WorldWideScience

Sample records for hurricane surge study

  1. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  2. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  3. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  4. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  5. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  6. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    Science.gov (United States)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  7. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  8. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    Science.gov (United States)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  9. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  10. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Science.gov (United States)

    The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The EPA Office of Research & Development (ORD) modified the original model from NOAA to fit the model parameters for the Buzzards Bay region. The models show storm surge extent for the Mattapoisett area and therefore the flooding area was reduced to the study area. Areas of flooding that were not connected to the main water body were removed. The files in the geodatabase are:Cat2_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 2 hurricane with 0 ft sea level riseCat4_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 4 hurricane with 0 ft sea level riseCat4_SLR4_Int_Feet_dissolve_Mattapoisett: Future Category 4 hurricane with 4 feet sea level riseThe features support the Weather Ready Mattapoisett story map, which can be accessed via the following link:https://epa.maps.arcgis.com/apps/MapJournal/index.html?appid=1ff4f1d28a254cb689334799d94b74e2

  11. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  12. A geospatial dataset for U.S. hurricane storm surge and sea-level rise vulnerability: Development and case study applications

    Directory of Open Access Journals (Sweden)

    Megan C. Maloney

    2014-01-01

    Full Text Available The consequences of future sea-level rise for coastal communities are a priority concern arising from anthropogenic climate change. Here, previously published methods are scaled up in order to undertake a first pass assessment of exposure to hurricane storm surge and sea-level rise for the U.S. Gulf of Mexico and Atlantic coasts. Sea-level rise scenarios ranging from +0.50 to +0.82 m by 2100 increased estimates of the area exposed to inundation by 4–13% and 7–20%, respectively, among different Saffir-Simpson hurricane intensity categories. Potential applications of these hazard layers for vulnerability assessment are demonstrated with two contrasting case studies: potential exposure of current energy infrastructure in the U.S. Southeast and exposure of current and future housing along both the Gulf and Atlantic Coasts. Estimates of the number of Southeast electricity generation facilities potentially exposed to hurricane storm surge ranged from 69 to 291 for category 1 and category 5 storms, respectively. Sea-level rise increased the number of exposed facilities by 6–60%, depending on the sea-level rise scenario and the intensity of the hurricane under consideration. Meanwhile, estimates of the number of housing units currently exposed to hurricane storm surge ranged from 4.1 to 9.4 million for category 1 and category 4 storms, respectively, while exposure for category 5 storms was estimated at 7.1 million due to the absence of landfalling category 5 hurricanes in the New England region. Housing exposure was projected to increase 83–230% by 2100 among different sea-level rise and housing scenarios, with the majority of this increase attributed to future housing development. These case studies highlight the utility of geospatial hazard information for national-scale coastal exposure or vulnerability assessment as well as the importance of future socioeconomic development in the assessment of coastal vulnerability.

  13. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.; Altaf, Muhammad; Dawson, C.; Hoteit, Ibrahim; Luo, X.; Mayo, T.

    2012-01-01

    levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge

  14. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  15. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  16. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  17. Hindcast and validation of Hurricane Ike waves, forerunner, and storm surge

    NARCIS (Netherlands)

    Hope, M.E.; Westerink, J.J.; Kennedy, A.B.; Kerr, P.C.; Dietrich, J.C.; Dawson, C.; Bender, C.J.; Smith, J.M.; Jensen, R.E.; Zijlema, M.; Holthuijsen, L.H.; Luettich, R.A.; Powell, M.D.; Cardone, V.J.; Cox, A.T.; Pourtaheri, H.; Roberts, H.J.; Atkinson, J.H.; Tanaka, S.; Westerink, H.J.; Westerink, L.G.

    2013-01-01

    Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana-Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied

  18. Directional analysis of the storm surge from Hurricane Sandy 2012, with applications to Charleston, New Orleans, and the Philippines.

    Science.gov (United States)

    Drews, Carl; Galarneau, Thomas J

    2015-01-01

    Hurricane Sandy in late October 2012 drove before it a storm surge that rose to 4.28 meters above mean lower low water at The Battery in lower Manhattan, and flooded the Hugh L. Carey automobile tunnel between Brooklyn and The Battery. This study examines the surge event in New York Harbor using the Weather Research and Forecasting (WRF) atmospheric model and the Coupled-Ocean-Atmosphere-Wave- Sediment Transport/Regional Ocean Modeling System (COAWST/ROMS). We present a new technique using directional analysis to calculate and display maps of a coastline's potential for storm surge; these maps are constructed from wind fields blowing from eight fixed compass directions. This analysis approximates the surge observed during Hurricane Sandy. The directional analysis is then applied to surge events at Charleston, South Carolina, New Orleans, Louisiana, and Tacloban City, the Philippines. Emergency managers could use these directional maps to prepare their cities for an approaching storm, on planning horizons from days to years.

  19. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    Science.gov (United States)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  20. Storm Surge and Wave Impact of Low-Probability Hurricanes on the Lower Delaware Bay—Calibration and Application

    Directory of Open Access Journals (Sweden)

    Mehrdad Salehi

    2018-05-01

    Full Text Available Hurricanes pose major threats to coastal communities and sensitive infrastructure, including nuclear power plants, located in the vicinity of hurricane-prone coastal regions. This study focuses on evaluating the storm surge and wave impact of low-probability hurricanes on the lower Delaware Bay using the Delft3D dynamically coupled wave and flow model. The model comprised Overall and Nested domains. The Overall model domain encompassed portions of the Atlantic Ocean, Delaware Bay, and Chesapeake Bay. The two-level Nested model domains encompassed the Delaware Estuary, its floodplain, and a portion of the continental shelf. Low-probability hurricanes are critical considerations in designing and licensing of new nuclear power plants as well as in establishing mitigating strategies for existing power facilities and other infrastructure types. The philosophy behind low-probability hurricane modeling is to establish reasonable water surface elevation and wave characteristics that have very low to no probability of being exceeded in the region. The area of interest (AOI is located on the west bank of Delaware Bay, almost 16 miles upstream of its mouth. The model was first calibrated for Hurricane Isabel (2003 and then applied to synthetic hurricanes with very low probability of occurrence to establish the storm surge envelope at the AOI. The model calibration results agreed reasonably well with field observations of water surface elevation, wind velocity, wave height, and wave period. A range of meteorological, storm track direction, and storm bearing parameters that produce the highest sustained wind speeds were estimated using the National Weather Service (NWS methodology and applied to the model. Simulations resulted in a maximum stillwater elevation and wave height of 7.5 m NAVD88 and 2.5 m, respectively, at the AOI. Comparison of results with the U.S. Army Corps of Engineers, North Atlantic Coastal Comprehensive Study (USACE-NACCS storm surge

  1. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    Science.gov (United States)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  2. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  3. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  4. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  5. A Tsunami Ball Approach to Storm Surge and Inundation: Application to Hurricane Katrina, 2005

    Directory of Open Access Journals (Sweden)

    Steven N. Ward

    2009-01-01

    Full Text Available Most analyses of storm surge and inundation solve equations of continuity and momentum on fixed finite-difference/finite-element meshes. I develop a completely new approach that uses a momentum equation to accelerate bits or balls of water over variable depth topography. The thickness of the water column at any point equals the volume density of balls there. In addition to being more intuitive than traditional methods, the tsunami ball approach has several advantages. (a By tracking water balls of fixed volume, the continuity equation is satisfied automatically and the advection term in the momentum equation becomes unnecessary. (b The procedure is meshless in the finite-difference/finite-element sense. (c Tsunami balls care little if they find themselves in the ocean or inundating land. (d Tsunami ball calculations of storm surge can be done on a laptop computer. I demonstrate and calibrate the method by simulating storm surge and inundation around New Orleans, Louisiana caused by Hurricane Katrina in 2005 and by comparing model predictions with field observations. To illustrate the flexibility of the tsunami ball technique, I run two “What If” hurricane scenarios—Katrina over Savannah, Georgia and Katrina over Cape Cod, Massachusetts.

  6. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Directory of Open Access Journals (Sweden)

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  7. Hurricane Rita surge data, southwestern Louisiana and southeastern Texas, September to November 2005

    Science.gov (United States)

    McGee, Benton D.; Goree, Burl B.; Tollett, Roland W.; Woodward, Brenda K.; Kress, Wade H.

    2006-01-01

    Pressure transducers and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network consisting of 47 pressure transducers (sensors) was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast. Quality-assurance measures were used to assess the variability and accuracy of the water-level data recorded by the sensors. Water-level data from sensors were similar to data from co-located sensors, permanent U.S. Geological Survey streamgages, and water-surface elevations performed by field staff. Water-level data from sensors at selected locations were compared to corresponding high-water mark elevations. In general, the water-level data from sensors were similar to elevations of high quality high-water marks, while reporting consistently higher than elevations of lesser quality high-water marks.

  8. Beyond Traditional Extreme Value Theory Through a Metastatistical Approach: Lessons Learned from Precipitation, Hurricanes, and Storm Surges

    Science.gov (United States)

    Marani, M.; Zorzetto, E.; Hosseini, S. R.; Miniussi, A.; Scaioni, M.

    2017-12-01

    The Generalized Extreme Value (GEV) distribution is widely adopted irrespective of the properties of the stochastic process generating the extreme events. However, GEV presents several limitations, both theoretical (asymptotic validity for a large number of events/year or hypothesis of Poisson occurrences of Generalized Pareto events), and practical (fitting uses just yearly maxima or a few values above a high threshold). Here we describe the Metastatistical Extreme Value Distribution (MEVD, Marani & Ignaccolo, 2015), which relaxes asymptotic or Poisson/GPD assumptions and makes use of all available observations. We then illustrate the flexibility of the MEVD by applying it to daily precipitation, hurricane intensity, and storm surge magnitude. Application to daily rainfall from a global raingauge network shows that MEVD estimates are 50% more accurate than those from GEV when the recurrence interval of interest is much greater than the observational period. This makes MEVD suited for application to satellite rainfall observations ( 20 yrs length). Use of MEVD on TRMM data yields extreme event patterns that are in better agreement with surface observations than corresponding GEV estimates.Applied to the HURDAT2 Atlantic hurricane intensity dataset, MEVD significantly outperforms GEV estimates of extreme hurricanes. Interestingly, the Generalized Pareto distribution used for "ordinary" hurricane intensity points to the existence of a maximum limit wind speed that is significantly smaller than corresponding physically-based estimates. Finally, we applied the MEVD approach to water levels generated by tidal fluctuations and storm surges at a set of coastal sites spanning different storm-surge regimes. MEVD yields accurate estimates of large quantiles and inferences on tail thickness (fat vs. thin) of the underlying distribution of "ordinary" surges. In summary, the MEVD approach presents a number of theoretical and practical advantages, and outperforms traditional

  9. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  10. Regional-scale impact of storm surges on groundwaters of Texas, Florida and Puerto Rico after 2017 hurricanes Harvey, Irma, Jose, Maria

    Science.gov (United States)

    Sellier, W. H.; Dürr, H. H.

    2017-12-01

    Hurricanes and related storm surges have devastating effects on near-shore infrastructure and above-ground installations. They also heavily impact groundwater resources, with potentially millions of people dependant on these resources as a freshwater source. Destructions of casings and direct incursions of saline and/or polluted waters have been widely observed. It is uncertain how extensive the effects are on underground water systems, especially in limestone karst areas such as Florida and Puerto Rico. Here, we report regional-scale water level changes in groundwater systems of Texas, Florida and Puerto Rico for the 2017 Hurricanes Harvey, Irma, Jose and Maria. We collected regional scale data from the USGS Waterdata portal. Puerto Rico shows the strongest increase in groundwater levels in wells during Hurricane Maria, with less reaction for the preceding storms Irma and Jose. Increases in water levels range from 0.5 to 11m, with maximum storm surges in Puerto Rico around 3m. These wells are located throughout Puerto Rico, on the coast and inland. In Florida, most wells that show a response during Hurricane Irma are located in the Miami region. Wells located on the west coast show smaller responses with the exception of one well located directly on Hurricane Irma's track. These wells show an increase of 0.2 to 1.7m. In Texas, wells located in proximity to Hurricane Harvey's track show an increase in water level. The effect of groundwater level increases is not limited to the Texas coast, but inland as well. An increase between 0.03 and 2.9m is seen. Storm surges for both Florida and Texas have ranged from 1.8-3.7m maximum. We discuss the findings in the context of local and regional geology and hydrogeology (presence of connected aquifer systems, faulting, presence of carbonate/karst systems etc.).

