01

    2006). The far-field temperature and humidity are based on Jordan’s Caribbean sounding for the hurricane season (Jordan, 1958). For the purpose of...in this direction. Key Words: hurricanes ; tropical cyclones; typhoons; surface drag coefficient; frictional drag; boundary layer Received 16 June 2010...using one of five available schemes were compared, not only between themselves, but where possible with recent observational analyses of hurricane

  4. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  5. The influence of an extended Atlantic hurricane season on inland flooding potential in the southeastern United States

    Science.gov (United States)

    Stone, Monica H.; Cohen, Sagy

    2017-03-01

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the southeastern United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low-discharge season and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June-November could encroach upon the high-discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. Our results indicate that 28-180 % more days would be at risk of flooding from an average tropical cyclone with an extension of the hurricane season to May-December (just 2 months longer). Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.

  6. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  7. Hurricane Science

    Science.gov (United States)

    Emanuel, Kerry

    2012-10-01

    Hurricanes provide beautiful examples of many of the key physical processes important in geophysical systems. They are rare natural examples of nearly perfect Carnot heat engines with an interesting wrinkle: They recycle much of their waste heat into the front end of the engine, thereby achieving greater wind speeds than would otherwise be possible. They are driven by surface enthalpy fluxes made possible by the thermodynamic disequilibrium between the earth's surface and atmosphere, a characteristic of radiative equilibrium in the presence of greenhouse gases. Their evolution, structure, and intensity all depend on turbulence near the ocean surface and in the outflow layer of the storm, high up in the atmosphere. In the course of this banquet, I will briefly describe these and other interesting aspects of hurricane physics, and also describe the role these storms have played in human history.

  8. Global Tropical Cyclone Winds from the QuikSCAT and OceanSAT-2 Scatterometers

    Science.gov (United States)

    Stiles, B. W.; Danielson, R. E.; Poulsen, W. L.; Fore, A.; Brennan, M. J.; Shen, T. J.; Hristova-Veleva, S. M.

    2012-12-01

    We have produced a comprehensive set of tropical cyclone storm wind retrieval scenes for all ten years of QuikSCAT data and one year of OceanSAT-2 data. The wind speeds were corrected for rain and optimized to avoid saturation at high winds using an artificial neural network method similar to that in [1] and [2]. The QuikSCAT wind imagery and the quantitative speed, direction, and backscatter data can be obtained at http://tropicalcyclone.jpl.nasa.gov. The QuikSCAT wind speeds have been validated against best track intensity (i.e., maximum wind speeds), H*WIND tropical cyclone wind model analysis fields, and wind speeds from aircraft overflights (GPS drop wind sondes and step frequency microwave radiometer (SFMR) wind measurements). Storms from all basins are included for a total of 21600 scenes over the ten years of nominal QuikSCAT operations. Of these, 11435 scenes include the best track center of the cyclone in the retrieved wind field. Among these, 3295 were of tropical storms and 788, 367, 330, 289, and 55 were of category 1, 2, 3, 4 and 5 hurricanes, respectively, on the Saffir-Simpson Hurricane Wind Scale. In addition to the QuikSCAT hurricane winds, we have also processed one year of wind fields from the Indian Space Research organization (ISRO) OceanSAT-2 satellite. OceanSAT-2 employs a scanning pencil beam Ku-band scatterometer with a design similar to QuikSCAT. JPL and NOAA have been working extensively with ISRO to aid in cross calibration between OceanSAT-2 and QuikSCAT. Toward this end the QuikSCAT instrument has been repointed in order to acquire data at the OceanSAT-2 incidence angles, and several meetings in India between the teams have taken place. The neural network that was trained on QuikSCAT data was used to retrieve OceanSAT-2 winds. The backscatter inputs to the network were transformed to match the histograms of the corresponding values in the QuikSCAT data set. We examine the scatterometer winds to investigate the relationship between

  9. Hurricane Relief Operations in the Caribbean: Is the Use of the Military in Hurricane Relief Operations

    Science.gov (United States)

    2007-11-02

    Caribbean hurricanes are a type of tropical cyclone . They originate in the Atlantic Ocean off the coast of Africa and affect the Caribbean and 2 the...that will prove to be more suitable in disaster relief situations. Matthew Yarrow also shares Dynes’ view. He believes that soldiers are ill-suited... Haiti operations, in part due to the battalion commander’s lack of authority over troops from different countries. However, the performance of the

  10. An ENSO-Forecast Independent Statistical Model for the Prediction of Annual Atlantic Tropical Cyclone Frequency in April

    Directory of Open Access Journals (Sweden)

    Kenny Xie

    2014-01-01

    Full Text Available Statistical models for preseason prediction of annual Atlantic tropical cyclone (TC and hurricane counts generally include El Niño/Southern Oscillation (ENSO forecasts as a predictor. As a result, the predictions from such models are often contaminated by the errors in ENSO forecasts. In this study, it is found that the latent heat flux (LHF over Eastern Tropical Pacific (ETP, defined as the region 0°–5°N, 115°–125°W in spring is negatively correlated with the annual Atlantic TC and hurricane counts. By using stepwise backward elimination regression, it is further shown that the March value of ETP LHF is a better predictor than the spring or summer ENSO index for Atlantic TC counts. Leave-one-out cross validation indicates that the annual Atlantic TC counts predicted by this ENSO-independent statistical model show a remarkable correlation with the actual TC counts (R=0.72; P value <0.01. For Atlantic hurricanes, the predictions using March ETP LHF and summer (July–September ENSO indices show only minor differences except in moderate to strong El Niño years. Thus, March ETP LHF is an excellent predictor for seasonal Atlantic TC prediction and a viable alternative to using ENSO index for Atlantic hurricane prediction.

  11. Targeted ocean sampling guidance for tropical cyclones

    Science.gov (United States)

    Chen, Sue; Cummings, James A.; Schmidt, Jerome M.; Sanabia, Elizabeth R.; Jayne, Steven R.

    2017-05-01

    A 3-D variational ocean data assimilation adjoint approach is used to examine the impact of ocean observations on coupled tropical cyclone (TC) model forecast error for three recent hurricanes: Isaac (2012), Hilda (2015), and Matthew (2016). In addition, this methodology is applied to develop an innovative ocean observation targeting tool validated using TC model simulations that assimilate ocean temperature observed by Airborne eXpendable Bathy Thermographs and Air-Launched Autonomous Micro-Observer floats. Comparison between the simulated targeted and real observation data assimilation impacts reveals a positive maximum mean linear correlation of 0.53 at 400-500 m, which implies some skill in the targeting application. Targeted ocean observation regions from these three hurricanes, however, show that the largest positive impacts in reducing the TC model forecast errors are sensitive to the initial prestorm ocean conditions such as the location and magnitude of preexisting ocean eddies, storm-induced ocean cold wake, and model track errors.

  12. Case Study of Hurricane Felix (2007) Rapid Intensification

    Science.gov (United States)

    Colon-Pagan, I. C.; Davis, C. A.; Holland, G. J.

    2010-12-01

    The forecasting of tropical cyclones (TC) rapid intensification (RI) is one of the most challenging problems that the operational community experiences. Research advances leading to improvements in predicting this phenomenon would help government agencies make decisions that could reduce the impact on communities that are so often affected by these weather-related events. It has been proposed that TC RI is associated to various factors, including high sea-surface temperatures, weak vertical wind shear, and the ratio of inertial to static stability, which improves the conversion of diabatic heating into circulation. While a cyclone develops, the size of the region of high inertial stability (IS) decreases whereas the magnitude of IS increases. However, it’s unknown whether this is a favorable condition or a result of RI occurrences. The purpose of this research, therefore, is to determine if the IS follows, leads or changes in sync with the intensity change by studying Hurricane Felix (2007) RI phase. Results show a trend of increasing IS before the RI stage, followed by an expansion of the region of high IS. This episode is eventually followed by a decrease in both the intensity and region of positive IS, while the maximum wind speed intensity of the TC diminished. Therefore, we propose that monitoring the IS may provide a forecast tool to determine RI periods. Other parameters, such as static stability, tangential wind, and water vapor mixing ratio may help identify other features of the storm, such as circulation and eyewall formation. The inertial stability (IS) trend during the period of rapid intensification, which occurred between 00Z and 06Z of September 3rd. Maximum values of IS were calculated before and during this period of RI within a region located 30-45 km from the center. In fact, this region could represent the eye-wall of Hurricane Felix.

  13. Cyclone frequency in east asia and double-cyclones

    OpenAIRE

    Umemoto, Tohru

    1982-01-01

    Japanese meteorologists call a certain type of cyclone "Futatsudama-teikiatsu" (Double-cyclone). The relationships between frequencies of extratropical cyclones and Double-cyclones were studied. Using a 2° latitude/longitude grid covering East Asia, three high frequency belts were found. Double-cyclones were classified into three types. Features of occurrence of these three types were discussed.

  14. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  15. A statistical assessment of tropical cyclone activity in atmospheric general circulation models

    OpenAIRE

    Suzana J. Camargo; Barnston, Anthony G; Zebiak, Stephen E.

    2005-01-01

    The properties of tropical cyclones in three low-resolution atmospheric general circulation models (AGCMs) in seven ocean basins are discussed. The models are forced by prescribed, observed sea surface temperatures over a period of 40 yr, and their simulations of tropical cyclone activity are compared with observations. The model cyclone characteristics considered include genesis position, number of cyclones per year, seasonality, accumulated cyclone energy, track locations, and number of sto...

  16. The contribution of tropical cyclones to rainfall in Mexico

    Science.gov (United States)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  17. Data and numerical analysis of astronomic tides, wind-waves, and hurricane storm surge along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Cox, A. T.; Salisbury, M.; Coggin, D.

    2016-05-01

    The northern Gulf of Mexico (NGOM) is a unique geophysical setting for complex tropical storm-induced hydrodynamic processes that occur across a variety of spatial and temporal scales. Each hurricane includes its own distinctive characteristics and can cause unique and devastating storm surge when it strikes within the intricate geometric setting of the NGOM. While a number of studies have explored hurricane storm surge in the NGOM, few have attempted to describe storm surge and coastal inundation using observed data in conjunction with a single large-domain high-resolution numerical model. To better understand the oceanic and nearshore response to these tropical cyclones, we provide a detailed assessment, based on field measurements and numerical simulation, of the evolution of wind waves, water levels, and currents for Hurricanes Ivan (2004), Dennis (2005), Katrina (2005), and Isaac (2012), with focus on Mississippi, Alabama, and the Florida Panhandle coasts. The developed NGOM3 computational model describes the hydraulic connectivity among the various inlet and bay systems, Gulf Intracoastal Waterway, coastal rivers and adjacent marsh, and built infrastructure along the coastal floodplain. The outcome is a better understanding of the storm surge generating mechanisms and interactions among hurricane characteristics and the NGOM's geophysical configuration. The numerical analysis and observed data explain the ˜2 m/s hurricane-induced geostrophic currents across the continental shelf, a 6 m/s outflow current during Ivan, the hurricane-induced coastal Kelvin wave along the shelf, and for the first time a wealth of measured data and a detailed numerical simulation was performed and was presented for Isaac.

  18. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    Science.gov (United States)

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  19. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  20. Hurricane Modeling and Supercomputing: Can a global mesoscale model be useful in improving forecasts of tropical cyclogenesis?

    Science.gov (United States)

    Shen, B.; Tao, W.; Atlas, R.

    2007-12-01

    Hurricane modeling, along with guidance from observations, has been used to help construct hurricane theories since the 1960s. CISK (conditional instability of the second kind, Charney and Eliassen 1964; Ooyama 1964,1969) and WISHE (wind-induced surface heat exchange, Emanuel 1986) are among the well-known theories being used to understand hurricane intensification. For hurricane genesis, observations have indicated the importance of large-scale flows (e.g., the Madden-Julian Oscillation or MJO, Maloney and Hartmann, 2000) on the modulation of hurricane activity. Recent modeling studies have focused on the role of the MJO and Rossby waves (e.g., Ferreira and Schubert, 1996; Aivyer and Molinari, 2003) and/or the interaction of small-scale vortices (e.g., Holland 1995; Simpson et al. 1997; Hendrick et al. 2004), of which determinism could be also built by large-scale flows. The aforementioned studies suggest a unified view on hurricane formation, consisting of multiscale processes such as scale transition (e.g., from the MJO to Equatorial Rossby Waves and from waves to vortices), and scale interactions among vortices, convection, and surface heat and moisture fluxes. To depict the processes in the unified view, a high-resolution global model is needed. During the past several years, supercomputers have enabled the deployment of ultra-high resolution global models, obtaining remarkable forecasts of hurricane track and intensity (Atlas et al. 2005; Shen et al. 2006). In this work, hurricane genesis is investigated with the aid of a global mesoscale model on the NASA Columbia supercomputer by conducting numerical experiments on the genesis of six consecutive tropical cyclones (TCs) in May 2002. These TCs include two pairs of twin TCs in the Indian Ocean, Supertyphoon Hagibis in the West Pacific Ocean and Hurricane Alma in the East Pacific Ocean. It is found that the model is capable of predicting the genesis of five of these TCs about two to three days in advance. Our

  1. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  2. Cyclone performance by velocity

    Science.gov (United States)

    Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...

  3. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; Morris, M.; Uhlhorn, E. W.; Black, P. G.

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  4. Emergency Department Presentations following Tropical Cyclone Yasi

    OpenAIRE

    Peter Aitken; Richard Charles Franklin; Jenine Lawlor; Rob Mitchell; Kerrianne Watt; Jeremy Furyk; Niall Small; Leone Lovegrove; Peter Leggat

    2015-01-01

    Introduction Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Methods Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2...

  5. On the Relationship Between the Length of Season and Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2013

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    Officially, the North Atlantic basin tropical cyclone season runs from June 1 through November 30 of each year. During this 183-day interval, the vast majority of tropical cyclone onsets are found to occur. For example, in a study of the 715 tropical cyclones that occurred in the North Atlantic basin during the interval 1945-2010, it was found that about 97 percent of them had their onsets during the conventional hurricane season, with the bulk (78 percent) having had onset during the late summer-early fall months of August, September, and October and with none having had onset in the month of March. For the 2014 hurricane season, it already has had the onset of its first named storm on July 1 (day of year (DOY) 182), Arthur, which formed off the east coast of Florida, rapidly growing into a category-2 hurricane with peak 1-minute sustained wind speed of about 90 kt and striking the coast of North Carolina as a category-2 hurricane on July 3. Arthur is the first hurricane larger than category-1 to strike the United States (U.S.) since the year 2008 when Ike struck Texas as a category-2 hurricane and there has not been a major hurricane (category-3 or larger) to strike the U.S. since Wilma struck Florida as a category-3 hurricane in 2005. Only two category-1 hurricanes struck the U.S. in the year 2012 (Isaac and Sandy, striking Louisiana and New York, respectively) and there were no U.S. land-falling hurricanes in 2013 (also true for the years 1962, 1973, 1978, 1981, 1982, 1990, 1994, 2000, 2001, 2006, 2009, and 2010). In recent years it has been argued that the length of season (LOS), determined as the inclusive elapsed time between the first storm day (FSD) and the last storm day (LSD) of the yearly hurricane season (i.e., when peak 1-minute sustained wind speed of at least 34 kt occurred and the tropical cyclone was not classified as 'extratropical'), has increased in length with the lengthening believed to be due to the FSD occurring sooner and the LSD occurring

  6. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  7. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  8. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  9. Atlantic hurricane response to geoengineering

    Science.gov (United States)

    Moore, John; Grinsted, Aslak; Ji, Duoying; Yu, Xiaoyong; Guo, Xiaoran

    2015-04-01

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase - perhaps by a factor of 5 for a 2°C mean global warming. Geoengineering by sulphate aerosol injection preferentially cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 6 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use aerosols to reduce the radiative forcing under the RCP4.5 scenario. We find that although temperatures are ameliorated by geoengineering, the numbers of storm surge events as big as that caused the 2005 Katrina hurricane are only slightly reduced compared with no geoengineering. As higher levels of sulphate aerosol injection produce diminishing returns in terms of cooling, but cause undesirable effects in various regions, it seems that stratospheric aerosol geoengineering is not an effective method of controlling hurricane damage.

  10. Hurricane Sandy and earthquakes

    OpenAIRE

    MAVASHEV BORIS; MAVASHEV IGOR

    2013-01-01

    Submit for consideration the connection between formation of a hurricane Sandy and earthquakes. As a rule, weather anomalies precede and accompany earthquakes. The hurricane Sandy emerged 2 days prior to strong earthquakes that occurred in the area. And the trajectory of the hurricane Sandy matched the epicenter of the earthquakes. Possibility of early prediction of natural disasters will minimize the moral and material damage.

  11. Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms

    Science.gov (United States)

    Rangoonwala, Amina; Jones, Cathleen E.; Ramsey, Elijah

    2016-11-01

    We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss in the 2 years following the spill, both from that observed in the year prior to the spill, during which there was no major cyclonic storm, and from change related to Hurricane Isaac, which made landfall in August 2012. Shoreline erosion following oiling was far more spatially extensive and included loss in areas protected from wave-induced erosion. We conclude that petroleum exposure can substantially increase shoreline recession particularly in areas protected from storm-induced degradation and disproportionally alters small oil-exposed barrier islands relative to natural erosion.

  12. Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms

    Science.gov (United States)

    Rangoonwala, Amina; Jones, Cathleen E.; Ramsey III, Elijah W.

    2016-01-01

    We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss in the 2 years following the spill, both from that observed in the year prior to the spill, during which there was no major cyclonic storm, and from change related to Hurricane Isaac, which made landfall in August 2012. Shoreline erosion following oiling was far more spatially extensive and included loss in areas protected from wave-induced erosion. We conclude that petroleum exposure can substantially increase shoreline recession particularly in areas protected from storm-induced degradation and disproportionally alters small oil-exposed barrier islands relative to natural erosion.

  13. Tropical cyclone Pam field survey in Vanuatu

    Science.gov (United States)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  14. Increased Accuracy in Statistical Seasonal Hurricane Forecasting

    Science.gov (United States)

    Nateghi, R.; Quiring, S. M.; Guikema, S. D.

    2012-12-01

    Hurricanes are among the costliest and most destructive natural hazards in the U.S. Accurate hurricane forecasts are crucial to optimal preparedness and mitigation decisions in the U.S. where 50 percent of the population lives within 50 miles of the coast. We developed a flexible statistical approach to forecast annual number of hurricanes in the Atlantic region during the hurricane season. Our model is based on the method of Random Forest and captures the complex relationship between hurricane activity and climatic conditions through careful variable selection, model testing and validation. We used the National Hurricane Center's Best Track hurricane data from 1949-2011 and sixty-one candidate climate descriptors to develop our model. The model includes information prior to the hurricane season, i.e., from the last three months of the previous year (Oct. through Dec.) and the first five months of the current year (January through May). Our forecast errors are substantially lower than other leading forecasts such as that of the National Oceanic and Atmospheric Administration (NOAA).

  15. Monitoring Tropical Cyclone Impacts on the Coastal Vegetation of the Southeastern USA in the First Decade of the 21st Century

    Science.gov (United States)

    Brun, J.; Barros, A. P.

    2010-12-01

    Hurricanes and tropical storms are powerful and hazardous meteorological phenomena causing damages to natural and built areas all around the world. However, on the flip side, Tropical cyclones provide a significant influx of freshwater resources to surface and subsurface reservoirs during the warm season. Therefore it is important to understand ecosystem response to such extreme climatic events, especially in a context of potential changes in the track, frequency or strength of these phenomena that could be induced by climatic change. Here we present a method to measure vegetation disturbance persistence in the aftermath of tropical cyclones based on MODIS North American Carbon Program (NACP) vegetation indices (8-day composite at 500m spatial resolution) was developed with the objective of assessing the eco-hydrological impact of hurricanes in the South-East United States. This technique is based on the relationship between vegetation stress and the persistence of standardized Enhanced Vegetation Index (EVI) anomalies along the terrestrial path of hurricanes. An independent evaluation was conducted against 25 years (1982-2006) of AVHRR data from the Global Inventory Modeling and Mapping Studies (GIMMS) database. The data show that in the aftermath of hurricane landfall, there is a significant decrease in chlorophyll activity at very low elevations, including coastal marshes, wetlands, and the drainage networks of major river systems aligned with the terrestrial path of the storm. This vegetation activity disturbance persists longer (up two 2 years) in coastal areas than in inland forests and could be consistent with impact of salt intrusion in shallow coastal aquifers. In alluvial plains, the spatial pattern of the vegetation anomalies persistence seems to be mostly associated with flooding.

  16. Probability Distributions for Cyclone Key Parameters and Cyclonic Wind Speed for the East Coast of Indian Region

    Directory of Open Access Journals (Sweden)

    Pradeep K. Goyal

    2011-09-01

    Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.

  17. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to

  18. Assessing a 1500-year record of Atlantic hurricane activity from South Andros Island, the Bahamas, using modeled hurricane climatology

    Science.gov (United States)

    Wallace, E. J.; Donnelly, J. P.; Emanuel, K.; Wiman, C.; van Hengstum, P. J.; Sullivan, R.; Winkler, T. S.

    2016-12-01

    Tropical cyclones can cause substantial loss of life and economic resources in coastal areas. In the current changing climate, it is of critical importance for society to understand any links between hurricane activity and climactic conditions. Unfortunately, historical tropical cyclone records are too short and incomplete to constrain how climate controls cyclone activity or to accurately quantify the risk of such storms to local human populations. Hurricane-induced deposits preserved in sediment cores can offer records of past hurricane activity stretching over thousands of years. Here we present a 1500 year annually resolved record of the frequency of intense hurricane events in a blue hole (AM4) on South Andros Island on the Great Bahama Bank. This carbonate island in the western North Atlantic Ocean is positioned along the trackway of many storms originating in the Caribbean and Atlantic basins. The record is corroborated by cores collected from three other blue holes near AM4. Over the past 1500 years, there have been periods of elevated hurricane activity from 750 to 950 CE, 1150 to 1300 CE and 1550 to 1850 CE. The statistical significance of this sedimentary record is assessed utilizing a set of synthetic storms generated from a previously published statistical deterministic hurricane model. The model simulates climatological conditions from the NCEP/NCAR reanalysis dataset, and the CMIP5 MPI model for the 20th century calibration (1850-2005 CE), and the millennial simulation (850-1849 CE). The average reoccurrence rates of hurricanes passing within 100 km of AM4 under each simulation are 1.06, 0.62, and 0.61 storms per year respectively. Using each climatology, thousands of hurricane induced deposits for the site are generated based on a random draw of these storms, a wind speed threshold for deposit, and a temporal resolution given the sedimentation rate of approximately 1 cm/yr at the site. Overall, the results of this study offer information on changes

  19. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  20. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  1. Geologic record of Hurricane impacts on the New Jersey coast

    Science.gov (United States)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  2. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  3. Studyng the Influence of Aerosols in the Evolution of Cloud Microphysics Procesess Associated with Tropical Cyclone Earl Using Airborne Measurements from the NASA Grip Field Campaing 2010

    Science.gov (United States)

    Luna-Cruz, Y.; Heymsfield, A.; Jenkins, G. S.; Bansemer, A.

    2011-12-01

    Cloud microphysics processes are strongly related to tropical cyclones evolution. Although there have been three decades of research dedicated to understand the role of cloud microphysics in tropical cyclogenesis, there are still questions unanswered. With the intention of fulfill the gaps and to better understand the processes involves in tropical storms formation the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign was conducted during the months of August and September of 2010. In-situ microphysical measurements, including particle size distributions, shapes, liquid/ice water content and supercooled liquid water were obtained from the DC-8 aircraft. A total of 139 hrs of flying science modules were performed including sampling of four named storms (Earl, Gaston, Karl and Matthew). One tropical cyclone, Earl, was one of the major hurricanes of the season reaching a category 4 in the Saffir-Simpson scale. Earl emerged from the West Africa on August 22 as an easterly wave, moved westward and became a tropical storm on August 25 before undergoing rapid intensification. This project seeks to explore the lifecycle of hurricane Earl including the genesis and rapid intensification from a microphysics perspective; to develop a better understanding of the relationship between dust from the Saharan Air Layer and cloud microphysics evolution and to develop a better understanding of how cloud microphysics processes interacts and serve as precursor for thermodynamics processes. An overview of the microphysics measurements as well as preliminary results will be presented.

  4. Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data

    Science.gov (United States)

    2013-05-10

    structural changes, respectively, in tropical cyclones ( Willoughby et al. 1982). Figure 1. A vertical cross-section of a typical tropical cyclone...of typhoons. J. Meteor., 5, 247-265. Shapiro, L. J., and H. E. Willoughby , 1982: The response of balanced hurricanes to local sources of heat and...Statistical Methods in the Atmospheric Sciences. Elsevier Inc, 648 pp. Willoughby , H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls

  5. Cyclone-cyclone Interactions through the Ocean Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik; Taraphdar, Sourav; Leung, Lai-Yung R.; Foltz, Gregory R.; Knaff, John A.

    2014-10-16

    The intense SST (Sea Surface Temperature) cooling caused by hurricane-induced mixing is restored at timescales on the order of weeks(1) and thus may persist long enough to influence a later hurricane passing over it. Though many studies have evaluated the effects of SST cool-ing induced by a hurricane on its own intensification(2, 3), none has looked at its effect on later storms. Using an analysis of observations and numerical model simulations, we demonstrate that hurricanes may influence the intensity of later hurricanes that pass over their linger-ing wakes. On average, when hurricanes encounter cold wakes, they experience SSTs that are ~0.4oC lower than when they do not encounter wakes and consequently decay(intensify) at a rate that is nearly three times faster(slower). In the region of warm SSTs (* 26.5oC) where the most intense and damaging hurricanes tend to occur, the percentage of hurricanes that encounter lingering cold wakes increases with hurricane frequency and was found to be as high as 40%. Furthermore, we estimate that the cumulative power dissipated(4) by the most energetic hurricanes has been reduced by as much as ~7% in a season through this effect. As the debate on changes in Atlantic hurricane activity associated with global warming(5) continues, the negative feedback between hurricane frequency and intensity resulting from hurricane-hurricane interactions through the ocean pathway deserves attention.

  6. On tropical cyclone frequency and the warm pool area

    Directory of Open Access Journals (Sweden)

    R. E. Benestad

    2009-04-01

    Full Text Available The proposition that the rate of tropical cyclogenesis increases with the size of the "warm pool" is tested by comparing the seasonal variation of the warm pool area with the seasonality of the number of tropical cyclones. An analysis based on empirical data from the Northern Hemisphere is presented, where the warm pool associated with tropical cyclone activity is defined as the area, A, enclosed by the 26.5°C SST isotherm. Similar analysis was applied to the temperature weighted area AT with similar results.

    An intriguing non-linear relationship of high statistical significance was found between the temperature weighted area in the North Atlantic and the North-West Pacific on the one hand and the number of cyclones, N, in the same ocean basin on the other, but this pattern was not found over the North Indian Ocean. A simple statistical model was developed, based on the historical relationship between N and A. The simple model was then validated against independent inter-annual variations in the seasonal cyclone counts in the North Atlantic, but the correlation was not statistically significant in the North-West Pacific. No correlation, however, was found between N and A in the North Indian Ocean.

    A non-linear relationship between the cyclone number and temperature weighted area may in some ocean basins explain both why there has not been any linear trend in the number of cyclones over time as well as the recent upturn in the number of Atlantic hurricanes. The results also suggest that the notion of the number of tropical cyclones being insensitive to the area A is a misconception.

  7. Near-real-time Forensic Disaster Analysis: experiences from hurricane Sandy

    Science.gov (United States)

    Kunz, Michael; Mühr, Bernhard; Schröter, Kai; Kunz-Plapp, Tina; Daniell, James; Khazai, Bijan; Wenzel, Friedemann; Vannieuwenhuyse, Marjorie; Comes, Tina; Münzberg, Thomas; Elmer, Florian; Fohringer, Joachim; Lucas, Christian; Trieselmann, Werner; Zschau, Jochen

    2013-04-01

    Hurricane Sandy was the last tropical cyclone of the 2012 Northern Atlantic Hurricane season that made landfall. It moved on an unusual track from the Caribbean to the East Coast of the United States from 24 to 30 October as a Category 1 and 2 Hurricane according to the Saffir-Simpson Scale. Along its path, the severe storm event caused widespread damage including almost 200 fatalities. In the early hours of 30 October, Sandy made landfall near Atlantic City, N.J. Sandy was an extraordinary event due to its multihazard nature and several cascading effects in the aftermath. From the hydro-meteorological perspective, most unusual was the very large spatial extent of up to 1,700 km. High wind speeds were associated with record breaking storm surges at the U.S. Mid- Atlantic and New England Coast during high (astronomical) tide, leading to widespread flooding. Though Sandy was not the most severe storm event in terms of wind speed and precipitation, the impact in the U.S. was enormous with total damage estimates of up to 90 billion US (own estimate from Dec. 2012). Although much better data emerge weeks after such an event, the Forensic Disaster Analysis (FDA) Task Force of the Center for Disaster Management and Risk Reduction Technology (CEDIM) made an effort to obtain a comprehensive and holistic overview of the causes, hazardous effects and consequences associated with Sandy immediately after landfall at the U.S. coast on 30 October 2012. This was done in an interdisciplinary way by collecting and compiling scattered and distributed information from available databases and sources via the Internet, by applying own methodologies and models for near-real time analyses developed in recent years, and by expert knowledge. This contribution gives an overview about the CEDIM-FDA analyses' results. It describes the situation that led to the extraordinary event, highlights the interaction of the tropical cyclone with other hydro-meteorological events, and examines the

  8. Diagnosing United States hurricane landfall risk: An alternative to count-based methodologies

    Science.gov (United States)

    Staehling, Erica M.; Truchelut, Ryan E.

    2016-08-01

    Assessing hurricane landfall risk is of immense public utility, yet extant methods of diagnosing annual tropical cyclone (TC) activity demonstrate no skill in diagnosing U.S. hurricane landfalls. Atlantic TC count itself has limited skill, explaining less than 20% of interannual variance in landfall incidence. Using extended landfall activity and reanalysis data sets, we employed empirical Poisson modeling to produce a landfall diagnostic index (LDI), incorporating spatially and temporally averaged upper level divergence, relative sea surface temperature, meridional wind, and zonal shear vorticity. LDI captures 31% of interannual variability of U.S. hurricane landfalls and offers physical insight into why indices that successfully capture TC activity fail to diagnose landfalls: there is inherent tension between conditions likely to steer hurricanes toward the U.S. and conditions favorable for TC development. Given this tension, attempting to diagnose, predict, or understand TC count is inadequate for quantifying societal impacts due to landfalling hurricanes.

  9. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  10. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  11. Coastal topography–Northeast Atlantic coast, post-hurricane Sandy, 2012

    Science.gov (United States)

    Stockdon, Hilary F.; Doran, Kara S.; Sopkin, Kristin L.; Smith, Kathryn E.L.; Fredericks, Xan

    2013-01-01

    This Data Series contains lidar-derived bare-earth (BE) topography, dune elevations, and mean-high-water shoreline position datasets for most sandy beaches for Fire Island, New York, and from Cape Henlopen, Delaware to Cape Lookout, North Carolina. The data were acquired post-Hurricane Sandy, which made landfall as an extratropical cyclone on October 29, 2012.

  12. Tropical cyclones and permanent El Niño in the early Pliocene epoch.

    Science.gov (United States)

    Fedorov, Alexey V; Brierley, Christopher M; Emanuel, Kerry

    2010-02-25

    Tropical cyclones (also known as hurricanes and typhoons) are now believed to be an important component of the Earth's climate system. In particular, by vigorously mixing the upper ocean, they can affect the ocean's heat uptake, poleward heat transport, and hence global temperatures. Changes in the distribution and frequency of tropical cyclones could therefore become an important element of the climate response to global warming. A potential analogue to modern greenhouse conditions, the climate of the early Pliocene epoch (approximately 5 to 3 million years ago) can provide important clues to this response. Here we describe a positive feedback between hurricanes and the upper-ocean circulation in the tropical Pacific Ocean that may have been essential for maintaining warm, El Niño-like conditions during the early Pliocene. This feedback is based on the ability of hurricanes to warm water parcels that travel towards the Equator at shallow depths and then resurface in the eastern equatorial Pacific as part of the ocean's wind-driven circulation. In the present climate, very few hurricane tracks intersect the parcel trajectories; consequently, there is little heat exchange between waters at such depths and the surface. More frequent and/or stronger hurricanes in the central Pacific imply greater heating of the parcels, warmer temperatures in the eastern equatorial Pacific, warmer tropics and, in turn, even more hurricanes. Using a downscaling hurricane model, we show dramatic shifts in the tropical cyclone distribution for the early Pliocene that favour this feedback. Further calculations with a coupled climate model support our conclusions. The proposed feedback should be relevant to past equable climates and potentially to contemporary climate change.

  13. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  14. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    Science.gov (United States)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very

  15. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    Science.gov (United States)

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  16. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  17. Grey swan tropical cyclones

    Science.gov (United States)

    Lin, Ning; Emanuel, Kerry

    2016-01-01

    We define `grey swan’ tropical cyclones as high-impact storms that would not be predicted based on history but may be foreseeable using physical knowledge together with historical data. Here we apply a climatological-hydrodynamic method to estimate grey swan tropical cyclone storm surge threat for three highly vulnerable coastal regions. We identify a potentially large risk in the Persian Gulf, where tropical cyclones have never been recorded, and larger-than-expected threats in Cairns, Australia, and Tampa, Florida. Grey swan tropical cyclones striking Tampa, Cairns and Dubai can generate storm surges of about 6 m, 5.7 m and 4 m, respectively, with estimated annual exceedance probabilities of about 1/10,000. With climate change, these probabilities can increase significantly over the twenty-first century (to 1/3,100-1/1,100 in the middle and 1/2,500-1/700 towards the end of the century for Tampa). Worse grey swan tropical cyclones, inducing surges exceeding 11 m in Tampa and 7 m in Dubai, are also revealed with non-negligible probabilities, especially towards the end of the century.