  11. A tale of two storms: Surges and sediment deposition from Hurricanes Andrew and Wilma in Florida’s southwest coast mangrove forests: Chapter 6G in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Smith, Thomas J.; Anderson, Gordon H.; Tiling, Ginger

    2007-01-01

    Hurricanes can be very different from each other. Here we examine the impacts that two hurricanes, Andrew and Wilma, had in terms of storm surge and sediment deposition on the southwest coast of Florida. Although Wilma was the weaker storm, it had the greater impact. Wilma had the higher storm surge over a larger area and deposited more sediment than did Andrew. This effect was most likely due to the size of Wilma's eye, which was four times larger than that of Andrew.

  12. Numerical Evaluation of Storm Surge Indices for Public Advisory Purposes

    Science.gov (United States)

    Bass, B.; Bedient, P. B.; Dawson, C.; Proft, J.

    2016-12-01

    After the devastating hurricane season of 2005, shortcomings with the Saffir-Simpson Hurricane Scale's (SSHS) ability to characterize a tropical cyclones potential to generate storm surge became widely apparent. As a result, several alternative surge indices were proposed to replace the SSHS, including Powell and Reinhold's Integrated Kinetic Energy (IKE) factor, Kantha's Hurricane Surge Index (HSI), and Irish and Resio's Surge Scale (SS). Of the previous, the IKE factor is the only surge index to-date that truly captures a tropical cyclones integrated intensity, size, and wind field distribution. However, since the IKE factor was proposed in 2007, an accurate assessment of this surge index has not been performed. This study provides the first quantitative evaluation of the IKEs ability to serve as a predictor of a tropical cyclones potential surge impacts as compared to other alternative surge indices. Using the tightly coupled ADvanced CIRCulation and Simulating WAves Nearshore models, the surge and wave responses of Hurricane Ike (2008) and 78 synthetic tropical cyclones were evaluated against the SSHS, IKE, HSI and SS. Results along the upper TX coast of the Gulf of Mexico demonstrate that the HSI performs best in capturing the peak surge response of a tropical cyclone, while the IKE accounting for winds greater than tropical storm intensity (IKETS) provides the most accurate estimate of a tropical cyclones regional surge impacts. These results demonstrate that the appropriate selection of a surge index ultimately depends on what information is of interest to be conveyed to the public and/or scientific community.

  13. Observing Storm Surges from Space: A New Opportunity

    Science.gov (United States)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  14. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina L.; Needham, H.F.; Cox, A.

    2016-01-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  15. Hurricane Sandy science plan: impacts of storm surge, including disturbed estuarine and bay hydrology

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers

  16. Alternate site surge capacity in times of public health disaster maintains trauma center and emergency department integrity: Hurricane Katrina.

    Science.gov (United States)

    Eastman, Alexander L; Rinnert, Kathy J; Nemeth, Ira R; Fowler, Raymond L; Minei, Joseph P

    2007-08-01

    Hospital surge capacity has been advocated to accommodate large increases in demand for healthcare; however, existing urban trauma centers and emergency departments (TC/EDs) face barriers to providing timely care even at baseline patient volumes. The purpose of this study is to describe how alternate-site medical surge capacity absorbed large patient volumes while minimizing impact on routine TC/ED operations immediately after Hurricane Katrina. From September 1 to 16, 2005, an alternate site for medical care was established. Using an off-site space, the Dallas Convention Center Medical Unit (DCCMU) was established to meet the increased demand for care. Data were collected and compared with TC/ED patient volumes to assess impact on existing facilities. During the study period, 23,231 persons displaced by Hurricane Katrina were registered to receive evacuee services in the City of Dallas, Texas. From those displaced, 10,367 visits for emergent or urgent healthcare were seen at the DCCMU. The mean number of daily visits (mean +/- SD) to the DCCMU was 619 +/- 301 visits with a peak on day 3 (n = 1,125). No patients died, 3.2% (n = 257) were observed in the DCCMU, and only 2.9% (n = 236) required transport to a TC/ED. During the same period, the mean number of TC/ED visits at the region's primary provider of indigent care (Hospital 1) was 346 +/- 36 visits. Using historical data from Hospital 1 during the same period of time (341 +/- 41), there was no significant difference in the mean number of TC/ED visits from the previous year (p = 0.26). Alternate-site medical surge capacity provides for safe and effective delivery of care to a large influx of patients seeking urgent and emergent care. This protects the integrity of existing public hospital TC/ED infrastructure and ongoing operations.

  17. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  18. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    Science.gov (United States)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  19. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  20. Coastal emergency managers' preferences for storm surge forecast communication.

    Science.gov (United States)

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  1. Contrasting Hydrodynamic and Environmental Effects of Hurricanes Harvey and Ike in a Highly Industrialized Estuary

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    It is commonly believed that storm surge is the most destructive aspect of hurricanes. However, massive rainfall with a return period of 100 years or more induced by hurricanes can cause more catastrophic damage than losses caused by storm surge as demonstrated recently by hurricanes Harvey, Irma and Maria. In this study the hydrodynamics and environmental effects of hurricanes Ike and Harvey were compared and contrasted by linking hydrodynamic flow models with water quality models to simulate spills from storage tanks located in the Houston Ship Channel (HSC). Hurricane Ike with a maximum surge of 5.3 meters in Galveston Bay and Harvey with a maximum rainfall of 1.25 meters both struck the HSC region in Texas in 2008 and 2017, respectively. Both events resulted in numerous spills from municipal and industrial facilities, hazardous waste sites, superfund sites, and landfills. The Environmental Fluid Dynamic Code (EFDC) was coupled with the SWAN+ADCIRC hurricane simulation model to simulate Hurricane Ike and EFDC was coupled with USGS flow boundary conditions to model Hurricane Harvey. A conservative dye release was used to simulate a chemical release during each event. The results showed Hurricane Harvey caused higher water surface elevations within the HSC accompanied by longer and wider-spread land inundation. In contrast, higher water surface elevations were observed within the shallow side bays during Hurricane Ike that caused sediment resuspension and repartitioning of pollutants. Rapid spill mass transportation was observed for both hurricanes; 50% of total spill mass reached Galveston Bay in 20 and 22 hours after a spill event for Hurricane Harvey and Ike, respectively, and more than 90% of the spill mass reached the bay in 36 and 48 hours, respectively. Unlike Hurricane Harvey, the conservative tracer was spread almost 2.5 km upstream of the releasing point for Hurricane Ike due to surge. However, during Harvey, 35% more land was affected by the spilled

  2. Parameter sensitivity and uncertainty analysis for a storm surge and wave model

    Directory of Open Access Journals (Sweden)

    L. A. Bastidas

    2016-09-01

    Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.

  3. Hurricane Harvey Report : A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    NARCIS (Netherlands)

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall

  4. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  5. Modeling the Effects of Storm Surge from Hurricane Jeanne on Saltwater Intrusion into the Surficial Aquifer, East-Central Florida (USA)

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Hall, C. R.

    2017-12-01

    Saltwater intrusion (SWI) that has been widely recognized as a detrimental issue causing the deterioration of coastal aquifer water quality and degradation of coastal ecosystems. While it is widely recognized that SWI is exacerbated worldwide due to global sea-level rise, we show that increased SWI from tropical cyclones under climate change is also a concern. In the Cape Canaveral Barrier Island Complex (CCBIC) located in east-central Florida, the salinity level of the surficial aquifer is of great importance to maintain a bio-diverse ecosystem and to support the survival of various vegetation species. Climate change induced SWI into the surficial aquifer can lead to reduction of freshwater storage and alteration of the distribution and productivity of vegetation communities. In this study, a three-dimensional variable-density SEAWAT model is developed and calibrated to investigate the spatial and temporal variation of salinity level in the surficial aquifer of CCBIC. We link the SEAWAT model to surge model data to examine the effects of storm surge from Hurricane Jeanne. Simulation results indicate that the surficial aquifer salinity level increases significantly right after the occurrence of storm surge because of high aquifer permeability and rapid infiltration and diffusion of the overtopping saltwater, while the surficial aquifer salinity level begins to decrease after the fresh groundwater recharge from the storm's rainfall. The tropical storm precipitation generates an effective hydraulic barrier further impeding SWI and providing seaward freshwater discharge for saltwater dilution and flushing. To counteract the catastrophic effects of storm surge, this natural remediation process may take at least 15-20 years or even several decades. These simulation results contribute to ongoing research focusing on forecasting regional vegetation community responses to climate change, and are expected to provide a useful reference for climate change adaptation planning

  6. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  7. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    Science.gov (United States)

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  8. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  9. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    results obtained, we conclude that, for a good reproduction of the storm surges under hurricane conditions, Makin's new drag parameterization is favourable above the traditional Charnock relation. Furthermore, we are encouraged by these results to continue the studies and establish the effect of improved Makin's wind drag parameterization in the wave model.

    The results from this study will be used to evaluate the relevance of extending the present towards implementation of a similar wind drag parameterization in the SWAN wave model, in line with our aim to apply a consistent wind drag formulation throughout the entire storm surge modelling approach.

  10. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  11. Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970–2005

    Science.gov (United States)

    Logan, John R.; Issar, Sukriti; Xu, Zengwang

    2016-01-01

    Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970–2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal—a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm’s way while socially vulnerable groups have fewer choices. PMID:27531504

  12. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  13. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  14. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  15. EFFECTS OF HURRICANE IVAN ON WATER QUALITY IN PENSACOLA BAY, FL USA

    Science.gov (United States)

    Pensacola Bay was in the strong NE quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, ...

  16. Pearl Harbor and South Coast of OAHU Hurricane Haven Study.

    Science.gov (United States)

    1984-09-01

    LASNIS. (TERN Is. NEKE 1 /AA*s**OAH/ DISAPPEARING IS. /NIHOA MOLOKAI NIIHAU MU 20ON LANAI-’ ’ KAHOOLAWE 0 0 lo HAWAII (0 U) Figure 1...of Niihau and Kauai near 240300Z. Its closest point of approach to Oahu occurred when it was northwest of the island at approximatly 240430Z and...Section 4.2, the most exten- sively documented occurrence of storm surge in the Hawaiian Islands came with Hurricane Iwa. Kauai and Niihau bore the

  17. Hurricane Harvey Report: A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    OpenAIRE

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall totals and flood-related damages. Across large portions of southeast Texas, rainfall totals during the six-day period between August 25 and 31, 2017 were amongst the highest ever recorded, causing flo...

  18. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  19. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    Science.gov (United States)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  20. Leveraging Social Media Data to Understand Disaster Resilience: A Case Study of Hurricane Isaac

    Science.gov (United States)

    Zou, L.; Lam, N.; Cai, H.

    2017-12-01

    Coastal communities are facing multiple threats from natural hazards, such as hurricanes, flooding, and storm surge, and show uneven response and recovery behaviors. To build a sustainable coast, it is critical to understand how coastal hazards affect humans and how to enhance disaster resilience. However, understanding community resilience remains challenging, due to the lack of real-time data describing community's response and recovery behaviors during disasters. Public discussion through social media platforms provides an opportunity to understand these behaviors by categorizing real-time social media data into three main phases of emergency management - preparedness, response, and recovery. This study analyzes the spatial-temporal patterns of Twitter use and content during Hurricane Isaac, which struck coastal Louisiana on August 29, 2012. The study area includes counties affected by Hurricane Isaac in Louisiana and Mississippi. The objectives are three-fold. First, we will compute a set of Twitter indices to quantify the Twitter activities during Hurricane Issac and the results will be compared with those of Hurricane Sandy to gain a better understanding of human response in extreme events. Second, county-level disaster resilience in the affected region will be computed and evaluated using the Resilience Inference Measurement (RIM) model. Third, we will examine the relationship between the geographical and social disparities in Twitter use and the disparities in disaster resilience and evaluate the role of Twitter use in disaster resilience. Knowledge gained from this study could provide valuable insights into strategies for utilizing social media data to increase resilience to disasters.