  18. Analysis of North Atlantic tropical cyclone intensify change using data mining

    Science.gov (United States)

    Tang, Jiang

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This study aims to tackle two factors that account for the underperformance of current TC intensity forecasts: (1) inadequate observations of TC structures, and (2) deficient understanding of the underlying physical processes governing TC intensification. To tackle the problem of inadequate observations of TC structures, efforts have been made to extract vertical and horizontal structural parameters of latent heat release from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data products. A case study of Hurricane Isabel (2003) was conducted first to explore the feasibility of using the 3D TC structure information in predicting TC intensification. Afterwards, several structural parameters were extracted from 53 TRMM PR 2A25 observations on 25 North Atlantic TCs during the period of 1998 to 2003. A new generation of multi-correlation data mining algorithm (Apriori and its variations) was applied to find roles of the latent heat release structure in TC intensification. The results showed that the buildup of TC energy is indicated by the height of the convective tower, and the relative low latent heat release at the core area and around the outer band. Adverse conditions which prevent TC intensification include the following: (1) TC entering a higher latitude area where the underlying sea is relative cold, (2) TC moving too fast to absorb the thermal energy from the underlying sea, or (3) strong energy loss at the outer band. When adverse conditions and amicable conditions reached equilibrium status, tropical cyclone intensity would remain stable. The dataset from Statistical Hurricane Intensity Prediction

  19. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and

  20. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Directory of Open Access Journals (Sweden)

    Merritt Tuel

    2008-07-01

    Full Text Available The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490 and chlorophyll (chlor_a from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies identified on the basis of sea surface height anomaly (SSHA. Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels

  1. A Climatological Study of Hurricane Force Extratropical Cyclones

    Science.gov (United States)

    2012-03-01

    to weaken. There is some indication that diabatic processes serve as an additional energy source. Brief examination of predictability using ECMWF...Shortly after this time, the storm begins to weaken. There is some indication that diabatic processes serve as an additional energy source. Brief...Their primary energy source comes in the form of a baroclinic zone (meridional temperature gradient). While not a necessary ingredient, diabatic

  2. Impact of Hurricane Exposure on Reproductive Health Outcomes, Florida, 2004.

    Science.gov (United States)

    Grabich, Shannon C; Robinson, Whitney R; Konrad, Charles E; Horney, Jennifer A

    2017-08-01

    Prenatal hurricane exposure may be an increasingly important contributor to poor reproductive health outcomes. In the current literature, mixed associations have been suggested between hurricane exposure and reproductive health outcomes. This may be due, in part, to residual confounding. We assessed the association between hurricane exposure and reproductive health outcomes by using a difference-in-difference analysis technique to control for confounding in a cohort of Florida pregnancies. We implemented a difference-in-difference analysis to evaluate hurricane weather and reproductive health outcomes including low birth weight, fetal death, and birth rate. The study population for analysis included all Florida pregnancies conceived before or during the 2003 and 2004 hurricane season. Reproductive health data were extracted from vital statistics records from the Florida Department of Health. In 2004, 4 hurricanes (Charley, Frances, Ivan, and Jeanne) made landfall in rapid succession; whereas in 2003, no hurricanes made landfall in Florida. Overall models using the difference-in-difference analysis showed no association between exposure to hurricane weather and reproductive health. The inconsistency of the literature on hurricane exposure and reproductive health may be in part due to biases inherent in pre-post or regression-based county-level comparisons. We found no associations between hurricane exposure and reproductive health. (Disaster Med Public Health Preparedness. 2017;11:407-411).

  3. Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic

    Science.gov (United States)

    Hanshaw, M.N.; Lozier, M.S.; Palter, J.B.

    2008-01-01

    Past studies have shown that surface chlorophyll-a concentrations increase in the wake of hurricanes. Given the reported increase in the intensity of North Atlantic hurricanes in recent years, increasing chlorophyll-a concentrations, perhaps an indication of increasing biological productivity, would be an expected consequence. However, in order to understand the impact of variable hurricane activity on ocean biology, the magnitude of the hurricane-induced chlorophyll increase relative to other events that stir or mix the upper ocean must be assessed. This study investigates the upper ocean biological response to tropical cyclones in the North Atlantic from 1997-2005. Specifically, we quantitatively compare the anomalous chlorophyll-a concentrations created by cyclone activity to the total distribution of anomalies in the subtropical waters. We show that the cyclone-induced chlorophyll-a increase has minimal impact on the integrated biomass budget, a result that holds even when taking into consideration the lagged and asymmetrical response of ocean color. Copyright 2008 by the American Geophysical Union.

  4. Lessons learnt from tropical cyclone losses

    Science.gov (United States)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  5. Recovering from Hurricane Katrina

    Science.gov (United States)

    Coleman, Nadine

    2006-01-01

    The Gulf Coast region suffered an unusually severe hurricane season in 2005: Hurricane Katrina (August 28-29, 2005) devastated much of southern Mississippi and Louisiana. Approximately 2,700 licensed early care and education facilities in those states and in Alabama were affected by Katrina, in addition to an unknown number of family child care…

  6. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  7. The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model

    Science.gov (United States)

    Rosado, K.; Tallapragada, V.; Jenkins, G. S.

    2016-12-01

    In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of

  8. Tropical Cyclone Report, 1987.

    Science.gov (United States)

    1987-01-01

    NAVOCEANCOMDET ALAMEDA CIUDAD UNIVERSITARIA , MEXICO NAVOCEANCOMDET ASHEVILLE CIVIL DEFENSE, SAIPAN NAVOCEANCOMDET ATSUGI CINCPACFLT NAVOCEANCOMDET BARBERS...minute mean) in "" begin to rotate about one another. When intense tropical the range of 34 to 63 kt (17 to 32 m/sec) inclusive . * -’.- cyclones are

  9. Tropical Cyclone Report, 1990.

    Science.gov (United States)

    1990-01-01

    surface winds in the range of 34 to center of a tropical cyclone. 63 kt (17 to 32 m/sec) inclusive . MAXIMUA SUSTAINED WIND - The highest TROPICAL UPPER...PASADENA CIUDAD UNIVERSITARIA . MEXICO LISD CAMP SPRINGS CENTER, MD CIVIL DEFENSE, BELAU LOS ANGELES PUBLIC LIBRARY CIVIL DEFENSE, MAJURO MAURITIUS

  10. Synoptic and climatological aspects of extra-tropical cyclones

    Science.gov (United States)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  11. Infectious Diseases and Tropical Cyclones in Southeast China.

    Science.gov (United States)

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RRs) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis (ps cyclones.

  12. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  13. Assessing Tropical Cyclone Damage

    Science.gov (United States)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  14. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will

  15. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Directory of Open Access Journals (Sweden)

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  16. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    ; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof

  17. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    ; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof

  18. Communicating the Threat of a Tropical Cyclone to the Eastern Range

    Science.gov (United States)

    Winters, Katherine A.; Roeder, William P.; McAleenan, Mike; Belson, Brian L.; Shafer, Jaclyn A.

    2012-01-01

    The 45th Weather Squadron (45 WS) has developed a tool to help visualize the Wind Speed Probability product from the National Hurricane Center (NHC) and to help communicate that information to space launch customers and decision makers at the 45th Space Wing (45 SW) and Kennedy Space Center (KSC) located in east central Florida. This paper reviews previous work and presents the new visualization tool, including initial feedback as well as the pros and cons. The NHC began issuing their Wind Speed Probability product for tropical cyclones publicly in 2006. The 45 WS uses this product to provide a threat assessment to 45 SW and KSC leadership for risk evaluations with an approaching tropical cyclone. Although the wind speed probabilities convey the uncertainty of a tropical cyclone well, communicating this information to customers is a challenge. The 45 WS continually strives to provide the wind speed probability information to customers in a context which clearly communicates the threat of a tropical cyclone. First, an intern from the Florida Institute of Technology (FIT) Atmospheric Sciences department, sponsored by Scitor Corporation, independently evaluated the NHC wind speed probability product. This work was later extended into a M.S. thesis at FIT, partially funded by Scitor Corporation and KSC. A second thesis at FIT further extended the evaluation partially funded by KSC. Using this analysis, the 45 WS categorized the probabilities into five probability interpretation categories: Very Low, Low, Moderate, High, and Very High. These probability interpretation categories convert the forecast probability and forecast interval into easily understood categories that are consistent across all ranges of probabilities and forecast intervals. As a follow-on project, KSC funded a summer intern to evaluate the human factors of the probability interpretation categories, which ultimately refined some of the thresholds. The 45 WS created a visualization tool to express the

  19. Tropical Cyclones and Climate Controls in the Western Atlantic Basin during the First Half of the Nineteenth Century

    Science.gov (United States)

    Mock, C. J.; Dodds, S. F.; Rodgers, M. D.; Patwardhan, A.

    2008-12-01

    This study describes new comprehensive reconstructions of individual Western Atlantic Basin tropical cyclones for each year of the first half of the nineteenth century in the Western Atlantic Basin that are directly compatible and supplement the National Hurricane Center's HURDAT (Atlantic basin hurricane database). Data used for reconstructing tropical cyclones come from ship logbooks, ship protests, diaries, newspapers, and early instrumental records from more than 50 different archival repositories in the United States and the United Kingdom. Tropical cyclone strength was discriminated among tropical storms, hurricanes, major hurricanes, and non-tropical lows at least at tropical storm strength. The results detail the characteristics of several hundred storms, many of them being newly documented, and tracks for all storms were mapped. Overall, prominent active periods of tropical cyclones are evident along the western Atlantic Ocean in the 1830s but Caribbean and Gulf coasts exhibit active periods as being more evident in the 1810s and 1820s. Differences in decadal variations were even more pronounced when examining time series of activity at the statewide scale. High resolution paleoclimate and historical instrumental records of the AMO, NAO, ENSO, Atlantic SSTs, West African rainfall, and volcanic activity explain how different modes in these forcing mechanisms may explain some of the multidecadal and interannual variations. The early nineteenth century active hurricane activity appears to be particularly unique in corresponding with a low (negative index) AMO period, and as they relate to particular synoptic-scale patterns in the latter part of the Little Ice Age. Model simulations offer some hypotheses on such patterns, perhaps suggesting increased baroclinic-related storms and a slight later possible shift in the seasonal peak of tropical cyclones for some areas at times. Some years, such as 1806, 1837, 1838, 1842, and 1846 have particularly very active

  20. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    Science.gov (United States)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  1. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  2. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  3. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  4. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    Science.gov (United States)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  5. Tropical Cyclone Report, 1988

    Science.gov (United States)

    1988-01-01

    TAIWAN NAVPGSCOL LIBRARY CITIES SERVICES OIL GAS CORP NAVPOLAROCEANCEN SUITLAND CIUDAD UNIVERSITARIA , MEXICO NAVAL RESEARCH LAB CIVIL DEFENSE, SAIPAN...The system software has been provided An effort is now underway to develop a to OAO Corporation for inclusion in the JTWC series of examples...winds in the range of 34 to speed, typically within one degree of the center of a 63 kt (17 to 32 m/sec) inclusive . tropical cyclone. TROPICAL UPPER

  6. Analyzing Hurricane Sandy

    Science.gov (United States)

    Convertino, Angelyn; Meyer, Stephan; Edwards, Becca

    2015-03-01

    Post-tropical Storm Sandy underwent extratropical transition shortly before making landfall in southern New Jersey October 29 2012. Data from this system was compared with data from Hurricane Ike (2008) which represents a classic hurricane with a clear eye wall and symmetry after landfall. Storm Sandy collided with a low pressure system coming in from the north as the hurricane made landfall on the US East coast. This contributed to Storm Sandy acting as a non-typical hurricane when it made landfall. Time histories of wind speed and wind direction were generated from data provided by Texas Tech's StickNet probes for both storms. The NOAA Weather and Climate program were used to generate radar loops of reflectivity during the landfall for both storms; these loops were compared with time histories for both Ike and Sandy to identify a relationship between time series data and storm-scale features identified on radar.

  7. Hurricane Katrina disaster diplomacy.

    Science.gov (United States)

    Kelman, Ilan

    2007-09-01

    Hurricane Katrina struck the United States at the end of August 2005. The consequent devastation appeared to be beyond the US government's ability to cope with and aid was offered by several states in varying degrees of conflict with the US. Hurricane Katrina therefore became a potential case study for 'disaster diplomacy', which examines how disaster-related activities do and do not yield diplomatic gains. A review of past disaster diplomacy work is provided. The literature's case studies are then categorised using a new typology: propinquity, aid relationship, level and purpose. Hurricane Katrina and its aftermath are then placed in the context of the US government's foreign policy, the international response to the disaster and the US government's reaction to these responses. The evidence presented is used to discuss the potential implications of Hurricane Katrina disaster diplomacy, indicating that factors other than disaster-related activities generally dominate diplomatic relations and foreign policy.

  8. Hurricane Matthew overwash extents

    Science.gov (United States)

    Doran, Kara; Long, Joseph W.; Birchler, Justin; Range, Ginger

    2017-01-01

    The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This data defines the alongshore extent of overwash deposits attributed to coastal processes during Hurricane Matthew.

  9. Hurricane Katrina Water Sampling

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  10. Hurricane Katrina Sediment Sampling

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  11. Hurricane Katrina Soil Sampling

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  12. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  13. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  14. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  15. Cyclone hazard proneness of districts of India

    Indian Academy of Sciences (India)

    M Mohapatra

    2015-04-01

    Hazards associated with tropical cyclones (TCs) are long-duration rotatory high velocity winds, very heavy rain, and storm tide. India has a coastline of about 7516 km of which 5400 km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. Thus classification of TC hazard proneness of the coastal districts is very essential for planning and preparedness aspects of management of TCs. So, an attempt has been made to classify TC hazard proneness of districts by adopting a hazard criteria based on frequency and intensity of cyclone, wind strength, probable maximum precipitation, and probable maximum storm surge. Ninety-six districts including 72 districts touching the coast and 24 districts not touching the coast, but lying within 100 km from the coast have been classified based on their proneness. Out of 96 districts, 12 are very highly prone, 41 are highly prone, 30 are moderately prone, and the remaining 13 districts are less prone. This classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through a detailed study.

  16. Mesoscale Processes in Tropical Cyclones

    Science.gov (United States)

    2016-06-07

    analysis of the manner in which atmospheric vortices can interact; the first research results on the presence of mesoscale vortices in tropical cyclones...Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be...tropical cyclone motion; thermodynamic estimation of tropical cyclone intensity, which has been utilized in a WMO statement on climate change and tropical

  17. Improving our Understanding of Atlantic Tropical Cyclones through Knowledge of the Saharan Air Layer: Hope or Hype?

    Science.gov (United States)

    Braun, Scott A.; Shie, Chung-Lin

    2008-01-01

    The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air that frequently moves westward off of the Saharan desert of Africa and over the tropical Atlantic Ocean, has long been appreciated. As air moves over the desert, it is strongly heated from below, producing a very hot air mass at low levels. Because there is no moisture source over the Sahara, the rise in temperature causes a sharp drop in relative humidity, thus drying the air. In addition, the warm air produces a very strong jet of easterly flow in the middle troposphere called the African easterly jet that is thought to play a critical role in hurricane formation. In recent years, there has been an increased focus on the impact that the SAL has on the formation and evolution of hurricanes in the Atlantic. However, the nature of its impact remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The argument for positively influencing hurricane development is based upon the fact that the African easterly jet produces the waves that eventually form hurricanes and that it leads to rising motion south of the jet that favors the development of deep thunderstorm clouds. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm SAL air aloft, which increases thermodynamic stability and suppresses cloud development; and 3) dry air, which produces cold downdrafts in precipitating regions, thereby removing energy needed for storm development. As part of this recent focus on the SAL and hurricanes (which motivated a 2006 NASA field experiment), there has been little emphasis on the SAL s potential positive influences and almost complete emphasis on its possible negative influences, almost to the point of claims that the SAL is the major suppressing influence on hurricanes in the Atlantic. Multiple NASA satellite data sets (TRMM, MODIS, and AIRS

  18. Evaluating Atlantic tropical cyclone track error distributions based on forecast confidence

    OpenAIRE

    Hauke, Matthew D.

    2006-01-01

    A new Tropical Cyclone (TC) surface wind speed probability product from the National Hurricane Center (NHC) takes into account uncertainty in track, maximum wind speed, and wind radii. A Monte Carlo (MC) model is used that draws from probability distributions based on historic track errors. In this thesis, distributions of forecast track errors conditioned on forecast confidence are examined to determine if significant differences exist in distribution characteristics. Two predictors are ...

  19. Coastal flooding by tropical cyclones and sea-level rise.

    Science.gov (United States)

    Woodruff, Jonathan D; Irish, Jennifer L; Camargo, Suzana J

    2013-12-05

    The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence.

  20. Study of a Novel Rotary Cyclone Gas-Solid Separator

    Institute of Scientific and Technical Information of China (English)

    Zhiguang Ling; Xingyong Deng

    2003-01-01

    Based on the analytical study of the characteristics of fine particle motion in swirling flow, a new design idea on flow organization and construction aimed at increasing the positive radial flow in the separation chamber of the rotary cyclone separator (PRV type) was proposed. Experimental verification including the test of variation of separation efficiency and pressure loss with the first and secondary flow ratio show that this new type separator has higher and more stable separation efficiency in broad flow ratio range while the pressure loss is far below the conventional rotary cyclone separator and even comparable with that of simple cyclone separator

  1. Experimental research on cyclone performance at high temperature

    Institute of Scientific and Technical Information of China (English)

    LI Wenqi; CHEN Jianyi

    2007-01-01

    To predict the influence of operating temperatures on cyclone performance,an experimental investigation was conducted on particle separation in a reverse flow,tangential volute-inlet cyclone separator with a diameter of 300 mm and with air heated up to 973 K.The test powder silica has a mass median diameter of 10 urn,while inlet velocity range was 12-36 m/s.Both the separation efficiency and pressure drop of the cyclone were measured as a function of the inlet velocity and operating temperature.At the same inlet velocity,both the separation efficiency and pressure drop decrease with increasing temperature.In addition,optimum inlet velocity,at which the cyclone has its highest separation efficiency,tends to increase with a rise in temperature.An analysis on our own data and published results has shown that the fractional efficiency of a cyclone is a definite function of dimensionless numbers such as the Stokes number,the Reynolds number,the Froude number,dimensionless cyclone inlet area,and dimensionless outlet diameter.A nondimensional experimental correlation of the cyclone performance,including the influence of temperature,was obtained on the basis of our own previous work.The prediction of the influence of temperature on separation efficiencies and pressure drops is in fairly good agreement with experimental results.

  2. Disaster triggers disaster: Earthquake triggering by tropical cyclones

    Science.gov (United States)

    Wdowinski, S.; Tsukanov, I.

    2011-12-01

    Three recent devastating earthquakes, the 1999 M=7.6 Chi-Chi (Taiwan), 2010 M=7.0 Leogane (Haiti), 2010 M=6.4 Kaohsiung (Taiwan), and additional three moderate size earthquakes (6cyclones (hurricane or typhoon) hit the very same area. The most familiar example is Haiti, which was hit during the late summer of 2008 by two hurricanes and two tropical storms (Fay, Gustav, Hanna and Ike) within 25 days. A year an a half after this very wet hurricane season, the 2010 Leogane earthquake occurred in the mountainous Haiti's southern peninsula and caused the death of more than 300,000 people. The other cases are from Taiwan, which is characterized by a high seismicity level and frequent typhoon landfall. The three wettest typhoons in Taiwan's past 50 years were Morakot (in 2009, with 2885 mm or rain), Flossie (1969, 2162 mm) and Herb (1996, 1987 mm)[Lin et al., 2010]. Each of this three very wet storms was followed by one or two main-shock M>6 earthquake that occurred in the central mountainous area of Taiwan within three years after the typhoon. The 2009 Morakot typhoon was followed by 2009 M=6.2 Nantou and 2010 M=6.4 Kaohsiung earthquakes; the 1969 Flossie typhoon was followed by an M=6.3 earthquake in 1972; and the 1996 Herb typhoon by the 1998 M=6.2 Rueyli and 1999 M=7.6 Chi-Chi earthquakes. The earthquake catalog of Taiwan lists only two other M>6 main-shocks that occurred in Taiwan's central mountainous belt, one of them was in 1964 only four months after the wet Typhoon Gloria poured heavy rain in the same area. We suggest that the close proximity in time and space between wet tropical cyclones and earthquakes reflects a physical link between the two hazard types in which these earthquakes were triggered by rapid erosion induced by tropical cyclone's heavy rain. Based on remote sensing observations, meshfree finite element modeling, and Coulomb failure stress analysis, we show that the erosion induced by very wet cyclones increased the failure stresses at the

  3. The characteristic differences of tropical cyclones forming over the western North Pacific and the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YUAN Jinnan; WANG Dongxiao; LIU Chunxia; HUANG Jian; HUANG Huijun

    2007-01-01

    The best track dataset of tropical cyclones in the western North Pacific (WNP) and the South China Sea (SCS) from 1977 to 2005 during the satellite era, the NCEP/NCAR reanalysis dataset and the extended reconstructed sea surface temperature dataset are employed in this study. The main climatological characteristics of tropical cyclone formation over the WNP and the SCS are compared. It is found that there is obviously different for the locations of tropical cyclone origins, achieving the lowest central pressure and termination points between over the WNP and over the SCS. The annual number of tropical cyclones forming over the SCS is obviously less than over the WNP, and there is a significant negative correlation with the correlation coefficient being - 0.36 at the 5% significance level between over the WNP and over the SCS. The mean speed of tropical cyclone moving is 6.5 m/s over the WNP and 4.6 m/s over the SCS. The mean lowest central pressure of tropical cyclones is obviously weaker over the SCS than over the WNP. The tropical cyclone days per year, mean total distance and total displacement of tropical cyclone traveled over the WNP are all obviously longer than those over the SCS. Tropical cyclone may intensify to Saffir - Simpson hurricane scale 5 over the WNP, but no tropical cyclone can intensify to Saffir - Simpson hurricane scale 3 over the SCS. The changing ranges of the radii (R15,R16) of the 15.4 m/s winds them and the 25.7 m/s winds over the WNP are obviously wider than those over the SCS,and the median values of the radii over the WNP are also larger than those over the SCS. For the same intensity of tropical cyclones, both radii have larger medians over the WNP than over the SCS. The correlations of annual mean tropical cyclone size parameters between over the WNP and over the SCS are not significant. At the same time, the asymmetric radii of tropical cyclones over the WNP are different from those over the SCS.

  4. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols

    Directory of Open Access Journals (Sweden)

    D. Rosenfeld

    2007-07-01

    Full Text Available The feasibility of hurricane modification was investigated for hurricane Katrina using the Weather Research and Forecasting Model (WRF. The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning–off" warm rain formation in the clouds at Katrina's periphery (where wind speeds were less than 22 m s−1. This simplification of the simulation of aerosol effects is aimed at evaluating the largest possible response. This resulted in the weakening of the hurricane surface winds compared to the "non-seeded" simulated storm during the first 24 h within the entire tropical cyclone (TC area compared to a control simulation without warm rain suppression. Later, the seeding-induced evaporative cooling at the TC periphery led to a shrinking of the eye and hence to some increase in the wind within the small central area of the TC. Yet, the overall strength of the hurricane, as defined by the area covered by hurricane force winds, decreased in response to the suppressed warm rain at the periphery, as measured by a 25% reduction in the radius of hurricane force winds. In a simulation with warm rain suppression throughout the hurricane, the radius of the hurricane force winds was reduced by more than 42%, and although the diameter of the eye shrunk even further the maximum winds weakened. This shows that the main mechanism by which suppressing warm rain weakens the TC is the low level evaporative cooling of the un-precipitated cloud drops and the added cooling due to melting of precipitation that falls from above.

  5. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    Science.gov (United States)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  6. The effects of moist entropy and moisture budgets on tropical cyclone development

    Science.gov (United States)

    Juračić, Ana; Raymond, David J.

    2016-08-01

    This paper examines the moist entropy and moisture budgets in tropical cyclones, as well as their relation to tropical cyclone's development. This analysis focuses on the dropsonde data collected during Hurricane and Severe Storm Sentinel project and the accompanying satellite data. Two tropical cyclones of interest are Tropical Storm Gabrielle (2013) and Hurricane Edouard (2014). There were three research flights into Gabrielle (2013), during its nondeveloping and decaying stages. Edouard (2014) was visited four times in different stages of its life cycle, twice during the intensification and twice during the decay. Also, we extended our analysis on the larger data set, consisting of 11 nonintensifying and 12 intensifying systems. Our study shows that the moist entropy tends to increase during intensification and decrease during nonintensifying stages. On the other hand, the moisture budget relates better to the tropical cyclone's current intensity than its development. The sign of the moist entropy tendency depends on the ability of surface fluxes and irreversible moist entropy generation to overcome lateral export of moist entropy and loss due to radiative cooling. Edouard's decay during the last research flight was likely the result of increasing wind shear and low sea surface temperatures. During its decay, Gabrielle had strong column-integrated lateral export of moist entropy and drying between 1 and 4 km height. This is probably the consequence of a dry environment at multiple levels, amplified by a warm and dry anomaly left behind by previous convective activity.

  7. On the Sizes of the North Atlantic Basin Tropical Cyclones Based on 34- and 64-kt Wind Radii Data, 2004-2013

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.

  8. Conceptual Models of Frontal Cyclones.

    Science.gov (United States)

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  9. Tropical Cyclone Report

    Science.gov (United States)

    1989-01-01

    GUARD 160 (13-14W)TS KEN-LOLA BOUCHARD 86 (32W) TY GAY CRITTENDEN 166 (15W) TY MAC BOUCHARD 92 (33W) TY HUNT SHOEMAKER 172 (16W) TY OWEN CRITTENDEN 98...GURAL 188 TC 02A BOUCHARD 190 TC 32W ( GAY ) CRI’TTENDEN 166 4. SUMMARY OF SOUTH PACIFIC AND SOUTH INDIAN OCEAN TROPICAL CYCLONES ............. 193 4.1...Commander Naval ICAO International Civil Aviation AFB Air Force Base Oceanography Command Organization AFGWC Air Force Global Weather COSM or INIT Initial

  10. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America

    Science.gov (United States)

    Li, Wang; Yue, Jianping; Yang, Yang; Li, Zhen; Guo, Jinyun; Pan, Yi; Zhang, Kefei

    2017-08-01

    East Asia and North America are the regions most heavily affected by powerful cyclones. In this paper we investigate the morphological characteristics of ionospheric disturbances induced by cyclones in different continents. The global ionosphere map supplied by the Center for Orbit Determination in Europe (CODE), International Reference Ionosphere Model (IRI) 2012, and Wallops Island ionosonde station data are used to analyse the ionospheric variations during powerful typhoons/hurricanes in East Asia and North America, respectively. After eliminating the ionospheric anomalies due to the solar-terrestrial environment, the total electron content (TEC) time series over the point with maximum wind speed is detected by the sliding interquartile range method. The results indicate that significant ionospheric disturbances are observed during powerful tropical cyclones in East Asia and North America, respectively, and that all the ionospheric anomalies are positive. In addition, the extent and magnitude of travelling ionospheric disturbances are associated with the category of tropical cyclone, and the extent of TEC anomalies in longitude is more pronounced than that in latitude. Furthermore, the maximum ionospheric anomaly does not coincide with the eye of the storm, but appears in the region adjacent to the centre. This implies that ionospheric disturbances at the edges of cyclones are larger than those in the eye of the winds. The phenomenon may be associated with the gravity waves which are generated by strong convective cells that occur in the spiral arms of tropical cyclones. This comprehensive analysis suggests that the presence of powerful typhoons/hurricanes may be a possible source mechanism for ionospheric anomalies.

  11. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  12. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  13. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  14. Mitigation of hurricane storm surge impacts: Modeling scenarios over wide continental shelves

    Science.gov (United States)

    Lima Rego, Joao; Li, Chunyan

    2010-05-01

    The improvement of present understanding of surge dynamics over wide and shallow shelves is vital for the improvement of our ability to forecast storm surge impacts to coastal regions, particularly the low-lying land areas that are most vulnerable to hurricane flooding (e.g. the Northern Gulf of Mexico, coastal Bangladesh, the Southeast China sea). Given the increase of global sea-surface temperature, both the total number and proportion of intense tropical cyclones have increased notably since 1970 (Emanuel, 2005; Nature). Therefore, more intense hurricanes may hit densely populated coastal regions, and this problem may be aggravated by the prospect of accelerated sea-level rise in the 21st century. This presentation offers a review of recent work on hurricane-induced storm surge. The finite-volume coastal ocean model ("FVCOM", by Chen et al., 2003; J. Atmos. Ocean Tech.) was applied to the storm surge induced by Hurricanes Rita and Ike along the coasts of Louisiana and Texas in 2005 and 2008, respectively, to study coastal storm surge dynamics. The sensitivity analysis of Rego and Li (2009; Geophys. Res. Lett.) demonstrated how stronger, wider or faster tropical cyclones would affect coastal flooding. Li, Weeks and Rego (2009; Geophys. Res. Lett) looked into how hurricane flooding and receding dynamics differ, concluding that the overland flow in the latter stage is of considerable importance. Rego and Li (2010; J. Geophys. Res.) showed how extreme events may result of a combination of non-extreme factors, by studying the nonlinear interaction of tide and hurricane surge. The ability of models to reproduce these extreme events and to proactive plan for damage reduction is covered in Rego and Li's (2010; J. Marine Syst.) study of how barrier island systems protect coastal bays from offshore surge propagation. Here we combine these results for a wider perspective on how hurricane flooding could be mitigated under changing conditions.

  15. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  16. Analysis of the variation of Hurricane frequency over Atlantic region during 1851-2010

    Science.gov (United States)

    Banerjee, Dhruba; Bondyopadhaya, Ramaprosad

    Analysis of the variation of Hurricane frequency over Atlantic region during 1851-2010 The variation of number of Hurricane over Atlantic and East Caribbean region during more than 150 years (1851-2010) have been analyzed. The general observations regarding characteristics are (ref{GrindEQ__1_}) the frequency increases monotonically, (ref{GrindEQ__2_}) the monthly variation of the frequencies also exists and the frequency of Hurricanes are much more during August to October, September being the month of maximum hurricane nearly 3.2 per year. Reverse is the situation during December to June. If we note the 30 years variation of Hurricane frequency we find 1941-1970 and 1971-2000 are two spans of years when total Hurricane number over Atlantic region was maximum. When we analyze these rates of increase we find this rate is monotonically increasing from 1851upto1910 but after that it begins to drop slowly. The maximum rate was 1.22 per yr.(roughly).In recent decade during 1971-2010, actually decadal analysis shows that it was less than 10 before1991 but more than 10 after that time and during 2001-10 it was 13.3. Another very important observation is that while the average frequency of hurricane over the period 1851-2010 is 8.8, the average frequency during solar maxima years is 8.3but the said frequency during solar minima is 9.53.This is very significant. Because this implies that solar influence must have negative effect on Hurricane formation. We may note that similar situation prevail for the formation of tropical cyclone like 1957. In fact, in many solar maximum years Hurricane does not form over Atlantic and East Caribbean region. On the contrary many deadliest hurricanes over USA occurred in solar minima years or in the neighborhood. Finally it is outlined the possible mechanism due to which solar activities may decrease the formation of hurricane. It may be worth noting that the nature variation of solar phase/cycle is more predictable than the hurricane

  17. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  18. Hurricane Katrina deaths, Louisiana, 2005.

    Science.gov (United States)

    Brunkard, Joan; Namulanda, Gonza; Ratard, Raoult

    2008-12-01

    Hurricane Katrina struck the US Gulf Coast on August 29, 2005, causing unprecedented damage to numerous communities in Louisiana and Mississippi. Our objectives were to verify, document, and characterize Katrina-related mortality in Louisiana and help identify strategies to reduce mortality in future disasters. We assessed Hurricane Katrina mortality data sources received in 2007, including Louisiana and out-of-state death certificates for deaths occurring from August 27 to October 31, 2005, and the Disaster Mortuary Operational Response Team's confirmed victims' database. We calculated age-, race-, and sex-specific mortality rates for Orleans, St Bernard, and Jefferson Parishes, where 95% of Katrina victims resided and conducted stratified analyses by parish of residence to compare differences between observed proportions of victim demographic characteristics and expected values based on 2000 US Census data, using Pearson chi square and Fisher exact tests. We identified 971 Katrina-related deaths in Louisiana and 15 deaths among Katrina evacuees in other states. Drowning (40%), injury and trauma (25%), and heart conditions (11%) were the major causes of death among Louisiana victims. Forty-nine percent of victims were people 75 years old and older. Fifty-three percent of victims were men; 51% were black; and 42% were white. In Orleans Parish, the mortality rate among blacks was 1.7 to 4 times higher than that among whites for all people 18 years old and older. People 75 years old and older were significantly more likely to be storm victims (P Hurricane Katrina was the deadliest hurricane to strike the US Gulf Coast since 1928. Drowning was the major cause of death and people 75 years old and older were the most affected population cohort. Future disaster preparedness efforts must focus on evacuating and caring for vulnerable populations, including those in hospitals, long-term care facilities, and personal residences. Improving mortality reporting timeliness will

  19. Economic impacts of hurricanes on forest owners

    Science.gov (United States)

    Jeffrey P. Prestemon; Thomas P. Holmes

    2010-01-01

    We present a conceptual model of the economic impacts of hurricanes on timber producers and consumers, offer a framework indicating how welfare impacts can be estimated using econometric estimates of timber price dynamics, and illustrate the advantages of using a welfare theoretic model, which includes (1) welfare estimates that are consistent with neo-classical...

  20. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    Science.gov (United States)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of

  1. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests

    Directory of Open Access Journals (Sweden)

    Robinson I. Negrón-Juárez

    2014-06-01

    Full Text Available Topography affects the patterns of forest disturbance produced by tropical cyclones. It determines the degree of exposure of a surface and can alter wind characteristics. Whether multispectral remote sensing data can sense the effect of topography on disturbance is a question that deserves attention given the multi-scale spatial coverage of these data and the projected increase in intensity of the strongest cyclones. Here, multispectral satellite data, topographic maps and cyclone surface wind data were used to study the patterns of disturbance in an Australian rainforest with complex mountainous terrain produced by tropical cyclone Yasi (2011. The cyclone surface wind data (H*wind was produced by the Hurricane Research Division of the National Oceanic and Atmospheric Administration (HRD/NOAA, and this was the first time that this data was produced for a cyclone outside of United States territory. A disturbance map was obtained by applying spectral mixture analyses on satellite data and presented a significant correlation with field-measured tree mortality. Our results showed that, consistent with cyclones in the southern hemisphere, multispectral data revealed that forest disturbance was higher on the left side of the cyclone track. The highest level of forest disturbance occurred in forests along the path of the cyclone track (±30°. Levels of forest disturbance decreased with decreasing slope and with an aspect facing off the track of the cyclone or away from the dominant surface winds. An increase in disturbance with surface elevation was also observed. However, areas affected by the same wind intensity presented increased levels of disturbance with increasing elevation suggesting that complex terrain interactions act to speed up wind at higher elevations. Yasi produced an important offset to Australia’s forest carbon sink in 2010. We concluded that multispectral data was sensitive to the main effects of complex topography on disturbance

  2. High-income does not protect against hurricane losses

    Science.gov (United States)

    Geiger, Tobias; Frieler, Katja; Levermann, Anders

    2016-08-01

    Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation’s affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm’s wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.

  3. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    Science.gov (United States)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  4. Buoyancy and shear characteristics of hurricane-tornado environments

    Science.gov (United States)

    Mccaul, Eugene W., Jr.

    1991-01-01

    This study presents detailed composite profiles of temperature, moisture, and wind constructed for tornado environments in tropical cyclones that affected the U.S. between 1948 and 1986. Winds are composited in components radial and tangential to the tropical cyclone center at observation time. Guided by observed patterns of tornado occurrence, composites are constructed for a variety of different stratifications of the data, including proximity to tornadoes, position relative to the cyclone center, time of day, time after cyclone landfall, cyclone translation speed, and landfall location. The composites are also compared to composite soundings from Great Plains tornado environments. A variety of sounding parameters are examined to see which are most closely related to the tornado distribution patterns. Lower-tropospheric vertical shears are found to be stronger in the tropical cyclone tornado environments than on the Great Plains. Buoyancy for the tropical cyclone tornado cases is much smaller than that seen with Great Plains tornado events and exhibits a weak negative correlation with tornado outbreak severity.

  5. JPL Tropical Cyclone Information System

    Data.gov (United States)

    National Aeronautics and Space Administration — The JPL Tropical Cyclone Information System (TCIS) brings together satellite and in situ data sets from various sources to help you find information for a particular...

  6. Comparing hurricane and extratropical storm surge for the Mid-Atlantic and Northeast Coast of the United States for 1979-2013

    Science.gov (United States)

    Booth, J. F.; Rieder, H. E.; Kushnir, Y.

    2016-09-01

    This letter examines the magnitude, spatial footprint, and paths of hurricanes and extratropical cyclones (ETCs) that caused strong surge along the east coast of the US between 1979 and 2013. Lagrangian cyclone track information, for hurricanes and ETCs, is used to associate surge events with individual storms. First, hurricane influence is examined using ranked surged events per site. The fraction of hurricanes among storms associated with surge decreases from 20%-60% for the top 10 events to 10%-30% for the top 50 events, and a clear latitudinal gradient of hurricane influence emerges for larger sets of events. Secondly, surges on larger spatial domains are examined by focusing on storms that cause exceedance of the probabilistic 1-year surge return level at multiple stations. Results show that if the strongest events in terms of surge amplitude and spatial extent are considered, then hurricanes are most likely to create the hazards. However, when slightly less strong events that still impact multiple areas during the storm life cycle are considered, the relative importance of hurricanes shrinks as that of ETCs grows. Furthermore we find distinct paths for ETCs causing multi-site surge at individual segments of the US east coast.

  7. Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example

    Science.gov (United States)

    Zhang, Banglin; Lindzen, Richard S.; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.

    2016-10-01

    The atmosphere-ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels.

  8. Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example.

    Science.gov (United States)

    Zhang, Banglin; Lindzen, Richard S; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A; Ma, Zaizhong; Bender, Morris A

    2016-10-18

    The atmosphere-ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels.

  9. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  10. 65-nm Cyclone Ⅲ FPGA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Altera公司低功耗、低成本Cyclone Ⅲ系列65nm FPGA所有8个型号的产品级芯片实现量产,Cyclone Ⅲ系列产品已迅速应用于无线、军事、显示、汽车和工业市场的大量客户系统中。

  11. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events.

    Directory of Open Access Journals (Sweden)

    Andrew W Tweel

    Full Text Available Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils.

  12. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events.

    Science.gov (United States)

    Tweel, Andrew W; Turner, R Eugene

    2012-01-01

    Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils.

  13. Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: a piecewise potential vorticity diagnosis

    Directory of Open Access Journals (Sweden)

    Shenming Fu

    2014-03-01

    Full Text Available An extreme explosive extratropical cyclone over the northwestern Pacific Ocean (NPO that formed in winter 2004 and went through two distinct rapid deepening periods was successfully simulated by a non-hydrostatic mesoscale model (MM5. Based on the simulation, the cyclone's rapid deepening was investigated in detail using the piecewise potential vorticity (PV inversion method which successfully captured the characteristics of the cyclone and its associated background circulations. Results indicated that explosive development of the cyclone was dominated by forcings in the extended surface layer (ESL, which were closely related to baroclinity (temperature advection and boundary layer processes (sensible heat exchange. In the interior layer (IL, direct effects of condensation were mainly conducive to the cyclone's development, whereas indirect effects (interactions with other layers mainly acted conversely. Processes associated with latent heat release (LHR were characterised by nonlinearity. Features of the precipitation, including intensity, duration, range and relative configuration to the cyclone determined the influences of condensation on the cyclone. In the upper layer (UL, tropopause-folding processes and horizontal PV advection were main influencing factors to the evolution of the cyclone. Upper-level forcings firstly exerted slight effects on the cyclone's development, since upper-level positive PV anomalies were far from the cyclone; then, as the influencing short-wave trough and the cyclone both moved northeastward, upper-level positive PV anomalies merged, enhanced and entered key areas of the cyclone, and thus both direct and indirect effects associated with the upper-level forcings strengthened significantly around the cyclone, and this dominated the cyclone's transition from a moderate explosive cyclone to an extreme one.

  14. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    Science.gov (United States)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  15. Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization.

    Science.gov (United States)

    Knutson, Thomas R.; Tuleya, Robert E.

    2004-09-01

    Previous studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s-1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments— atmospheric temperature and moisture profiles and SSTs—are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr-1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity

  16. Cyclones, windstorms and the IMILAST project

    Directory of Open Access Journals (Sweden)

    Tim D. Hewson

    2015-09-01

    Full Text Available By way of introduction to the TELLUS thematic cluster on outcomes of the IMILAST project (Intercomparison of MId-LAtitude STorm diagnostics, this paper presents the results of new research that is fundamental for the correct interpretation of IMILAST results. Specifically we investigated the mesoscale structure of cyclonic windstorms, and the representation of those windstorms in re-analysis data. The paper concludes with an overview of the project itself. Twenty-nine historic windstorms are studied in detail, using wide-ranging observational data, and on this basis a conceptual model of the life cycle of a typical windstorm-generating cyclone is developed. The model delineates three wind phenomena, the warm jet, the sting jet and the cold jet, and maps out the typical damage footprint left by each. Focussing on the boundary layer, the physical processes at work in each jet zone are investigated. These include the impact of near-surface stability and exposure on gust strength. Based on numerous cases, a generic description of the sting jet is provided, with many new features highlighted. This phenomenon looks to be unique in that exceptional gusts can be realised well inland because destabilisation is activated from above. We next investigate how well the widely-referenced ERA-Interim re-analysis, that has been a primary data source for IMILAST, can represent windstorms. In many ways, performance is suboptimal. Compared to a benchmark manually-analysed dataset, windstorm-generating cyclones generally do not deepen rapidly enough. In part, this is a resolution limitation. For one medium-sized cyclone, it is shown, using other models, that horizontal resolution of order 20 km or better is required to capture the most damaging winds. In the context of IMILAST, which has used data at resolutions ≥80 km, this is a fundamental result. For this and other reasons, caution is clearly needed when inferring storm behaviour and severity from model

  17. Emergency Department Presentations following Tropical Cyclone Yasi.

    Directory of Open Access Journals (Sweden)

    Peter Aitken

    Full Text Available Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED of a tertiary level hospital (Townsville following a tropical cyclone (Yasi. Specific areas of focus include changes in: patient demographics (age and gender, triage categories, and classification of diseases.Data were extracted from the Townsville Hospitals ED information system (EDIS for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011 to six days after Yasi crossed the coast line (8 February 2012. The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level.There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99, and factors influencing health care status (Z00-Z99. The most common diagnostic presentation across all years was injury (S00-T98.There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  18. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  19. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  20. A weather analysis system for the Baja California peninsula: tropical cyclone season of 2007

    Science.gov (United States)

    Farfan, L. M.; Cosio, M. A.

    2008-05-01

    General characteristics of tropical weather systems were documented on a real-time basis. The geographical area of interest is the Baja California peninsula, located in northwestern Mexico. This study covers the warm season of 2007, from May through October, and includes observations derived from radar and satellite imagery as well as reports from a network of rain gauges. A set of graphical products were generated and they were available to the public through the internet. The analysis system has been in operation since the summer of 2005 and it is focused to document the development of tropical cyclones in eastern Pacific Ocean. During the season of 2007, this basin had a total of 11 tropical storms and four of them were within 800 km from the west coast of Mexico (Dalila, Ivo, Juliette and Kiko). Only one system made landfall in the area of interest: Hurricane Henriette which moved across Baja California, the Gulf of California and a portion of the state of Sonora. This presentation provides an overview of the graphical products along with lessons learned from the season studied, collaborations with local emergency managers and plans for the upcoming season of 2008.

  1. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    Science.gov (United States)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  2. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Science.gov (United States)

    2011-09-01

    ... Facilities Caused by the Passage of Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration... to pipeline facilities caused by the passage of Hurricanes. ADDRESSES: This document can be viewed on...-related issues that can result from the passage of hurricanes. That includes the potential for damage to...

  3. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols

    Directory of Open Access Journals (Sweden)

    D. Rosenfeld

    2007-04-01

    Full Text Available The feasibility of hurricane modification was investigated for hurricane Katrina using the Weather Research and Forecasting Model (WRF. The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning–off" warm rain formation in the clouds at Katrina's periphery (where wind speeds were less than 22 m s−1. This simplification of the simulation of aerosol effects is aimed at evaluating the largest possible response. This resulted in the weakening of the hurricane surface winds compared to the "non-seeded" simulated storm during the first 24 h within the entire tropical cyclone (TC area compared to a control simulation without warm rain suppression. Later, the seeding-induced evaporative cooling at the TC periphery led to a shrinking of the eye and hence to some increase in the wind within the small central area of the TC. Yet, the overall strength of the hurricane decreased in response to the suppressed warm rain at the periphery, as measured by a 25% reduction in the radius of hurricane force winds. In a simulation with warm rain suppression throughout the hurricane, the relative weakening compared to the control continued throughout the simulations and the eye shrunk even further. This shows that the main mechanism by which suppressing warm rain weakens the TC is the low level evaporative cooling of the un-precipitated cloud drops and the added cooling due to melting of precipitation that falls from above.

  4. Extreme Events in the tropics - Hurricane Manuel and La Pintada Landslide

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Gaidzik, K.

    2016-12-01

    Extreme events in regions of humid-warm tropical climate are repeatedly causing loss of life and economic devastation. Deadly landslides are commonly triggered by extreme storms. Many of them originate on mountain slopes along river systems in areas often populated, increasing the risk to human settlements, theirs activities, and the local envrionment. Frequently hit by hurricanes and tropical cyclones the mountainous areas of Guerrero in southern Mexico are particularly prone to landslide hazard. On 16 September 2013 a huge landslide caused 71 fatalities and destroyed a large part of the La Pintada village. The landslide initiated after extreme rainfall caused by Hurricane Manuel. We performed a post-landslide field survey, applied remote sensing techniques using LIDAR DEM and images, digital models derived from Structure from Motion (SfM), satellite images, orthophotomaps, eyewitness accounts, geotechnical laboratory tests of slope material, and slope stability analysis to examine physical characteristics and processes that influenced the failure of La Pintada landslide. Our results indicate that anomalous precipitation producing oversaturation of soil was the direct factor that initiated the deep-sited La Pintada landslide, in an area where big landslides have occurred in the past. We hypothesized that climate change has contributed to the short recurrence period of extreme meteorological events that trigger great landslides in this tropical area. The lack of high and dense vegetation on La Pintada slope, resulting in increased soil erosion, acted as a preparatory causal factor for landsliding, making the slope more prone to mass wasting. It is likely that human activity (including deforestation activities) also contributed to the decrease of slope stability by cutting the toe of the slope to build houses. Seismic activity, even if did not contribute directly to the initiation of the La Pintada landslide, might have promoted the decrease in slope stability in

  5. A Non-MLE Approach for Satellite Scatterometer Wind Vector Retrievals in Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Suleiman Alsweiss

    2014-05-01

    Full Text Available Satellite microwave scatterometers are the principal source of global synoptic-scale ocean vector wind (OVW measurements for a number of scientific and operational oceanic wind applications. However, for extreme wind events such as tropical cyclones, their performance is significantly degraded. This paper presents a novel OVW retrieval algorithm for tropical cyclones which improves the accuracy of scatterometer based ocean surface winds when compared to low-flying aircraft with in-situ and remotely sensed observations. Unlike the traditional maximum likelihood estimation (MLE wind vector retrieval technique, this new approach sequentially estimates scalar wind directions and wind speeds. A detailed description of the algorithm is provided along with results for ten QuikSCAT hurricane overpasses (from 2003–2008 to evaluate the performance of the new algorithm. Results are compared with independent surface wind analyses from the National Oceanic and Atmospheric Administration (NOAA Hurricane Research Division’s H*Wind surface analyses and with the corresponding SeaWinds Project’s L2B-12.5 km OVW products. They demonstrate that the proposed algorithm extends the SeaWinds capability to retrieve wind speeds beyond the current range of approximately 35 m/s (minimal hurricane category-1 with improved wind direction accuracy, making this new approach a potential candidate for current and future conically scanning scatterometer wind retrieval algorithms.

  6. Louisiana Natural Disasters and Ecological Forecasting: Assessment of Tropical Cyclone Induced Transgression of the Chandeleur Islands for Restoration and Wildlife Management

    Science.gov (United States)

    Reahard, R. R.; Mitchell, B. S.; Childs, L. M.; Billiot, A.; Brown, T.

    2009-12-01

    The Chandeleur Islands are the first line of defense against tropical storms and hurricanes for coastal Louisiana. They provide habitats for bird species and are a national wildlife refuge; however, they are eroding and transgressing at an alarming rate. In 1998, Hurricane Georges caused severe damage to the chain, prompting restoration and monitoring efforts by both Federal and State agencies. Since then, storm events have steadily diminished the condition of the islands. Quantification of shoreline erosion, vegetation, and land loss, from 1979 to 2009, was calculated through the analysis of imagery from Landsat 2-4 Multispectral Scanner, Landsat 4 & 5 Thematic Mapper, and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. QuickBird imagery was used to validate the accuracy of these results. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in tracking the landward migration of the Chandeleur Islands. The use of near infrared reflectance calculated from MOD09 surface reflectance data from 2000 to 2008 was analyzed using the Time Series Product Tool. The scope of this project includes not only assessments of the tropical cyclonic events during this time period, but also the effects of tides, winds, and cold fronts on the spatial extent of the islands. Partnering organizations, such as the Pontchartrain Institute for Environmental Sciences, will utilize those results in an effort to better monitor and address the continual change of the Chandeleur Islands.

  7. 2003 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2003 Tropical Cyclones of the World poster. During calendar year 2003, fifty-one tropical cyclones with sustained surface winds of at least 64 knots were...

  8. Year 2001 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2001 Tropical Cyclones of the World poster. During calendar year 2001, fifty tropical cyclones with sustained surface winds of at least 64 knots were observed...

  9. Year 2000 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2000 Tropical Cyclones of the World poster. During calendar year 2000, forty-five tropical cyclones with sustained surface winds of at least 64 knots were...

  10. Polytropic process and tropical Cyclones

    CERN Document Server

    Romanelli, Alejandro; Rodríguez, Juan

    2013-01-01

    We show a parallelism between the expansion and compression of the atmosphere in the secondary cycle of a tropical cyclone with the fast expansion and compression of wet air in a bottle. We present a simple model in order to understand how the system (cyclone) draws energy from the air humidity. In particular we suggest that the upward (downward) expansion (compression) of the warm (cold) moist (dry) air follows a polytropic process, $PV^\\beta$= constant. We show both experimentally and analytically that $\\beta$ depends on the initial vapor pressure in the air. We propose that the adiabatic stages in the Carnot-cycle model for the tropical cyclone be replaced by two polytropic stages. These polytropic processes can explain how the wind wins energy and how the rain and the dry bands are produced inside the storm.

  11. Promoting the confluence of tropical cyclone research

    OpenAIRE

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecol...

  12. Use of JPSS ATMS, CrIS, and VIIRS data to Improve Tropical Cyclone Track and Intensity Forecasting

    Science.gov (United States)

    Chirokova, G.; Demaria, M.; DeMaria, R.; Knaff, J. A.; Dostalek, J.; Musgrave, K. D.; Beven, J. L.

    2015-12-01

    JPSS data provide unique information that could be critical for the forecasting of tropical cyclone (TC) track and intensity and is currently underutilized. Preliminary results from several TC applications using data from the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-Orbiting Partnership satellite (SNPP), will be discussed. The first group of applications, which includes applications for moisture flux and for eye-detection, aims to improve rapid intensification (RI) forecasts, which is one of the highest priorities within NOAA. The applications could be used by forecasters directly and will also provide additional input to the Rapid Intensification Index (RII), the statistical-dynamical tool for forecasting RI events that is operational at the National Hurricane Center. The moisture flux application uses bias-corrected ATMS-MIRS (Microwave Integrated Retrieval System) and NUCAPS (NOAA Unique CrIS ATMS Processing System), retrievals that provide very accurate temperature and humidity soundings in the TC environment to detect dry air intrusions. The objective automated eye-detection application uses geostationary and VIIRS data in combination with machine learning and computer vision techniques for determining the onset of eye formation which is very important for TC intensity forecast but is usually determined by subjective methods. First version of the algorithm showed very promising results with a 75% success rate. The second group of applications develops tools to better utilize VIIRS data, including day-night band (DNB) imagery, for tropical cyclone forecasting. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.

  13. How Hurricanes Get Their Names

    Institute of Scientific and Technical Information of China (English)

    张梅荐

    2000-01-01

    The first people who gave names to hurricanes were those who knew them best the people of Puerto Rico. The small island of Puerto Rico is in the West Indies, off the coast of Florida. This is where all the hurricanes begin that strike the east coast of the United States.

  14. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  15. ANALYSIS ON CYCLONE COLLECTION EFFICIENCIES AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    Jianyi Chen; Mingxian Shi

    2003-01-01

    In order to predict the influence of operating temperature on cyclone performance, an experimental investigation on particle separation was conducted in a 300 mm diameter, tangential volute-inlet and reverse flow cyclone separator with air heated up to 973 K. The test powder silica has a mean mass diameter of 10 microns and the measured as a function of the inlet velocity and operating temperature. It is shown that at the same inlet velocity both the overall efficiency and fractional efficiency decrease with an increase of temperature. An analysis of our own data and published results has shown that the fractional efficiency of a cyclone is a definite function of such dimensionless numbers as Stokes number, Reynolds number, Froude number and dimensionless cyclone inlet area and dimensionless outlet diameter. A nondimensional experimental correlation of the cyclone performance, including the influence of the temperature, was obtained on the basis of our own previous work. The prediction of the influence of temperature on separation efficiencies is in fairly good agreement with experimental results.

  16. Archive Compiles New Resource for Global Tropical Cyclone Research

    Science.gov (United States)

    Knapp, Kenneth R.; Kruk, Michael C.; Levinson, David H.; Gibney, Ethan J.

    2009-02-01

    The International Best Track Archive for Climate Stewardship (IBTrACS) compiles tropical cyclone best track data from 11 tropical cyclone forecast centers around the globe, producing a unified global best track data set (M. C. Kruk et al., A technique for merging global tropical cyclone best track data, submitted to Journal of Atmospheric and Oceanic Technology, 2008). Best track data (so called because the data generally refer to the best estimate of a storm's characteristics) include the position, maximum sustained winds, and minimum central pressure of a tropical cyclone at 6-hour intervals. Despite the significant impact of tropical cyclones on society and natural systems, there had been no central repository maintained for global best track data prior to the development of IBTrACS in 2008. The data set, which builds upon the efforts of the international tropical forecasting community, has become the most comprehensive global best track data set publicly available. IBTrACS was created by the U.S. National Oceanic and Atmospheric Administration's National Climatic Data Center (NOAA NCDC) under the auspices of the World Data Center for Meteorology.

  17. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu and Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a _ or _ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  18. Determination of welding spark parameters for cyclone efficiency calculation (rus

    Directory of Open Access Journals (Sweden)

    Kitain M.B.

    2011-08-01

    Full Text Available Importance of the current work is explained by the problem of air purification in the field of breath of the worker and prevention of the fire and the explosion. To solve this problem the authors offer to use Reverse-flow cyclone as precleaner with spark extinguishing option. In case if the dust includes sparks it is very important to insure that the particles with the sparks will be totally collected in the cyclone, so the collection efficiency for such particles will be 100% in the cyclone. For the estimation of the efficiency of gas purification from the dust particles in the cyclones dust particles features should be determinate, that can be done with the satisfactory accuracy only by physical modeling results. The amount of physical experiments was made by the authors. The methods of determination of the geometric diameter and hydraulic size of the particle consisting sparks were offered. The experimental researches showed that the accuracy of using the geometric diameter of such particle is not enough, because the hydrodynamic characteristics of the particles (such as weight, effective diameter, the way of interaction with the environment can be change in the case of moving. At the same time< hydraulic size, determined in the second part of the experiment, consider all these factors and can be used for the estimation of the cyclone efficiency based on the model of turbulent diffusion with the limited velocity.

  19. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a ¡§universal¡¨ or ¡§best¡¨ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  20. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Science.gov (United States)

    2011-10-13

    ...-2010-0288] Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear... Hurricane Missiles for Nuclear Power Plants.'' This regulatory guide provides licensees and applicants with... hurricane and design-basis hurricane-generated missiles that a nuclear power plant should be designed...

  1. Dependency of U.S. Hurricane Economic Loss on Maximum Wind Speed and Storm Size

    CERN Document Server

    Zhai, Alice R

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependencies of normalized U.S. hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the U.S. from 1988 to 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (Vmax) and size (R). Assuming L=10^c Vmax^a R^b, c being a scaling factor, the coefficients, a and b, generally range between 4-12 and 2-4, respectively. Both a and b tend to increase with stronger wind speed. For large losses, a weighted regression model, with...

  2. The Impact of the Storm-Induced SST Cooling on Hurricane Intensity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm,accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.

  3. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  4. Considérations sur la saison cyclonique dévastatrice de septembre 2008 en Haïti : De l'importance des actions majeures dans une perspective de durabilité Considerations on the devastating hurricane season in Haiti in September 2008:Importance of the major actions from the perspective of sustainability

    Directory of Open Access Journals (Sweden)

    George Eddy Lucien

    2012-01-01

    Full Text Available Au cours du mois de septembre 2008, quatre cyclones s’abattent sur Haïti. Ces catastrophes entrainent la mort de plusieurs centaines d’Haïtiens et la destruction de nombreuses infrastructures sanitaires, éducatives, agricoles… Cet article a le souci de dresser un bilan des territoires affectés par ces cyclones et de montrer l’ampleur de dommages et les conséquences profondes qu’ils laissent sur la société haïtienne. Il s’attachera aussi à interroger les modalités de gestion mises en place pour la période post catastrophe.During the month of September 2008, four hurricanes hit Haiti. These cataclysms caused hundreds of dead and destroyed many infrastructures including but not limited to, sanitary, educational and agricultural. This article is an overview of the impact of these hurricanes on the affected areas. We inquire about the hugeness of the damages and the severe consequences on the society. We interrogate as well the management policy adopted for the post-catastrophe period

  5. An improved wind speed algorithm for“Jason-1”altimeter under tropical cyclone conditions

    Institute of Scientific and Technical Information of China (English)

    QIN Bangyong; ZHOU Xuan; ZHANG Honglei; YANG Xiaofeng; LU Rong; YU Yang; SHI Lijian

    2014-01-01

    Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration’s Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to re-move rain effects on“Jason-1”normalized radar cross section (NRCS);Hurricane Research Division (HRD) wind speed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with“Jason-1”NRCS. Then, an improved“Jason-1”wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.

  6. 1999 Post Hurricane Dennis NOAA/USGS/NASA Airborne LiDAR Assessment of Coastal Erosion (ALACE) Project for the US Coastline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes data collected in 1999 after Hurricane Dennis and before Hurricane Floyd along the outer banks of North Carolina. Laser beach mapping uses a...

  7. Uncertainty and feasibility of dynamical downscaling for modeling tropical cyclones for storm surge simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Taraphdar, Sourav; Wang, Taiping; Ruby Leung, L.; Grear, Molly

    2016-08-22

    This paper presents a modeling study conducted to evaluate the uncertainty of a regional model in simulating hurricane wind and pressure fields, and the feasibility of driving coastal storm surge simulation using an ensemble of region model outputs produced by 18 combinations of three convection schemes and six microphysics parameterizations, using Hurricane Katrina as a test case. Simulated wind and pressure fields were compared to observed H*Wind data for Hurricane Katrina and simulated storm surge was compared to observed high-water marks on the northern coast of the Gulf of Mexico. The ensemble modeling analysis demonstrated that the regional model was able to reproduce the characteristics of Hurricane Katrina with reasonable accuracy and can be used to drive the coastal ocean model for simulating coastal storm surge. Results indicated that the regional model is sensitive to both convection and microphysics parameterizations that simulate moist processes closely linked to the tropical cyclone dynamics that influence hurricane development and intensification. The Zhang and McFarlane (ZM) convection scheme and the Lim and Hong (WDM6) microphysics parameterization are the most skillful in simulating Hurricane Katrina maximum wind speed and central pressure, among the three convection and the six microphysics parameterizations. Error statistics of simulated maximum water levels were calculated for a baseline simulation with H*Wind forcing and the 18 ensemble simulations driven by the regional model outputs. The storm surge model produced the overall best results in simulating the maximum water levels using wind and pressure fields generated with the ZM convection scheme and the WDM6 microphysics parameterization.

  8. Tropical Cyclones within the Sedimentary Record: Analyzing Overwash Deposition from Event to Millennial Timescales

    Science.gov (United States)

    2009-02-01

    grain-size diameter for siliciclastic particles using the relationship developed by Ferguson and Church (2004). Predictions using this relationship...of intense hurricane strikes from New Jersey: Geology, v. 29, p. 615–618, doi: 10.1130/0091–7613(2001)029򒨧:SEOIHS>2.0.CO;2. Ferguson , R.I., and...Stone, G. W., Liu, B., Pepper , D. A., and Wang, P. (2004). The importance of extratropical and tropical cyclones on the short-term evolution of

  9. A Tangential Wind Profile for Simulating Strong Tropical Cyclones with MM5

    Institute of Scientific and Technical Information of China (English)

    GAO Shanhong; YANG Bo; WU Zengmao

    2005-01-01

    A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCARAFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms -1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which only the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones' intensity can be obviously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.

  10. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    Science.gov (United States)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  11. Assessment of Tropical Cyclone Induced Transgression of the Chandeleur Islands for Restoration and Wildlife Management

    Science.gov (United States)

    Reahard, Ross; Mitchell, Brandie; Brown, Tevin; Billiot, Amanda

    2010-01-01

    Barrier Islands are the first line of defense against tropical storms and hurricanes for coastal areas. Historically, tropical cyclonic events have had a great impact on the transgression of barrier islands, especially the Chandeleur Island chain off the eastern coast of Louisiana. These islands are of great importance, aiding in the protection of southeastern Louisiana from major storms, providing habitat for nesting and migratory bird species, and are part of the second oldest wildlife refuge in the country. In 1998, Hurricane Georges caused severe damage to the chain, prompting restoration and monitoring efforts by both federal and state agencies. Since then, multiple storm events have steadily diminished the integrity of the islands. Hurricane Katrina in 2005 thwarted all previous restoration efforts, with Hurricane Gustav in 2008 exacerbating island erosion and vegetation loss. Data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 2-4 Multispectral Scanner (MSS), and Landsat 5 Thematic Mapper (TM) will be utilized to detect land loss, island transgression, and vegetation change from 1979 to 2009. This study looks to create a more synoptic view of the transgression of the Chandeleur Islands and correlate weather and sea surface phenomena with erosion trends over the past 30 years, so that partnering organizations such as the Pontchartrain Institute for Environmental Sciences (PIES) can better monitor and address the continual change of the island chain.

  12. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  13. Prevention of destructive tropical and extratropical storms, hurricanes, tornadoes, dangerous thunderstorms, and catastrophic floods

    Directory of Open Access Journals (Sweden)

    E. Yu. Krasilnikov

    2002-01-01

    Full Text Available Tropical cyclones and storms, hurricanes, powerful thunderclouds, which generate tornadoes, destructive extratropical cyclones, which result in catastrophic floods, are the powerful cloud systems that contain huge amount of water. According to the hypothesis argued in this paper, an electric field coupled with powerful clouds and electric forces play a cardinal role in supporting this huge mass of water at a high altitude in the troposphere and in the instability of powerful clouds sometimes during rather a long time duration. Based on this hypothesis, a highly effective method of volume electric charge neutralization of powerful clouds is proposed. It results in the decrease in an electric field, a sudden increase in precipitation, and subsequent degradation of powerful clouds. This method, based on the natural phenomenon, ensures the prevention of the intensification of tropical and extratropical cyclones and their transition to the storm and hurricane (typhoon stages, which makes it possible to avoid catastrophic floods. It also ensures the suppression of severe thunderclouds, which, in turn, eliminates the development of dangerous thunderstorms and the possibility of the emergence and intensification of tornadoes.

  14. Rediscovering community--reflections after Hurricane Sandy.

    Science.gov (United States)

    See, Sharon

    2013-01-01

    Hoboken, New Jersey, is a town of 50,000 residents located across the Hudson River from New York City. Most of Hoboken's infrastructure was compromised during Hurricane Sandy as a result of flooding and power outages that rendered many businesses inoperable, including all of the pharmacies in town. Despite a focus on emergency preparedness since Hurricane Katrina and 9/11, there were no contingencies in place to facilitate and assess the medication needs of the community in the event of a natural disaster. This essay describes how the author rediscovered the meaning of community, and through working with colleagues in other health care disciplines and non-health care volunteers, provided care to patients in suboptimal circumstances.

  15. Coastal Change During Hurricane Isabel 2003

    Science.gov (United States)

    Morgan, Karen

    2009-01-01

    On September 18, 2003, Hurricane Isabel made landfall on the northern Outer Banks of North Carolina. At the U.S. Army Corps of Engineer's Field Research Facility in Duck, 125 km north of where the eyewall cut across Hatteras Island, the Category 2 storm generated record conditions for the 27 years of monitoring. The storm produced an 8.1 m high wave measured at a waverider buoy in 20 m of water and a 1.5 m storm surge. As part of a program to document and better understand the changes in vulnerability of the Nation's coasts to extreme storms, the U.S. Geological Survey (USGS), in collaboration with the National Aeronautics and Space Administration (NASA), surveyed the impact zone of Hurricane Isabel. Methods included pre- and post-storm photography, videography, and lidar. Hurricane Isabel caused extensive erosion and overwash along the Outer Banks near Cape Hatteras, including the destruction of houses, the erosion of protective sand dunes, and the creation of island breaches. The storm eroded beaches and dunes in Frisco and Hatteras Village, southwest of the Cape. Overwash deposits covered roads and filled homes with sand. The most extensive beach changes were associated with the opening of a new breach about 500 m wide that divided into three separate channels that completely severed the island southwest of Cape Hatteras. The main breach, and a smaller one several kilometers to the south (not shown), occurred at minima in both island elevation and island width.

  16. Tropical cyclone Pam coastal impact survey in Vanuatu

    Science.gov (United States)

    Fritz, H. M.; Pilarczyk, J.; Kosciuch, T. J.; Hong, I.; Rarai, A.; Harrison, M. J.; Jockley, F. R.; Horton, B.

    2015-12-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam caused the worst natural disaster in Vanuatu's recorded history since severe tropical cyclone Uma in 1987. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands and intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters. Coral boulders of more than 1 m diameter were measured on Erromango and sediment samples were collected at key sites across the archipelago. Infrastructure damage on traditional and modern structures was assessed. Eyewitnesses were interviewed at most sites to document the chronology of the wind and

  17. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000.

    Science.gov (United States)

    Zeng, Hongcheng; Chambers, Jeffrey Q; Negrón-Juárez, Robinson I; Hurtt, George C; Baker, David B; Powell, Mark D

    2009-05-12

    Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance.

  18. Household Adjustments to Hurricane Katrina

    National Research Council Canada - National Science Library

    Meri Davlasheridze; Qin Fan

    2017-01-01

    This paper examines household adjustments to Hurricane Katrina by estimating the effects of Katrina-induced damages on changes in household demographics and income distributions in the Orleans Parish...

  19. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  20. Atlantic hurricane surge response to geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-10-26

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase by a factor of 2-7 for each degree of increase in mean global temperature. Geoengineering by stratospheric sulphate aerosol injection cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 8 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the RCP4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those in RCP4.5, but sulphate injection would have to double between 2020 and 2070 to balance RCP 4.5 to nearly 10 Tg SO2 yr-1, with consequent implications for damage to stratospheric ozone. We project changes in storm frequencies using a temperature-dependent Generalized Extreme Value statistical model calibrated by historical storm surges from 1923 and observed temperatures. The numbers of storm surge events as big as the one that caused the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this is only marginally statistically significant. However, when sea level rise differences at 2070 between RCP4.5 and geoengineering are factored in to coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5 year events and perhaps halved for 50 year surges.