  1. Brief communication "Hurricane Irene: a wake-up call for New York City?"

    Directory of Open Access Journals (Sweden)

    J. C. J. H. Aerts

    2012-06-01

    Full Text Available The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit to the city from a hurricane may expose an enormous number of people to flooding. A major hurricane has the potential to cause large-scale damage in NYC. The city's resilience to flooding can be increased by improving and integrating flood insurance, flood zoning, and building code policies.

  2. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    Science.gov (United States)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  3. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  4. Hurricane Irene: a Wake Up Call for New York City?

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Botzen, W.J.W.

    2012-01-01

    The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC) than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit

  5. Development of wave and surge atlas for the design and protection of coastal bridges in south Louisiana : [tech summary].

    Science.gov (United States)

    2015-02-01

    The failures of highway bridges on the Gulf Coast seen in the aftermath of Hurricane Katrina in 2005 were unprecedented. : In the past four decades, wind waves accompanied by high surges from hurricanes have damaged a number of coastal : bridges alon...

  6. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    Science.gov (United States)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  7. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  8. Climatic Changes and Consequences on the French West Indies (C3AF), Hurricane and Tsunami Hazards Assessment

    Science.gov (United States)

    Arnaud, G.; Krien, Y.; Zahibo, N.; Dudon, B.

    2017-12-01

    Coastal hazards are among the most worrying threats of our time. In a context of climate change coupled to a large population increase, tropical areas could be the most exposed zones of the globe. In such circumstances, understanding the underlying processes can help to better predict storm surges and the associated global risks.Here we present the partial preliminary results integrated in a multidisciplinary project focused on climatic change effects over the coastal threat in the French West Indies and funded by the European Regional Development Fund. The study aims to provide a coastal hazard assessment based on hurricane surge and tsunami modeling including several aspects of climate changes that can affect hazards such as sea level rise, crustal subsidence/uplift, coastline changes etc. Several tsunamis scenarios have been simulated including tele-tsunamis to ensure a large range of tsunami hazards. Surge level of hurricane have been calculated using a large number of synthetic hurricanes to cover the actual and forecasted climate over the tropical area of Atlantic ocean. This hazard assessment will be later coupled with stakes assessed over the territory to provide risk maps.

  9. Morphological responses of the Wax Lake Delta, Louisiana, to Hurricanes Rita

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2017-12-01

    Full Text Available This study examines the morphodynamic response of a deltaic system to extreme weather events. The Wax Lake Delta (WLD in Louisiana, USA, is used to illustrate the impact of extreme events (hurricanes on a river-dominated deltaic system. Simulations using the open source Delft3D model reveal that Hurricane Rita, which made landfall 120 km to the west of WLD as a Category 3 storm in 2005, caused erosion on the right side and deposition on the left side of the hurricane eye track on the continental shelf line (water depth 10 m to 50 m. Erosion over a wide area occurred both on the continental shelf line and in coastal areas when the hurricane moved onshore, while deposition occurred along the Gulf coastline (water depth < 5 m when storm surge water moved back offshore. The numerical model estimated that Hurricane Rita’s storm surge reached 2.5 m, with maximum currents of 2.0 m s–1, and wave heights of 1.4 m on the WLD. The northwestern-directed flow and waves induced shear stresses, caused erosion on the eastern banks of the deltaic islands and deposition in channels located west of these islands. In total, Hurricane Rita eroded more than 500,000 m3 of sediments on the WLD area. Including waves in the analysis resulted in doubling the amount of erosion in the study area, comparing to the wave-excluding scenario. The exclusion of fluvial input caused minor changes in deltaic morphology during the event. Vegetation cover was represented as rigid rods in the model which add extra source terms for drag and turbulence to influence the momentum and turbulence equations. Vegetation slowed down the floodwater propagation and decreased flow velocity on the islands, leading to a 47% reduction in the total amount of erosion. Morphodynamic impact of the hurricane track relative to the delta was explored. Simulations indicate that the original track of Hurricane Rita (landfall 120 km west of the WLD produced twice as much erosion and deposition at the delta

  10. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    Science.gov (United States)

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010

  11. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  12. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    Science.gov (United States)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  13. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  14. Observing storm surges in the Bay of Bengal from satellite altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Testut, L.; Unnikrishnan, A.S.

    with the large tidal ranges give rise to extreme sea level in the head bay and surrounding regions. Moreover, low-lying nature of the coast and the dense population in the region make the coasts of the northern Bay of Bengal highly vulnerable to storm surges...-gauge data during the passage of the hurricane Igor that crossed Newfoundland in 2010. For this event, St. John’s tide gauge recorded a maximum surge of 94 cm and Jason-2 (the track located 89 km away from the tide-gauge station) showed positive sea-level...

  15. Analysis of Storm Surge in Hong Kong

    Science.gov (United States)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  16. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  17. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  18. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    Science.gov (United States)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  19. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  20. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  1. Hurricane Rita and the destruction of Holly Beach, Louisiana: Why the chenier plain is vulnerable to storms

    Science.gov (United States)

    Sallenger, A.H.; Wright, C.W.; Doran, K.; Guy, K.; Morgan, K.

    2009-01-01

    Hurricane Rita devastated gulf-front communities along the western Louisiana coast in 2005. LIDAR (light detection and ranging) topographic surveys and aerial photography collected before and after the storm showed the loss of every structure within the community of Holly Beach. Average shoreline change along western Louisiana's 140-km-long impacted shore was -23.3 ?? 30.1 m of erosion, although shoreline change in Holly Beach was substantially less, and erosion was not pervasive where the structures were lost. Before the storm, peak elevations of the dunes, or berms in the absence of dunes, along the impacted shore averaged 1.6 m. The storm surge, which reached 3.5 m just east of Holly Beach, completely inundated the beach systems along the impacted western Louisiana shore. The high surge potential and low land elevations make this coast extremely vulnerable to hurricanes. In fact, most of the western Louisiana shore impacted by Rita will be completely inundated by the storm surge of a worst-case Saffi r-Simpson category 1 hurricane. All of this shore will be inundated by worst-case category 2-5 storms. ?? 2009 The Geological Society of America.

  2. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  3. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  4. Biogeochemical Impact of Hurricane Harvey on Texas Coastal Lagoons

    Science.gov (United States)

    Montagna, P.; Hu, X.; Walker, L.; Wetz, M.

    2017-12-01

    Hurricane Harvey made landfall Friday 25 August 2017 as a Category 4 hurricane, which is the strongest hurricane to hit the middle Texas coast since Carla in 1961. After the wind storm and storm surge, coastal flooding occurred due to the storm lingering over Texas for four more days, dumping as much as 50" of rain near Houston, producing 1:1000 year flood event. The Texas coast is characterized by lagoons behind barrier islands, and their ecology and biogeochemistry are strongly influenced by coastal hydrology. The ensuing inflow event replaced brackish water with fresh water that was high in inorganic an organic matter, significantly enhancing respiration of coastal blue carbon, and dissolved oxygen went to zero for a long period of time. Recovery will likely take months or nearly one year.

  5. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    Science.gov (United States)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  6. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad

    2013-08-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  7. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, Ibrahim

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  8. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    Science.gov (United States)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  9. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    Science.gov (United States)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  10. Storm surge modeling of Superstorm Sandy in the New York City Metropolitan area

    Science.gov (United States)

    Benimoff, A. I.; Blanton, B. O.; Dzedzits, E.; Fritz, W. J.; Kress, M.; Muzio, P.; Sela, L.

    2013-12-01

    Even though the New York/New Jersey area does not lie within the typical 'hurricane belt', recent events and the historical record indicate that large infrequent tropical storms have had direct hits on the region, with impacts being amplified due to the nearly right angle bend in the coastline. The recent plan unveiled by New York City's Mayor Bloomberg lays out mitigation strategies to protect the region's communities, infrastructure, and assets from future storms, and numerical simulation of storm surge and wave hazards driven by potential hurricanes plays a central role in developing and evaluating these strategies. To assist in local planning, recovery, and decision-making, we have used the tide, storm surge, and wind wave model ADCIRC+SWAN to simulate storm surge in one of the most populated areas of the United States: the New York City (NYC) metropolitan area. We have generated a new high-resolution triangular finite-element model grid for the region from recent USGS data as well as recent city topographic maps at 2-foot (0.6m) contour intervals, nautical charts, and details of shipping channels. Our hindcast simulations are compared against Superstorm Sandy. We used the City University of New York High Performance Computing Center's Cray XE6tm at the College of Staten Island for these simulations. Hindcasting and analysis of the Superstorm Sandy storm surge and waves indicates that our simulations produce a reasonable representation of actual events. The grid will be used in an ADCIRC-based forecasting system implementation for the region.

  11. Vulnerability of National Park Service beaches to inundation during a direct hurricane landfall: Fire Island National Seashore

    Science.gov (United States)

    Stockdon, Hilary F.; Thompson, David M.

    2007-01-01

    Waves and storm surge associated with strong tropical storms are part of the natural process of barrier-island evolution and can cause extensive morphologic changes in coastal parks, leading to reduced visitor accessibility and enjoyment. Even at Fire Island National Seashore, a barrier-island coastal park in New York where extratropical storms (northeasters) dominate storm activity, the beaches are vulnerable to the powerful, sand-moving forces of hurricanes. The vulnerability of park beaches to inundation, and associated extreme coastal change, during a direct hurricane landfall can be assessed by comparing the elevations of storm-induced mean-water levels (storm surge) to the elevations of the crest of the sand dune that defines the beach system. Maps detailing the inundation potential for Category 1-4 hurricanes can be used by park managers to determine the relative vulnerability of various barrier-island parks and to assess which areas of a particular park are more susceptible to inundation and extreme coastal changes.

  12. The Surge, Wave, and Tide Hydrodynamics (SWaTH) network of the U.S. Geological Survey—Past and future implementation of storm-response monitoring, data collection, and data delivery

    Science.gov (United States)

    Verdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.

    2017-06-20

    After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.

  13. Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks

    Science.gov (United States)

    Caffrey, M.; Beavers, R. L.; Slayton, I. A.

    2013-12-01

    The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.

  14. Using High-Resolution Imagery to Characterize Disturbance from Hurricane Irma in South Florida Wetlands

    Science.gov (United States)

    Lagomasino, D.; Cook, B.; Fatoyinbo, T.; Morton, D. C.; Montesano, P.; Neigh, C. S. R.; Wooten, M.; Gaiser, E.; Troxler, T.