  1. Atlantic hurricane surge response to geoengineering.

    Science.gov (United States)

    Moore, John C; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-11-10

    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges.

  2. Complicated grief associated with hurricane Katrina.

    Science.gov (United States)

    Shear, M Katherine; McLaughlin, Katie A; Ghesquiere, Angela; Gruber, Michael J; Sampson, Nancy A; Kessler, Ronald C

    2011-08-01

    Although losses are important consequences of disasters, few epidemiological studies of disasters have assessed complicated grief (CG) and none assessed CG associated with losses other than death of loved one. Data come from the baseline survey of the Hurricane Katrina Community Advisory Group, a representative sample of 3,088 residents of the areas directly affected by Hurricane Katrina. A brief screen for CG was included containing four items consistent with the proposed DSM-V criteria for a diagnosis of bereavement-related adjustment disorder. Fifty-eight and half percent of respondents reported a significant hurricane-related loss: Most-severe losses were 29.0% tangible, 9.5% interpersonal, 8.1% intangible, 4.2% work/financial, and 3.7% death of loved one. Twenty-six point one percent respondents with significant loss had possible CG and 7.0% moderate-to-severe CG. Death of loved one was associated with the highest conditional probability of moderate-to-severe CG (18.5%, compared to 1.1-10.5% conditional probabilities for other losses), but accounted for only 16.5% of moderate-to-severe CG due to its comparatively low prevalence. Most moderate-to-severe CG was due to tangible (52.9%) or interpersonal (24.0%) losses. Significant predictors of CG were mostly unique to either bereavement (racial-ethnic minority status, social support) or other losses (prehurricane history of psychopathology, social competence.). Nonbereavement losses accounted for the vast majority of hurricane-related possible CG despite risk of CG being much higher in response to bereavement than to other losses. This result argues for expansion of research on CG beyond bereavement and alerts clinicians to the need to address postdisaster grief associated with a wide range of losses. © 2011 Wiley-Liss, Inc.

  3. The human impact of tropical cyclones: a historical review of events 1980-2009 and systematic literature review.

    Science.gov (United States)

    Doocy, Shannon; Dick, Anna; Daniels, Amy; Kirsch, Thomas D

    2013-04-16

    Background. Cyclones have significantly affected populations in Southeast Asia, the Western Pacific, and the Americas over the past quarter of a century. Future vulnerability to cyclones will increase due to factors including population growth, urbanization, increasing coastal settlement, and global warming. The objectives of this review were to describe the impact of cyclones on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of cyclones were compiled using two methods, a historical review from 1980 to 2009 of cyclone events from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between cyclone characteristics and mortality using Stata 11.0. Findings. There were 412,644 deaths, 290,654 injured, and 466.1 million people affected by cyclones between 1980 and 2009, and the mortality and injury burden was concentrated in less developed nations of Southeast Asia and the Western Pacific. Inconsistent reporting suggests this is an underestimate, particularly in terms of the injured and affected populations. The primary cause of cyclone-related mortality is drowning; in developed countries male gender was associated with increased mortality risk, whereas females experienced higher mortality in less developed countries. Conclusions. Additional attention to preparedness and early warning, particularly in Asia, can lessen the impact of future cyclones.

  4. Nova Scotia Power response to Hurricane Juan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    Hurricane Juan hit the Halifax Regional Municipality on September 28, 2003, creating the largest outage in Nova Scotia Power's history. This detailed report documents the extensive damage that Hurricane Juan caused to the power transmission and distribution system in Nova Scotia. It also reviews the massive power restoration effort, with reference to numerous interviews, computer records and data logs which offer a wide range of observations, statistics and insights into the preparation and performance of Nova Scotia Power Inc. (NSPI) and the efforts of other key organizations following the storm. NSPI organized a recovery effort that matched the intensity of the hurricane. A fire in the Scotia Square Office Tower caused the evacuation of the company's call centre. The Tufts Cove station in Dartmouth, which generates 400 megawatts of power, was forced to shut down. Excess electricity was moved into New Brunswick and other jurisdictions to maintain system stability. The main priority was to restore customers back to service. Within 5 days of the hurricane, 95 per cent of those who lost power had service restored. Hurricane Juan caused the most damage to the transmission and distribution system in NSPI's history. Three out of five high capacity transmission lines were put out of service. Three 120-foot high transmission towers fell, and 17 main transmission lines were damaged and put out of service. Forty-five major substations were affected and 145 distribution feeders were damaged or tripped off, including 106 in the Halifax Regional Municipality. Large portions of 4,500 kilometres of local distribution lines in the Halifax Regional Municipality were damaged, including thousands of kilometers across the Northeast. The power crew, consisting of 2,000 individuals from the region and neighbouring utilities in New Brunswick and Maine, worked for 15 consecutive days to replace 275 transformers, 760 power poles, and 125,000 metres of conductor wire. NSPI

  5. Paradigms for Tropical Cyclone Intensification

    Science.gov (United States)

    2014-03-01

    summarised by Willoughby (1995, his sections 2.2.2 and 2.5.2; see also Willoughby 1990b). This model invokes the axisymmetric balance theory...Emanuel 2004, Montgomery et al. 2006, Terwey and Montgomery 2008, Braun et al. 2010). Indeed, the last four authors and others have talked about...axisymmetric balance view of spin-up The applicability of the axisymmetric balance theory summarised earlier, to the revised view of tropical cyclone

  6. Cyclone with boundary layer displacement

    Energy Technology Data Exchange (ETDEWEB)

    Gorton-Huelgerth, A.; Hoffmann, D.; Staudinger, G. [Technische Universitaet Graz, Graz (Austria). Inst. fuer Verfahrenstechnik, Abt. fuer Apparatebau und Mechanische Verfahrenstechnik

    1998-12-31

    In a cyclone the boundary layers at the cover plate and outside of the vortex finder are considered to affect the separation efficiency of a cyclone. To improve separation efficiency, the boundary layers at and the space between vortex finder and cover plate were investigated. Two identical cyclones, 400 mm diameter and 990 mm long were manufactured with high precision from stainless steel. One was equipped with openings for insertion of velocity probes; the opening could be closed with glass windows to allow Laser Doppler Anemometry. The other cyclone was used for testing separation efficiency. Velocity measurements by both conventional pressure probes and Laser Doppler Anemometry revealed that only a minor part of the boundary layer at the outside of the vortex finder reaches the lower end of it, because the axial velocity is slowed down drastically. Light sheet visualization showed that there exists a heavily particle loaded boundary layer at the cover plate. There are no particles at the lower part of the vortex finder. This can be explained by the radial mass exchange. The effect of vortex finder length on separation efficiency was investigated by varying the length of the vortex finder and measuring the separation efficiency using a limestone powder as test material. It was found that the separation efficiency is not sensitive to the length of the vortex finder. Particle slip increases only where the vortex finder is definitely shorter than its diameter. It was tried to improve the separation efficiency by introducing an air curtain along the vortex finder. The positive effect on separation efficiency and particle cut size is minimal. Results from velocity measurements with cylinder pressure probes in the boundary layer do not fit the results from other measurement techniques. Many older measurements were made with these probes. The conclusions drawn and the design rules deduced are to be questioned. 17 refs., 21 figs., 2 tabs.

  7. 1992 Annual Tropical Cyclone Report

    Science.gov (United States)

    1992-01-01

    The other four chapters are in prepara- tion. The chapter-by-chapter publishing format not only makes the edition and inclusion of updated information...cyclone with maximum l-minute mean sustained sur- face winds in the range of 34 to 63 kt (17 to 32 m/see), inclusive . TROPICAL UPPER-TROPOSPHERIC TROUGH...CHUNG CHENG INSTITUTE, TAIWAN CITIES SERVICES OIL GAS CORP CITY POLYTECHNIC OF HONG KONG CKJDAD UNIVERSITARIA , MEXICO CIVIL DEFENSE, BELAU CIVIL DEFENSE

  8. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  9. Lagrangian Vortices in Developing Tropical Cyclones

    Science.gov (United States)

    2015-06-25

    cyclones B. Rutherford,a* T. J. Dunkertona and M. T. Montgomeryb aNorthwest Research Associates, Redmond, WA, USA bNaval Postgraduate School, Monterey...article has been contributed to by a US Government employee and his work is in the public domain in the USA. Tracking pre-genesis tropical cyclones is...season. All of the Lagrangian coherent structures that can be identified by this field are shown for developing disturbances and mature cyclones . The

  10. Promoting the confluence of tropical cyclone research.

    Science.gov (United States)

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  11. The 2016 North Atlantic hurricane season: A season of extremes

    Science.gov (United States)

    Collins, Jennifer M.; Roache, David R.

    2017-05-01

    The 2016 North Atlantic hurricane season had an early start with a rare and powerful storm for January impacting the Azores at hurricane force. Likewise, the end of season heralded Otto which was record breaking in location and intensity being a high-end Category 2 storm at landfall over southern central America in late November. We show that high precipitable water, positive relative vorticity, and low sea level pressure allowed for conducive conditions. During the season, few storms occurred in the main development region. While some environmental conditions were conducive for formation there (such as precipitable water, relative vorticity, and shear), the midlevel relative humidity was too low there for most of the season, presenting very dry conditions in that level of the atmosphere. We further find that the October peak in the accumulated cyclone energy was related to environmentally conducive conditions with positive relative humidity, precipitable water, relative humidity, and low values of sea level pressure. Overall 2016 was notable for a series of extremes, some rarely, and a few never before observed in the Atlantic basin, a potential harbinger of seasons to come in the face of ongoing global climate change.

  12. Sensitivity of a Mediterranean Tropical-Like Cyclone to Different Model Configurations and Coupling Strategies

    Directory of Open Access Journals (Sweden)

    Antonio Ricchi

    2017-05-01

    Full Text Available In November 2011, an Atlantic depression affected the Mediterranean basin, eventually evolving into a Tropical-Like Cyclone (TLC or Mediterranean Hurricane, usually designated as Medicane. In the region affected by the Medicane, mean sea level pressures down to 990 hPa, wind speeds of hurricane intensity close to the eye (around 115 km/h and intense rainfall in the prefrontal zone were reported. The intensity of this event, together with its long permanence over the sea, suggested its suitability as a paradigmatic case for investigating the sensitivity of a numerical modeling system to different configurations, air-sea interface parameterizations and coupling approaches. Toward this aim, a set of numerical experiments with different parameterization schemes and levels of coupling complexity was carried out within the Coupled Ocean Atmosphere Wave Sediment Transport System (COAWST, which allows the description of air-sea dynamics by coupling an atmospheric model (WRF, an ocean circulation model (ROMS, and a wave model (SWAN. The sensitivity to different initialization times and Planetary Boundary Layer (PBL parameterizations was firstly investigated by running a set of WRF standalone (atmospheric-only simulations. In order to better understand the effect of coupling on the TLC formation, intensification and trajectory, different configurations of atmosphere-ocean coupling were subsequently tested, eventually including the full coupling among atmosphere, ocean and waves, also changing the PBL parameterization and the formulation of the surface roughness. Results show a strong sensitivity of both the trajectory and the intensity of this TLC to the initial conditions, while the tracks and intensities provided by the coupled modeling approaches explored in this study do not introduce drastic modifications with respect to those resulting from a fine-tuned standalone atmospheric run, though they provide by definition a better physical and energetic

  13. Observing Natural Hazards: Tsunami, Hurricane, and El Niño Observations from the NDBC Ocean Observing System of Systems

    Science.gov (United States)

    O'Neil, K.; Bouchard, R.; Burnett, W. H.; Aldrich, C.

    2009-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center (NDBC) operates and maintains the NDBC Ocean Observing Systems of Systems (NOOSS), comprised of 3 networks that provide critical information before and during and after extreme hazards events, such as tsunamis, hurricanes, and El Niños. While each system has its own mission, they have in common the requirement to remain on station in remote areas of the ocean to provide reliable and accurate observations. After the 2004 Sumatran Tsunami, NOAA expanded its network of tsunameters from six in the Pacific Ocean to a vast network of 39 stations providing information to Tsunami Warning Centers to enable faster and more accurate tsunami warnings for coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico. The tsunameter measurements are used to detect the amplitude and period of the tsunamis, and the data can be assimilated into models for the prediction and impact of the tsunamis to coastal communities. The network has been used for the detection of tsunamis generated by earthquakes, including the 2006 and 2007 Kuril Islands, 2007 Peru, and Solomon Islands, and most recently for the 2009 Dusky Sound, New Zealand earthquake. In August 2009, the NOAA adjusted its 2009 Atlantic Hurricane Seasonal Outlooks from above normal to near or below normal activity, primarily due to a strengthening El Niño. A key component in the detection of that El Niño was the Tropical Atmosphere Ocean Array (TAO) operated by NDBC. TAO provides real-time data for improved detection, understanding, and prediction of El Niño and La Niña. The 55-buoy TAO array spans the central and eastern equatorial Pacific providing real-time and post-deployment recovery data to support climate analysis and forecasts. Although, in this case, the El Niño benefits the tropical Atlantic, the alternate manifestation, La Niña typically enhances hurricane activity in the Atlantic. The various phases of

  14. Impact of global warming on cyclonic storms over north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sankar, S.

    The impact of global warming on the cyclonic storms over the north Indian Ocean have been studied using a suite of multiple datasets that includes the NCEP/NCAR Reanalysis, the extended reconstruction sea surface temperature (ERSST) and tracks...

  15. Modeling Tropical Cyclone Induced Inland Flooding at Tar Pamlico River Basin of North Carolina

    Science.gov (United States)

    Tang, Qianhong

    Landfalling tropical cyclones often produce heavy precipitation and result in river and flash floods. Such floods can not only cause loss of human lives and properties, but also lead to ecological disasters in the affected watershed areas, estuaries and coastal waters. In order to better understand and simulate large coastal watershed hydrology and hydro-meteorological processes associated with tropical cyclones (TC) - induced inland flooding, the Weather Research and Forecasting (WRF) model and the Annualized Agricultural Nonpoint Source Pollution Model (AnnAGNPS) have been employed in this study. The study focuses on four major hydro-meteorological identities and their interactions: 1) previous rainfall events, 2) synoptic atmospheric environment, 3) landfalling hurricane, and 4) surface and ground water hydrology. The research is divided into two parts. Part one focuses on the investigation of the impacts of previous rainfall events on watershed surface runoff while part two studies the impacts of the synoptic atmospheric environment on landfalling hurricanes and the resulting effect on surface runoff. Hurricane Floyd was chosen in this study as a special case because it produced massive flooding as a result of the combined effects of previous rainfall events from Hurricane Dennis and the synoptic atmospheric environment. The modeling results indicate that the AnnAGNPS model performs well in predicting the total amount of watershed runoff. However Muskingum channel routing is needed for AnnAGNPS to improve the hydrographs of flow discharge during hurricane events. Sensitivity analysis of soil saturated hydrological conductivity (Ks) indicates that both base flow and event total runoff are sensitive to Ks. Base flow increases as Ks increases when K s ≥15 m/day, but slightly decreases when K s > 15 m/day which is out of assumption of linear relationship from Darcy's law. Peak runoff exponentially decreases as Ks increases. The results show that without the

  16. Objectively classifying Southern Hemisphere extratropical cyclones

    Science.gov (United States)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  17. Tropical Cyclone Prediction Using COAMPS-TC

    Science.gov (United States)

    2014-09-01

    Oceanography | Vol. 27, No.3104 S P E C I A L I S S U E O N N AV Y O P E R AT I O N A L M O D E L S Tropical Cyclone Prediction Using COAMPS...Ocean/ Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS®-TC) has been developed for prediction of tropical cyclone track, structure...and intensity. The COAMPS-TC has been tested in real time in both uncoupled and coupled modes over the past several tropical cyclone seasons in

  18. Tracking Surface Cyclones with Moist Potential Vorticity

    Institute of Scientific and Technical Information of China (English)

    Zuohao CAO; Da-Lin ZHANG

    2004-01-01

    Surface cyclone tracks are investigated in the context of moist potential vorticity (MPV). A prognostic equation of surface absolute vorticity is derived which provides a basis for using negative MPV (NMPV) in the troposphere as an alternative approach to track surface cyclones. An observed case study of explosive lee cyclogenesis is performed to test the effectiveness of the MPV approach. It is shown that when a surface cyclone signal is absent due to the blocking of the Rocky Mountains, the surface cyclone can be well identified by tracing the peak NMPV.

  19. Developing an enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean

    Science.gov (United States)

    Kuleshov, Yuriy; de Wit, Roald; Atalifo, Terry; Prakash, Bipendra; Waqaicelua, Alipate; Kunitsugu, Masashi; Caroff, Philippe; Chane-Ming, Fabrice

    2013-04-01

    TCWC Wellington for the area 25°S to 40°S, 160°E to 120°W and with the data from TCWCs in Brisbane and Darwin for the area south of the equator to 37°S, 135°E to 160°E. In addition, tropical cyclone best track data for the North-West Pacific for 1977-2011 seasons prepared at RSMC Tokyo and for the South Indian Ocean for 1969-2011 prepared at RSMC la Réunion have been added to the dataset. As a result, new design of the Southern Hemisphere/Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) incorporates best track data for the Western Pacific both south and north of the equator and for the South Indian Ocean. The portal has been developed using the OpenLayers web mapping library. Main features of the portal include dynamic map navigation, presenting detailed cyclone information for a selected region in the Southern Hemisphere and North-West Pacific and displaying changes in tropical cyclone intensity over the lifetime of a cyclone. One of the unique features of the portal is its enhanced functionality for spatial and temporal selection for cyclones in selected areas (e.g. economic exclusion zones of the countries). Acknowledgement The research discussed in this paper was conducted through the PACCSAP supported by the AusAID and the Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO. We acknowledge C. Shamsu, D. Duong, P. Lopatecki, W. Banerjee, P. He, P. Wickramasinghe and A. Bauers from the School of Computer Sciences and IT at the Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia for their contribution to the development of the portal's functionality on spatial selection.

  20. An analysis of the environmental energetics associated with the transition of the first South Atlantic hurricane

    Science.gov (United States)

    Veiga, José Augusto Paixão; Pezza, Alexandre Bernardes; Simmonds, Ian; Silva Dias, Pedro L.

    2008-08-01

    This study presents the first analysis of the energetics associated with a hybrid cyclone's transition in the Southern Hemisphere, Hurricane Catarina (March 2004). Catarina has earned a place in history as the first documented South Atlantic hurricane, but its unusual tropical transition is still poorly understood. Here we show that Catarina's transition was preceded by marked environmental changes in the Lorenz energy cycle, with an abrupt shift from a baroclinic to a predominantly barotropic state. Such changes help to explain the unusual vortex's growth until its transition was completed. Although the vortex's energy flux is not explicitly calculated, a likely mechanism linking the environmental energetics with Catarina is the extraction of eddy kinetic energy from horizontal momentum and heat transfers within the through component of the blocking. The results advance the understanding of this rare event and suggest that the technique has a great potential to study transitioning systems in general.

  1. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    Science.gov (United States)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  2. Monitoring Hurricane Effects on Aquifer Salinity Using ALSM

    Science.gov (United States)

    Sedighi, A.; Starek, M. J.

    2005-12-01

    During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the severity of the storms resulted in drastic changes to the littoral zone geomorphology including extensive shoreline erosion and accretion that directly affected the subsurface hydrogeologic environment. The most important direct physical effects of a hurricane are the following: coastal erosion, shoreline inundation owing to higher than normal tide levels plus increased temporary surge levels during storms, and saltwater intrusion primarily into estuaries and groundwater aquifers. Erosion and deposition during the hurricane change the elevation, which causes change in the position of shoreline. The purpose of this study was to investigate the effects of sea level inundation due to the hurricanes on the near shore subsurface freshwater-saltwater interface. By utilizing high-resolution Airborne Laser Swath Mapping (ALSM) altimetry data acquired shortly before and after the three major hurricane landfalls, the change in shoreline topography was estimated to determine both small-scale and large-scale horizontal encroachment and volumetric change in shoreline. This information was used to develop a before and after variable density groundwater flow model to determine the impact of the hurricanes on the subsurface saltwater-freshwater interface. SEAWAT (Langevin 2001; Guo and Langevin 2002), which simulates three-dimensional, variable-density groundwater flow following a modular structure similar to MODFLOW (McDonald and Harbaugh 1988), was selected to represent the saltwater-freshwater interface in this investigation.

  3. Spatial relationships between tropical cyclone frequencies and population densities in Haiti since the 19th century

    Science.gov (United States)

    Klose, C. D.

    2011-12-01

    The second edition of the United Nations Global Assessment Report on Disaster Risk Reduction in 2011 outlined that the worldwide physical exposure to tropical cyclones increased by 192 per cent between 1970 and 2010. For the past 160 years, the Republic of Haiti has experienced numerous tropical storms and hurricanes which may have directly effected the country's development path. However, statistical data regarding storm frequencies and population densities in space and time show that the population's exposure in Haiti may have more negatively influenced its development than the actual number of storms and hurricanes. Haitians, in particular, those living in urban areas have been exposed to much higher tropical cyclone hazards than rural areas since the second half of the 20th century. Specifically, more storms made landfall in regions of accelerated migration/urbanization, such as, in departments Ouest, Artibonite, Nord, and Nord-Ouest with Haiti's four largest cities Port-au-Prince, Gonaives, Cap-Haitien and Port-de-Paix.

  4. Multi-model ensemble forecasting of North Atlantic tropical cyclone activity

    Science.gov (United States)

    Villarini, Gabriele; Luitel, Beda; Vecchi, Gabriel A.; Ghosh, Joyee

    2016-09-01

    North Atlantic tropical cyclones (TCs) and hurricanes are responsible for a large number of fatalities and economic damage. Skillful seasonal predictions of the North Atlantic TC activity can provide basic information critical to our improved preparedness. This study focuses on the development of statistical-dynamical seasonal forecasting systems for different quantities related to the frequency and intensity of North Atlantic TCs. These models use only tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the observational records because they reflect the importance of both local and non-local effects on the genesis and development of TCs in the North Atlantic basin. A set of retrospective forecasts of SSTs by six experimental seasonal-to-interannual prediction systems from the North American Multi-Model Ensemble are used as covariates. The retrospective forecasts are performed over the period 1982-2015. The skill of these statistical-dynamical models is quantified for different quantities (basin-wide number of tropical storms and hurricanes, power dissipation index and accumulated cyclone energy) for forecasts initialized as early as November of the year prior to the season to forecast. The results of this work show that it is possible to obtain skillful retrospective forecasts of North Atlantic TC activity with a long lead time. Moreover, probabilistic forecasts of North Atlantic TC activity for the 2016 season are provided.

  5. The basic mechanism behind the hurricane-free warm tropical ocean

    Directory of Open Access Journals (Sweden)

    Z. Yuan

    2010-01-01

    Full Text Available No hurricane is detected in the tropics off the Brazilian coast due to the lack of initial conditions (e.g., the weak vertical shear of horizontal wind despite that high sea surface temperature is available. According to previous studies, the initial conditions (as the ingredients of hurricane's embryo are related so that the thick warm-and-moist layer (due to the updraft vapour below a cold-and-dry layer frames the convective instability which enhances diabatic processes accompanied by tropical cyclones with the weak vertical shear. So the basic question is how, starting with an internal-disturbance-free balance-situation, external forces create the rapidly-upward acceleration of moist air at the warm sea surface. The answer is revealed by the vertical-momentum equation which shows that boosted by the external-force-induced significant lower-layer equatorial westerly wind (LLEWW, the upward (unit-mass acceleration could be as significant as the midlatitude Coriolis force. Besides creating cyclonic vortices through the upward acceleration and diabatic processes, the external-force-induced significant-LLEWW could directly create cyclonic wind shears along with easterly jets for the low-level cyclonic vorticity through reducing the peak value of zonally-homogeneous trade easterlies (centered at the Equator between the Northern and Southern Hemisphere subtropical high-belts. We emphasize external forces to avoid the ''chicken-and-egg'' problem accompanying nonlinear interactions of internal-forcing processes. The external-force-induced significant-LLEWW could result from the deflection of the cross-equatorial flow characterized by the seasonal shift coincident with that of locations of most embryos. This significant cross-equatorial flow is driven by the significant differential heating between the largest continent with the highest plateau and the largest ocean with the warm pool located to the east and on the equatorward side of the continent on

  6. Recent Developments of the Florida Public Hurricane Loss Model

    Science.gov (United States)

    Cocke, S.; Shin, D. W.; Annane, B.

    2016-12-01

    Catastrophe models are used extensively by the insurance industry to estimate losses due to natural hazards such as hurricanes and earthquakes. In the state of Florida, primary insurers for hurricane damage to residential properties are required by law to use certified catastrophe models to establish their premiums and capital reserves. The Florida Public Hurricane Loss Model (FPHLM) is one of only five certified catastrophe models in Florida, and the only non-commercial model certified. The FPHLM has been funded through the Florida Legislature and is overseen by the Florida Office of Insurance Regulation (OIR). The model was developed by a consortium of universities and private consultants primary located in Florida, but includes some partners outside of the state. The FPHLM has met Florida requirements since 2006 and has undergone continuous evolution to maintain state-of-the-art capabilities and changes in state requirements established by the Florida Commission on Hurricane Loss Projection Methodology. Recently the model has been undergoing major enhancement to incorporate damage due to flooding, which not only includes hurricane floods but floods due to all potential natural hazards. This work is being done in anticipation of future changes in the National Flood Insurance Program (NFIP) that will bring private insurers to the flood market. The model will incorporate a surge model as well as an inland flood model. We will present progress on these recent enhancements along with additional progress of the model.

  7. Modelling cyclonic eddies in the Delagoa Bight region

    Science.gov (United States)

    Cossa, O.; Pous, S.; Penven, P.; Capet, X.; Reason, C. J. C.

    2016-05-01

    The objective of this study is to document and shed light on the circulation around the Delagoa Bight region in the southern Mozambique Channel using a realistic modelling approach. A simulation including mesoscale forcings at the boundaries of our regional configuration succeeds in reproducing the general circulation in the region as well as the existence of a semi-permanent cyclonic eddy, whose existence is attested by in situ measurements in the Bight. Characterised by a persistent local minimum in SSH located around 26°S-34°E, this cyclonic eddy termed herein the Delagoa Bight lee eddy occurs about 25% of the time with no clear seasonal preference. Poleward moving cyclones, mostly generated further north, occur another 25% of the time in the Bight area. A tracking method applied to eddies generated in Delagoa Bight using model outputs as well as AVISO data confirms the model realism and provides additional statistics. The diameter of the eddy core varies between 61 and 147 km and the average life time exceeds 20 days. Additional model analyses reveal the systematic presence of negative vorticity in the Bight that can organise and form a Delagoa Bight lee eddy depending on the intensity of an intermittent southward flow along the shore and the spatial distribution of surrounding mesoscale features. In addition, the model solution shows other cyclonic eddies generated near Inhambane and eventually travelling through the Bight. Their generation and pathways appears to be linked with large Mozambique Channel rings.

  8. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    Science.gov (United States)

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather.

  9. OPTIMIZATION AND APPLICATIONS OF REVERSE-FLOW CYCLONES

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Jianyi Chen; Mingxian Shi

    2005-01-01

    An optimum design approach to reverse-flow cyclones based on the concept of optimizing cyclone dimensions is introduced in this paper. This approach involves optimizing cyclone dimensions by categories, calculating cyclone performance by correlating similitude numbers and optimizing the combination of four cyclone parameters, D, KA,(-d- and vi, which has been proven to be applicable not only for single-stage cyclone, but also for multistage cyclone separators. Applications of the designed cyclones in FCC units and acrylonitrile reactors are also presented.

  10. Effects of Flow Parameters and Inlet Geometry on Cyclone Efficiency

    Institute of Scientific and Technical Information of China (English)

    赵兵涛

    2006-01-01

    A novel cyclone design, named converging symmetrical spiral inlet (CSSI) cyclone, is developed by improving the inlet geometry of conventional tangential single inlet (CTSI) cyclone for enhancing the physical performance of the cyclone.The collection efficiency of the CSSI cyclone is experimentally compared with the widely used CTSI cyclone. The results indicate that the CSSI cyclone provides higher collection efficiency by 5%~20% than that of the CTSI cyclone for a tested inlet velocity range of 11.99~23.85 m/s. In addition, the results of collection efficiency comparison between experimental data and theoretical model are also discussed.

  11. Using CloudSat and MODIS for exploring a hurricane intensity estimation technique

    Science.gov (United States)

    Alexander, R. J.

    2012-12-01

    Observing Tropical Cyclones (TC) using satellites is a common and successful endeavor. However, using satellites to accurately measure storm intensity is a more difficult and involved task. Our research aim to accurately measure hurricane intensity using only satellite obtained data. Modeling a hurricane as a balanced convectively neutral vortex, along with assumptions on the contributing factors to moist static energy, we explore techniques for estimating hurricane intensity. We used maximum sustained wind to characterize hurricane intensity. We calculated maximum sustained wind using the Wong and Emanuel expression for peak wind speed in a storm. CloudSat cloud profiling radar was used for obtaining cloud-top height and cloud composition information, and the MODIS instrument on-board Aqua was used to obtain cloud-top temperature. This technique requires eye or near eye overpass and simultaneous data collection and as a result have a limited sample size. We compare our results to the best track database and analyze the validity of our estimations.

  12. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  13. Sedimentary record of storm deposits from Hurricane Ike, Galveston and San Luis Islands, Texas

    Science.gov (United States)

    Hawkes, A. D.; Horton, B. P.

    2012-10-01

    Prehistoric records of land-falling tropical cyclones further our understanding of the spatial and temporal variability of tropical cyclone activity and its relationship with global climatic changes. Here, we describe deposit stratigraphy and sedimentology resulting from overwash during Hurricane Ike, which made landfall on September 13th 2008, to provide a much needed modern analogue for paleo-hurricane deposits and evaluate the hurricane's influence on barrier stability. We compared the volume, grain size distribution, organic content and foraminiferal assemblages of washover deposits at three sites from Galveston and San Luis Islands, Texas that were up to 50 km west of Ike's landfall. Storm surge heights varied between 3.7 and 2.7 m with inland inundation extents of 330 to 113 m. At each of the study sites, Hurricane Ike eroded the shoreline and re-deposited a landward-thinning sand sheet between 0.02 and 0.28 m thick over short-grass prairie/salt-marsh soil. Shoreline erosion estimates suggest that only between 10 and 30% of eroded beach sediment is deposited on land as washover (net gain to barrier elevation), while the remainder is re-deposited subtidally or offshore, a potential net loss to the coastal sediment budget. The washover sediment was readily identifiable by abrupt changes in grain size, organic content, and buried in situ grasses. Foraminiferal assemblages within washover and short-grass prairie/salt-marsh sediments (when present) have similar assemblages, which are dominated by Ammonia spp. and Elphidium spp. These species are common to bay and nearshore environments of the Gulf of Mexico. Foraminiferal species Bolivina subaenariensis, Quinqueloculina seminulum and planktonic species are restricted to the washover deposits, which may suggest sediment provenance from inner shelf environments.

  14. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  15. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  16. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  17. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  18. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  19. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  20. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  1. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  2. The effect of tropical cyclones (typhoons) on emergency department visits.

    Science.gov (United States)

    Lin, Chien-Hao; Hou, Sen-Kuang; Shih, Frank Fuh-Yuan; Su, Syi

    2013-09-01

    Case reports have indicated that a tropical cyclone may increase Emergency Department (ED) visits significantly. To examine emergency health care demands across a series of tropical cyclones, and to build a predictive model to analyze a cyclone's potential effect. This was an observational non-concurrent prospective study performed in Taiwan. Twenty hospitals were included. The number of daily ED visits in each hospital was our primary end point, and data were retrieved from the database provided by the National Health Insurance Research Database. Our study examined the period from 2000 to 2008. A total of 22 tropical cyclones (typhoons) that had passed over eastern Taiwan and covered the area under study were included. Multiple linear regression time-series models were employed to estimate the effects of "days since typhoon landfall" and various characteristics of the typhoons on the end point of daily ED visits to each hospital. The final multiple linear regression time-series model showed that the number of daily ED visits increased in areas where a strong typhoon had landed directly, with the increase being evident during the first 2 days since landfall. Our model also indicated that the three most important variables to predict a change in the pattern of daily ED visits were intensity of typhoon, simultaneous heavy rain, and direct landfall. During tropical cyclones, emergency services were under increased demand in selected time periods and areas. Health care authorities should collect information to build local models to optimize their resources allocation in preparation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  3. Forecasting Hurricane by Satellite Image

    Science.gov (United States)

    Liu, M. Y.

    Earth is an endanger planet. Severe weather, especially hurricanes, results in great disaster all the world. World Meteorology Organization and United Nations Environment Program established intergovernment Panel on Climate Change (IPCC) to offer warnings about the present and future disasters of the Earth. It is the mission for scientists to design warning system to predict the severe weather system and to reduce the damage of the Earth. Hurricanes invade all the world every year and made millions damage to all the people. Scientists in weather service applied satellite images and synoptic data to forecast the information for the next hours for warning purposes. Regularly, hurricane hits on Taiwan island directly will pass through her domain and neighbor within 10 hours. In this study, we are going to demonstrate a tricky hurricane NARI invaded Taiwan on September 16, 2000. She wandered in the neighborhood of the island more than 72 hours and brought heavy rainfall over the island. Her track is so tricky that scientists can not forecast her path using the regular method. Fortunately, all scientists in the Central Weather Bureau paid their best effort to fight against the tricky hurricane. Applying the new developed technique to analysis the satellite images with synoptic data and radar echo, scientists forecasted the track, intensity and rainfall excellently. Thus the damage of the severe weather reduced significantly.

  4. Tropical cyclone cooling combats region-wide coral bleaching.

    Science.gov (United States)

    Carrigan, Adam D; Puotinen, Marji

    2014-05-01

    Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation.