    2017-12-01

    Hurricane Irma, one of the strongest hurricanes recorded in the Atlantic, first made landfall in the Florida Keys before coming ashore in southwestern Florida near Everglades National Park (ENP) on September 9th and 10th of this year. Strong winds and storm surge impacted a 100+ km stretch of the southern Florida Gulf Coast, resulting in extensive damages to coastal and inland ecosystems. Impacts from previous catastrophic storms in the region have led to irreversible changes to vegetation communities and in some areas, ecosystem collapse. The processes that drive coastal wetland vulnerability and resilience are largely a function of the severity of the impact to forest structure and ground elevation. Remotely sensed imagery plays an important role in measuring changes to the landscape, particularly for extensive and inaccessible regions like the mangroves in ENP. We have estimated changes in coastal vegetation structure and soil elevation using a combination of repeat measurements from ground, airborne, and satellite platforms. At the ground level, we used before and after Structure-from-Motion models to capture the change in below canopy structure as result of stem breakage and fallen branches. Using airborne imagery collected before and after Hurricane Irma by Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager, we measured the change in forest structure and soil elevation. This unique data acquisition covered an area over 130,000 ha in regions most heavily impacted storm surge. Lastly, we also combined commercial and NASA satellite Earth observations to measure forest structural changes across the entire South Florida coast. An analysis of long-term observations from the Landsat data archive highlights the heterogeneity of hurricane and other environmental disturbances along the Florida coast. These findings captured coastal disturbance legacies that have the potential to influence the trajectory of mangrove resilience and vulnerability

  15. Petroleum and hazardous material releases from industrial facilities associated with Hurricane Katrina.

    Science.gov (United States)

    Santella, Nicholas; Steinberg, Laura J; Sengul, Hatice

    2010-04-01

    Hurricane Katrina struck an area dense with industry, causing numerous releases of petroleum and hazardous materials. This study integrates information from a number of sources to describe the frequency, causes, and effects of these releases in order to inform analysis of risk from future hurricanes. Over 200 onshore releases of hazardous chemicals, petroleum, or natural gas were reported. Storm surge was responsible for the majority of petroleum releases and failure of storage tanks was the most common mechanism of release. Of the smaller number of hazardous chemical releases reported, many were associated with flaring from plant startup, shutdown, or process upset. In areas impacted by storm surge, 10% of the facilities within the Risk Management Plan (RMP) and Toxic Release Inventory (TRI) databases and 28% of SIC 1311 facilities experienced accidental releases. In areas subject only to hurricane strength winds, a lower fraction (1% of RMP and TRI and 10% of SIC 1311 facilities) experienced a release while 1% of all facility types reported a release in areas that experienced tropical storm strength winds. Of industrial facilities surveyed, more experienced indirect disruptions such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations or reconstruction (55%), than experienced releases. To reduce the risk of hazardous material releases and speed the return to normal operations under these difficult conditions, greater attention should be devoted to risk-based facility design and improved prevention and response planning.

  16. Impact of Hurricane Irma in the post-recovery of Matthew in South Carolina, the South Atlantic Bight (Western Atlantic)

    Science.gov (United States)

    Harris, M. S.; Levine, N. S.; Jaume, S. C.; Hendricks, J. K.; Rubin, N. D.; Hernandez, J. L.

    2017-12-01

    The impacts on the Southeastern United States (SEUS, Western Atlantic) from Hurricane Irma in Sept 2017 were felt primarily on the active coastline with the third highest inland storm surge in Charleston and Savannah since the 19th Century. Coastal geometry, waves, and wind duration had a strong influence on the storm surge and coastal erosion impacts regionally. To the North and immediate South, impacts were much less. A full year after the 2016 hurricane season (Hurricane Matthew), the lack of regional recovery reduced protection against Irma. The most devastating impacts of Irma in the SAB occurred from 300 to 500 km away from the eye, on the opposite side of the Floridian peninsula. As Irma devastated the Caribbean, winds started to increases off the SAB on September 8 in the early morning, continuing for the next 3 days and blowing directly towards the SC and GA coasts. Tide gauges started to respond the night of September 8, while waves started arriving in the SEUS around Sept 6. Coastal erosion pre- and post-Irma has been calculated for Central SC using vertical and oblique aerial photos. Citizen Science initiatives through the Charleston Resilience Network have provided on-the-ground data during storms when transportation infrastructures were closed, and allow for ground-truth post-storm of surge and impacts. Said information was collected through Facebook, Google, and other social media. Pictures with timestamps and water heights were collected and are validating inundation flood maps generated for the Charleston SC region. The maps have 1-m horizontal and 7- to 15-cm vertical accuracy. Inundation surfaces were generated at MHHW up to a maximum surge in 6 inch increments. The flood extents of the modeled surge and the photographic evidence show a high correspondence. Storm surge measurements from RTK-GPS provide regional coverage of surge elevations from the coast, inland, and allow for testing of modeled results and model tuning. With Hurricane Irma

  17. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    Science.gov (United States)

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in

  18. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  19. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    Science.gov (United States)

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  20. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  1. Hurricane Harvey: Infrastructure Damage Assessment of Texas' Central Gulf Coast Region

    Science.gov (United States)

    Mooney, W. D.; Fovenyessy, S.; Patterson, S. F.

    2017-12-01

    We report a detailed ground-based damage survey for Hurricane Harvey, the first major hurricane to make landfall along the central Texas coast since the 1970 Category 3 Hurricane Celia. Harvey, a Category 4 storm, made landfall near Rockport, Texas on August 25th, 2017 at 10 PM local time. From September 2nd to 5th we visited Rockport and 22 nearby cities to assess the severity of the damage. Nearly all damage observed occurred as a direct result of the hurricane-force winds, rather than a storm surge. This observation is in contrast to the severe damage caused by both high winds and a significant storm surge, locally 3 to 5 m in height, in the 2013 Category 5 Hurricane Haiyan, that devastated the Philippines. We have adopted a damage scale and have given an average damage score for each of the areas investigated. Our damage contour map illustrates the areal variation in damage. The damage observed was widespread with a high degree of variability. Different types of damage included: (1) fallen fences and utility poles; (2) trees with branches broken or completely snapped in half; (3) business signs that were either partially or fully destroyed; (4) partially sunken or otherwise damaged boats; (5) and sheet metal sheds either completely or partially destroyed. There was also varying degrees of damage to both residential and commercial structures. Many homes had (6) roof damage, ranging from minor damage to complete destruction of the roof and second story, and (7) siding damage, where parts or whole sections of the homes siding had been removed. The area that had the lowest average damage score was Corpus Christi, and the areas that had the highest average damage score was both Fulton and Holiday Beach. There is no simple, uniform pattern of damage distribution. Rather, the damage was scattered, revealing hot spots of areas that received more damage than the surrounding area. However, when compared to the NOAA wind swath map, all of the damage was contained within

  2. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  3. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  4. The effects of hurricane Rita and subsequent drought on alligators in southwest Louisiana.

    Science.gov (United States)

    Lance, Valentine A; Elsey, Ruth M; Butterstein, George; Trosclair, Phillip L; Merchant, Mark

    2010-02-01

    Hurricane Rita struck the coast of southwest Louisiana in September 2005. The storm generated an enormous tidal surge of approximately four meters in height that inundated many thousands of acres of the coastal marsh with full strength seawater. The initial surge resulted in the deaths of a number of alligators and severely stressed those who survived. In addition, a prolonged drought (the lowest rainfall in 111 years of recorded weather data) following the hurricane resulted in highly saline conditions that persisted in the marsh for several months. We had the opportunity to collect 11 blood samples from alligators located on Holly Beach less than a month after the hurricane, but were unable to collect samples from alligators on Rockefeller Wildlife Refuge until February 2006. Conditions at Rockefeller Refuge did not permit systematic sampling, but a total of 201 samples were collected on the refuge up through August 2006. The blood samples were analyzed for sodium, potassium, chloride, osmolality, and corticosterone. Blood samples from alligators sampled on Holly Beach in October 2005, showed a marked elevation in plasma osmolality, sodium, chloride, potassium, corticosterone, and an elevated heterophil/lymphocyte ratio. Blood samples from alligators on Rockefeller Refuge showed increasing levels of corticosterone as the drought persisted and elevated osmolality and electrolytes. After substantial rainfall in July and August, these indices of osmotic stress returned to within normal limits. (c) 2009 Wiley-Liss, Inc.

  5. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    Science.gov (United States)

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  6. Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

    KAUST Repository

    Hollt, Thomas

    2015-01-15

    We present a novel integrated visualization system that enables the interactive visual analysis of ensemble simulations and estimates of the sea surface height and other model variables that are used for storm surge prediction. Coastal inundation, caused by hurricanes and tropical storms, poses large risks for today\\'s societies. High-fidelity numerical models of water levels driven by hurricane-force winds are required to predict these events, posing a challenging computational problem, and even though computational models continue to improve, uncertainties in storm surge forecasts are inevitable. Today, this uncertainty is often exposed to the user by running the simulation many times with different parameters or inputs following a Monte-Carlo framework in which uncertainties are represented as stochastic quantities. This results in multidimensional, multivariate and multivalued data, so-called ensemble data. While the resulting datasets are very comprehensive, they are also huge in size and thus hard to visualize and interpret. In this paper, we tackle this problem by means of an interactive and integrated visual analysis system. By harnessing the power of modern graphics processing units for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations to highlight the uncertainty or show the complete distribution of the simulations at user-defined positions over the complete time series of the prediction. We highlight the benefits of our system by presenting its application in a real-world scenario using a simulation of Hurricane Ike.

  7. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  8. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Science.gov (United States)

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  9. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008.

    Science.gov (United States)

    Kleinpeter, Myra A

    2009-01-01

    Hurricanes Katrina and Rita resulted in massive devastation of the Gulf Coast at Mississippi, Louisiana, and Texas during 2005. Because of those disasters, dialysis providers, nephrologists, and dialysis patients used disaster planning activities to work to mitigate the morbidity and mortality associated with the 2005 hurricane season for future events affecting dialysis patients. As Hurricane Gustav approached, anniversary events for Hurricane Katrina were postponed because of evacuation orders for nearly the entire Louisiana Gulf Coast. As part of the hurricane preparation, dialysis units reviewed the disaster plans of patients, and patients made preparation for evacuation. Upon evacuation, many patients returned to the dialysis units that had provided services during their exile from Hurricane Katrina; other patients went to other locations as part of their evacuation plan. Patients uniformly reported positive experiences with dialysis providers in their temporary evacuation communities, provided that those communities did not experience the effects of Hurricane Gustav. With the exception of evacuees to Baton Rouge, patients continued to receive their treatments uninterrupted. Because of extensive damage in the Baton Rouge area, resulting in widespread power losses and delayed restoration of power to hospitals and other health care facilities, some patients missed one treatment. However, as a result of compliance with disaster fluid and dietary recommendations, no adverse outcomes occurred. In most instances, patients were able to return to their home dialysis unit or a nearby unit to continue dialysis treatments within 4 - 5 days of Hurricane Gustav. Hurricane Ike struck the Texas Gulf Coast near Galveston, resulting in devastation of that area similar to the devastation seen in New Orleans after Katrina. The storm surge along the Louisiana Gulf Coast resulted in flooding that temporarily closed coastal dialysis units. Patients were prepared and experienced

  10. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  11. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  12. The effects of hurricanes on birds, with special reference to Caribbean islands

    Science.gov (United States)

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  13. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    Science.gov (United States)

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes

  14. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  15. Are recent hurricane (Harvey, Irma, Maria) disasters natural?

    Science.gov (United States)

    Trenberth, K. E.; Lijing, C.; Jacobs, P.; Abraham, J. P.

    2017-12-01

    Yes and no! Hurricanes are certainly natural, but human-caused climate change is supersizing them, and unbridled growth is exacerbating risk of major damages. The addition of heat-trapping gases to the atmosphere has led to observed increases in upper ocean heat content (OHC). This human-caused increase in OHC supports higher sea surface temperatures (SSTs) and atmospheric moisture. These elevated temperatures and increased moisture availability fuel tropical storms, allowing them to grow larger, longer lasting, and more intense, and with widespread heavy rainfalls. Our preliminary analysis of OHC through the August of 2017 shows not only was it by far the highest on record globally, but it was also the highest on record in the Gulf of Mexico prior to hurricane Harvey occurring. The human influence on the climate is also evident in rising sea levels, which increases risks from storm surges. These climatic changes are taking place against a background of growing habitation along coasts, which further increases the risk storms pose to life and property. This combination of planning choice and climatic change illustrates the tragedy of global warming, as evidenced by Harvey in Houston, Irma in the Caribbean and Florida, and Maria in Puerto Rico. However, future damages and loss of life can be mitigated, by stopping or slowing human-caused climate change, and through proactive planning (e.g., better building codes, increased-capacity drainage systems, shelters, and evacuation plans). We discuss the climatic and planning contexts of the unnatural disasters of the 2017 Atlantic Hurricane season, including novel indices of climate-hurricane influence.