  5. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  6. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  7. Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)

    Science.gov (United States)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  8. 7 CFR 701.50 - 2005 hurricanes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  9. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  10. Hurricane Hazel: Canada's storm of the century

    National Research Council Canada - National Science Library

    Gifford, Jim

    2004-01-01

    ... For EleanorHurricane_Hazel_Interior.qxd 6/22/04 3:35 PM Page 3 HURRICANE HAZEL Canada's Storm of the Century Jim Gifford The dundurn Group Toronto * OxfordHurricane_Hazel_Interior.qxd 6/22/04 3:35...

  11. Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features

    Science.gov (United States)

    Jaimes, Benjamin; Shay, Lynn K.; Brewster, Jodi K.

    2016-12-01

    Air-sea interactions during the intensification of tropical storm Isaac (2012) into a hurricane, over warm oceanic mesoscale eddy features, are investigated using airborne oceanographic and atmospheric profilers. Understanding these complex interactions is critical to correctly evaluating and predicting storm effects on marine and coastal facilities in the Gulf of Mexico, wind-driven mixing and transport of suspended matter throughout the water column, and oceanic feedbacks on storm intensity. Isaac strengthened as it moved over a Loop Current warm-core eddy (WCE) where sea surface warming (positive feedback mechanism) of ∼0.5 °C was measured over a 12-h interval. Enhanced bulk enthalpy fluxes were estimated during this intensification stage due to an increase in moisture disequilibrium between the ocean and atmosphere. These results support the hypothesis that enhanced buoyant forcing from the ocean is an important intensification mechanism in tropical cyclones over warm oceanic mesoscale eddy features. Larger values in equivalent potential temperature (θE = 365   ∘K) were measured inside the hurricane boundary layer (HBL) over the WCE, where the vertical shear in horizontal currents (δV) remained stable and the ensuing cooling vertical mixing was negligible; smaller values in θE (355   ∘K) were measured over an oceanic frontal cyclone, where vertical mixing and upper-ocean cooling were more intense due to instability development in δV . Thus, correctly representing oceanic mesoscale eddy features in coupled numerical models is important to accurately reproduce oceanic responses to tropical cyclone forcing, as well as the contrasting thermodynamic forcing of the HBL that often causes storm intensity fluctuations over these warm oceanic regimes.

  12. Rapid assessment tool for tropical cyclone waves and storm surge hazards in Mexico

    Science.gov (United States)

    Appendini, Christian M.; Rosengaus, Michel; Meza-Padilla, Rafael; Camacho-Magaña, Victor

    2017-04-01

    Mexico is under the constant threat of tropical cyclones generated in the Atlantic and the Eastern Pacific oceans. While the National Hurricane Center (NHC) in Miami is responsible for the forecast of tropical cyclones in both basins and providing watch and warning areas information for Mexico, Central America and the Caribbean, they are not responsible to issue waves and storm surge hazards. This work presents a quick assessment tool for waves and storm surge hazards developed under conditions that are common to developing countries: tight budget and time constraints, as well as limited numerical modeling capabilities. The system is based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  13. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    Science.gov (United States)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  14. A Universal Hurricane Frequency Function

    CERN Document Server

    Ehrlich, Robert

    2010-01-01

    Evidence is provided that the global distribution of tropical hurricanes is principally determined by a universal function H of a single variable z that in turn is expressible in terms of the local sea surface temperature and latitude. The data-driven model presented here carries stark implications for the large increased numbers of hurricanes which it predicts for a warmer world. Moreover, the rise in recent decades in the numbers of hurricanes in the Atlantic, but not the Pacific basin, is shown to have a simple explanation in terms of the specific form of H(z), which yields larger percentage increases when a fixed increase in sea surface temperature occurs at higher latitudes and lower temperatures.

  15. Cyclone reburning retrofit: Corrosion evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sarv, H.; Paul, L.D. (Babcock and Wilcox Co., New Orleans, LA (USA))

    1991-01-01

    Reburning is an emerging NO{sub x} reducing technology which offers cyclone boiler owners a promising alternative to the more expensive flue gas cleanup techniques. Pilot-scale test results have shown that the corrosive H{sub 2}S gas can evolve during reburn. This can pose a potential problem and concern in retrofits burning high-sulfur Illinois coals. This research program is intended to assess tube corrosion under simulated reburning conditions (temperature, stoichiometry, and H{sub 2}S concentration). Performance of existing carbon steel as well as other alloys will be tested and compared. 1 fig.

  16. Cyclone reburning retrofit: Corrosion evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Farzan, H.; Paul, L.D. (Babcock and Wilcox Co., New Orleans, LA (USA))

    1990-01-01

    Reburning is an emerging NO{sub x} reducing technology which offers cyclone boiler owners a promising alternative to the more expensive flue gas cleanup techniques. Pilot-scale test results have shown that the corrosive H{sub 2}S gas can evolve during reburn. This can pose a potential problem and concern in retrofits burning high-sulfur Illinois coals. This research program is intended to assess tube corrosion under simulated reburning conditions (temperature, stoichiometry, and H{sub 2}S concentration). Performance of existing carbon steel as well as other alloys will be tested and compared. 1 fig.

  17. Annual Tropical Cyclone Report, 1984.

    Science.gov (United States)

    1984-01-01

    compares COSM to OTCM, i.e. in the 461 cases available for a (homogeneous) (12) Dvorak -- An estimation of a comparison, the average vector error at...TOTL - TOTAL (TYAN 78) COSM - CosMOS (MOS) CLIP 322 232 323 280 344 262 NTCM - NESTLD TROPICAL CYCLONE MODEL 255 23 258 -21 262 0 OTCH - ONE-WAY...BILL CECIL CARMEN CARY CLARA DOT DON DINAH DOYLE ELLIS ELLEN ED ELSIE FAYE FORREST FREDA FABIAN GORDON GEORGIA GERALD GAY HOPE HERBERT HOLLY HAL

  18. Annual Tropical Cyclone Report 1980

    Science.gov (United States)

    1980-01-01

    old global band prognos- TROPICAL CYCLONE HAVEN STUDIES tic fields because the tau zero analysis is not available until several hours past warn...fore- In addition, COMSECONDFLT and CINCLANTFLT casts are now being recomputed with tau zero have requested 22 ports and harbors in the analyses...34 PCh 5 T2.".2.5 .𔃿B.S,24HRS HOBB6 KJl1 lB 171539 17.eH 67.2E PEN 6 HOARS KGUW II 188418 I8.SN 67.5E PEN 6 TI.5/2.5 AII./24HRS HORAS KGLC 12 .81516 18

  19. The evacuation of cairns hospitals due to severe tropical cyclone Yasi.

    Science.gov (United States)

    Little, Mark; Stone, Theona; Stone, Richard; Burns, Jan; Reeves, Jim; Cullen, Paul; Humble, Ian; Finn, Emmeline; Aitken, Peter; Elcock, Mark; Gillard, Noel

    2012-09-01

    On February 2, 2011, Tropical Cyclone Yasi, the largest cyclone to cross the Australian coast and a system the size of Hurricane Katrina, threatened the city of Cairns. As a result, the Cairns Base Hospital (CBH) and Cairns Private Hospital (CPH) were both evacuated, the hospitals were closed, and an alternate emergency medical center was established in a sports stadium 15 km from the Cairns central business district. This article describes the events around the evacuation of 356 patients, staff, and relatives to Brisbane (approximately 1,700 km away by road), closure of the hospitals, and the provision of a temporary emergency medical center for 28 hours during the height of the cyclone. Our experience highlights the need for adequate and exercised hospital evacuation plans; the need for clear command and control with identified decision-makers; early decision-making on when to evacuate; having good communication systems with redundancy; ensuring that patients are adequately identified and tracked and have their medications and notes; ensuring adequate staff, medications, and oxygen for holding patients; and planning in detail the alternate medical facility safety and its role, function, and equipment.

  20. Tropical Cyclones as a Critical Phenomenon

    CERN Document Server

    Corral, A

    2011-01-01

    It has been proposed that the number of tropical cyclones as a function of the energy they release is a decreasing power-law function, up to a characteristic energy cutoff determined by the spatial size of the ocean basin in which the storm occurs. This means that no characteristic scale exists for the energy of tropical cyclones, except for the finite-size effects induced by the boundaries of the basins. This has important implications for the physics of tropical cyclones. We discuss up to what point tropical cyclones are related to critical phenomena (in the same way as earthquakes, rainfall, etc.), providing a consistent picture of the energy balance in the system. Moreover, this perspective allows one to visualize more clearly the effects of global warming on tropical-cyclone occurrence.

  1. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  2. The impact of pet loss on the perceived social support and psychological distress of hurricane survivors.

    Science.gov (United States)

    Lowe, Sarah R; Rhodes, Jean E; Zwiebach, Liza; Chan, Christian S

    2009-06-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support.

  3. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  4. Two Empirical Models for Land-falling Hurricane Gust Factors

    Science.gov (United States)

    Merceret, Franics J.

    2008-01-01

    Gaussian and lognormal models for gust factors as a function of height and mean windspeed in land-falling hurricanes are presented. The models were empirically derived using data from 2004 hurricanes Frances and Jeanne and independently verified using data from 2005 hurricane Wilma. The data were collected from three wind towers at Kennedy Space Center and Cape Canaveral Air Force Station with instrumentation at multiple levels from 12 to 500 feet above ground level. An additional 200-foot tower was available for the verification. Mean wind speeds from 15 to 60 knots were included in the data. The models provide formulas for the mean and standard deviation of the gust factor given the mean windspeed and height above ground. These statistics may then be used to assess the probability of exceeding a specified peak wind threshold of operational significance given a specified mean wind speed.

  5. The dynamics of hurricane balls

    Science.gov (United States)

    Andersen, W. L.; Werner, Steven

    2015-09-01

    We examine the theory of the hurricane balls toy. This toy consists of two steel balls, welded together that are sent spinning on a horizontal surface somewhat like a top. Unlike a top, at high frequency the symmetry axis approaches a limiting inclination that is not perpendicular to the surface. We calculate (and experimentally verify) the limiting inclinations for three toy geometries. We find that at high frequencies, hurricane balls provide an easily realized and testable example of the Poinsot theory of freely rotating symmetrical bodies.

  6. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    2012-09-24

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.  Created: 9/24/2012 by Office of Public Health Preparedness and Response (OPHPR), National Center for Environmental Health (NCEH), and the Agency for Toxic Substances and Disease Registry (ATSDR).   Date Released: 9/24/2012.

  7. North Atlantic tropical cyclone track migration since 1550 A.D. revealed using a Belizean stalagmite

    Science.gov (United States)

    Baldini, Lisa; Baldini, James; Frappier, Amy; Ridley, Harriet; Asmerom, Yemane; Prufer, Keith; Breitenbach, Sebastian; Aquino, Valorie; Polyak, Victor; Awe, Jaime

    2015-04-01

    A gradual shift in the geographic distribution of hurricanes and tropical storms from the western Caribbean to the US Atlantic Coast between 1550 and 1983 A.D. is revealed by an annually-resolved, 456-year record of tropical cyclone (TC) activity reconstructed using sub-annually resolved carbon and oxygen isotope ratios in stalagmite YOK-G from Yok Balum Cave, southern Belize. Annual geochemical cycles combined with 230Th dating provide excellent chronological control, and the hurricane season signal intensity is reconstructed using seasonally-specific isotope ratios. The stalagmite hurricane season signal correlates very well with HURDAT2 western Caribbean TC count over the calibration period (1945-1983) as well as over the 25-year verification period. Our record suggests very few TCs affected the western Caribbean in the mid-1500s, but that this was followed by gradually rising western Caribbean TC activity that peaked during the Little Ice Age (LIA). Western Caribbean TC activity then decreases gradually from the mid-1600s to present day, with abrupt shifts at 1790 A.D. and 1870 A.D. Comparison with basin-wide TC reconstructions reveals a northward shift in the geographic distribution of TC impacts over the past few hundred years, from dominantly western Caribbean during the LIA to substantially more along the North American Atlantic margin during the 20th Century. Our reconstruction suggests that NAO variability played a major role in driving these shifts in dominant storm tracks through time.

  8. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    Science.gov (United States)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  9. Lagrangian Coherent Structures in Tropical Cyclone Intensification

    Science.gov (United States)

    2011-09-21

    Q. J. R. Meteorol. Soc., 120, 1111–1143, 1994. 4 Fang, J. and Zhang, F.: Initial development and genesis of Hurricane Dolly (2008), J. Atmos.5 Sci...163, doi:10.5194/acp-11-147-2011, 2011. 320 Reasor, P. D., Montgomery, M. T., and Bosart, L.: Mesoscale observations of the genesis of Hurricane Dolly

  10. Using a Geographic Information System to Assess the Risk of Hurricane Hazards on the Maya Civilization

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Sever, T.

    2014-12-01

    The extent of the Maya civilization spanned across portions of modern day Mexico, Belize, Guatemala, El Salvador and Honduras. Paleoclimatic studies suggest this region has been affected by strong hurricanes for the past six thousand years, reinforced by archeological evidence from Mayan records indicating they experienced strong storms. It is theorized hurricanes aided in the collapse of the Maya, damaging building structures, agriculture, and ceasing industry activities. Today, this region is known for its active tropical climatology, being hit by numerous strong storms including Hurricane Dean, Iris, Keith, and Mitch. This research uses a geographic information system (GIS) to model hurricane hazards, and assess the risk posed on the Maya civilization. GIS has the ability to handle various layer components making it optimal for combining parameters necessary for assessing the risk of experiencing hurricane related hazards. For this analysis, high winds, storm surge flooding, non-storm surge related flooding, and rainfall triggered landslides were selected as the primary hurricane hazards. Data sets used in this analysis include the National Climatic Data Center International Best Track Archive for Climate Stewardships (IBTrACS) hurricane tracks, Shuttle Radar Topography Mission Digital Elevation Model, WorldClim monthly accumulated precipitation, USGS HydroSHEDS river locations, Harmonized World Soil Database soil types, and known Maya site locations from the Electronic Atlas of Ancient Maya Sites. ArcGIS and ENVI software were utilized to process data and model hurricane hazards. To assess locations at risk of experiencing high winds, a model was created using ArcGIS Model Builder to map each storm's temporal wind profile, and adapted to simulate forward storm velocity, and storm frequency. Modeled results were then combined with physical land characteristics, meteorological, and hydrologic data to identify areas likely affected. Certain areas along the eastern

  11. Genesis of Pre-Hurricane Felix (2007). Part 2; Warm Core Formation, Precipitation Evolution, and Predictability

    Science.gov (United States)

    Wang, zhuo; Montgomery M. T.; Dunkerton, T. J.

    2010-01-01

    This is the second of a two-part study examining the simulated formation of Atlantic Hurricane Felix (2007) in a cloud-representing framework. Here several open issues are addressed concerning the formation of the storm's warm core, the evolution and respective contribution of stratiform versus convective precipitation within the parent wave's pouch, and the sensitivity of the development pathway reported in Part I to different model physics options and initial conditions. All but one of the experiments include ice microphysics as represented by one of several parameterizations, and the partition of convective versus stratiform precipitation is accomplished using a standard numerical technique based on the high-resolution control experiment. The transition to a warm-core tropical cyclone from an initially cold-core, lower tropospheric wave disturbance is analyzed first. As part of this transformation process, it is shown that deep moist convection is sustained near the pouch center. Both convective and stratiform precipitation rates increase with time. While stratiform precipitation occupies a larger area even at the tropical storm stage, deep moist convection makes a comparable contribution to the total rain rate at the pregenesis stage, and a larger contribution than stratiform processes at the storm stage. The convergence profile averaged near the pouch center is found to become dominantly convective with increasing deep moist convective activity there. Low-level convergence forced by interior diabatic heating plays a key role in forming and intensifying the near-surface closed circulation, while the midlevel convergence associated with stratiform precipitation helps to increase the midlevel circulation and thereby contributes to the formation and upward extension of a tropospheric-deep cyclonic vortex. Sensitivity tests with different model physics options and initial conditions demonstrate a similar pregenesis evolution. These tests suggest that the genesis

  12. Advantages and risks in increasing cyclone separator length

    NARCIS (Netherlands)

    Hoffmann, AC; de Groot, M; Peng, W; Dries, HWA; Kater, J

    2001-01-01

    The effect of cyclone length on separation efficiency and pressure drop has been investigated experimentally and theoretically by varying the length of the cylindrical segment of a cylinder-on-cone cyclone. Experimental results based on cyclone lengths from 2.65 to 6.15 cyclone diameters showed a ma

  13. Cyclonic Separation Technology: Researches and Developments

    Institute of Scientific and Technical Information of China (English)

    汪华林; 张艳红; 王剑刚; 刘洪来

    2012-01-01

    Centered on thetechniques and industrial applications of the reinforced cyclonic separation process, its principles and mechanism for separation ot ions, molecules and their aggregates using polyalsperse aroplets are discussed generally; the characteristics and influential factors of fish-hook phenomenon of the grade efficiency curve in cyclonic separation for both gas and liquid are analyzed; and the influence of shear force on particle be- havior (or that of particle swarm) is also summarized. A novel idea for cyclonic separation is presented here: enhancing the cyclonic seoaration process of ions, molecules and their aggregates with monodisperse microspheres and their surface grafting, rearranging the distribution of particles by size using centrifugal field, reinforcing the cyclonic separation performance with orderly arranged particle swarm. Also the investigation of the shortcut flow, recirculation flow, the asymmetric structure and non-linear characteristics of the cyclonic flow field with a com-bined method of Volumetric 3-component Velocimetry (V3V) and Phase-Doppler Particle Anemometer (PDPA) are elaborated. It is recommended to develop new systems for the separation of heterogeneous phases with cyclonic technology, in accordance with the capture and reuse of CO2, methanol to olefins (MTO) process, coal transfer, andthe exploitation of oil shale.

  14. Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh.

    Science.gov (United States)

    Quader, Mohammad Abdul; Khan, Amanat Ullah; Kervyn, Matthieu

    2017-07-25

    As a disaster prone country, Bangladesh is regularly hit by natural hazards, including devastating cyclones, such as in 1970, 1991 and 2007. Although the number of cyclones' fatalities reduced from 0.3 million in 1970 to a few thousand or fewer in recent events, loss of lives and impact on livelihoods remains a concern. It depends on the meteorological characteristics of cyclone and the general vulnerability and capacity of the exposed population. In that perspective, a spatially explicit risk assessment is an essential step towards targeted disaster risk reduction. This study aims at analyzing the spatial variation of the different factors contributing to the risk for coastal communities at regional scale, including the distribution of the hazards, exposure, vulnerability and capacity. An exploratory factor analysis method is used to map vulnerability contrasts between local administrative units. Indexing and ranking using geospatial techniques are used to produce maps of exposure, hazard, vulnerability, capacities and risk. Results show that vulnerable populations and exposed areas are distributed along the land sea boundary, islands and major inland rivers. The hazard, assessed from the density of historical cyclone paths, is highest in the southwestern part of the coast. Whereas cyclones shelters are shown to properly serve the most vulnerable populations as priority evacuation centers, the overall pattern of capacity accounting for building quality and road network shows a more complex pattern. Resultant risk maps also provide a reasonable basis from which to take further structural measures to minimize loss of lives in the upcoming cyclones.

  15. The record-breaking 2015 hurricane season in the eastern North Pacific: An analysis of environmental conditions

    Science.gov (United States)

    Collins, Jennifer M.; Klotzbach, Philip J.; Maue, Ryan N.; Roache, David R.; Blake, Eric S.; Paxton, Charles H.; Mehta, Christopher A.

    2016-09-01

    The presence of a near-record El Niño and a positive Pacific Meridional Mode provided an extraordinarily warm background state that fueled the 2015 eastern North Pacific hurricane season to near-record levels. We find that the western portion of the eastern North Pacific, referred to as the Western Development Region (WDR; 10°-20°N, 116°W-180°), set records for named storms, hurricane days, and Accumulated Cyclone Energy in 2015. When analyzing large-scale environmental conditions, we show that record warm sea surface temperatures, high midlevel relative humidity, high low-level relative vorticity, and record low vertical wind shear were among the environmental forcing factors contributing to the observed tropical cyclone activity. We assess how intraseasonal atmospheric variability may have contributed to active and inactive periods observed during the 2015 hurricane season. We document that, historically, active seasons are associated with May-June El Niño conditions, potentially allowing for predictability of future active WDR seasons.

  16. Post Cyclone (PoC) : An innovative way to reduce the emission of fines from industrial cyclones

    NARCIS (Netherlands)

    Ray - Bhowmick, Madhumita; Luning, P.E.; Hoffmann, A.C; Plomp, A.; Beumer, M.I.L.

    A novel approach for reducing the emission of industrial-scale cyclones of particles smaller than 10 mu m is presented. Utilizing the strong swirl already present in the vortex finder of a conventional cyclone, the escaped dust from the cyclone is collected in a so-called ''Post Cyclone'' (PoC),

  17. Post Cyclone (PoC) : An innovative way to reduce the emission of fines from industrial cyclones

    NARCIS (Netherlands)

    Ray, MB; Luning, PE; Hoffmann, AC; Plomp, A; Beumer, MIL

    1997-01-01

    A novel approach for reducing the emission of industrial-scale cyclones of particles smaller than 10 mu m is presented. Utilizing the strong swirl already present in the vortex finder of a conventional cyclone, the escaped dust from the cyclone is collected in a so-called ''Post Cyclone'' (PoC), whi

  18. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  19. Innovative software facilitates cyclone tracking and analysis

    Science.gov (United States)

    Grigoriev, Sergey; Gulev, Sergey; Zolina, Olga

    The need for research and development of new cost-efficient methods for tracking and analyzing atmospheric cyclones is apparent. Currently storm tracking is performed either manually or using numerical codes. The manual approach is more accurate but it requires considerable time and labor. Numerical schemes [e.g., Murray and Simmonds, 1991] track the cyclones from digital sea level pressure (SLP) data, linking the sequential positions of cyclone centers using different assumptions based on atmospheric dynamics. This approach is very effective computationally but it creates a number of uncertainties and biases, especially in the Northern Hemisphere.

  20. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  1. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane

    Science.gov (United States)

    William H. McDowell; Daniel Liptzin

    2014-01-01

    Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...

  2. Contribution of recent hurricanes to wetland sedimentation in coastal Louisiana

    Science.gov (United States)

    Liu, Kam-biu; Bianchette, Thomas; Zou, Lei; Qiang, Yi; Lam, Nina

    2017-04-01

    Hurricanes are important agents of sediment deposition in the wetlands of coastal Louisiana. Since Hurricanes Katrina and Rita of 2005, coastal Louisiana has been impacted by Hurricanes Gustav (2008), Ike (2008), and Isaac (2012). By employing the principles and methods of paleotempestology we have identified the storm deposits attributed to the three most recent hurricanes in several coastal lakes and swamps in Louisiana. However, the spatial distribution and volume of these storm depositions cannot be easily inferred from stratigraphic data derived from a few locations. Here we report on results from a GIS study to analyze the spatial and temporal patterns of storm deposition based on data extracted from the voluminous CRMS (Coastal Reference Monitoring System) database, which contains vertical accretion rate measurements obtained from 390 wetland sites over various time intervals during the past decade. Wetland accretion rates averaged about 2.89 cm/yr from stations sampled before Hurricane Isaac, 4.04 cm/yr during the 7-month period encompassing Isaac, and 2.38 cm/yr from sites established and sampled after Isaac. Generally, the wetland accretion rates attributable to the Isaac effects were 40% and 70% greater than before and after the event, respectively. Accretion rates associated with Isaac were highest at wetland sites along the Mississippi River and its tributaries instead of along the path of the hurricane, suggesting that freshwater flooding from fluvial channels, enhanced by the storm surge from the sea, is the main mechanism responsible for increased accretion in the wetlands. Our GIS work has recently been expanded to include other recent hurricanes. Preliminary results indicate that, for non-storm periods, the average wetland accretion rates between Katrina/Rita and Gustav/Ike was 2.58 cm/yr; that between Gustav/Ike and Isaac was 1.95 cm/yr; and that after Isaac was 2.37 cm/yr. In contrast, the accretion rates attributable to the effects of Gustav

  3. Hurricane intensification along United States coast suppressed during active hurricane periods.

    Science.gov (United States)

    Kossin, James P

    2017-01-19

    The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

  4. Hurricane damage assessment for residential construction considering the non-stationarity in hurricane intensity and frequency

    Institute of Scientific and Technical Information of China (English)

    WANG Cao; LI Quanwang; PANG Long; ZOU Aming; ZHANG Long

    2016-01-01

    Natural hazards such as hurricanes may cause extensive economic losses and social disruption for civil structures and infrastructures in coastal areas, implying the importance of understanding the construction performance subjected to hurricanes and assessing the hurricane damages properly. The intensity and frequency of hurricanes have been reported to change with time due to the potential impact of climate change. In this paper, a probability-based model of hurricane damage assessment for coastal constructions is proposed taking into account the non-stationarity in hurricane intensity and frequency. The non-homogeneous Poisson process is employed to model the non-stationarity in hurricane occurrence while the non-stationarity in hurricane intensity is reflected by the time-variant statistical parameters (e.g., mean value and/or standard deviation), with which the mean value and variation of the cumulative hurricane damage are evaluated explicitly. The Miami-Dade County, Florida, USA, is chosen to illustrate the hurricane damage assessment method proposed in this paper. The role of non-stationarity in hurricane intensity and occurrence rate due to climate change in hurricane damage is investigated using some representative changing patterns of hurricane parameters.

  5. Hurricane intensification along United States coast suppressed during active hurricane periods

    Science.gov (United States)

    Kossin, James P.

    2017-01-01

    The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

  6. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  7. Assimilation of hyperspectral satellite radiance observations within tropical cyclones

    Science.gov (United States)

    Lin, Haidao

    The availability of high resolution temperature and water vapor data is critical for the study of mesoscale scale weather phenomena (e.g., convective initiations, and tropical cyclones). As hyperspectral infrared sounders, the Atmospheric Infrared Sounder (AIRS) and Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) could provide high resolution atmospheric profiles by measuring radiations in many thousands of different channels. This work focuses on the assessment of the potential values of satellite hyperspectral radiance data on the study of convective initiations (CI) and the assimilation of AIRS radiance observations within tropical storms. First, the potential capability of hyperspectral infrared measurements (GIFTS) to provide convective precipitation forecasts has been studied and assessed. Using both the observed and the model-predicted profiles as input to the GIFTS radiative transfer model (RTM), it is shown that the simulated GIFTS radiance could capture the high vertical and temporal variability of the real and modeled atmosphere prior to a convective initiation, as well as the differences between observations and model forecasts. This study suggests the potential for hyperspectral infrared radiance data to make an important contribution to the improvement of the forecast skill of convective precipitation. Second, as the first step toward applying AIRS data to tropical cyclone (TC) prediction, a set of dropsonde profiles during Hurricane Rita (2005) is used to simulate AIRS radiance data and to assess the ability of AIRS data in capturing the vertical variability within TCs through one-dimensional variational (1D-Var) twin experiments. The AIRS observation errors and background errors are first estimated. Five sets of 1D-Var twin experiments are then performed using different combinations of AIRS channels. Finally, results from these 1D-Var experiments are analyzed. Major findings are: (1) AIRS radiance data contain useful information about

  8. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2016-12-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of

  9. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ... COMMISSION Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles AGENCY....221 on Design-Basis Hurricane and Hurricane Missiles.'' The purpose of this ISG is to supplement the guidance regarding the application of Regulatory Guide 1.221, ``Design-Basis Hurricane and...

  10. Sensitivity of Tropical Cyclones to Parameterized Convection in the NASA GEOS5 Model

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Reale, Oreste; Lee, Myong-In; Molod, Andrea M.; Suarez, Max J.

    2014-01-01

    The sensitivity of tropical cyclones (TCs) to changes in parameterized convection is investigated to improve the simulation of TCs in the North Atlantic. Specifically, the impact of reducing the influence of the Relaxed Arakawa-Schubert (RAS) scheme-based parameterized convection is explored using the Goddard Earth Observing System version5 (GEOS5) model at 0.25 horizontal resolution. The years 2005 and 2006 characterized by very active and inactive hurricane seasons, respectively, are selected for simulation. A reduction in parameterized deep convection results in an increase in TC activity (e.g., TC number and longer life cycle) to more realistic levels compared to the baseline control configuration. The vertical and horizontal structure of the strongest simulated hurricane shows the maximum lower-level (850-950hPa) wind speed greater than 60 ms and the minimum sea level pressure reaching 940mb, corresponding to a category 4 hurricane - a category never achieved by the control configuration. The radius of the maximum wind of 50km, the location of the warm core exceeding 10 C, and the horizontal compactness of the hurricane center are all quite realistic without any negatively affecting the atmospheric mean state. This study reveals that an increase in the threshold of minimum entrainment suppresses parameterized deep convection by entraining more dry air into the typical plume. This leads to cooling and drying at the mid- to upper-troposphere, along with the positive latent heat flux and moistening in the lower-troposphere. The resulting increase in conditional instability provides an environment that is more conducive to TC vortex development and upward moisture flux convergence by dynamically resolved moist convection, thereby increasing TC activity.

  11. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale.

    Science.gov (United States)

    Wang, Fugui; Xu, Y Jun

    2009-09-01

    Forest stand stability to strong winds such as hurricanes has been found to be associated with a number of forest, soil and topography factors. In this study, through applying geographic information system (GIS) and logit regression, we assessed effects of forest characteristics and site conditions on pattern, severity and probability of Hurricane Katrina disturbance to forests in the Lower Pearl River Valley, USA. The factors included forest type, forest coverage, stand density, soil great group, elevation, slope, aspect, and stream buffer zone. Results showed that Hurricane Katrina damaged 60% of the total forested land in the region. The distribution and intensity of the hurricane disturbance varied across the landscape, with the bottomland hardwood forests on river floodplains most severely affected. All these factors had a variety of effects on vulnerability of the forests to the hurricane disturbance and thereby spatial patterns of the disturbance. Soil groups and stand factors including forest types, forest coverage and stand density contributed to 85% of accuracy in modeling the probability of the hurricane disturbance to forests in this region. Besides assessment of Katrina's damage, this study elucidates the great usefulness of remote sensing and GIS techniques combined with statistics modeling in assessment of large-scale risks of hurricane damage to coastal forests.

  12. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    Science.gov (United States)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    for the Eastern USA until the year 2100. The projection is based on downscaling five different GCM model runs for the RCP8.5 scenario, as conducted by Emanuel et al. [7], and accounts for population and GDP changes relying on the newly developed Shared Socioenonomic Pathways (SSPs) [8]. We hereby contribute valuable input to the scientific community as well as the societies at risk. The possibility of extending this work to different regions in order to access the future impact of tropical cyclones on a global scale will also be discussed. References [1] Thomas R. Knutson, John L. McBride, Johnny Chan, Kerry Emanuel, Greg Holland, Chris Landsea, Isaac Held, James P. Kossin, A. K. Srivastava, and Masato Sugi. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, 2010. [2] Robert Mendelsohn, Kerry Emanuel, Shun Chonabayashi, and Laura Bakkensen. The impact of climate change on global tropical cyclone damage. Nature Climate Change, 2(3):205-209, 2012. [3] Silvio Schmidt, Claudia Kemfert, and Peter Höppe. The impact of socio-economics and climate change on tropical cyclone losses in the USA. Regional Environmental Change, 10(1):13-26, 2009. [4] William D. Nordhaus. The Economics of Hurricanes and Implications of Global Warming. Climate Change Economics, 01(01):1-20, 2010. [5] Kerry Emanuel. Global Warming Effects on U.S. Hurricane Damage. Weather, Climate, and Society, 3(4):261-268, 2011. [6] Richard J. Murnane and James B. Elsner. Maximum wind speeds and US hurricane losses. Geophysical Research Letters, 39(16):707, 2012. [7] Kerry Emanuel. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 110(30):12219-24, 2013. [8] Detlef P. van Vuuren, Keywan Riahi, and Richard Moss. A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22

  13. The influence of topography on midlatitude cyclones on Australia's east coast

    Science.gov (United States)

    Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.

    2017-09-01

    The east coast of Australia has a relatively high frequency of midlatitude cyclones, locally known as East Coast Lows (ECLs), which can cause severe weather including widespread flooding and coastal erosion. The elevated topography close to the east coast has been hypothesized to play a role in both the genesis and impacts of cyclones in this region, but existing studies have been limited to case studies of individual events. In this paper we present the results from two 20 year simulations over the Australian region using the Weather Research and Forecasting Model and assess the results from removing all topography in the region on both mean atmospheric circulation and ECL frequency. Removing topography results in an increase in sea level pressure to the south of Australia and an increase in moisture flux convergence and rainfall near the east coast, as well as a decrease in potential vorticity to the north of the ECL region. This results in a change in the spatial distribution of cyclones, with a 37% decrease in the frequency of cyclones that develop to the south of the ECL region but a 20% increase in cyclones near the east coast. This results in little overall change in the frequency of ECLs and suggests that coarse topography is unlikely to be responsible for the difficulties in simulating coastal cyclones in global climate models.

  14. CYGNSS Observations of Surface Wind Speeds in Oceanic Tropical and Extratropical Cyclones

    Science.gov (United States)

    Posselt, D. J.; Crespo, J.; Naud, C. M.

    2016-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission is the first of the new generation of NASA Earth Venture missions, and consists of a constellation of eight small satellites scheduled for launch in November 2016. The mission utilizes GPS signals reflected from the Earth's surface to infer near-surface wind speeds over the global tropical oceans. The eight-satellite constellation will observe ocean-surface wind speeds in all weather conditions (including in heavy precipitation) with a median revisit time of approximately 3 hours. While CYGNSS is designed to measure wind speeds in the inner core of tropical cyclones, it will observe near-surface winds over all oceanic regions within the span of its orbit. The orbit inclination is 35 degrees, which means that the satellite will observe primarily the tropics and sub-tropics; however, because the antennae are angled 28 degrees off-nadir, the effective range of latitudes spans -40 to 40 degrees. As such, CYGNSS will observe regions known to be characterized by rapid extratropical cyclone development (e.g., the southern portion of the Gulf Stream off the U.S. East Coast). In this presentation, we discuss CYGNSS sampling characteristics, with an eye toward its potential to observe winds not only in tropical cyclones, but in extratropical cyclones as well. We simulate orbits over a historical extratropical storm, and also utilize a multi-year database of cyclone centers to determine CYGNSS sampling characteristics integrated over many storms.