  16. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  17. The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Harry V. Wang

    2014-03-01

    Full Text Available Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE, was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model’s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15–20 cm and 5%–7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS’ Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.

  18. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    Science.gov (United States)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  19. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  20. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    Science.gov (United States)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  1. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    Science.gov (United States)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2007-01-01

    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.

  2. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  3. Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-- A U.S. Geological Survey Science Plan for Support of Restoration and Recovery

    Science.gov (United States)

    Buxton, Herbert T.; Andersen, Matthew E.; Focazio, Michael J.; Haines, John W.; Hainly, Robert A.; Hippe, Daniel J.; Sugarbaker, Larry J.

    2013-01-01

    n late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection And Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term network and rapid-deployment real-time streamgages and water-quality monitors reported on river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm related information from many agencies on the Internet on a daily basis. This science plan was developed immediately following Hurricane Sandy to coordinate continuing USGS activities with other agencies and to guide continued data collection and analysis to ensure support for recovery and restoration efforts. The data, information, and tools that are produced by implementing this

  4. Numerical study of sediment dynamics during hurricane Gustav

    Science.gov (United States)

    Zang, Zhengchen; Xue, Z. George; Bao, Shaowu; Chen, Qin; Walker, Nan D.; Haag, Alaric S.; Ge, Qian; Yao, Zhigang

    2018-06-01

    In this study, the coupled ocean-atmosphere-wave-and-sediment transport (COAWST) modeling system was employed to explore sediment dynamics in the northern Gulf of Mexico during hurricane Gustav in 2008. The performance of the model was evaluated quantitatively and qualitatively against in-situ and remote sensing measurements, respectively. After Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 8 m offshore and they decreased quickly as it moved toward the inner shelf, where the vertical stratification was largely destroyed. Alongshore currents were dominant westward on the eastern sector of the hurricane track, and offshoreward currents prevailed on the western sector. High suspended sediment concentrations (>1000 mg/l) were confined to the inner shelf at surface layers and the simulated high concentrations at the bottom layer extended to the 200 m isobaths. The stratification was restored one week after landfall, although not fully. The asymmetric hurricane winds induced stronger hydrodynamics in the eastern sector, which led to severe erosion. The calculated suspended sediment flux (SSF) was convergent to the hurricane center and the maximum SSF was simulated near the south and southeast of the Mississippi river delta. The averaged post-hurricane deposition over the Louisiana shelf was 4.0 cm, which was 3.2-26 times higher than the annual accumulation rate under normal weather conditions.

  5. Experimental Study on Noise Characteristic of Centrifugal Compressor Surge

    OpenAIRE

    Yang, Qichao; Zhao, Yuanyang; SHU, Yue; LI, Xiaosa; LI, Liansheng

    2016-01-01

    The centrifugal air compressor test rig is was designed and established. The experimental study was carried out on the surge characteristics of centrifugal compressor including the pressure in the pipe and the noise characteristics under different rotation speed. The tested results showed that both the suction pressure and discharge pressure fluctuation increase under surge condition and the amplitude of discharge pressure fluctuation is significantly higher than that of suction pressure. In ...

  6. Analysis and simulation of propagule dispersal and salinity intrusion from storm surge on the movement of a marsh–mangrove ecotone in South Florida

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Anderson, Gordon H.; Smith, Thomas J.

    2014-01-01

    Coastal mangrove–freshwater marsh ecotones of the Everglades represent transitions between marine salt-tolerant halophytic and freshwater salt-intolerant glycophytic communities. It is hypothesized here that a self-reinforcing feedback, termed a “vegetation switch,” between vegetation and soil salinity, helps maintain the sharp mangrove–marsh ecotone. A general theoretical implication of the switch mechanism is that the ecotone will be stable to small disturbances but vulnerable to rapid regime shifts from large disturbances, such as storm surges, which could cause large spatial displacements of the ecotone. We develop a simulation model to describe the vegetation switch mechanism. The model couples vegetation dynamics and hydrologic processes. The key factors in the model are the amount of salt-water intrusion into the freshwater wetland and the passive transport of mangrove (e.g., Rhizophora mangle) viviparous seeds or propagules. Results from the model simulations indicate that a regime shift from freshwater marsh to mangroves is sensitive to the duration of soil salinization through storm surge overwash and to the density of mangrove propagules or seedlings transported into the marsh. We parameterized our model with empirical hydrologic data collected from the period 2000–2010 at one mangrove–marsh ecotone location in southwestern Florida to forecast possible long-term effects of Hurricane Wilma (24 October 2005). The model indicated that the effects of that storm surge were too weak to trigger a regime shift at the sites we studied, 50 km south of the Hurricane Wilma eyewall, but simulations with more severe artificial disturbances were capable of causing substantial regime shifts.

  7. The Long Term Recovery of New Orleans' Population after Hurricane Katrina.

    Science.gov (United States)

    Fussell, Elizabeth

    2015-09-01

    Hurricane Katrina created a catastrophe in the city of New Orleans when the storm surge caused the levee system to fail on August 29, 2005. The destruction of housing displaced hundreds of thousands of residents for varying lengths of time, often permanently. It also revealed gaps in our knowledge of how population is recovered after a disaster causes widespread destruction of urban infrastructure, housing and workplaces, and how mechanisms driving housing recovery often produce unequal social, spatial and temporal population recovery. In this article, I assemble social, spatial and temporal explanatory frameworks for housing and population recovery and then review research on mobility - both evacuation and migration - after Hurricane Katrina. The review reveals a need for a comprehensive social, spatial and temporal framework for explaining inequality in population recovery and displacement. It also shows how little is known about in-migrants and permanent out-migrants after a disaster.

  8. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    Science.gov (United States)

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  9. Wind vs Water in Hurricanes: The Challenge of Multi-peril Hazard Modeling

    Science.gov (United States)

    Powell, M. D.

    2017-12-01

    With the advancing threat of Sea Level Rise much of the U. S. is in danger of falling into the "protection gap". Residential property flood risk is not yet covered by the insurance market. Many coastal properties are not paying into the National Flood Insurance Program (NFIP) at premiums commensurate with the risk. This is exasperated by the program being deep in debt, despite only covering a fraction of the potential loss, while windstorm insurance covers up to replacement value. This results in a battle that benefits nobody. Any significant hurricane will include both wind and storm surge perils at the same time and any coastal property has to contend with the risk of damage by both. If you have extensive flood damage your wind storm policy might deny your claim and your flood policy (if you even have one) will in most cases be constrained to a $250,000 limit. Bring on the litigators! Some homeowners will claim that the wind destroyed the home first and then it was carried away by flood waters or pulverized by waves. Insurers might respond that the storm surge did all the damage and deny the claim. We've seen this already following Hurricane Katrina in 2005, and Hurricane Ike in 2008, with thousands of litigation claims and a cottage industry of scientists serving as expert witnesses on both sides of the aisle. Congress responded in 2012 with the Coastal Act, which provided an "unfunded mandate" directing NOAA to provide wind and water level data to FEMA for input to their "Coastal Formula" for attributing loss to wind and water. The results of the formula would then limit the amount paid by the NFIP by subtracting out the wind loss portion. The Texas Windstorm Insurance Association (TWIA) went further by assembling a panel of experts to recommend guidelines for how the state should respond to future hurricane impacting properties on the Texas coast. The expert panel report was released in April of 2016, and TWIA is currently developing a comprehensive

  10. Monitoring storm tide and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016

    Science.gov (United States)

    Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.

    2017-11-02

    IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-tide sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Matthew. Storm tide, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-tide sensors in USGS history and was completed as part of a coordinated Federal emergency response as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-tide models for maximum and incremental water level and flood extent, and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  11. Measuring storm tide and high-water marks caused by Hurricane Sandy in New York: Chapter 2

    Science.gov (United States)

    Simonson, Amy E.; Behrens, Riley

    2015-01-01

    In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-tide sensors from Virginia to Maine. During the storm, real-time water levels were available from tide gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-tide sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical tide was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high tide, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low tide, which helped spare these communities from more severe coastal flooding.

  12. Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities

    International Nuclear Information System (INIS)

    Hatzikyriakou, Adam; Lin, Ning

    2017-01-01

    Interaction between residential structures during natural hazards can lead to interdependencies in their performance. During storm surge, for example, structures can affect the performance of inland buildings by generating damaging waterborne debris or by beneficially dampening surge loads. Quantifying the impact of this interaction on structural vulnerability is critical for risk assessment and informed decision-making. In this study we present and implement two general modeling approaches for investigating such interdependencies. The first method is to condition the vulnerability of a structure on the performance of neighboring buildings using a Markov model. The second uses a marginal model to account for correlation between damage observations when estimating a structure's vulnerability to the hazard. Both approaches are implemented using a case study of an impacted coastal community during Hurricane Sandy (2012). Findings indicate that a structure's performance during storm surge is strongly dependent on the damage state of the structure immediately seaward. Furthermore, considering the correlated damage states of buildings increases statistical uncertainty when relating structural performance to hazard intensity. Motivated by these findings, we propose a more coordinated approach to coastal risk mitigation which considers the effects of interdependencies on insurance pricing, structural design, mitigation strategies and community resilience. - Highlights: • Interaction between residential structures leads to performance interdependencies. • Interdependencies during storm surge are due to debris and structural shielding. • Markov model treats interdependencies as an additional demand parameter. • Marginal model incorporates damage correlation into regression estimation. • System behavior should be considered in community risk and resilience.

  13. Assessing the Impacts of US Landfall Hurricanes in 2012 using Aerial Remote Sensing

    Science.gov (United States)

    Bevington, John S.

    2013-04-01

    Remote sensing has become a widely-used technology for assessing and evaluating the extent and severity of impacts of natural disasters worldwide. Optical and radar data collected by air- and space-borne sensors have supported humanitarian and economic decision-making for over a decade. Advances in image spatial resolution and pre-processing speeds have meant images with centimetre spatial resolution are now available for analysis within hours following severe disaster events. This paper offers a retrospective view on recent large-scale responses to two of the major storms from the 2012 Atlantic hurricane season: Hurricane Isaac and post-tropical cyclone ("superstorm") Sandy. Although weak on the Saffir-Simpson hurricane wind scale, these slow-moving storms produced intense rainfall and coastal storm surges in the order of several metres in the Louisiana and Mississippi Gulf Coast (Isaac), and the Atlantic Seaboard (Sandy) of the United States. Data were generated for both events through interpretation of a combination of two types of aerial imagery: high spatial resolution optical imagery captured by fixed aerial sensors deployed by the National Oceanic and Atmospheric Administration (NOAA), and digital single lens reflex (DSLR) images captured by volunteers from the US Civil Air Patrol (CAP). Imagery for these events were collected over a period of days following the storms' landfall in the US, with availability of aerial data far outweighing the sub-metre satellite imagery. The imagery described were collected as vertical views (NOAA) and oblique views (CAP) over the whole affected coastal and major riverine areas. A network of over 150 remote sensing experts systematically and manually processed images through visual interpretation, culminating in hundreds of thousands of individual properties identified as damaged or destroyed by wind or surge. A discussion is presented on the challenges of responding at such a fine level of spatial granularity for coastal

  14. Hurricane Sandy science plan: impacts of environmental quality and persisting contaminant exposure

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  15. Large-scale Vertical Motions, Intensity Change and Precipitation Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    Science.gov (United States)

    Reddy, S. R.; Kwembe, T.; Zhang, Z.

    2016-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data for Convective Available Potential Energy for water vapor (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorm, tornadoes, storm surge and floods Numerical model (WRF/ARW) with data assimilations have been used for this research to investigate the model's performances on hurricane tracks and intensities associated with the hurricane Katrina, which began to strengthen until reaching Category 5 on 28 August 2005. The model was run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 hr periods, from August 28th to August 30th. The model output was compared with the observations and is capable of simulating the surface features, intensity change and track associated with hurricane Katrina.