  15. Topographic effects on polar low and tropical cyclone development in simple theoretical model

    Institute of Scientific and Technical Information of China (English)

    Zi-liang LI; Gang FU; Jing-tian GUO; Yi-hong DUAN; Mei-gen ZHANG

    2009-01-01

    The polar low and tropical cyclone type vortices over topography are assumed to be the axisymmetrical and thermal-wind balanced systems, which are solved as an initial value problem of a linearized vortex equation set in cylindrical coordinates. The roles of the sensible and latent heating, friction, and topography in the structure and intensification of the polar low and tropical cyclone type vortices are analyzed. The radial velocity, vertical velocity, azimuthal velocity, and the unstable growth rate including the topography effects are obtained. It is shown that the interaction between the flow and the topography plays a significant role in the structure and intensification of the polar low and tropical cyclone system. The analysis of the topography term indicates that, in the up-slope side of the mountain, the radial inflow and the vertical ascent forced by the mountain can intensify the polar low and tropical cyclone type vortex and increase the unstable growth rate. However, in the lee side of the mountain, the radial inflow and the vertical descent forced by the mountain can weaken the polar low and tropical cyclone type vortex and decrease the unstable growth rate of the polar low and tropical cyclone system. In addition, the evolutionary process and the spatial structure of the polar low observed over the Japan Sea on 19 December 2003 are investigated with the observationaldata to verify this theoretical result.

  16. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  17. Forecasting hurricane impact on coastal topography: Hurricane Ike

    Science.gov (United States)

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger,, Asbury H.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-01-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  18. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  19. Human influence on tropical cyclone intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  20. Evaluation of the CPTEC/AGCM wind forecasts during the hurricane Catarina occurrence

    Directory of Open Access Journals (Sweden)

    A. F. Santos

    2008-05-01

    Full Text Available In March 2004 occurred the first hurricane registered at South Atlantic Ocean. The system named Catarina begun as an extratropical cyclone and remained quasi-stationary some days over the South Atlantic Ocean. The system displaced westward, acquiring characteristics of a hurricane and hit the Brazilian State of Santa Catarina (SC between the 27 and the 28 March, causing destruction and deaths. The objective of this paper is to evaluate the Center for Weather Prediction and Climate Studies, Atmospheric Global Circulation Model (CPTEC/AGCM forecast performance of some synoptic patterns associated with Catarina. The surface wind and reduced Sea Level Pressure (SLP were examined. Moreover, the implementation of 10-m wind forecast (V10m was evaluated. This variable was not available in the CPTEC/AGCM during the Catarina occurrence and in this study it was compared with the wind at first sigma-level of the AGCM. The CPTEC-Eta reanalyses were used to comparisons. According to reanalyses, more intense winds were observed in northeast, south and southwest edges of the cyclone. The system was not predicted by the CPTEC/AGCM forecasts longer than 24 h, then the analyses were carried out only for 24 h forecasts. In general, the first sigma-level wind forecasts underestimated the wind magnitude and the cyclone intensity. However, the Catarina formation and its displacement southeastward between the 20 and the 21 March were well represented by the model. The CPTEC/AGCM presents deficiencies to predict the system intensity, but in short-range forecasts it was possible to predict the system formation and its atypical trajectory. The wind results from the new implementation did not exhibit better performance compared with the wind at first sigma-level. These results will be better investigated in the future.

  1. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  2. Observations of cyclone-induced storm surge in coastal Bangladesh

    CERN Document Server

    Chiu, Soyee

    2015-01-01

    Water level measurements from 15 tide gauges in the coastal zone of Bangladesh are analyzed in conjunction with cyclone tracks and wind speed data for 54 cyclones between 1977 and 2010. Storm surge magnitude is inferred from residual water levels computed by subtracting modeled astronomical tides from observed water levels at each station. Observed residual water levels are generally smaller than reported storm surge levels for cyclones where both are available, and many cyclones produce no obvious residual at all. Both maximum and minimum residual water levels are higher for west-landing cyclones producing onshore winds and generally diminish for cyclones making landfall on the Bangladesh coast or eastward producing offshore winds. Water levels observed during cyclones are generally more strongly influenced by tidal phase and amplitude than by storm surge alone. In only 7 of the 15 stations does the highest plausible observed water level coincide with a cyclone. While cyclone-coincident residual water level ...

  3. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas.

    Science.gov (United States)

    Ruckart, Perri Zeitz; Orr, Maureen F; Lanier, Kenneth; Koehler, Allison

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  4. Happily Ever After? Pre-and-Post Disaster Determinants of Happiness Among Survivors of Hurricane Katrina

    Science.gov (United States)

    Calvo, Rocío; Arcaya, Mariana; Baum, Christopher F.; Lowe, Sarah R.; Waters, Mary C.

    2014-01-01

    This study investigated pre- to post-disaster changes in happiness of 491 women affected by Hurricane Katrina, and identified factors that were associated with the survivors’ happiness after the storm. Participants completed surveys approximately 1 year before and 1 and 4 years after the storm. The surveys collected information on the women’s happiness, social support, household characteristics, and hurricane exposure. We found that happiness significantly decreased from pre-disaster to 1 year post-disaster but there were no significant differences in happiness between the pre-disaster and 4 years post-disaster assessments. An exception were 38 women who continued to have lower levels of happiness 4 years post-disaster than at pre-disaster. These women were more likely to be living on their own after the storm and reported consistently lower levels of perceived social support from the community both before and after the storm than the other women of the sample. Factors associated with the survivor’s happiness after the storm included exposure to hurricane stressors and losing a loved one to the hurricane. These were predictive of lower happiness 1 year post-disaster. Four years after the hurricane only exposure to hurricane stressors was predictive of lower levels of happiness. In contrast, pre-disaster happiness and post-disaster social support were protective against the negative effect of the hurricane on survivors’ happiness. PMID:26078701

  5. Motivational Factors Underlying College Students' Decisions to Resume Their Educational Pursuits in the Aftermath of Hurricane Katrina

    Science.gov (United States)

    Phillips, Theresa M.; Herlihy, Barbara

    2009-01-01

    This study explored college student persistence at a historically Black university affected by Hurricane Katrina. Predictor variables including sex, residence status, Pell Grant status, campus housing status, college grade point average, attendance before Hurricane Katrina, and attendance at the university by parents or another close relative were…

  6. What controls early or late onset of tropical North Atlantic hurricane season?

    Science.gov (United States)

    Zuo, Heng; Li, Tim; Liu, Jia; Peng, Melinda

    2016-06-01

    The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season. The interannual variation of this hurricane onset date is examined for the period 1979-2013. It is found that the onset date has a marked interannual variation. The standard deviation of the interannual variation of the onset day is 17.5 days, with the climatological mean onset happening on July 23. A diagnosis of tropical cyclone (TC) genesis potential index (GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity (MPI). A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly (SSTA). Besides the SSTA, vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups. It is found that the anomalous warm (cold) SST over the tropical Atlantic, while uncorrelated with the Niño3 index, persists from the preceding winter to concurrent summer in the early (late) onset group. The net surface heat flux anomaly always tends to damp the SSTA, which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic. The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region. A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.

  7. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  8. Modeling a Midlatitude Cyclone Impinging on Localized Orography

    Science.gov (United States)

    Menchaca, Maximo Q.

    Idealized studies of mountain waves have primarily focused on the steady state response to horizontally uniform flows encountering an obstacle. In this research, we extend previous studies of nonsteady mountain waves to examine their generation, propagation, and dissipation when forced by a midlatitude cyclone impinging on an isolated ridge. The cyclone is obtained by superimposing a localized finite amplitude potential vorticity anomaly on a baroclinically unstable jet. We minimize transient gravity waves with the use of a digital filter. Localized terrain is placed in an initially quiescent region of the flow, away from the initial PV anomaly. The maturing cyclone propagates towards the terrain, generating gravity waves exhibiting strong time dependent behavior that is affected by the changing flow. Significant wave genesis is tied to the passage of surface fronts and their accompanying jet streaks and stronger surface winds. Wave packets advect downstream after front passage, causing noticeable wave-mean flow interaction. Waves generated by cold fronts impinging on terrain are compared with mountain waves generated by warm fronts, allowing for exploration into the influence of directional shear on the waves. Mountain waves produced by warm fronts have shorter horizontal and vertical wavelength and do not propagate far from their source compared with mountain waves produced by cold fronts. These simulations also produce many other realistic features, including wave breaking and downslope windstorms.

  9. Hurricane Excitation of Earth Eigenmodes

    OpenAIRE

    Peters, Randall D.

    2005-01-01

    A non-conventional vertical seismometer, with good low-frequency sensitivity, was used to study earth motions in Macon, Georgia USA during the time of hurricane Charley, August 2004. During its transitions between water and land, the powerful storm showed an interesting history of microseisms and also generated more than half-a-dozen surprisingly coherent oscillations, whose frequencies ranged from 0.9 to 3 mHz.

  10. Hurricane Boundary-Layer Theory

    Science.gov (United States)

    2010-01-01

    2501. Kundu PK. 1990. Fluid Mechanics . Academic Press: San Diego, USA. Kuo HL. 1982. Vortex boundary layer under quadratic surface stress. Boundary...identification of two mechanisms for the spin-up of the mean tangential circulation of a hurricane. The first involves convergence of absolute angular...momentum above the boundary layer, where this quantity is approximately conserved. This mechanism acts to spin up the outer circulation at radii

  11. Lessons Learnt From Hurricane Katrina.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  12. Hurricane Sandy Washover Deposits on Southern Long Beach Island, NJ

    Science.gov (United States)

    Bishop, J. M.; Richmond, B. M.; Kane, H. H.; Lunghino, B.

    2015-12-01

    Hurricane Sandy washover deposits were investigated at Forsyth National Wildlife Refuge (FNWR) on Southern Long Beach Island, New Jersey in order to map deposit thickness and characterize the sedimentary deposits. FNWR was chosen as a field area because there has been relatively little anthropogenic shoreline modification since washover deposition from Hurricane Sandy. Sediment, elevation, and geophysical data were collected during the April 2015 field campaign, approximately two and a half years after the storm. Sediment deposit data included trenches, stratigraphic descriptions, bulk sediment samples, push cores, Russian cores, and photos. Computed tomography (CT) scanning was conducted on push cores in order to acquire high resolution imaging of density, grain size, and sedimentary structure. Profiles of washover elevation were measured using Differential GPS with Real Time Kinematic processing. Ground Penetrating Radar data was collected to image the depth of the deposit and identify sedimentary structures. These data sets are compared to pre- and post -Sandy lidar surveys in order to determine post-Sandy modification in the two and a half years following the hurricane. We compare sediment thickness and sedimentary characteristics to hurricane Sandy deposits elsewhere along the U.S. eastern seaboard and to tsunami deposits.

  13. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, Matthew V.; Hagen, S. C.; Alizad, K.; Medeiros, S. C.; Passeri, D. L.; Needham, H. F.; Cox, A.

    2016-05-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static ("bathtub") modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  14. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina; Needham, H.F.; Cox, A.

    2016-01-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  15. The Hurricane-Flood-Landslide Continuum: An Integrated, End-to-end Forecast and Warning System for Mountainous Islands in the Tropics

    Science.gov (United States)

    Golden, J.; Updike, R. G.; Verdin, J. P.; Larsen, M. C.; Negri, A. J.; McGinley, J. A.

    2004-12-01

    In the 10 days of 21-30 September 1998, Hurricane Georges left a trail of destruction in the Caribbean region and U.S. Gulf Coast. Subsequently, in the same year, Hurricane Mitch caused widespread destruction and loss of life in four Central American nations, and in December,1999 a tropical disturbance impacted the north coast of Venezuela causing hundreds of deaths and several million dollars of property loss. More recently, an off-season disturbance in the Central Caribbean dumped nearly 250 mm rainfall over Hispaniola during the 24-hr period on May 23, 2004. Resultant flash floods and debris flows in the Dominican Republic and Haiti killed at least 1400 people. In each instance, the tropical system served as the catalyst for major flooding and landslides at landfall. Our goal is to develop and transfer an end-to-end warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispaniola, which experience frequent tropical cyclones and other disturbances. The envisioned system would include satellite and surface-based observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict short-term runoff and streamflow changes, geological models to warn when and where landslides and debris flows are imminent, and the capability to communicate forecast guidance products via satellite to vital government offices in Puerto Rico, Haiti, and the Dominican Republic. In this paper, we shall present a preliminary proof-of-concept study for the May 21-24, 2004 floods and debris-flows over Hispaniola to show that the envisaged flow of data, models and graphical products can produce the desired warning outputs. The multidisciplinary research and technology transfer effort will require blending the talents of hydrometeorologists, geologists, remote sensing and GIS experts, and social scientists to ensure timely delivery of tailored graphical products to both weather offices and local

  16. Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: case study

    Science.gov (United States)

    Liu, Yin; Zhang, Wei

    2016-12-01

    This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.

  17. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  18. Notes from the field: carbon monoxide exposures reported to poison centers and related to hurricane Sandy - Northeastern United States, 2012.

    Science.gov (United States)

    2012-11-09

    Hurricane Sandy made landfall as a post-tropical cyclone along the coast of southern New Jersey on Monday, October 29, 2012. In the wake of Sandy, state and federal public health agencies have observed an increase in the number of exposures to carbon monoxide (CO) reported to poison centers. CO is imperceptible and can cause adverse health effects ranging from fatigue and headache to cardiorespiratory failure, coma, and death. CO poisoning is a leading cause of mortality and morbidity in post-disaster situations, when widespread power outages occur and risky behaviors, such as improper placement of generators and indoor use of charcoal grills, increase.

  19. Extreme Winter Cyclones in the North Atlantic in a Last Millennium Climate Simulation with CESM1.0.1

    Science.gov (United States)

    Blumer, Sandro R.; Raible, Christoph C.; Lehner, Flavio; Stocker, Thomas F.

    2016-04-01

    Extreme cyclones and their associated impacts are a major threat to mankind, as they often result in heavy precipitation events and severe winds. The last millennium is closest to the Anthropocene and has the best coverage of paleo-climatic information. Therefore, it can serve as a test bed for estimating natural forcing variations beyond the recent observational period and can deliver insight into the frequency and intensity of extreme events, including strong cyclones and their dependency on internal variability and external forcing. The aim of this study is to investigate how the frequency and intensity of extreme cyclones in the North Atlantic have changed in the last millennium, and investigate phases which deviate more than one standard deviation. In particular the changes during prolonged cold and warm periods and the 21st century are analysed to assess the external forcing imprint. We use a comprehensive fully-coupled transient climate simulation of the last millennium (AD 1000-2100) with a relatively high spatial (0.9x1.25 degrees) resolution. Cyclones are then detected and tracked in 12-hourly output using an algorithm that is based on the geopotential height field on 1000 hPa. In addition to the tracking, a Gaussian function is fitted to the depressions in the geopotential height field at every time step in order to have a geometric representation of the low pressure systems. Additionally, two intensity indices for extreme cyclones are defined: the 90 percentile of the mean gradient in geopotential and the 90 percentile of the precipitation within a radius of one standard deviation of the approximated Gaussian function around the cyclone. These criteria consider two aspects of cyclone's intensity: extremes in wind and precipitation. A 30-yr running window is applied to the entire simulation. Within each window the cyclone frequency and the indices for extreme wind and extreme precipitation cyclones are averaged. This analysis reveals decadal to

  20. Investigating the eco-hydrological impacts of the 2004 and 2005 hurricane seasons in the Southeast US

    Science.gov (United States)

    Brun, J.; Barros, A. P.

    2011-12-01

    Hurricanes and tropical storms (collectively known as tropical cyclones TCs) are regular events of varying magnitude and moderate frequency. These powerful and hazardous meteorological phenomena cause damages to natural and built areas all around the world. However, on the flip side, TCs provide a significant influx of freshwater resources to surface and subsurface reservoirs during the warm season and participate to the relief of drought conditions in several part of the world. Previously, a framework using remote-sensing data (MODIS EVI) was developed to characterize the spatial organization of vegetation disturbances and monitor vegetation recovery in the aftermath of land-falling hurricanes. Here, a distributed eco-hydrological model (Garcia-Quijano and Barros, 2005; Yildiz and Barros, 2007) is used to investigate the link between vegetation disturbance persistence and hydrological processes in pristine watersheds along the terrestrial tracks of hurricanes in 2004 and 2005. Model simulated gross primary production (GPP) over the Southeastern US before and after these two highly active hurricane seasons will be used to map EVI based vegetation disturbances to primary productivity changes.

  1. Structures of Mesocirculations Producing Tornadoes Associated with Tropical Cyclone Frances (1998)

    Science.gov (United States)

    Rao, Gandikota V.; Scheck, Joshua W.; Edwards, Roger; Schaefer, Joseph T.

    2005-08-01

    Radar structures of one mesocyclone and one mesocirculation (the term mesocirculation refers to a class of rotating updrafts, which may or may not be as spatially and temporally large as a typical mesocyclone) that developed a total of four tornadoes in association with Tropical Cyclone (TC) Frances 1998 are presented. One tornado developed within an inner rainband near the time of landfall while three of the other tornadoes developed within an outer rainband nearly 24 hours after the landfall. Radar reflectivities of the tornadic circulations averaged upwards of 40 dBZ while Doppler radar wind components directed toward the radar averaged 11 m s-1. It is realized that although TC Frances was a minimal hurricane it spawned several tornadoes (four of which were studied) causing damage exceeding 2 million. These tornadoes were not all located close to the TC center, serving as a caution to forecasters and emergency personnel that the immediate landfalling area is not the only place to watch.

  2. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    Science.gov (United States)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  3. The spatial distribution and evolution characteristics of North Atlantic cyclones

    Science.gov (United States)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  4. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    Science.gov (United States)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible

  5. Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change

    Directory of Open Access Journals (Sweden)

    E. M. Leibensperger

    2008-12-01

    Full Text Available We show that the frequency of summertime mid-latitude cyclones tracking across eastern North America at 40°–50° N (the southern climatological storm track is a strong predictor of stagnation and ozone pollution days in the eastern US. The NCEP/NCAR Reanalysis, going back to 1948, shows a significant long-term decline in the number of summertime mid-latitude cyclones in that track starting in 1980 (−0.15 a−1. The more recent but shorter NCEP/DOE Reanalysis (1979–2006 shows similar interannual variability in cyclone frequency but no significant long-term trend. Analysis of NOAA daily weather maps for 1980–2006 supports the trend detected in the NCEP/NCAR Reanalysis 1. A GISS general circulation model (GCM simulation including historical forcing by greenhouse gases reproduces this decreasing cyclone trend starting in 1980. Such a long-term decrease in mid-latitude cyclone frequency over the 1980–2006 period may have offset by half the ozone air quality gains in the northeastern US from reductions in anthropogenic emissions. We find that if mid-latitude cyclone frequency had not declined, the northeastern US would have been largely compliant with the ozone air quality standard by 2001. Mid-latitude cyclone frequency is expected to decrease further over the coming decades in response to greenhouse warming and this will necessitate deeper emission reductions to achieve a given air quality goal.

  6. Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change

    Directory of Open Access Journals (Sweden)

    E. M. Leibensperger

    2008-06-01

    Full Text Available We show that the frequency of summertime mid-latitude cyclones tracking across eastern North America at 40°–50° N (the southern climatological storm track is a strong predictor of stagnation and ozone pollution episodes in the eastern United States. The NCEP/NCAR Reanalysis, going back to 1948, shows a significant long-term decline in the number of summertime mid-latitude cyclones in that track starting in 1980 (−0.15 a-1. The more recent but shorter NCEP/DOE Reanalysis (1979–2006 shows similar interannual variability in cyclone frequency but no significant long-term trend. A GISS general circulation model (GCM simulation including historical forcing by greenhouse gases reproduces the cyclone trend seen in the NCEP/NCAR data. Such a long-term decrease in mid-latitude cyclone frequency over the 1980–2006 period would have offset by about a factor of 2 the ozone air quality gains from reductions in anthropogenic emissions in the northeastern United States. We find that if mid-latitude cyclone frequency had not declined, the northeastern US would have been largely compliant with the ozone air quality standard by 2001. Mid-latitude cyclone frequency is expected to decrease further over the coming decades in response to greenhouse warming and this trend needs to be considered in air quality management.

  7. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    Science.gov (United States)

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.

  8. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    Science.gov (United States)

    2011-12-01

    components required for the three-dimensional wind field calculation ( Testud 1995). A greater than 30° angle between the two beams is necessary to ensure... Testud (1995) for inertial navigation system (INS) errors and problems due to misrepresentation of the Earth‟s surface due to large-amplitude surface...press. Stull, R. B., 1988: An introduction to boundary layer meteorology. D Reidel Pub Co, 666 pp. 156 Testud , J., P. H. Hildebrand, and W. C

  9. 3D Visualization of near real-time remote-sensing observation for hurricanes field campaign using Google Earth API

    Science.gov (United States)

    Li, P.; Turk, J.; Vu, Q.; Knosp, B.; Hristova-Veleva, S. M.; Lambrigtsen, B.; Poulsen, W. L.; Licata, S.

    2009-12-01

    NASA is planning a new field experiment, the Genesis and Rapid Intensification Processes (GRIP), in the summer of 2010 to better understand how tropical storms form and develop into major hurricanes. The DC-8 aircraft and the Global Hawk Unmanned Airborne System (UAS) will be deployed loaded with instruments for measurements including lightning, temperature, 3D wind, precipitation, liquid and ice water contents, aerosol and cloud profiles. During the field campaign, both the spaceborne and the airborne observations will be collected in real-time and integrated with the hurricane forecast models. This observation-model integration will help the campaign achieve its science goals by allowing team members to effectively plan the mission with current forecasts. To support the GRIP experiment, JPL developed a website for interactive visualization of all related remote-sensing observations in the GRIP’s geographical domain using the new Google Earth API. All the observations are collected in near real-time (NRT) with 2 to 5 hour latency. The observations include a 1KM blended Sea Surface Temperature (SST) map from GHRSST L2P products; 6-hour composite images of GOES IR; stability indices, temperature and vapor profiles from AIRS and AMSU-B; microwave brightness temperature and rain index maps from AMSR-E, SSMI and TRMM-TMI; ocean surface wind vectors, vorticity and divergence of the wind from QuikSCAT; the 3D precipitation structure from TRMM-PR and vertical profiles of cloud and precipitation from CloudSAT. All the NRT observations are collected from the data centers and science facilities at NASA and NOAA, subsetted, re-projected, and composited into hourly or daily data products depending on the frequency of the observation. The data products are then displayed on the 3D Google Earth plug-in at the JPL Tropical Cyclone Information System (TCIS) website. The data products offered by the TCIS in the Google Earth display include image overlays, wind vectors, clickable

  10. Seismic and pressure signals when a hurricane moves over an array

    Science.gov (United States)

    Tanimoto, Toshiro

    2017-04-01

    General structure in a tropical cyclone (hurricane/typhoon) in the atmosphere is reasonably well known; it has a very calm central region surrounded by a circular eyewall at a radius of about 50-100 km from the center. Winds are strongest at the eyewall and outside the eyewall, there exists a fairly strong windy region that extends to about 500-1000 km from the center. The main purpose of this study is to understand how seismic waves in the solid Earth are generated by a tropical cyclone. We focus on a low frequency band (below 0.05 Hz) in this study. The basic mechanism of seismic wave excitation in such a low frequency band is relatively straightforward; changes in wind speed generate surface pressure changes and that in turn excite ground motions in the solid Earth. In a rare example of a hurricane (Hurricane Isaac in 2012) that moved through the USARRAY (Earthscope), that had co-located seismometers and barometers, we can directly examine how ground motions and surface pressure are influenced by the passage of a hurricane eye. When a hurricane eye passes over a station, pressure and three-component seismic time series show a gap in amplitude (envelope) for filtered time series below 0.05 Hz. Typically, long envelopes in time series appear to be truncated by a gap that is at the arrival time of the hurricane eye (although it is not a real gap in data). Using a few stations on the track of a hurricane, we can show that this gap moves in time. This feature only occurs for stations that are within about 50 km from the hurricane track. We also point out that pressure and vertical ground motions show very high correlation (the correlation coefficient or CC about 0.8-0.9). On the other hand, horizontal-component seismic data show small correlation with pressure (CC close to zero) even though their amplitudes (envelopes) show gaps that are coincident in time with pressure. What it means is that phase is quite incoherent between pressure and horizontal components

  11. Tropical cyclones in reanalysis data sets

    Science.gov (United States)

    Murakami, Hiroyuki

    2014-03-01

    This study evaluates and compares tropical cyclones (TCs) in state-of-the-art reanalysis data sets including the following: the Japanese 55-year Reanalysis (JRA-55), Japanese 25-year Reanalysis, European Centre for Medium-Range Weather Forecasts Reanalysis-40, Interim Reanalysis, National Centers for Environmental Prediction Climate Forecast System Reanalysis, and NASA's Modern Era Retrospective Analysis for Research and Application (MERRA). Most of the reanalyses reproduce a reasonable global spatial distribution of observed TCs and temporal interannual variation of total TC frequency. Of the six reanalysis data sets, JRA-55 appears to be the best in terms of the following: the highest skill for spatial and temporal distribution of TC frequency of occurrence, highest TC hitting rate, lower false alarm rate, reasonable TC structure in terms of the relationship between maximum surface wind speed and sea level pressure, and higher correlation coefficients for interannual variations of TC frequency. These results also suggest that the finest-resolution reanalysis data sets, like MERRA, are not always the best in terms of TC climatology.

  12. Cyclone reduction of taconite. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.R.; Bartlett, R.W.; Abdel-latif, M.A.; Hou, X.; Kumar, P. [College of Mines and Earth Resources, University of Idaho, Idaho Falls, ID (United States)

    1995-05-01

    A cyclone reactor system for the partial reduction and melting of taconite concentrate fines has been engineered, designed and operated. A non-transferred arc plasma torch was employed as a heat source. Taconite fines, carbon monoxide, and carbon dioxide were fed axially into the reactor, while the plasma gas was introduced tangentially into the cyclone. The average reactor temperature was maintained at above 1400{degrees}C, and reduction experiments were performed under various conditions. The influence of the following parameters on the reduction of taconite was investigated experimentally; carbon monoxide to carbon dioxide inlet feed ratio, carbon monoxide inlet partial pressure, and average reactor temperature. The interactions of the graphite lining with carbon dioxide and taconite were also studied. An attempt was made to characterize the flow behavior of the molten product within the cyclone. The results suggest that the system may approach a plug flow reactor, with little back mixing. Finally, a fundamental mathematical model was developed. The model describes the flow dynamics of gases and solid particles in a cyclone reactor, energy exchange, mass transfer, and the chemical kinetics associated with cyclone smelting of taconite concentrate fines. The influence of the various parameters on the reduction and melting of taconite particles was evaluated theoretically.

  13. Gulf Coast Hurricanes Situation Report #39

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  14. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing;

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined...

  15. Climate Prediction Center (CPC) Western Pacific Basin Cyclone Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tropical cyclones are one of the nature?s destructive phenomena, causing loss of lives and property damage. The affected countries associated with the cyclones of...

  16. NESDIS Microwave Sounder-based Tropical Cyclone (TC) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The S-NPP Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  17. Dust cyclone technology for gins – A literature review

    Science.gov (United States)

    Dust cyclone research leading to more efficient designs has helped the cotton ginning industry to comply with increasingly stringent air quality regulations governing fine particulate emissions. Future changes in regulations may require additional improvements in dust cyclone efficacy. This inter-...

  18. Cyclone disaster vulnerability and response experiences in coastal Bangladesh.

    Science.gov (United States)

    Alam, Edris; Collins, Andrew E

    2010-10-01

    For generations, cyclones and tidal surges have frequently devastated lives and property in coastal and island Bangladesh. This study explores vulnerability to cyclone hazards using first-hand coping recollections from prior to, during and after these events. Qualitative field data suggest that, beyond extreme cyclone forces, localised vulnerability is defined in terms of response processes, infrastructure, socially uneven exposure, settlement development patterns, and livelihoods. Prior to cyclones, religious activities increase and people try to save food and valuable possessions. Those in dispersed settlements who fail to reach cyclone shelters take refuge in thatched-roof houses and big-branch trees. However, women and children are affected more despite the modification of traditional hierarchies during cyclone periods. Instinctive survival strategies and intra-community cooperation improve coping post cyclone. This study recommends that disaster reduction programmes encourage cyclone mitigation while being aware of localised realities, endogenous risk analyses, and coping and adaptation of affected communities (as active survivors rather than helpless victims).

  19. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  20. Investigations of aerosol impacts on hurricanes: virtual seeding flights

    Directory of Open Access Journals (Sweden)

    G. G. Carrio

    2011-03-01

    Full Text Available This paper examines the feasibility of mitigating the intensity of hurricanes by enhancing the CCN concentrations in the outer rainband region. Increasing CCN concentrations would cause a reduced collision and coalescence, resulting in more supercooled liquid water to be transported aloft which then freezes and enhances convection via enhanced latent heat of freezing. The intensified convection would condense more water ultimately enhancing precipitation in the outer rainbands. Enhanced evaporative cooling from the increased precipitation in the outer rainbands would produce stronger and more widespread areal cold pools which block the flow of energy into the storm core, ultimately inhibiting the intensification of the tropical cyclone.

    We designed a series of multi-grid for which the time of the "virtual flights" as well as the aerosol release rates are varied. A code that simulates the flight of a plane is used to increase the CCN concentrations as an aircraft flies. Results show a significant sensitivity to both the seeding time and the aerosol release rates and support the aforementioned hypothesis.

  1. Investigations of aerosol impacts on hurricanes: virtual seeding flights

    Directory of Open Access Journals (Sweden)

    G. G. Carrió

    2010-09-01

    Full Text Available This paper examines the feasibility of mitigating the intensity of hurricanes by enhancing the CCN concentrations in the outer rainband region. Increasing CCN concentrations would cause a reduced collision and coalescence, resulting in more supercooled liquid water to be transported aloft which then freezes and enhances convection via enhanced latent heat of freezing. The intensified convection would condense more water ultimately enhancing precipitation in the outer rainbands. Enhanced evaporative cooling from the increased precipitation in the outer rainbands would produce stronger and more widespread areal cold pools which block the flow of energy into the storm core, ultimately inhibiting the intensification of the tropical cyclone.

    We designed a series of multi-grid for which the time of the "virtual flights" as well as the aerosol release rates are varied. A code that simulates the flight of a plane is used to increase the CCN concentrations as an aircraft flies. Results show a significant sensitivity to both the seeding time and the aerosol release rates and support the aforementioned hypothesis.

  2. Observations of cyclone-induced storm surge in coastal Bangladesh

    OpenAIRE

    Chiu, Soyee; Small, Christopher

    2015-01-01

    Water level measurements from 15 tide gauges in the coastal zone of Bangladesh are analyzed in conjunction with cyclone tracks and wind speed data for 54 cyclones between 1977 and 2010. Storm surge magnitude is inferred from residual water levels computed by subtracting modeled astronomical tides from observed water levels at each station. Observed residual water levels are generally smaller than reported storm surge levels for cyclones where both are available, and many cyclones produce no o...

  3. Temporal clustering of tropical cyclones and its ecosystem impacts

    OpenAIRE

    Peter J Mumby; Vitolo, Renato; Stephenson, David B.

    2011-01-01

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated...

  4. Short term teleconnections associated with an individual tropical cyclone

    OpenAIRE

    Woll, Stephen C.

    1993-01-01

    Approved for public release; distribution is unlimited. The short term teleconnections associated with an individual western Pacific tropical cyclone have been investigated using an atmospheric general circulation model. The general strategy was to use the GCM, in combination with several tropical cyclone bogusing procedures, to isolate the effects on the global circulation of the tropical cyclone. The bogusing procedures were used to alter the tropical cyclone in the initial conditions fo...

  5. Decadal cyclone variability in the North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Luksch, U.; Blender, R.; Fraedrich, K. [Meteorological Inst., Univ. of Hamburg (Germany); Raible, C.C. [Climate and Environmental Physics, Physics Inst., Univ. of Bern (Switzerland)

    2005-12-01

    The unstable midlatitude ocean-atmosphere coupling motivates the definition of two decadal regimes with distinct implications for the North Atlantic cyclone variability. Phases with low (high) decadal variability of the North Atlantic Oscillation, which are connected with an annular (sectoral) spatial scale of the geopotential height teleconnection pattern, are identified as a hemispheric (regional) regime. In the hemispheric regime during a positive El Nino/Southern Oscillation (ENSO) index (warm event), the North Atlantic cyclones and the regions of enhanced precipitation shift southward while over northern Europe the cyclone activity and the rainfall are reduced. During the regional regime this impact of ENSO on the Atlantic storm track is extremely small and a clear interpretation over Europe is inhibited. (orig.)

  6. An Intercomparison of GPS RO Retrievals with Colocated Analysis and In Situ Observations within Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Henry R. Winterbottom

    2010-01-01

    Full Text Available Observations from four Global Position System (GPS Radio Occultation (RO missions: Global Positioning System/Meteorology, CHAallenging Minisatellite Payload, Satellite de Aplicaciones Cientificas-C, and Constellation Observing System for Meteorology, Ionosphere and Climate and Taiwan's FORMOsa SATellite Mission #3 (COSMIC/FORMOSAT-3 are collected within a 600 km radius and ±180 minute temporal window of all observed tropical cyclones (TCs from 1995 to 2006 that were recorded in the global hurricane best-track reanalysis data set (Jarvinen et al. (1984; Davis et al. (1984. A composite analysis of tropical cyclone radial mean temperature and water vapor profiles is carried out using the GPS RO retrievals which are colocated with global analysis profiles and available in situ radiosonde observations. The differences between the respective observations and analysis profiles are quantified and the preliminary results show that the observations collected within TCs correspond favorably with both the analysis and radiosonde profiles which are colocated. It is concluded that GPS RO observations will contribute significantly to the understanding and modeling of TC structures, especially those related to vertical variability of the atmospheric state within TCs.