  16. Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery

    Science.gov (United States)

    Spruce, Joseph; McKellip, Rodney

    2006-01-01

    Hurricane Katrina hit southeastern Louisiana and the Mississippi Gulf Coast as a Category 3 hurricane with storm surges as high as 9 m. Katrina devastated several coastal towns by destroying or severely damaging hundreds of homes. Several Federal agencies are assessing storm impacts and assisting recovery using high-spatial-resolution remotely sensed data from satellite and airborne platforms. High-quality IKONOS satellite imagery was collected on September 2, 2005, over southwestern Mississippi. Pan-sharpened IKONOS multispectral data and ERDAS IMAGINE software were used to classify post-storm land cover for coastal Hancock and Harrison Counties. This classification included a storm debris category of interest to FEMA for disaster mitigation. The classification resulted from combining traditional unsupervised and supervised classification techniques. Higher spatial resolution aerial and handheld photography were used as reference data. Results suggest that traditional classification techniques and IKONOS data can map wood-dominated storm debris in open areas if relevant training areas are used to develop the unsupervised classification signatures. IKONOS data also enabled other hurricane damage assessment, such as flood-deposited mud on lawns and vegetation foliage loss from the storm. IKONOS data has also aided regional Katrina vegetation damage surveys from multidate Land Remote Sensing Satellite and Moderate Resolution Imaging Spectroradiometer data.

  17. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    Science.gov (United States)

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  18. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  19. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    ... evacuation decision-making. To accomplish this, the study provides information on the extent and severity of potential flooding from hurricanes, the associated vulnerable population, capacities of existing public shelters...

  20. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    .... The purpose of the study is to provide the Rhode Island Emergency Management Agency and Rhode Island coastal communities with realistic data quantifying the major factors involved in hurricane...

  1. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  2. Hurricane Sandy science plan: impacts to coastal ecosystems, habitats, and fish and wildlife

    Science.gov (United States)

    Campbell, Warren H.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  3. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  4. Centrifugal Compressor Surge Controlled

    Science.gov (United States)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  5. Initial management of hospital evacuations caused by Hurricane Rita: a systematic investigation.

    Science.gov (United States)

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    Hurricanes remain a major threat to hospitals throughout the world. The authors attempted to identify the planning areas that impact hospital management of evacuations and the challenges faced when sheltering-in-place. This observational, retrospective cohort study examined acute care institutions from one hospital system impacted by Hurricane Rita in 2005. Investigators used a standardized survey instrument and interview process, previously used in the hospital evacuation context, to examine hospitals' initial internal situational awareness and subsequent decision making that resulted in evacuation due to Hurricane Rita. Participants from each hospital included representatives from senior leadership and clinical and nonclinical staff that comprised the Incident Management Team (IMT). The main measured outcomes were responses to 95 questions contained in the survey. Seven of ten eligible hospitals participated in the study. All facilities evacuated the sickest patients first. The most significant factors prompting evacuation were the issuing of mandatory evacuation orders, storm dynamics (category, projected path, storm surge), and loss of regional communications. Hospitals that sheltered-in-place experienced staff shortages, interruptions to electrical power, and loss of water supplies. Three fully-evacuated institutions experienced understaffing of 40%-60%, and four hospitals sustained depressed staffing levels for over four weeks. Five hospitals lost electricity for a mean of 4.8 days (range .5-11 days). All facilities continued to receive patients to their Emergency Departments (EDs) while conducting their own evacuation. Hospital EDs should plan for continuous patient arrival during evacuation. Emergency Operation Plans (EOPs) that anticipate challenges associated with evacuation will help to maximize initial decision making and management during a crisis situation. Hospitals that shelter-in-place face critical shortages and must provide independent patient

  6. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  7. Increased level of morning surge in blood pressure in normotensives: A cross-sectional study from Pakistan

    International Nuclear Information System (INIS)

    Almas, A.; Sultan, F. T.; Kazmi, K.

    2016-01-01

    Objective: To determine the mean morning surge (MS) in blood pressure, the frequency of increased morning surge in normotensive subjects, and to compare those with morning surge with those without MS. Study Design: A cross-sectional, comparative study. Place and Duration of Study: The Department of Medicine, The Aga Khan University Hospital, Karachi, from April 2011 to March 2012. Methodology: Adult normotensive healthy volunteers aged 35 to 65 years were inducted. Their ambulatory blood pressure (ABP) was measured over a 24-hour period, using digital ambulatory blood pressure monitors. Morning surge was calculated as the average of four readings after waking minus the lowest three nocturnal readings. Increased morning surge was defined as > 11 mm Hg in systolic (SBP) or > 12 mm Hg in diastolic (DBP). Dipping was defined as > 10% dipping in blood pressure. Results: Eighty-two healthy volunteers were recruited. Their mean age was 36.9 ± 1.2 years; 74.4 (61%) were men, and 58.5 (48%) woke up for morning prayers. Mean overall SBP was 113 ± 1.6 mm Hg, overall DBP was 73.9 ± 0.7 mm Hg, and overall heart rate was 75 (10) beats/minute. Mean morning surge was 17.6 ± 1.0 mm Hg in SBP and 16.0 ± 0.8 mm Hg in DBP. The frequency of increased morning surge was 66 (80.5%) in SBP, and 57 (69%) in DBP. On comparison of participants with normal morning surge and increased morning surge in SBP, there was a significant difference in non-dipping status (13.4% in normal vs. 18.3% in increased morning surge, p= 0.001). Conclusion: Mean morning surge in SBP and DBP are relatively higher in this subset population in a tertiary care center in Pakistan. These values are higher than those reported in the literature. (author)

  8. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    Science.gov (United States)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  9. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  10. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  11. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  12. Electrodynamics properties of auroral surges

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.

    1990-01-01

    The incoherent scatter radar technique provides an excellent means to study the ionization and electric fields associated with auroral precipitation events. One of the most intense and dynamic auroral events is the so-called surge or breakup aurora that accompanies auroral substorms. For their purposes they define a surge as a transient intensification of auroral precipitation that occurs simultaneously with a pronounced negative bay in the ground magnetometer data. They present data obtained during five such events in 1980 and 1981. Prior to the surge, auroral forms move equatorward, develop ray structure, and intensify. The surge is identified by an apparent poleward motion of the aurora producing aurorally associated ionization that extends over several hundred kilometers in latitude. The presurge auroral forms are embedded in a region of northward electric field. The auroral forms that comprise the surge span a region within which the meridional electric field is small and at times southward. A westward electric field is often but not always present within the surge. The behavior of the westward electric field is significantly different from the north-south field, in that sharp spatial gradients are absent even in very disturbed conditions. Although the westward Hall currents are mostly responsible for the negative bays that accompany the surge, at times the westward Pedersen current sustained by the westward electric field can be important. Sudden variations in the H component of the ground magnetogram can be caused by motions of the aurora or by temporal variations in the fields or conductivities. They present a model that simulates the observed changes in electric field and precipitation that accompany surges. The perturbation in the electric field produced by the surge is simulated by adding negative potential in regions of intense precipitation

  13. Mapping the Distribution of Sand Live Oak (Quercus geminata) and Determining Growth Responses to Hurricane Katrina (2005) on Cat Island, Mississippi

    Science.gov (United States)

    Funderburk, W.; Carter, G. A.; Harley, G. L.

    2013-12-01

    William R. Funderburk, Gregory A. Carter, Grant Harley Gulf Coast Geospatial Center, University of Southern Mississippi Department of Geography and Geology Stennis Space Center, MS 39529 U.S.A. william.funderburk@usm.edu The Mississippi-Alabama barrier islands serve to buffer mainland coastal areas from the impacts of hurricanes and other extreme weather events. On August 29, 2005, they were impacted heavily by the wind, waves, and storm surges of Hurricane Katrina. The purpose of this study is to determine the growth responses of Quercus geminata, a dominant tree species on Cat Island, MS, in relation to the impact of Hurricane Katrina. Remotely sensed data was utilized in conjunction with ground data to assess growth response post Hurricane Katrina. The main objectives of this study were: 1) determine growth response of Q. geminata through tree ring analysis; 2) understand how Q. geminata adapted to intense weather and climatic phenomena on Cat Island. The hypotheses tested were: 1) growth rates of Q. geminata on Cat Island were decreased by the impact of Hurricane Katrina 2) trees at higher elevations survived or recovered while trees at lower elevations did not recover or died. Decadal scale stability is required for forest stand development on siliciclastic barrier islands. Thus, monitoring the distribution of forest climax community species is key to understanding siliciclastic, subsiding, barrier island geomorphic processes and their relationships to successional patterns and growth rates. Preliminary results indicate that Q. geminata produces a faint growth ring, survive for at least two to three hundred years and is well-adapted to frequent salt water flooding. Cat Island: False color Image

  14. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  15. Experimental Study on Active Control of Surge in a Centrifugal Compression System

    Directory of Open Access Journals (Sweden)

    Nie Chaoqun

    2000-01-01

    Full Text Available An experimental study has been carried out on the active control of surge in a centrifugal compression system. With a computerized on-line control scheme, the surge phenomenon is suppressed and the stable operating range of the system is extended. In order to design the active control scheme and choose the desired parameters of the control system inputs, special emphases have been placed on the development of surge inception and the nonlinear interaction between the system and the actuator. By use of the method designed in the present work, the results of active control onsurge have been demonstrated for the different B parameters, different prescribed criteria and different control frequencies.

  16. A Climatological Study of Hurricane Force Extratropical Cyclones

    Science.gov (United States)

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  17. Estimating hypothetical present-day insured losses for past intense hurricanes in the French Antilles

    Science.gov (United States)

    Thornton, James; Desarthe, Jérémy; Naulin, Jean-Philippe; Garnier, Emmanuel; Liu, Ye; Moncoulon, David

    2015-04-01

    On the islands of the French Antilles, the period for which systematic meteorological measurements and historic event loss data are available is short relative to the recurrence intervals of very intense, damaging hurricanes. Additionally, the value of property at risk changes through time. As such, the recent past can only provide limited insight into potential losses from extreme storms in coming years. Here we present some research that seeks to overcome, as far as is possible, the limitations of record length in assessing the possible impacts of near-future hurricanes on insured properties. First, using the archives of the French overseas departments (which included administrative and weather reports, inventories of damage to houses, crops and trees, as well as some meteorological observations after 1950) we reconstructed the spatial patterns of hazard intensity associated with three historical events. They are: i) the 1928 Hurricane (Guadeloupe), ii) Hurricane Betsy (1956, Guadeloupe) and iii) Hurricane David (1979, Martinique). These events were selected because all were damaging, and the information available on each is rich. Then, using a recently developed catastrophe model for hurricanes affecting Guadeloupe, Martinique, Saint-Barthélemy and Saint-Martin, we simulated the hypothetical losses to insured properties that the reconstructed events might cause if they were to reoccur today. The model simulated damage due to wind, rainfall-induced flooding and storm surge flooding. These 'what if' scenarios provided an initial indication of the potential present-day exposure of the insurance industry to intense hurricanes. However, we acknowledge that historical events are unlikely to repeat exactly. We therefore extended the study by producing a stochastic event catalogue containing a large number of synthetic but plausible hurricane events. Instrumental data were used as a basis for event generation, but importantly the statistical methods we applied permit

  18. The Influence of a Precursor Central American Gyre and a Northerly Surge into the Gulf of Tehuantepec on the Formation of Hurricane Patricia in October 2015

    Science.gov (United States)

    Bosart, L. F.; Bentley, A. M.; Levine, A. S.; Papin, P. P.