  7. Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D; Ferreira, Celso M; Quiring, Steven M

    2016-10-01

    In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive power outages in Louisiana. The storm brought high winds, storm surge, and flooding to Louisiana, and power outages were widespread and prolonged. Hourly power outage data for the state of Louisiana were collected during the storm and analyzed. This analysis included correlation of hourly power outage figures by zip code with storm conditions including wind, rainfall, and storm surge using a nonparametric ensemble data mining approach. Results were analyzed to understand how correlation of power outages with storm conditions differed geographically within the state. This analysis provided insight on how rainfall and storm surge, along with wind, contribute to power outages in hurricanes. By conducting a longitudinal study of outages at the zip code level, we were able to gain insight into the causal drivers of power outages during hurricanes. Our analysis showed that the statistical importance of storm characteristic covariates to power outages varies geographically. For Hurricane Isaac, wind speed, precipitation, and previous outages generally had high importance, whereas storm surge had lower importance, even in zip codes that experienced significant surge. The results of this analysis can inform the development of power outage forecasting models, which often focus strictly on wind-related covariates. Our study of Hurricane Isaac indicates that inclusion of other covariates, particularly precipitation, may improve model accuracy and robustness across a range of storm conditions and geography.

  8. Cyclone contribution to the Mediterranean Sea water budget

    Science.gov (United States)

    Flaounas, E.; Di Luca, A.; Drobinski, P.; Mailler, S.; Arsouze, T.; Bastin, S.; Beranger, K.; Lebeaupin Brossier, C.

    2016-02-01

    This paper analyzes the impact of cyclones to the atmospheric components on the Mediterranean Sea Water Budget, namely the cyclones contribution to precipitation and evaporation over the Mediterranean Sea. Three regional simulations were performed with the WRF model for the period 1989-2008. The model was run (1) as a standalone model, (2) coupled with the oceanic model NEMO-MED12 and (3) forced by the smoothed Sea Surface Temperature (SST) fields from the second simulation. Cyclones were tracked in all simulations, and their contribution to the total rainfall and evaporation was quantified. Results show that cyclones are mainly associated with extreme precipitation, representing more than 50 % of the annual rainfall over the Mediterranean Sea. On the other hand, we found that cyclone-induced evaporation represents only a small fraction of the annual total, except in winter, when the most intense Mediterranean cyclones take place. Despite the significant contribution of cyclones to rainfall, our results show that there is a balance between cyclone-induced rainfall and evaporation, suggesting a weak net impact of cyclones on the Mediterranean Sea water budget. The sensitivity of our results with respect to rapid SST changes during the development of cyclones was also investigated. Both rainfall and evaporation are affected in correlation with the SST response to the atmosphere. In fact, air feedbacks to the Mediterranean Sea during the cyclones occurrence were shown to cool down the SST and consequently to reduce rainfall and evaporation at the proximity of cyclone centers.

  9. Cyclone IV拓展Altera低成本Cyclone FPGA系列

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ 基于60nm工艺的Cyclone IV FPGA是在现有Cyclone系列FPGA基础上的扩展.cycIone IV FPGA由两个子系列组成,一是Cyclone IV GX FPGA,它是带收发器的低成本、低功耗FPGA且支持业界主流的协议规范;另一款是内核电压1.0的Cyclone IV E FPGA,不含收发器但具有更低成本和功耗.

  10. Tropical Cyclones in the GISS ModelE2

    Science.gov (United States)

    Camargo, Suzana J.; Sobel, Adam H.; Del Genio, Anthony; Jonas, Jeffrey A.; Kelley, Maxwell; Lu, Yun; Shaevitz, Daniel; Henderson, Naomi

    2016-01-01

    The authors describe the characteristics of tropical cyclone (TC) activity in the GISS general circulation ModelE2 with a horizontal resolution 1deg x 1deg. Four model simulations are analyzed. In the first, the model is forced with sea surface temperature (SST) from the recent historical climatology. The other three have different idealized climate change simulations, namely (1) a uniform increase of SST by 2 deg., (2) doubling of the CO2 concentration and (3) a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealized climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analyzed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.

  11. Tropical Cyclones in the GISS ModelE2

    Science.gov (United States)

    Camargo, Suzana J.; Sobel, Adam H.; Del Genio, Anthony; Jonas, Jeffrey A.; Kelley, Maxwell; Lu, Yun; Shaevitz, Daniel; Henderson, Naomi

    2016-01-01

    The authors describe the characteristics of tropical cyclone (TC) activity in the GISS general circulation ModelE2 with a horizontal resolution 1deg x 1deg. Four model simulations are analyzed. In the first, the model is forced with sea surface temperature (SST) from the recent historical climatology. The other three have different idealized climate change simulations, namely (1) a uniform increase of SST by 2 deg., (2) doubling of the CO2 concentration and (3) a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealized climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analyzed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.

  12. Tropical cyclones in the GISS ModelE2

    Directory of Open Access Journals (Sweden)

    Suzana J. Camargo

    2016-07-01

    Full Text Available The authors describe the characteristics of tropical cyclone (TC activity in the GISS general circulation ModelE2 with a horizontal resolution 1°×1°. Four model simulations are analysed. In the first, the model is forced with sea surface temperature (SST from the recent historical climatology. The other three have different idealised climate change simulations, namely (1 a uniform increase of SST by 2 degrees, (2 doubling of the CO2 concentration and (3 a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealised climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analysed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.

  13. Does it make sense to modify tropical cyclones? A decision-analytic assessment.

    Science.gov (United States)

    Klima, Kelly; Morgan, M Granger; Grossmann, Iris; Emanuel, Kerry

    2011-05-15

    Recent dramatic increases in damages caused by tropical cyclones (TCs) and improved understanding of TC physics have led DHS to fund research on intentional hurricane modification. We present a decision analytic assessment of whether it is potentially cost-effective to attempt to lower the wind speed of TCs approaching South Florida by reducing sea surface temperatures with wind-wave pumps. Using historical data on hurricanes approaching South Florida, we develop prior probabilities of how storms might evolve. The effects of modification are estimated using a modern TC model. The FEMA HAZUS-MH MR3 damage model and census data on the value of property at risk are used to estimate expected economic losses. We compare wind damages after storm modification with damages after implementing hardening strategies protecting buildings. We find that if it were feasible and properly implemented, modification could reduce net losses from an intense storm more than hardening structures. However, hardening provides "fail safe" protection for average storms that might not be achieved if the only option were modification. The effect of natural variability is larger than that of either strategy. Damage from storm surge is modest in the scenario studied but might be abated by modification.

  14. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    Science.gov (United States)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  15. Quality control of AIRS total column ozone data within tropical cyclones

    Science.gov (United States)

    Liu, Yin; Zou, Xiaolei

    2016-06-01

    The Atmospheric Infrared Sounder (AIRS) provides infrared radiance observations twice daily, which can be used to retrieve total column ozone with high spatial resolution. However, it was found that almost all of the ozone data within typhoons and hurricanes were flagged to be of bad quality by the AIRS original quality control (QC) scheme. This determination was based on the ratio of total precipitable water (TPW) error divided by TPW value, where TPW was an AIRS retrieval product. It was found that the difficulty in finding total column ozone data that could pass AIRS QC was related to the low TPWemployed in the AIRS QC algorithm. In this paper, a new two-step QC scheme for AIRS total column ozone is developed. A new ratio is defined which replaces the AIRS TPW with the zonal mean TPW retrieved from the Advanced Microwave Sounding Unit. The first QC step is to remove outliers when the new ratio exceeds 33%. Linear regression models between total column ozone and mean potential vorticity are subsequently developed with daily updates, which are required for future applications of the proposed total ozone QC algorithm to vortex initialization and assimilation of AIRS data. In the second QC step, observations that significantly deviate from the models are further removed using a biweighting algorithm. Numerical results for two typhoon cases and two hurricane cases show that a large amount of good quality AIRS total ozone data is kept within Tropical Cyclones after implementing the proposed QC algorithm.

  16. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    Science.gov (United States)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  17. Water security and societal impacts of tropical cyclones in northwestern Mexico, 1970-2010

    Science.gov (United States)

    Scott, C. A.; Farfan, L.

    2012-12-01

    Hydroclimatic variability is one of several potential threats to water security, defined as sustainable quantities and qualities of water for resilient societies and ecosystems in the face of uncertain global environmental change. Other threats can stem from human dimensions of global change, e.g., long-distance trade of water-intensive agricultural commodities or pollution resulting from industrial production and mining in response to rising global market demand. Drought and water scarcity are considered the principal, chronic, hydroclimatic drivers of water insecurity in arid and semi-arid regions. In these conditions, however, rainfall is both the water-supply lifeline and, in extreme events, the cause of flood hazard. In this study, we consider the monsoon-dominated Pacific coast of Mexico and assess the human impacts from tropical cyclone landfall over the past four decades (1970-2010). Storm data from the U.S. National Hurricane Center, rainfall reports from Mexico's National Meteorological Service, and indicators from an international disaster database at Belgium's Université Catholique de Louvain are used to assess the impacts of more than 30 landfall events. For the ten events with the greatest population impact, between 20,000 to 800,000 people were affected by each landfalling cyclone. Strong winds and heavy rainfall, particularly when sustained over periods of 1-3 days, result in significant property damage and loss of life. Results indicate that, in densely populated areas, excessive rainfall accumulations and high daily rates are important causes of cyclone disasters. Strengthening water security associated with extreme events requires planning via structured exchanges between scientists and decision-makers. Adaptive management that accounts for uncertainties, initiates responses, and iteratively assesses outcomes is the thrust of an emerging water-security initiative for the arid Americas that seeks to strengthen water security in northwestern

  18. Extreme winter cyclones and the extinction of a reindeer population (Invited)

    Science.gov (United States)

    Walsh, J. E.; Klein, D. R.; Shulski, M.

    2009-12-01

    While strong cyclones are not unusual are not unusual in the subpolar North Pacific storm track, an exceptional series of storm events in early 1964 decimated the reindeer population of St. Matthew Island in the central Bering Sea. This case illustrates how severe winter storms can lead to species extinction when overpopulated species are restricted to islands or fractured habitats where dispersal is not an option. The strongest storm occurred in early February when a surface low pressure system that originated over the warm waters offshore of Japan tracked eastward from the warm waters offshore of Japan. The intensification of the low then accelerated as the storm approached the Aleutians, where the central pressure decreased to 957 hPa, a pressure typical of Category 3 hurricanes. The track and intensity of the low were such that St. Matthew Island was in the storm’s northwest quadrant during the peak-intensity phase. The pressure difference between the intense cyclone and the Siberian high exceeded 100 hPa -- a pressure difference between these two locations that was the largest in the entire 60-year period of the NCEP reanalysis. This record pressure difference led to extremely strong northerly winds that brought bitterly cold arctic air over St. Matthew Island, which was in the storm’s northwest quadrant. The wind chill temperature dropped to -50°C and remained colder than -40°C almost continuously for a full week. In this presentation, we examine the storm’s evolution and place the winter of early 1964 into the context of the historical cyclone climatological of the North Pacific.

  19. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  20. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies >/~0.1 Hz, but only when the horizontal grid spacing >/~20 m.

  1. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    Science.gov (United States)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2017-03-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  2. Tropical cyclones in a year of rising global temperatures and a strengthening El Niño

    Science.gov (United States)

    Shultz, James M; Shepherd, J Marshall; Bagrodia, Rohini; Espinel, Zelde

    2014-01-01

    The year 2015 is notable for the coincidence of several strong climate indicators that having bearing on the occurrence and intensity of tropical cyclones worldwide. This year, 2015, is clearly on track to become the warmest on record in terms of global temperatures. During the latter half of 2015, a very strong El Niño has formed and is predicted to build impressively, perhaps rivaling the memorable El Niño of 1997/1998. Warm Pacific Ocean temperatures, coupled with a strengthening El Niño, have supported the proliferation of Western North Pacific basin typhoons and Eastern/Central North Pacific Hurricanes. Most notable among these, Hurricane Patricia formed on October 20, 2015 and experienced extremely rapid intensification to become the strongest hurricane in the history of the Western Hemisphere and then weakened just as abruptly before dissipating on October 24, 2015. Rather than an aberration, these climate patterns of 2015 represent an ongoing trend with implications for the disaster health of coastal populations worldwide. PMID:28229010

  3. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  4. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  5. 78 FR 31614 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2013-05-24

    ....221 on Design-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION... guidance regarding the application of Regulatory Guide (RG) 1.221, ``Design-Basis Hurricane and Hurricane... ML13015A688 Interim Staff Guidance-024 on Implementation of Regulatory Guide 1.221 on Design-Basis...

  6. Hurricane Katrina and perinatal health.

    Science.gov (United States)

    Harville, Emily W; Xiong, Xu; Buekens, Pierre

    2009-12-01

    We review the literature on the effects of Hurricane Katrina on perinatal health, and providing data from our own research on pregnant and postpartum women. After Katrina, obstetric, prenatal, and neonatal care was compromised in the short term, but increases in adverse birth outcomes such as preterm birth, low birthweight, and maternal complications were mostly limited to highly exposed women. Both pregnant and postpartum women had rates of post-traumatic stress disorder similar to, or lower than, others exposed to Katrina, and rates of depression similar to other pregnant and postpartum populations. Health behaviors, such as smoking and breastfeeding, may have been somewhat negatively affected by the disaster, whereas effects on nutrition were likely associated with limited time, money, and food choices, and indicated by both weight gain and loss. We conclude that, with a few specific exceptions, postdisaster concerns and health outcomes for pregnant and postpartum women were similar to those of other people exposed to Hurricane Katrina. In such situations, disaster planners and researchers should focus on providing care and support for the normal concerns of the peripartum period, such as breastfeeding, depression, and smoking cessation. Contraception needs to be available for those who do not want to become pregnant. Although additional physical and mental health care needs to be provided for the most severely exposed women and their babies, many women are capable of surviving and thriving in postdisaster environments.

  7. On the dynamics of synoptic scale cyclones associated with flood events in Crete

    Science.gov (United States)

    Flocas, Helena; Katavoutas, George; Tsanis, Ioannis; Iordanidou, Vasiliki

    2015-04-01

    Flood events in the Mediterranean are frequently linked to synoptic scale cyclones, although topographical or anthropogenic factors can play important role. The knowledge of the vertical profile and dynamics of these cyclones can serve as a reliable early flood warning system that can further help in hazard mitigation and risk management planning. Crete is the second largest island in the eastern Mediterranean region, being characterized by high precipitation amounts during winter, frequently causing flood events. The objective of this study is to examine the dynamic and thermodynamic mechanisms at the upper and lower levels responsible for the generation of these events, according to their origin domain. The flooding events were recorded for a period of almost 20 years. The surface cyclones are identified with the aid of MS scheme that was appropriately modified and extensively employed in the Mediterranean region in previous studies. Then, the software VTS, specially developed for the Mediterranean cyclones, was employed to investigate the vertical extension, slope and dynamic/kinematic characteristics of the surface cyclones. Composite maps of dynamic/thermodynamic parameters, such as potential vorticity, temperature advection, divergence, surface fluxes were then constructed before and during the time of the flood. The dataset includes 6-hourly surface and isobaric analyses on a 0.5° x 0.5° regular latitude-longitude grid, as derived from the ERA-INTERIM Reanalysis of the ECMWF. It was found that cyclones associated with flood events in Crete mainly generate over northern Africa or southern eastern Mediterranean region and experience their minimum pressure over Crete or southwestern Greece. About 84% of the cyclones extend up to 500hPa, demonstrating that they are well vertically well-organized systems. The vast majority (almost 84%) of the surface cyclones attains their minimum pressure when their 500 hpa counterparts are located in the NW or SW, confirming

  8. A metastatistical approach to modelling extreme hurricane intensities

    Science.gov (United States)

    Hosseini, Seyed Reza; Marani, Marco; Scaioni, Marco

    2017-04-01

    Estimating the probability of occurrence of extreme hurricane intensities is significant in a vast number of fields and plays a crucial role in hurricane risk assessment. The method typically employed for these analyses applies traditional Extreme Value Theory (EVT) to fit the Generalize Extreme Value Distribution (GEVD) to hurricane maximum wind speed. In this framework, an asymptotic regime or a Poisson occurrence process are assumed to derive the GEVD, which is fitted using values over a high threshold or yearly maxima. However, the relative rarity of hurricanes implies that the number of events per year is not nearly sufficient for this asymptotic hypothesis to be valid, and the selection of a subset of the events drastically reduces the amount of information used. To overcome this limitation, we apply an alternative approach based on the Metastatistical Extreme Value Distribution (MEVD) to extreme hurricane intensity analyses. The derivation of the MEVD relaxes the limiting assumption of the traditional EVT, by taking into account the distribution of the entire range of recorded event magnitudes, rather than just the distributional tail. Taking advantage of this method, we can use the entire observational set, including hurricanes with relatively lower intensities, with clear statistical advantages. We comparatively assess the MEVD and the classical EVT quantile estimation uncertainties using the 130-year long Maximum Sustained Wind (MSW) speed time series for all hurricanes in the north Atlantic basin obtained from the National Hurricane Center (Atlantic HURDAT2). The parameters of the GEVD are estimated using a range of methods to ensure an optimal estimator is found. The MEVD is fitted assuming a Generalize Pareto Distribution (GPD) for the "ordinary" values of MSW over 5- to 10-year blocks using Probability Weighted Moments (PWM). The statistical tests are performed by dividing the dataset (of length L) into two distinct parts: S years for calibration and

  9. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  10. Physical attributes of hurricane surges and their role in surge warning

    Science.gov (United States)

    Irish, J. L.

    2012-12-01

    In the last decade, the US has experienced some of its largest surges and hurricane-related damages on record. Effective evacuation in advance of a hurricane strike requires accurate estimation of the hurricane surge hazard that effectively conveys risk not only to government decision makers but also to the general public. Two primary challenges exist with the current structure for surge warning. First, existing computational methods for developing accurate, quantitative surge forecasts, namely surge height and inundation estimation, are limited by time and computational resources. Second, due primarily to the popularity and wide use of the Saffir-Simpson wind scale to convey the complete hurricane hazard, the public's perception of surge hazard is inaccurate. Here, we use dimensionless scaling and hydrodynamics arguments to quantify the influence of hurricane variables and regional geographic characteristics on the surge response. It will be shown that hurricane surge primarily scales with the hurricane's central pressure, and size and with continental shelf width at the landfall location (Irish et al. 2009, Nat. Haz.; Song et al. in press, Nat. Haz.). Secondary influences include the hurricane's forward speed and path. The developed physical scaling is applied in two ways: (1) as a means for expanding the utility of computational simulations for real-time surge height forecasting and (2) as a means to convey relative surge hazard via a readily evaluated algebraic surge scale. In the first application, the use of this physical scaling to develop surge response functions (SRF) enables instantaneous algebraic calculation of maximum surge height at any location of interest for any hurricane meteorological condition, without loss of accuracy gained via high-resolution computational simulation. When coupled with joint probability statistics, the use of SRFs enables rapid development of continuous probability density functions for probabilistic surge forecasting (Irish

  11. Personality diatheses and Hurricane Sandy: effects on post-disaster depression

    Science.gov (United States)

    Kopala-Sibley, D. C.; Kotov, R.; Bromet, E. J.; Carlson, G. A.; Danzig, A. P.; Black, S. R.; Klein, D. N.

    2015-01-01

    Background According to diathesis–stress models, personality traits, such as negative emotionality (NE) and positive emotionality (PE), may moderate the effects of stressors on the development of depression. However, relatively little empirical research has directly examined whether NE and PE act as diatheses in the presence of stressful life events, and no research has examined whether they moderate the effect of disaster exposure on depressive symptoms. Hurricane Sandy, the second costliest hurricane in US history, offers a unique opportunity to address these gaps. Method A total of 318 women completed measures of NE and PE 5 years prior to Hurricane Sandy. They were also assessed for lifetime depressive disorders on two occasions, the latter occurring an average of 1 year before the hurricane. Approximately 8 weeks after the disaster (mean = 8.40, s.d. = 1.48 weeks), participants completed a hurricane stress exposure questionnaire and a measure of current depressive symptoms. Results Adjusting for lifetime history of depressive disorders, higher levels of stress from Hurricane Sandy predicted elevated levels of depressive symptoms, but only in participants with high levels of NE or low levels of PE. Conclusions These findings support the role of personality in the development of depression and suggest that personality traits can be useful in identifying those most vulnerable to major stressors, including natural disasters. PMID:26619902

  12. The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event

    Science.gov (United States)

    Bosart, L. F.; Turchioe, A.; Adamchcik, E.

    2013-12-01

    indicative of the enhanced baroclinicity and instability in the cyclone warm sector and the ability of lower tropospheric warm-air advection to sustain deep ascent in the intensifying cyclone. The relative importance of dynamical versus thermodynamical forcing to the cyclogenesis process as well as the bulk upscale effects of the intense cyclone on the larger scale higher-latitude circulation and the distribution of sea ice will be discussed. A noteworthy aspect of the post-storm polar environment was the upscale growth of a midlevel cyclonic circulation to include most of the Arctic Ocean. The off-pole displacement of this midlevel cyclonic circulation toward northern Canada by mid-August may have contributed to the termination of the 2012 summer-long intensive heat wave over most of the continental United States.

  13. Investigating the Eco-Hydrological Impact of Tropical Cyclones in the Southeastern United States

    Science.gov (United States)

    Brun, Julien

    Tropical Cyclones (TCs) intensity and frequency are expected to be impacted by climate change. Despite their destructive potential, these phenomena, which can produce heavy precipitation, are also an important source of freshwater. Therefore any change in frequency, seasonal timing and intensity of TCs is expected to strongly impact the regional water cycle and consequently the freshwater availability and distribution. This is critical, due to the fact that freshwater resources in the US are under stress due to the population growth and economic development that increasingly create more demands from agricultural, municipal and industrial uses, resulting in frequent over-allocation of water resources. In this study we concentrate on monitoring the impact of hurricanes and tropical storms on vegetation activity along their terrestrial tracks and investigate the underlying physical processes. To characterize and monitor the spatial organization and time of recovery of vegetation disturbance in the aftermath of major hurricanes over the entire southeastern US, a remote sensed framework based on MODIS enhanced vegetation index (EVI) was developed. At the SE scale, this framework was complemented by a water balance approach to estimate the variability in hurricane groundwater recharge capacity spatially and between events. Then we investigate the contribution of TCs (season totals and event by event) to the SE US annual precipitation totals from 2002 to 2011. A water budget approach applied at the drainage basins scale is used to investigate the partitioning of TCs' precipitation into surface runoff and groundwater system in the direct aftermath of major TCs. This framework allows exploring the contribution of TCs to annual precipitation totals and the consequent recharge of groundwater reservoirs across different physiographic regions (mountains, coastal and alluvial plains) versus the fraction that is quickly evacuated through the river network and surface runoff. Then

  14. County-level hurricane exposure and birth rates: application of difference-in-differences analysis for confounding control.

    Science.gov (United States)

    Grabich, Shannon C; Robinson, Whitney R; Engel, Stephanie M; Konrad, Charles E; Richardson, David B; Horney, Jennifer A

    2015-01-01

    Epidemiological analyses of aggregated data are often used to evaluate theoretical health effects of natural disasters. Such analyses are susceptible to confounding by unmeasured differences between the exposed and unexposed populations. To demonstrate the difference-in-difference method our population included all recorded Florida live births that reached 20 weeks gestation and conceived after the first hurricane of 2004 or in 2003 (when no hurricanes made landfall). Hurricane exposure was categorized using ≥74 mile per hour hurricane wind speed as well as a 60 km spatial buffer based on weather data from the National Oceanic and Atmospheric Administration. The effect of exposure was quantified as live birth rate differences and 95 % confidence intervals [RD (95 % CI)]. To illustrate sensitivity of the results, the difference-in-differences estimates were compared to general linear models adjusted for census-level covariates. This analysis demonstrates difference-in-differences as a method to control for time-invariant confounders investigating hurricane exposure on live birth rates. Difference-in-differences analysis yielded consistently null associations across exposure metrics and hurricanes for the post hurricane rate difference between exposed and unexposed areas (e.g., Hurricane Ivan for 60 km spatial buffer [-0.02 births/1000 individuals (-0.51, 0.47)]. In contrast, general linear models suggested a positive association between hurricane exposure and birth rate [Hurricane Ivan for 60 km spatial buffer (2.80 births/1000 individuals (1.94, 3.67)] but not all models. Ecological studies of associations between environmental exposures and health are susceptible to confounding due to unmeasured population attributes. Here we demonstrate an accessible method of control for time-invariant confounders for future research.

  15. Procedures manual for the recommended ARB (Air Resources Board) sized chemical sample method (cascade cyclones)

    Energy Technology Data Exchange (ETDEWEB)

    McCain, J.D.; Dawes, S.S.; Farthing, W.E.

    1986-05-01

    The report is Attachment No. 2 to the Final Report of ARB Contract A3-092-32 and provides a tutorial on the use of Cascade (Series) Cyclones to obtain size-fractionated particulate samples from industrial flue gases at stationary sources. The instrumentation and procedures described are designed to protect the purity of the collected samples so that post-test chemical analysis may be performed for organic and inorganic compounds, including instrumental analysis for trace elements. The instrumentation described collects bulk quantities for each of six size fractions over the range 10 to 0.4 micrometer diameter. The report describes the operating principles, calibration, and empirical modeling of small cyclone performance. It also discusses the preliminary calculations, operation, sample retrieval, and data analysis associated with the use of cyclones to obtain size-segregated samples and to measure particle-size distributions.

  16. Transformative experiences for Hurricanes Katrina and Rita disaster volunteers.

    Science.gov (United States)

    Clukey, Lory

    2010-07-01

    The massive destruction caused by Hurricanes Katrina and Rita in 2005 provided an opportunity for many volunteers to be involved with disaster relief work. Exposure to devastation and personal trauma can have long-lasting and sometimes detrimental effects on people providing help. This qualitative study explored the experience of volunteer relief workers who provided disaster relief services after the hurricanes. Three major themes emerged: emotional reactions that included feelings of shock, fatigue, anger and grief as well as sleep disturbances; frustration with leadership; and life-changing personal transformation. Stress reactions were noted but appeared to be mitigated by feelings of compassion for the victims and personal satisfaction in being able to provide assistance. Suggestions are provided for further research.

  17. Trends Analyses for Several Factors Affected by Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Md. T. Islam

    2011-01-01

    Full Text Available Problem statement: This study presents an analytical investigation for the trends of several factors such as number of death of peoples, damages of wealth, flood surge heights, wind speed and radius of the severe storm due to tropical cyclones in Bangladesh. Approach: The study is performed by conducting the field visits to cyclone site, collected data and information on damages and deaths of peoples during field visits, necessary data related to tropical cyclones obtained from available publications and news-study. The data since the period of the independence of Bangladesh (nearly 40 years are analyzed. Results: The analyses showed that the 17 major cyclones have been occurred since 1970. Among these 17 major cyclones, the 5 cyclones were tragically severe that killed over 400 thousand peoples. It is observed that the coast of the Bay of Bengal is particularly vulnerable to tropical cyclones. It is revealed that Bangladesh is more vulnerable to devastating cyclones in the recent years because the frequency of the severe cyclones has increased remarkably. Conclusion/Recommendation: The return period of the major cyclones was decreased drastically in recent years and the country, especially, the Bengal Bay is predominantly helpless during the cyclone seasons.

  18. Variations in Extratropical Cyclone Activity in Northern East Asia

    Institute of Scientific and Technical Information of China (English)

    WANG Xinmin; ZHAI Panmao; WANG Cuicui

    2009-01-01

    Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958-2001. The results reveal that extratropical cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropical cyclones shows that cyclones occur mainly within the 40°-50°N latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropical cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958-2001, but dccadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroclinic frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroclinic frontal zone on either side of 110°E.

  19. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    Science.gov (United States)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  20. Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean

    Science.gov (United States)

    Jangir, B.; Swain, D.; Udaya Bhaskar, T. V. S.

    2016-05-01

    Ocean Heat Content (OHC) plays a significant role in modulating the intensity of Tropical Cyclones (TC) in terms of the oceanic energy available to TCs. TC Heat Potential (TCHP), an estimate of OHC, is thus known to be a useful indicator of TC genesis and intensification. In the present study, we analyze the role of TCHP in intensification of TCs in the North Indian Ocean (NIO) through statistical comparisons between TCHP and Cyclone Intensities (CI). A total of 27 TCs (20 in the Bay of Bengal, and 7 in the Arabian Sea) during the period 2005-2012 have been analyzed using TCHP data from Global Ocean Data Assimilation System (GODAS) model of Indian National Center for Ocean Information Services and cyclone best track data from India Meteorological Department. Out of the 27 cyclones analyzed, 58% (86%) in the Bay (Arabian Sea) have negative correlation and 42% (14%) cyclones have positive correlation between CI and TCHP. On the whole, more than 60% cyclones in the NIO show negative correlations between CI and TCHP. The negative percentage further increases for TCHP leading CI by 24 and 48 hours. Similar trend is also seen with satellite derived TCHP data obtained from National Remote Sensing Center and TC best track data from Joint Typhoon Warming Centre. Hence, it is postulated that TCHP alone need not be the only significant oceanographic parameter, apart from sea surface temperature, responsible for intensification and propagation of TCs in the NIO.

  1. Submesoscale cyclones in the Agulhas Current

    CSIR Research Space (South Africa)

    Krug, Marjolaine

    2017-01-01

    Full Text Available a period of 1 month provide the first high resolution observations of the Agulhas Current’s inshore front. The observations collected in a non-meandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore...

  2. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  3. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones

    Science.gov (United States)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June

  4. Modes of hurricane activity variability in the eastern Pacific: Implications for the 2016 season

    Science.gov (United States)

    Boucharel, Julien; Jin, Fei-Fei; England, Matthew H.; Lin, I. I.

    2016-11-01

    A gridded product of accumulated cyclone energy (ACE) in the eastern Pacific is constructed to assess the dominant mode of tropical cyclone (TC) activity variability. Results of an empirical orthogonal function decomposition and regression analysis of environmental variables indicate that the two dominant modes of ACE variability (40% of the total variance) are related to different flavors of the El Niño-Southern Oscillation (ENSO). The first mode, more active during the later part of the hurricane season (September-November), is linked to the eastern Pacific El Niño through the delayed oceanic control associated with the recharge-discharge mechanism. The second mode, dominant in the early months of the hurricane season, is related to the central Pacific El Niño mode and the associated changes in atmospheric variability. A multilinear regression forecast model of the dominant principal components of ACE variability is then constructed. The wintertime subsurface state of the eastern equatorial Pacific (characterizing ENSO heat discharge), the east-west tilt of the thermocline (describing ENSO phase transition), the anomalous ocean surface conditions in the TC region in spring (portraying atmospheric changes induced by persistence of local surface anomalies), and the intraseasonal atmospheric variability in the western Pacific are found to be good predictors of TC activity. Results complement NOAA's official forecast by providing additional spatial and temporal information. They indicate a more active 2016 season ( 2 times the ACE mean) with a spatial expansion into the central Pacific associated with the heat discharge from the 2015/2016 El Niño.

  5. Hurricanes

    Science.gov (United States)

    ... spawn tornadoes and lead to flooding. The high winds and heavy rains can destroy buildings, roads and bridges, and knock down power lines and trees. In coastal areas, very high tides called storm ...

  6. Hurricanes

    Science.gov (United States)

    ... Awareness Human Trafficking Awareness Month Holiday Stress Homeless Youth Awareness Month Bullying Prevention Domestic Violence Awareness Month Suicide Prevention Month/World Suicide Day Sept. 11th National ...

  7. Hurricane Katrina - Murphy Oil Spill Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  8. Hurricane Sandy science plan: New York

    Science.gov (United States)

    Ransom, Clarice N.

    2013-01-01

    Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. More than one-half of the U.S. population lives within 50 miles of a coast, and this number is increasing. The U.S. Geological Survey (USGS) is one of the largest providers of geologic and hydrologic information in the world. Federal, State, and local partners depend on the USGS science to know how to prepare for hurricane hazards and reduce losses from future hurricanes. The USGS works closely with other bureaus within the Department of the Interior, the Federal Emergency Management Agency, the National Oceanic Atmospheric Administration, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and many State and local agencies to identify their information needs before, during, and after hurricanes.

  9. Final Gulf Coast Hurricanes Situation Report #46

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-01-26

    According to Entergy New Orleans, electricity has been restored to the vast majority of residents and businesses in the city, except in a few isolated areas that sustained severe devastation from Hurricane Katrina.

  10. Hurricane Irene Poster (August 27, 2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Irene poster. Color composite GOES image shows Irene moving through the North Carolina Outer Banks on August 27, 2011. Poster size is 36"x27"

  11. Forecasting OctoberNovember Caribbean hurricane days

    National Research Council Canada - National Science Library

    Philip J. Klotzbach

    2011-01-01

      Late season Caribbean hurricane activity is predictable ENSO and the AWP show skill as predictors for OctNov Caribbean activity OctoberNovember Caribbean activity can significantly impact the US...

  12. Hurricane Katrina - Murphy Oil Spill Boundary

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  13. Hurricane Matthew Takes Aim At Florida

    Science.gov (United States)

    ... plan for adequate supplies in case you lose power and water for several days and you are not able to leave due to flooding or blocked roads. Hurricane winds can cause trees and branches to fall, so trim or remove ...

  14. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined....... There is a good agreement between the SAR-estimated HE center location and the best track data from the National Hurricane Center. The wind speeds at 10 m above the ocean surface are also retrieved from the SAR data using the geophysical model function (GMF), CMOD5, and compared with in situ wind speed...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  15. Development of an Expert System Based on the Systematic Approach To Tropical Cyclone Track Forecasting

    Science.gov (United States)

    2016-06-07

    The conceptual methodology for accomplishing these goals is the Systematic Approach to Tropical Cyclone Track Forecasting (hereafter Systematic...and Elsberry (1999) is shown in Table 1, and includes some significant changes compared to the preliminary result shown in last year’s report. An

  16. Hurricane Sandy washover deposits on Fire Island, New York

    Science.gov (United States)

    La Selle, SeanPaul M.; Lunghino, Brent D.; Jaffe, Bruce E.; Gelfenbaum, Guy; Costa, Pedro J.M.

    2017-02-16

    Washover deposits on Fire Island, New York, from Hurricane Sandy in 2012 were investigated a year after the storm to document the sedimentary characteristics of hurricane washover features. Sediment data collected in the field includes stratigraphic descriptions and photos from trenches, bulk sediment samples, U-channels, and gouge and push cores. Samples and push cores were further analyzed in the laboratory for grain size, density variations using x-ray computed tomography (CT), and surface microtexture using a scanning electron microscope (SEM). Elevation profiles of washover features were measured using Differential Global Positioning System (DGPS) with Real Time Kinematic processing. The DGPS elevations were compared to lidar (light detection and ranging) data from pre- and post-Sandy surveys to assess the degree to which washover deposit thicknesses changed within the year following deposition. Hurricane Sandy washover deposits as much as 1 meter thick were observed in trenches. Initial results show that the upper parts of the deposits have been reworked significantly in some places by wind, but there are still areas where the deposits are almost entirely intact. Where mostly intact, the washover deposits consist of massive or weakly laminated sand near the base, overlain by more strongly laminated sands.

  17. Drag Coefficient and Foam in Hurricane Conditions.

    Science.gov (United States)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  18. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  19. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Roger Beeden

    Full Text Available Full recovery of coral reefs from tropical cyclone (TC damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second within the Great Barrier Reef Marine Park (GBRMP. Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale, TC Yasi (February, 2011 was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3 and reef structural damage (4, 5. Average damage severity was significantly affected by direction (north vs south of the cyclone track, reef shelf position (mid-shelf vs outer-shelf and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km. Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2 of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2 sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  20. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    Science.gov (United States)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on

  1. Effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii determined by acoustic telemetry.

    Science.gov (United States)

    Kawabata, Y; Okuyama, J; Asami, K; Okuzawa, K; Yoseda, K; Arai, N

    2010-08-01

    The effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii were examined using acoustic telemetry. Nine fish were released in Urasoko Bay, Ishigaki Island, Japan, in September 2006, and another nine were released in June to July 2007, before a cyclone's passing through the area in September 2007. Data for the fish released in 2006 were used as the cyclone-inexperienced group to compare their distribution pattern to that of the 2007 cyclone-experienced group. Both groups of fish were monitored for up to 150 days. Of the nine fish in each group, four (44%) and two (22%) were monitored for over 150 days in the cyclone-inexperienced and the cyclone-experienced groups, respectively. Three of the five fish that had settled in the monitoring area left the area within a few days of the cyclone event. To estimate the time of disappearance of the fish, maximum wind speed during a period of 7 days (indicating the occurrence and intensity of the tropical cyclone), fish size and release year were evaluated as explanatory variables using a Cox proportional hazards model with Akaike's information criterion. The best predictive model included the effect of maximum wind speed. One fish that left the monitoring area displayed movement patterns related to strong winds, suggesting that wind-associated strong currents swept the fish away. No relationships were found between the movement patterns of the other two fish and any physical environmental data. The daily detection periods of one of the two fish gradually decreased after the cyclone hit, and this fish eventually left the monitoring area within 3 days, suggesting that it shifted to a habitat outside the monitoring area. These results indicate that tropical cyclones have both direct and indirect effects on the distribution of hatchery-reared C. schoenleinii.

  2. Tropical Cyclone Interactions Within Central American Gyres

    Science.gov (United States)

    Papin, P. P.; Bosart, L. F.; Torn, R. D.

    2014-12-01

    Central American gyres (CAGs) are broad (~1000 km diameter) low-level cyclonic circulations that organize over Central America during the tropical cyclone (TC) season. While CAGs have rarely been studied, prior work on similar circulations has been conducted on monsoon depressions (MDs) and monsoon gyres (MGs), which possess spatial scales of 1000 - 2500 km in the west Pacific basin. A key difference between MDs and MGs is related to the organization of vorticity around the low-level circulation. MDs possess a symmetrical vorticity pattern where vorticity accumulates near the circulation center over time, occasionally developing into a large TC. In contrast, MGs possess asymmetrical vorticity, organized in mesovorticies, which rotate cyclonically along the periphery of the MG circulation. Small tropical cyclones (TCs) occasionally develop from these mesovorticies. Interaction and development of TCs within CAGs are also common, as noted by a CAG identified during the 2010 PREDICT field project, which involved the interaction of TC Matthew and the development of TC Nicole within the larger CAG. This project is motivated by the lack of prior research on CAGs, as well as the complex scale interactions that occasionally occur between TCs and CAGs. This presentation focuses on the mutual interaction of vortices embedded in the larger-scale cyclonic flow comprising the CAG circulation. Case studies will be presented using a circulation framework to illustrate the relationship between different scale vorticity elements within the CAG. Some of these case studies resemble a MD-like evolution, where a large TC develops through the accumulation of symmetrical vorticity around the CAG (e.g. TC Opal 1995, TC Frances 1998). Other instances resemble a MG-like evolution, where smaller mesovorticies rotate around a common circulation center (e.g. TC Florence 1988). The circulation analysis framework aids in the diagnosis of interaction between different scale cyclonic vortices, and

  3. Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors.

    Science.gov (United States)

    McRoberts, D Brent; Quiring, Steven M; Guikema, Seth D

    2016-10-25

    Tropical cyclones can significantly damage the electrical power system, so an accurate spatiotemporal forecast of outages prior to landfall can help utilities to optimize the power restoration process. The purpose of this article is to enhance the predictive accuracy of the Spatially Generalized Hurricane Outage Prediction Model (SGHOPM) developed by Guikema et al. (2014). In this version of the SGHOPM, we introduce a new two-step prediction procedure and increase the number of predictor variables. The first model step predicts whether or not outages will occur in each location and the second step predicts the number of outages. The SGHOPM environmental variables of Guikema et al. (2014) were limited to the wind characteristics (speed and duration of strong winds) of the tropical cyclones. This version of the model adds elevation, land cover, soil, precipitation, and vegetation characteristics in each location. Our results demonstrate that the use of a new two-step outage prediction model and the inclusion of these additional environmental variables increase the overall accuracy of the SGHOPM by approximately 17%.

  4. Impact of 4DVAR Assimilation of AIRS Total Column Ozone Observations on the Simulation of Hurricane Earl

    Institute of Scientific and Technical Information of China (English)

    刘寅; 邹晓蕾

    2015-01-01

    The Atmospheric Infrared Sounder (AIRS) provides twice-daily global observations of brightness tem-perature, which can be used to retrieve the total column ozone with high spatial and temporal resolution. In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional vari-ational (4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity (PV), the observation operator of each level is established and fi ve levels with highest correlation coeffi cients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation aff ects the PV distributions with more mesoscale information at high levels fi rst and then infl uences those at middle and low levels through the so-called asymmetric penetration of PV anomalies. With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensifi ed, resulting in the improvement of other fi elds near the hurricane center. The track prediction is improved mainly due to adjustment of the steering fl ows in the assimilation experiment.

  5. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  6. Economic losses from US hurricanes consistent with an influence from climate change

    Science.gov (United States)

    Estrada, Francisco; Botzen, W. J. Wouter; Tol, Richard S. J.

    2015-11-01

    Warming of the climate system and its impacts on biophysical and human systems have been widely documented. The frequency and intensity of extreme weather events have also changed, but the observed increases in natural disaster losses are often thought to result solely from societal change, such as increases in exposure and vulnerability. Here we analyse the economic losses from tropical cyclones in the United States, using a regression-based approach instead of a standard normalization procedure to changes in exposure and vulnerability, to minimize the chance of introducing a spurious trend. Unlike previous studies, we use statistical models to estimate the contributions of socioeconomic factors to the observed trend in losses and we account for non-normal and nonlinear characteristics of loss data. We identify an upward trend in economic losses between 1900 and 2005 that cannot be explained by commonly used socioeconomic variables. Based on records of geophysical data, we identify an upward trend in both the number and intensity of hurricanes in the North Atlantic basin as well as in the number of loss-generating tropical cyclone records in the United States that is consistent with the smoothed global average rise in surface air temperature. We estimate that, in 2005, US$2 to US$14 billion of the recorded annual losses could be attributable to climate change, 2 to 12% of that year's normalized losses. We suggest that damages from tropical cyclones cannot be dismissed when evaluating the current and future costs of climate change and the expected benefits of mitigation and adaptation strategies.

  7. Prolonged El Niño conditions in 2014-2015 and the rapid intensification of Hurricane Patricia in the eastern Pacific

    Science.gov (United States)

    Foltz, Gregory R.; Balaguru, Karthik

    2016-10-01

    Hurricane Patricia was the most intense tropical cyclone on record in the eastern North Pacific or Atlantic, reaching a peak intensity of 95 m s-1 only 30 h after attaining hurricane status (33 m s-1). Here it is shown that exceptionally warm sea surface temperatures (SSTs), a deeper than normal thermocline, and strong near-surface salinity stratification all aided Patricia's rapid intensification, combining to increase its Potential Intensity by 1-14 m s-1. Anomalous surface warming and thermocline deepening along Patricia's track were driven by prolonged El Niño conditions during 2014-2015 and punctuated by the buildup to the extreme El Niño of 2015-2016. In the region where Patricia intensified, SST was 1.5° C higher and sea surface height was 10 cm higher compared to conditions during the last extreme El Niño in 1997, emphasizing the extraordinary nature of the 2015 anomalies.

  8. Submesoscale cyclones in the Agulhas current

    Science.gov (United States)

    Krug, M.; Swart, S.; Gula, J.

    2017-01-01

    Gliders were deployed for the first time in the Agulhas Current region to investigate processes of interactions between western boundary currents and shelf waters. Continuous observations from the gliders in water depths of 100-1000 m and over a period of 1 month provide the first high-resolution observations of the Agulhas Current's inshore front. The observations collected in a nonmeandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore boundary of the Agulhas Current. The submesoscale cyclones are often associated with warm water plumes, which extend from their western edge and exhibit strong northeastward currents. These features are a result of shear instabilities and extract their energy from the mean Agulhas Current jet.

  9. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    Science.gov (United States)

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. © 2013 Society for Risk Analysis.

  10. Particle Residence Time in Column Flotation Based on Cyclonic Separation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-hua; LIU Jiong-tian

    2007-01-01

    The cyclonic static micro-bubble column flotation (FCSMC) is an effective separation device for fine particle treatment. The high mineralization rate and short flotation time of this equipment can be attributed to its unique cyclonic force field. It also has been observed that the presence of a cyclonic force field leads to a lower bottom separation size limit and a reduction of unselective entrainment. The collection zone of the column is considered to consist of two parts, a column separation zone and a cyclonic zone. Total recovery of the collection zone was developed. For our study, we analyzed the particle movement in the cyclonic zone. Particle residence time equations for the cyclonic zone were derived by force analysis. Results obtained in this study provide a theoretical foundation for the design and scale-up of the FCSMC.

  11. A DYNAMICAL INTERPRETATION OF THE WIND FIELD IN TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    HAO Shi-feng; CUI Xiao-peng; PAN Jin-song; ZHOU Guan-bo; HU Bo

    2009-01-01

    Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.

  12. Les cyclones tropicaux et le changement climatique

    Science.gov (United States)

    André, Jean-Claude; Royer, Jean-François; Chauvin, Fabrice

    2008-09-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades.

  13. The contribution of symmetrization to the intensification of Tropical Cyclones

    OpenAIRE

    Miller, Henry A.

    2001-01-01

    Operational ability to forecast tropical cyclone motion is much better than the ability to forecast intensity change. Several recent works have studied the mechanisms that bring about the symmetrization of various types of asymmetries in tropical cyclones. This study was conducted to add to that knowledge by examining the transfers of kinetic energy between scales and how those energy transfers alter the wind structure of the cyclone. Adding to the understanding of how this process can alter ...

  14. Incorporation of Tropical Cyclone Avoidance Into Automated Ship Scheduling

    Science.gov (United States)

    2014-06-01

    TROPICAL CYCLONE AVOIDANCE INTO AUTOMATED SHIP SCHEDULING by Stephen W. Lantz June 2014 Thesis Advisor: Walter DeGrange Co-Advisor: Eva...COVERED Master’s Thesis 4. TITLE AND SUBTITLE INCORPORATION OF TROPICAL CYCLONE AVOIDANCE INTO AUTOMATED SHIP SCHEDULING 5. FUNDING NUMBERS 6... cyclones (TCs) frequently disrupt these plans, requiring diversions and inefficient steaming speeds. We evaluate the impact of adding anticipated TC

  15. Density distribution in a heavy-medium cyclone

    Institute of Scientific and Technical Information of China (English)

    Wang Yuling; Zhao Yuemin; Yang Jianguo

    2011-01-01

    Heavy-medium cyclones are widely used to upgrade run-of-mine coal. But the understanding of flow in a cyclone containing a dense medium is still incomplete. By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced. Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.

  16. Glider observations and modeling of sediment transport in Hurricane Sandy

    Science.gov (United States)

    Miles, Travis; Seroka, Greg; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2015-03-01

    Regional sediment resuspension and transport are examined as Hurricane Sandy made landfall on the Mid-Atlantic Bight (MAB) in October 2012. A Teledyne-Webb Slocum glider, equipped with a Nortek Aquadopp current profiler, was deployed on the continental shelf ahead of the storm, and is used to validate sediment transport routines coupled to the Regional Ocean Modeling System (ROMS). The glider was deployed on 25 October, 5 days before Sandy made landfall in southern New Jersey (NJ) and flew along the 40 m isobath south of the Hudson Shelf Valley. We used optical and acoustic backscatter to compare with two modeled size classes along the glider track, 0.1 and 0.4 mm sand, respectively. Observations and modeling revealed full water column resuspension for both size classes for over 24 h during peak waves and currents, with transport oriented along-shelf toward the southwest. Regional model predictions showed over 3 cm of sediment eroded on the northern portion of the NJ shelf where waves and currents were the highest. As the storm passed and winds reversed from onshore to offshore on the southern portion of the domain waves and subsequently orbital velocities necessary for resuspension were reduced leading to over 3 cm of deposition across the entire shelf, just north of Delaware Bay. This study highlights the utility of gliders as a new asset in support of the development and verification of regional sediment resuspension and transport models, particularly during large tropical and extratropical cyclones when in situ data sets are not readily available.

  17. Cyclone Nargis in Myanmar: lessons for public health preparedness for cyclones.

    Science.gov (United States)

    Guha-Sapir, Debarati; Vogt, Florian

    2009-01-01

    Recent natural disasters such as the 2004 tsunami, 2008 Sichuan earthquake, and the 2008 Myanmar cyclone have killed more than 100,000 people each. Mortality and morbidity associated with natural disasters are a growing concern, especially because extreme climate events are likely to get increasingly frequent. The authors comment on Cyclone Nargis, claiming an extraordinarily high death toll during its devastating track through the Irrawaddy delta in Myanmar on May 2, 2008 and analyze how and why its mortality pattern differs from other typical postdisaster situations. Underlying factors and preconditions are described and the specificity of the Myanmese context is presented. This leads to lessons how excess mortality can be reduced in future high-ranked cyclones, whose recurrence in this region will only be a matter of time.

  18. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  19. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2017-01-01

    Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.

  20. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  1. Identification of Caribbean basin hurricanes from Spanish documentary sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herrera, R. [Depto. Fisica de la Tierra II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gimeno, L. [Universidad de Vigo, Ourense (Spain); Ribera, P.; Gonzalez, E.; Fernandez, G. [Universidad Pablo de Olavide, Sevilla (Spain); Hernandez, E. [Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-15

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurricane activity. The documents provide detailed descriptions of a hurricane's impacts and allow us to identify previously unreported hurricanes, obtain more precise dates for hurricanes previously identified, better define the area affected by a given hurricane and, finally, better assess a hurricane's intensity.

  2. Next-Generation Tropical Cyclone Model

    Science.gov (United States)

    2016-06-07

    during the same time period, and remains a formidable forecast problem. Advanced statistical prediction models nowadays are able to predict the trend...b) Fig. 2. Time series of COAMPS simulation results of Hurricane Katrina (2005) initialized at 1200 UTC 25 August 2005 of (a) surface maximum...judicial utilization of multi-model ensemble results. In contrast, the TC intensity forecast by numerical models has shown very little improvement

  3. Mooring observations of the near-inertial wave wake of Hurricane Ida (2009)

    Science.gov (United States)

    Pallàs-Sanz, Enric; Candela, Julio; Sheinbaum, Julio; Ochoa, José

    2016-12-01

    The near-inertial wave wake of Hurricane Ida is examined of the basis of horizontal velocity observations acquired from 7 moorings instrumented with acoustic Doppler current profilers deployed across the shelf break, slope, and at the abyssal plain of the Yucatan Peninsula, from 130 m to ∼3300 m. During the forced stage, background mean-flow consisted on a dominant cyclonic circulation of ∼100 km of diameter intensified toward the Yucatan's shelf (topographic constraint) and bounded by anticyclonic vorticity northeastward (north 25° N). In the low frequency band, subinertial signals of ∈ [5.5-7.5] day period propagating along the Yucatan shelf break. After the passage of Hurricane Ida, energetic near-inertial oscillations spread away from the storm's track over cyclonic vorticity. The wave's Eulerian frequency increases shoreward and toward the Yucatan's shelf. After Ida's passage, mooring data show a contrasting velocity response: semi-diurnal and diurnal tides are enhanced at the shelf break of the Yucatan Peninsula and near-inertial oscillations at the slope and abyssal plain. The near-inertial kinetic energy is largest to the right of the storm track because of the asymmetric wind-stress and amplified due to vorticity trapping near z =-500 m, which is a proxy of the base of the mesoscale structure and where the mean-flow is nearly zero. The blue frequency shifted wave wake propagates downward at ∼57-70 m day-1 and horizontally at 23-28 km day-1 leading a downward vertical energy flux of [1.3-1.6] × 10-2 W m-2. This represents a 7-9% of the total wind power input to near-inertial oscillations that, ultimately, became available for interior ocean mixing. The results suggest that the most energetic wave packet propagated poleward and downward from a broad upwelling region located near the Hurricane's track. The vertical structure of the near-inertial kinetic energy is described as a sum of the first 12 standing vertical modes and as vertically

  4. Detection of merger and splitting of extra-tropical cyclones

    Science.gov (United States)

    Kew, Sarah; Hanley, John

    2013-04-01

    Results from the project IMILAST (Intercomparison of mid-latitude storm diagnostics) show that, despite a wide variety in the 15 cyclone identification and tracking techniques considered, a reasonable agreement on tracks of intense cyclones can be reached, at least in the central intensifying stage of the cyclone life cycle. In contrast, diagnostics of cyclone genesis and lysis events show reduced agreement amongst the methods with genesis and lysis density maps exhibiting coherence over smaller spatial scales. Recent work by Hanley and Caballero claims that multi-centre cyclones occur more frequently as storm intensity increases, with an associated increase in the probability of spurious splittings by single-centre tracking routines. We investigate whether the methodological differences in handling of cyclone merger and splitting are responsible for the range in genesis/lysis outcomes exhibited in IMILAST results or whether other factors, such as cyclone definition, have more influence over the spread. The study is focussed on a number of selected cases of intense cyclones that undergo a clear merger or splitting. Of the methods contributing to the IMILAST project, three explicitly handle cyclone merger and splitting. In demonstrating the differences between the techniques, we explore what each approach has to offer.

  5. Extreme Arctic cyclones in CMIP5 historical simulations

    National Research Council Canada - National Science Library

    Vavrus, Stephen J

    2013-01-01

    .... This study addresses whether such powerful storms are an emerging expression of anthropogenic climate change by investigating simulated extreme Arctic cyclones during the historical period (1850–2005...

  6. ANALYSES OF THE ANNUAL FREQUENCY ANOMALIES OF TYPHOONS AND HURRICANES IN 1998

    Institute of Scientific and Technical Information of China (English)

    李曾中; 程明虎; 杨振斌; 孙除荣; 薛建军

    2004-01-01

    In 1998, the annual frequency of typhoon (including tropical storms) genesis created a minimum value - 14, far lower than the minimum of 20 in 1950 over North-West Pacific, while in the Atlantic Ocean, the annual frequency of hurricanes (including the tropical storm) created a maximum value - 14, far higher than the average number - 9.2. In this paper, an analysis on the relationship between the generation of Typhoon, Hurricane and the Cross-Equatorial Flow was done by using the NCEP/NCAR reanalysis data for 1979 - 1995. It is pointed out that the anomalies of the CEF over the Pacific and Atlantic Ocean is the main cause for the 1998 annual frequency anomalies of Typhoon and Hurricane, respectively.

  7. Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea:a case study

    Institute of Scientific and Technical Information of China (English)

    HU Jianyu; KAWAMURA Hiroshi

    2004-01-01

    A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data.Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994 and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2 ℃ against its surrounding areas is also observed by the satellite-derived SST data.

  8. Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea:a case study

    Institute of Scientific and Technical Information of China (English)

    HU Jianyu; KAWAMURA Hiroshi

    2004-01-01

    A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data.Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2 ℃ against its surrounding areas is also observed by the satellite-derived SST data.

  9. Mapping Hurricane Rita inland storm tide

    Science.gov (United States)

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  10. Child mortality after Hurricane Katrina.

    Science.gov (United States)

    Kanter, Robert K

    2010-03-01

    Age-specific pediatric health consequences of community disruption after Hurricane Katrina have not been analyzed. Post-Katrina vital statistics are unavailable. The objectives of this study were to validate an alternative method to estimate child mortality rates in the greater New Orleans area and compare pre-Katrina and post-Katrina mortality rates. Pre-Katrina 2004 child mortality was estimated from death reports in the local daily newspaper and validated by comparison with pre-Katrina data from the Louisiana Department of Health. Post-Katrina child mortality rates were analyzed as a measure of health consequences. Newspaper-derived estimates of mortality rates appear to be valid except for possible underreporting of neonatal rates. Pre-Katrina and post-Katrina mortality rates were similar for all age groups except infants. Post-Katrina, a 92% decline in mortality rate occurred for neonates (Katrina decline in infant mortality rate exceeds the pre-Katrina discrepancy between newspaper-derived and Department of Health-reported rates. A declining infant mortality rate raises questions about persistent displacement of high-risk infants out of the region. Otherwise, there is no evidence of long-lasting post-Katrina excess child mortality. Further investigation of demographic changes would be of interest to local decision makers and planners for recovery after public health emergencies in other regions.

  11. Cold wake of Hurricane Frances

    Science.gov (United States)

    D'Asaro, Eric A.; Sanford, Thomas B.; Niiler, P. Peter; Terrill, Eric J.

    2007-08-01

    An array of instruments air-deployed ahead of Hurricane Frances measured the three-dimensional, time dependent response of the ocean to this strong (60 ms-1) storm. Sea surface temperature cooled by up to 2.2°C with the greatest cooling occurring in a 50-km-wide band centered 60-85 km to the right of the track. The cooling was almost entirely due to vertical mixing, not air-sea heat fluxes. Currents of up to 1.6 ms-1 and thermocline displacements of up to 50 m dispersed as near-inertial internal waves. The heat in excess of 26°C, decreased behind the storm due primarily to horizontal advection of heat away from the storm track, with a small contribution from mixing across the 26°C isotherm. SST cooling under the storm core (0.4°C) produced a 16% decrease in air-sea heat flux implying an approximately 5 ms-1 reduction in peak winds

  12. Emergency Department Visits for Homelessness or Inadequate Housing in New York City before and after Hurricane Sandy.

    Science.gov (United States)

    Doran, Kelly M; McCormack, Ryan P; Johns, Eileen L; Carr, Brendan G; Smith, Silas W; Goldfrank, Lewis R; Lee, David C

    2016-04-01

    Hurricane Sandy struck New York City on October 29, 2012, causing not only a large amount of physical damage, but also straining people's health and disrupting health care services throughout the city. In prior research, we determined that emergency department (ED) visits from the most vulnerable hurricane evacuation flood zones in New York City increased after Hurricane Sandy for several medical diagnoses, but also for the diagnosis of homelessness. In the current study, we aimed to further explore this increase in ED visits for homelessness after Hurricane Sandy's landfall. We performed an observational before-and-after study using an all-payer claims database of ED visits in New York City to compare the demographic characteristics, insurance status, geographic distribution, and health conditions of ED patients with a primary or secondary ICD-9 diagnosis of homelessness or inadequate housing in the first week after Hurricane Sandy's landfall versus the baseline weekly average in 2012 prior to Hurricane Sandy. We found statistically significant increases in ED visits for diagnosis codes of homelessness or inadequate housing in the week after Hurricane Sandy's landfall. Those accessing the ED for homelessness or inadequate housing were more often elderly and insured by Medicare after versus before the hurricane. Secondary diagnoses among those with a primary ED diagnosis of homelessness or inadequate housing also differed after versus before Hurricane Sandy. These observed differences in the demographic, insurance, and co-existing diagnosis profiles of those with an ED diagnosis of homelessness or inadequate housing before and after Hurricane Sandy suggest that a new population cohort-potentially including those who had lost their homes as a result of storm damage-was accessing the ED for homelessness or other housing issues after the hurricane. Emergency departments may serve important public health and disaster response roles after a hurricane, particularly for

  13. Prototype of an Integrated Hurricane Information System for Research: Design and Implementation of the Database and Web Portal

    Science.gov (United States)

    Li, P. P.; Knosp, B.; Vu, Q. A.; Hristova-Veleva, S.; Chao, Y.; Vane, D.; Lambrigtsen, B.; Su, H.; Dang, V.; Fovell, R.; Willis, J.; Tanelli, S.; Fishbein, E.; Ao, C. O.; Poulsen, W. L.; Park, K. J.; Fetzer, E.; Vazquez, J.; Callahan, P. S.; Marcus, S.; Garay, M.; Kahn, R.; Haddad, Z.

    2007-12-01

    Many hurricane websites provide historical hurricane information and real-time storm tracking. These sites often include images from various remote-sensing satellite sensors with such atmospheric and oceanic quantities as wind, temperature, rain, and water vapor. However, it has been determined that the hurricane analysis community is lacking a web portal that provides researchers a comprehensive set of observed hurricane parameters (both graphics and data) together with large-scale and convection-resolving model output. We have developed a prototype of an integrated hurricane information system of high-resolution satellite and in- situ observations along with model outputs pertaining to: i) the thermodynamic and microphysical structure of storms; ii) the air-sea interaction processes; iii) the larger-scale environment as depicted by quantities such as SST, ocean heat content and the aerosol loading of the environment. Our goal is to provide a one-stop place to access all the available information of a specific hurricane for researchers to advance the understanding, modeling and predication of hurricane genesis and intensity changes. Our hurricane information system prototype consists of high-resolution satellite data measuring three- dimensional atmospheric and oceanic parameters that includes observations from AIRS, MISR, MODIS, CloudSAT, AMSR-E, TRMM, GOES, MLS, QuikSCAT, SeaWiFS, and COSMIC GPS, in-situ observations such as ARGO floats, large scale data assimilation products from NCEP, and high resolution hurricane model output from WRF. High-resolution satellite data are sub-setted within 2000-kilometer-square area centered at the closest storm location and large-scale environmental datasets are divided into 6 predefined geographical regions. When accessing this hurricane portal, users may browse through data by year, region, category, and hurricane. At the front page, we show the hurricane track using Google Map. Users may pan and zoom, or click on the track

  14. Tropical cyclones and the flood hydrology of Puerto Rico

    Science.gov (United States)

    Smith, J.A.; Sturdevant-Rees, P.; Baeck, M.L.; Larsen, M.C.

    2005-01-01

    Some of the largest unit discharge flood peaks in the stream gaging records of the U.S. Geological Survey (USGS) have occurred in Puerto Rico. Many of these flood peaks are associated with tropical cyclones. Hurricane Georges, which passed directly over the island on 21-22 September 1998, produced record flood peaks at numerous USGS stations in Puerto Rico. The hydrology and hydrometeorology of extreme flood response in Puerto Rico are examined through analyses of rainfall, based on Weather Surveillance Radar - 1988 Doppler (WSR-88D) radar reflectivity observations and USGS rain gage observations and discharge from USGS stream gaging stations. Peak rainfall accumulations of more than 700 mm occurred in the central mountain region of the island. The largest unit discharge flood peaks, however, were located in the eastern portion of the island in areas with smaller storm total rainfall accumulations but markedly larger rainfall rates at 5-60 min timescale. Orographic precipitation mechanisms played an important role in rainfall distribution over the island of Puerto Rico. Amplification of rainfall accumulations was associated with areas of upslope motion. Elevated low-level cloud water content in regions of upslope motion played an important role in the maximum rainfall accumulations in the central mountain region of Puerto Rico. The largest unit discharge flood peaks, however, were produced by a decaying eye wall mesovortex, which resulted in a 30-45 min period of extreme rainfall rates over the eastern portion of the island. This storm element was responsible for the record flood peak of the Rio Grande de Lo??iza. The role of terrain in development and evolution of the eye wall mesovortex is unclear but is of fundamental importance for assessing extreme flood response from the storm. Hydrologic response is examined through analyses of rainfall and discharge from five pairs of drainage basins, extending from east to west over the island. These analyses point to the

  15. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    Science.gov (United States)

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  16. Frequent Disasters in Mexico: hurricanes Pauline and Manuel in Acapulco, Guerrero

    Directory of Open Access Journals (Sweden)

    Juan Manuel Rodríguez Esteves

    2017-06-01

    Full Text Available Hurricanes and other tropical storms are natural phenomena that attract the interest of people all over the world, especially when they affect coastal communities. Each year, especially during the hurricane season, it is common to read or see in the different media damage caused by tropical storms in several countries, especially in Latin America and Asia. In Mexico total economic losses associated with natural phenomena has been increasing. During the year 2000 were allocated 230 million US dollars for the reconstruction of the infrastructure affected by hydrometeorological phenomena, while in 2013 damage amounted to $ 4,476 million, peaking during 2010 were recorded when 7,208 million dollars in losses. On the other hand, the total of damage caused by natural phenomena, 92 % were associated with hydrometeorological phenomena, which include hurricanes and other phenomena (SEGOB, 2014. The aim of this paper is to analyze the impacts caused by disasters associated with the influence of hurricanes from a comparative perspective between two phenomena in particular, hurricane Pauline in 1997 and Manuel storm in 2013 events hydrometeorological which affected the Mexican state of Guerrero, but especially to the port of Acapulco. one of the main conclusions of this study refers to that no matter only the intensity of the natural phenomenon to generate damage on society, but the total of damages also refers to the contexts of vulnerability generated by a society with the course of the years.

  17. Impacts of cloud flare-ups on hurricane intensity resulting from departures from balance laws

    Directory of Open Access Journals (Sweden)

    T. N. Krishnamurti

    2012-05-01

    Full Text Available Cloud flare-ups along the inner eye wall of a hurricane lead to enhancement of cloud scale divergence, which in turn leads to a large local enhancement of the departure from balance laws and can lead to local supergradient winds. This scenario is tested using the results from a mesoscale microphysical model at horizontal resolution of 1.33 km for the simulation of hurricane Katrina. Rainwater mixing ratio tags growing cloud elements. The departure from balance laws includes terms such as the local, horizontal and vertical advections of divergence, divergence square and a term invoking the gradient of vertical velocity. It is noted that these terms collectively contribute to a substantial local enhancement of the departure from balance laws. Departures from balance laws are related to the radial gradient wind imbalances in a storm-centred coordinate. In this study, several examples, from the hurricane Katrina simulations, that display this scenario of rapid intensification are illustrated. Organisation of convection in the azimuthal direction seems important for the hurricane scale; cloud flare-ups away from such regions of azimuthal organisation fail to contribute to this scenario for the overall intensification of the hurricane.

  18. Loss of Resources and Hurricane Experience as Predictors of Postpartum Depression Among Women in Southern Louisiana

    Science.gov (United States)

    Ehrlich, Matthew; Xiong, Xu; Buekens, Pierre; Pridjian, Gabriella; Elkind-Hirsch, Karen

    2010-01-01

    Abstract Background After a natural disaster, mental disorders often become a long-term public health concern. Previous studies under smaller-scale natural disaster conditions suggest loss of psychosocial resources is associated with psychological distress. Methods We examined the occurrence of depression 6 and 12 months postpartum among 208 women residing in New Orleans and Baton Rouge, Louisiana, who were pregnant during or immediately after Hurricane Katrina's landfall. Based on the Conservation of Resources (COR) theory, we explored the contribution of both tangible/financial and nontangible (psychosocial) loss of resources (LOR) on the outcome of depression, measured using the Edinburgh Postnatal Depression Scale (EPDS). We also investigated the influence on depression of individuals' hurricane experience through a Hurricane Experience Score (HES) that includes such factors as witnessing death, contact with flood waters, and injury to self or family members. Results Both tangible and nontangible LOR were associated with depression cross-sectionally and prospectively. Severe hurricane exposure (high HES) was also associated with depression. Regression analysis showed LOR-associated depression was explained almost entirely by nontangible rather than tangible factors. Consistent with COR theory, however, nontangible LOR explained some of the association between severe hurricane exposure and depression in our models. A similar result was seen prospectively for depression at 12 months, even controlling for depression symptoms at 6 months. Conclusions These results suggest the need for preventive measures aimed at preserving psychosocial resources to reduce the long-term effects of disasters. PMID:20438305

  19. 77 FR 74341 - Establishing the Hurricane Sandy Rebuilding Task Force

    Science.gov (United States)

    2012-12-14

    ... the Hurricane Sandy Rebuilding Task Force By the authority vested in me as President by the.... Hurricane Sandy made landfall on October 29, 2012, resulting in major flooding, extensive structural damage... assist the affected region. A disaster of Hurricane Sandy's magnitude merits a comprehensive...

  20. Increase in West Nile neuroinvasive disease after Hurricane Katrina.

    Science.gov (United States)

    Caillouët, Kevin A; Michaels, Sarah R; Xiong, Xu; Foppa, Ivo; Wesson, Dawn M

    2008-05-01

    After Hurricane Katrina, the number of reported cases of West Nile neuroinvasive disease (WNND) sharply increased in the hurricane-affected regions of Louisiana and Mississippi. In 2006, a >2-fold increase in WNND incidence was observed in the hurricane-affected areas than in previous years.