    2016-12-01

    The National Hurricane Center (NHC) initiated advisories on Tropical Depression (TD) Patricia at 1500 UTC 20 October 2015. Patricia originated from a pre-existing area of disturbed weather over the eastern Gulf of Tehuantepec (GoT) subsequent to the formation of a Central American gyre (CAG) and a surge of northerly gap flow across the Isthmus of Tehuantepec (Chivela Pass) and into the GoT. The gap flow was driven by strong low-level height rises over the northern Gulf of Mexico behind a southeastward-moving cold front. Low-level anticyclogenesis over the Gulf of Mexico and the southeastern United States behind the cold front and CAG-related surface pressure falls over Central America contributed to the development of an anomalously strong meridional surface pressure gradient that further sustained the aforementioned gap flow. An elongated strip of cyclonic shear vorticity formed along the eastern margin of the northerly gap flow over the GoT while oceanic heat and moisture fluxes maximized in the core of the strongest flow. Subsequently, this vorticity strip broke down into a cyclonic vortex shortly by 0000 UTC 20 October which prompted the National Hurricane Center to declare that tropical depression (TD) had formed near 13.4°N and 94.0°W by 0600 UTC 20 October. This TD was named tropical storm (TS) Patricia at 0000 UTC 21 October as the developing TS moved over a region of anomalously warm SSTs and high oceanic heat content in the presence of large oceanic heat and moisture fluxes. Northerly gap flow ceased and the CAG circulation broke down as a strengthening TS Patricia in the eastern Pacific crossed the longitude (95°W) of the Chivela Pass, leading to the cessation of northerly gap flow and the onset of strengthening southerly flow. Deep tropical moisture concentrated to the north and east of the now remnant CAG circulation center was advected northwestward into the western Gulf of Mexico where it supported very heavy rainfall in southeastern Texas. This

  19. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  20. Predicting hurricane wind damage by claim payout based on Hurricane Ike in Texas

    Directory of Open Access Journals (Sweden)

    Ji-Myong Kim

    2016-09-01

    Full Text Available The increasing occurrence of natural disasters and their related damage have led to a growing demand for models that predict financial loss. Although considerable research on the financial losses related to natural disasters has found significant predictors, there has been a lack of comprehensive study that addresses the relationship among vulnerabilities, natural disasters, and the economic losses of individual buildings. This study identifies the vulnerability indicators for hurricanes to establish a metric to predict the related financial loss. We classify hurricane-prone areas by highlighting the spatial distribution of losses and vulnerabilities. This study used a Geographical Information System (GIS to combine and produce spatial data and a multiple regression method to establish a wind damage prediction model. As the dependent variable, we used the value of the Texas Windstorm Insurance Association (TWIA claim payout divided by the appraised values of the buildings to predict real economic loss. As independent variables, we selected a hurricane indicator and built environment vulnerability indicators. The model we developed can be used by government agencies and insurance companies to predict hurricane wind damage.

  1. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  2. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy

    Science.gov (United States)

    Hu, Kelin; Chen, Qin; Wang, Hongqing; Hartig, Ellen K.; Orton, Philip M.

    2018-01-01

    The salt marshes of Jamaica Bay serve as a recreational outlet for New York City residents, mitigate wave impacts during coastal storms, and provide habitat for critical wildlife species. Hurricanes have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. In this study, the Delft3D modeling suite was utilized to examine the effects of Hurricane Sandy (2012) on salt marsh morphology in Jamaica Bay. Observed marsh elevation change and accretion from rod Surface Elevation Tables and feldspar Marker Horizons (SET-MH) and hydrodynamic measurements during Hurricane Sandy were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model. The model results agreed well with in situ field measurements. The validated model was then used to detect salt marsh morphological change due to Sandy across Jamaica Bay. Model results indicate that the island-wide morphological changes in the bay's salt marshes due to Sandy were in the range of −30 mm (erosion) to +15 mm (deposition), and spatially complex and heterogeneous. The storm generated paired deposition and erosion patches at local scales. Salt marshes inside the west section of the bay showed erosion overall while marshes inside the east section showed deposition from Sandy. The net sediment amount that Sandy brought into the bay is only about 1% of the total amount of reworked sediment within the bay during the storm. Numerical experiments show that waves and vegetation played a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Furthermore, without the protection of vegetation, the marsh islands of Jamaica Bay would experience both more erosion and less accretion in coastal storms.

  3. Assessment of surge arrester failure rate and application studies in Hellenic high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Fotis, G.P.; Gonos, I.F.; Stathopulos, I.A. [National Technical University of Athens, School of Electrical and Computer Engineering, High Voltage Laboratory, 9 Iroon Politechniou St., Zografou Campus, 157 80 Athens (Greece); Ekonomou, L. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)

    2010-02-15

    The use of transmission line surge arresters to improve the lightning performance of transmission lines is becoming more common. Especially in areas with high soil resistivity and ground flash density, surge arresters constitute the most effective protection mean. In this paper a methodology for assessing the surge arrester failure rate based on the electrogeometrical model is presented. Critical currents that exceed arresters rated energy stress were estimated by the use of a simulation tool. The methodology is applied on operating Hellenic transmission lines of 150 kV. Several case studies are analyzed by installing surge arresters on different intervals, in relation to the region's tower footing resistance and the ground flash density. The obtained results are compared with real records of outage rate showing the effectiveness of the surge arresters in the reduction of the recorded failure rate. The presented methodology can be proved valuable to the studies of electric power systems designers intending in a more effective lightning protection, reducing the operational costs and providing continuity of service. (author)

  4. Hurricane Isabel gives accelerators a severe test

    International Nuclear Information System (INIS)

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  5. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  6. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  7. Comparative risk assessments for the city of Pointe-à-Pitre (French West Indies): earthquakes and storm surge

    Science.gov (United States)

    Reveillere, A. R.; Bertil, D. B.; Douglas, J. D.; Grisanti, L. G.; Lecacheux, S. L.; Monfort, D. M.; Modaressi, H. M.; Müller, H. M.; Rohmer, J. R.; Sedan, O. S.

    2012-04-01

    In France, risk assessments for natural hazards are usually carried out separately and decision makers lack comprehensive information. Moreover, since the cause of the hazard (e.g. meteorological, geological) and the physical phenomenon that causes damage (e.g. inundation, ground shaking) may be fundamentally different, the quantitative comparison of single risk assessments that were not conducted in a compatible framework is not straightforward. Comprehensive comparative risk assessments exist in a few other countries. For instance, the Risk Map Germany project has developed and applied a methodology for quantitatively comparing the risk of relevant natural hazards at various scales (city, state) in Germany. The present on-going work applies a similar methodology to the Pointe-à-Pitre urban area, which represents more than half of the population of Guadeloupe, an overseas region in the French West Indies. Relevant hazards as well as hazard intensity levels differ from continental Europe, which will lead to different conclusions. French West Indies are prone to a large number of hazards, among which hurricanes, volcanic eruptions and earthquakes dominate. Hurricanes cause damage through three phenomena: wind, heavy rainfall and storm surge, the latter having had a preeminent role during the largest historical event in 1928. Seismic risk is characterized by many induced phenomena, among which earthquake shocks dominate. This study proposes a comparison of earthquake and cyclonic storm surge risks. Losses corresponding to hazard intensities having the same probability of occurrence are calculated. They are quantified in a common loss unit, chosen to be the direct economic losses. Intangible or indirect losses are not considered. The methodology therefore relies on (i) a probabilistic hazard assessment, (ii) a loss ratio estimation for the exposed elements and (iii) an economic estimation of these assets. Storm surge hazard assessment is based on the selection of

  8. Tide-surge interaction in the English Channel

    Directory of Open Access Journals (Sweden)

    D. Idier

    2012-12-01

    Full Text Available The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS. The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms, it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (<0.05 m over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait.

  9. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    Science.gov (United States)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  10. Morphological Modeling of a Low-Dune Barrier Headland System's Response to Hurricane Forcing Before and After a Large Scale Restoration

    Science.gov (United States)

    Johnson, C.; Chen, Q. J.

    2017-12-01

    Coastal barrier landforms serve as the first line of defense against oceanic and meteorological forcing. Widespread recognition of this function has prompted coastal managers to adopt systematic restoration programs. The state of Louisiana has, in response to its critically eroding shorelines (Byrnes et al., 2017), implemented 30 barrier island and headland restoration projects over the past three decades. The Caminada Headlands Beach and Dune Restoration Project, completed in 2016, restored 22.5 kilometers of Louisiana's coastline by elevating the cross-shore profile and placing approximately 250,000 m3 of sediment within the back- and foreshore. Interventions of this magnitude are significant perturbations to the local sediment budget and geomorphodynamic equilibrium. In Louisiana, an important question is the immediate fate of placed sediment transported during the passage of a hurricane, as the potential to ultimately retain this sediment is influenced by the location of its deposition. The direction of net sediment transport (on- or offshore) depends mainly on the elevation of the storm surge relative to the dune crest, but also on the evolution of the cross-shore water surface gradient and the spatial configuration of biogeophysical properties and hard-structures (Sherwood et al., 2014; Smallegan et al., 2016) . Prior to its restoration, the Caminada headlands were generally of low elevation with the majority of dune crest extending less than 50 cm above MHW and several active breaches. Hurricanes Gustav (2008) and Isaac (2012) made landfall directly on the headlands with inundating storm surges that resulted in observed overwash deposition (Doran et al, 2009; Guy et al, 2013), i.e. landward directed sediment transport and deposition. An open-source process-based morphological model (XBeach) is used to study hurricane induced sediment transport for both pre- and post-restoration of the Caminada headlands. Hindcast pre-restoration simulations of Gustav's and

  11. A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters

    Science.gov (United States)

    Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.

    2017-12-01

    A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.

  12. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  13. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  14. On the contribution of reconstruction labor wages and material prices to demand surge

    Science.gov (United States)

    Olsen, Anna H.; Porter, Keith A.

    2011-01-01

    Demand surge is understood to be a socio-economic phenomenon of large-scale natural disasters, most commonly explained by higher repair costs (after a large- versus small-scale disaster) resulting from higher material prices and labor wages. This study tests this explanation by developing quantitative models for the cost change of sets, or "baskets," of repairs to damage caused by Atlantic hurricanes making landfall on the mainland United States. We define six such baskets, representing the total repair cost, and material and labor components, each for a typical residential or commercial property. We collect cost data from the leading provider of these data to insurance claims adjusters in the United States, and we calculate the cost changes from July to January for nine Atlantic hurricane seasons at fifty-two cities on the Atlantic and Gulf Coasts. The data show that: changes in labor costs drive the changes in total repair costs; cost changes can vary significantly by geographic region and year; and cost changes for the residential basket of repairs are more volatile than the cost changes for the commercial basket. We then propose a series of multilevel regression models to predict the cost changes by considering several combinations of the following explanatory variables: the largest gradient wind speed at a city in a hurricane season; the number of tropical storms in a hurricane season whose center passes within 200 km of a city; and cost changes in the first two quarters of the year. We also allow the coefficients of the regression model to be stochastic, varying across groups defined by region of the Southeastern United States and year. Our best models predict that, for any city on the Gulf or Atlantic Coasts in any hurricane season, the residential total repair cost changes vary from 0.01 to 0.25, depending on the wind speed and number of storms, with an uncertainty of 0.1 (two standard errors of prediction) given the wind speed and number of storms. The

  15. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    Science.gov (United States)

    2011-12-01

    Marks et al. (2008) flight level and radar observations from Hurricane Hugo shown in Figure 9 (their Figure 3) and Hurricane Isabel (Montgomery et al...Figure 3c and Figure 6c) and Persing and Montgomery (2003, their Figures 8, 9, and 12). For the case of Hurricane Hugo , a cross-section of the... Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina

  16. Hurricane risk management and climate information gatekeeping in southeast Florida

    Science.gov (United States)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  17. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  18. Monitoring duration and extent of storm-surge and flooding in Western Coastal Louisiana marshes with Envisat ASAR data

    Science.gov (United States)

    Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D.

    2011-01-01

    Inundation maps of coastal marshes in western Louisiana were created with multitemporal Envisat Advanced Synthetic Aperture (ASAR) scenes collected before and during the three months after Hurricane Rita landfall in September 2005. Corroborated by inland water-levels, 7 days after landfall, 48% of coastal estuarine and palustrine marshes remained inundated by storm-surge waters. Forty-five days after landfall, storm-surge inundated 20% of those marshes. The end of the storm-surge flooding was marked by an abrupt decrease in water levels following the passage of a storm front and persistent offshore winds. A complementary dramatic decrease in flood extent was confirmed by an ASAR-derived inundation map. In nonimpounded marshes at elevations ;80 cm during the first month after Rita landfall. After this initial period, drainage from marshes-especially impounded marshes-was hastened by the onset of offshore winds. Following the abrupt drops in inland water levels and flood extent, rainfall events coinciding with increased water levels were recorded as inundation re-expansion. This postsurge flooding decreased until only isolated impounded and palustrine marshes remained inundated. Changing flood extents were correlated to inland water levels and largely occurred within the same marsh regions. Trends related to incremental threshold increases used in the ASAR change-detection analyses seemed related to the preceding hydraulic and hydrologic events, and VV and HH threshold differences supported their relationship to the overall wetland hydraulic condition.

  19. Emergency department surge: models and practical implications.

    Science.gov (United States)

    Nager, Alan L; Khanna, Kajal

    2009-08-01

    Emergency Department crowding has long been described. Despite the daily challenges of managing emergency department volume and acuity; a surge response during a disaster entails even greater challenges including collaboration, intervention, and resourcefulness to effectively carry out pediatric disaster management. Understanding surge and how to respond with appropriate planning will lead to success. To achieve this, we sought to analyze models of surge; review regional and national data outlining surge challenges and factors that impact surge; and to outline potential solutions. We conducted a systemic review and included articles and documents that best described the theoretical and practical basis of surge response. We organized the systematic review according to the following questions: What are the elements and models that are delineated by the concept of surge? What is the basis for surge response based on regional and national published sources? What are the broad global solutions? What are the major lessons observed that will impact effective surge capacity? Multiple models of surge are described including public health, facility-based and community-based; a 6-tiered response system; and intrinsic or extrinsic surge capacity. In addition, essential components (4 S's of surge response) are described along with regional and national data outlining surge challenges, impacting factors, global solutions, and lesions observed. There are numerous shortcomings regionally and nationally affecting our ability to provide an effective and coordinated surge response. Planning, education, and training will lead to an effective pediatric disaster management response.

  20. Hurricane Ike Deposits on the Bolivar Peninsula, Galveston Bay, Texas

    Science.gov (United States)

    Evans, Cynthia A.; Wilkinson, M. J.; Eppler, Dean

    2011-01-01

    In September 2008, Hurricane Ike made landfall on Galveston Bay, close to the NASA Johnson Space Center (JSC). The storm flooded much of the area with a storm surge ranging from 11 -20 feet. The Bolivar peninsula, the southeastern coast of Galveston Bay, experienced the brunt of the surge. Several agencies collected excellent imagery baselines before the storm and complementary data a few days afterward that helped define the impacts of the storm. In April of 2011, a team of scientists and astronauts from JSC conducted field mapping exercises along the Bolivar Peninsula, the section of the Galveston Bay coast most impacted by the storm. Astronauts routinely observe and document coastal changes from orbit aboard the International Space Station. As part of their basic Earth Science training, scientists at the Johnson Space Center take astronauts out for field mapping exercises so that they can better recognize and understand features and processes that they will later observe from the International Space Station. Using pre -storm baseline images of the Bolivar Peninsula near Rollover Pass and Gilchrist (NOAA/Google Earth Imagery and USGS aerial imagery and lidar data), the astronauts mapped current coastline positions at defined locations, and related their findings to specific coastal characteristics, including channel, jetties, and other developments. In addition to mapping, we dug trenches along both the Gulf of Mexico coast as well as the Galveston Bay coast of the Bolivar peninsula to determine the depth of the scouring from the storm on the Gulf side, and the amount of deposition of the storm surge deposits on the Bay side of the peninsula. The storm signature was easy to identify by sharp sediment transitions and, in the case of storm deposits, a layer of storm debris (roof shingles, PVC pipes, etc) and black, organic rich layers containing buried sea grasses in areas that were marshes before the storm. The amount of deposition was generally about 20 -25 cm

  1. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  2. Investigation of the relationship between hurricane waves and extreme runup

    Science.gov (United States)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  3. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast

    Science.gov (United States)

    Reja, Md Y.; Brody, Samuel D.; Highfield, Wesley E.; Newman, Galen D.

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  4. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape.

    Science.gov (United States)

    Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2003-04-01

    Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the

  5. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  6. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  7. Landscape and regional impacts of hurricanes in Puerto Rico

    OpenAIRE

    Boose, Emery Robert; Serrano, Mayra I.; Foster, David Russell

    2004-01-01

    Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurr...

  8. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  9. Joint projections of sea level and storm surge using a flood index

    Science.gov (United States)

    Little, C. M.; Lin, N.; Horton, R. M.; Kopp, R. E.; Oppenheimer, M.

    2016-02-01

    Capturing the joint influence of sea level rise (SLR) and tropical cyclones (TCs) on future coastal flood risk poses significant challenges. To address these difficulties, Little et al. (2015) use a proxy of tropical cyclone activity and a probabilistic flood index that aggregates flood height and duration over a wide area (the US East and Gulf coasts). This technique illuminates the individual impacts of TCs and SLR and their correlation across different coupled climate models. By 2080-2099, changes in the flood index relative to 1986-2005 are substantial and positively skewed: a 10th-90th percentile range of 35-350x higher for a high-end business-as-usual emissions scenario (see figure). This aggregated flood index: 1) is a means to consistently combine TC-driven storm surges and SLR; 2) provides a more robust description of historical surge-climate relationships than is available at any one location; and 3) allows the incorporation of a larger climate model ensemble - which is critical to uncertainty characterization. It does not provide a local view of the complete spectrum of flood severity (i.e. return curves). However, alternate techniques that provide localized return curves (e.g. Lin et al., 2012) are computationally intensive, limiting the set of large-scale climate models that can be incorporated, and require several linked statistical and dynamical models, each with structural uncertainties that are difficult to quantify. Here, we present the results of Little et al. (2015) along with: 1) alternate formulations of the flood index; 2) strategies to localize the flood index; and 3) a comparison of flood index projections to those provided by model-based return curves. We look to this interdisciplinary audience for feedback on the advantages and disadvantages of each tool for coastal planning and decision-making. Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. Nature

  10. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    Science.gov (United States)

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  11. Effects of 2010 Hurricane Earl amidst geologic evidence for greater overwash at Anegada, British Virgin Islands

    Science.gov (United States)

    Atwater, B. F.; Fuentes, Z.; Halley, R. B.; Ten Brink, U. S.; Tuttle, M. P.

    2014-03-01

    A post-hurricane survey of a Caribbean island affords comparisons with geologic evidence for greater overwash at the same place. This comparison, though of limited application to other places, helps calibrate coastal geology for assessment of earthquake and tsunami potential along the Antilles Subduction Zone. The surveyed island, Anegada, is 120 km south of the Puerto Rico Trench and is near the paths of hurricanes Donna (1960) and Earl (2010), which were at or near category 4 when at closest approach. The survey focused on Earl's geologic effects, related them to the surge from Hurricane Donna, and compared them further with erosional and depositional signs of southward overwash from the Atlantic Ocean that dates to 1200-1450 AD and to 1650-1800 AD. The main finding is that the geologic effects of these earlier events dwarf those of the recent hurricanes. Hurricane Earl's geologic effects at Anegada, observed mainly in 2011, were limited to wrack deposition along many of the island's shores and salt ponds, accretion of small washover (spillover) fans on the south shore, and the suspension and deposition of microbial material from interior salt ponds. Earl's most widespread deposit at Anegada, the microbial detritus, was abundantly juxtaposed with evidence for catastrophic overwash in prior centuries. The microbial detritus formed an extensive coating up to 2 cm thick that extended into breaches in beach-ridge plains of the island's north shore, onto playas that are underlain by a sand-and-shell sheet that extends as much as 1.5 km southward from the north shore, and among southward-strewn limestone boulders pendant to outcrops as much as 1 km inland. Earl's spillover fans also contrast with a sand-and-shell sheet, which was dated previously to 1650-1800, by being limited to the island's south shore and by extending inland a few tens of meters at most. These findings complement those reported in this issue by Michaela Spiske and Robert Halley (Spiske and Halley

  12. A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center

    Science.gov (United States)

    Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

    2013-01-01

    This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

  13. Dynamic inundation mapping of Hurricane Harvey flooding in the Houston metro area using hyper-resolution modeling and quantitative image reanalysis

    Science.gov (United States)

    Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.

    2017-12-01

    Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.

  14. Isentropic Analysis of a Simulated Hurricane

    Science.gov (United States)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  15. Spatial grids for hurricane climate research

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, James B.; Hodges, Robert E.; Jagger, Thomas H. [Florida State University, Tallahassee, FL (United States)

    2012-07-15

    The authors demonstrate a spatial framework for studying hurricane climatology. The framework consists of a spatial tessellation of the hurricane basin using equal-area hexagons. The hexagons are efficient at covering hurricane tracks and provide a scaffolding to combine attribute data from tropical cyclones with spatial climate data. The framework's utility is demonstrated using examples from recent hurricane seasons. Seasons that have similar tracks are quantitatively assessed and grouped. Regional cyclone frequency and intensity variations are mapped. A geographically-weighted regression of cyclone intensity on sea-surface temperature emphasizes the importance of a warm ocean in the intensification of cyclones over regions where the heat content is greatest. The largest differences between model predictions and observations occur near the coast. The authors suggest the framework is ideally suited for comparing tropical cyclones generated from different numerical simulations. (orig.)

  16. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  17. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island

    Science.gov (United States)

    McCall, R.T.; Van Theil de Vries, J. S. M.; Plant, N.G.; Van Dongeren, A. R.; Roelvink, J.A.; Thompson, D.M.; Reniers, A.J.H.M.

    2010-01-01

    A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias - 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response.

  18. An Approach to Remove the Systematic Bias from the Storm Surge forecasts in the Venice Lagoon

    Science.gov (United States)

    Canestrelli, A.

    2017-12-01

    In this work a novel approach is proposed for removing the systematic bias from the storm surge forecast computed by a two-dimensional shallow-water model. The model covers both the Adriatic and Mediterranean seas and provides the forecast at the entrance of the Venice Lagoon. The wind drag coefficient at the water-air interface is treated as a calibration parameter, with a different value for each range of wind velocities and wind directions. This sums up to a total of 16-64 parameters to be calibrated, depending on the chosen resolution. The best set of parameters is determined by means of an optimization procedure, which minimizes the RMS error between measured and modeled water level in Venice for the period 2011-2015. It is shown that a bias is present, for which the peaks of wind velocities provided by the weather forecast are largely underestimated, and that the calibration procedure removes this bias. When the calibrated model is used to reproduce events not included in the calibration dataset, the forecast error is strongly reduced, thus confirming the quality of our procedure. The proposed approach it is not site-specific and could be applied to different situations, such as storm surges caused by intense hurricanes.

  19. Impacts of a large array of offshore wind farms on precipitation during hurricane Harvey

    Science.gov (United States)

    Pan, Y.; Archer, C. L.

    2017-12-01

    Hurricane Harvey brought to the Texas coast possibly the heaviest rain ever recorded in U.S. history, which then caused flooding at unprecedented levels. Previous studies have shown that large arrays of offshore wind farms can extract kinetic energy from a hurricane and thus reduce the wind and storm surge. This study will quantitatively test weather the offshore turbines may also affect precipitation patterns. The Weather Research Forecast model is employed to model Harvey and the offshore wind farms are parameterized as elevated drag and turbulence kinetic energy sources. The turbines (7.8 MW Enercon-126 with rotor diameter D=127 m) are placed along the coast of Texas and Louisiana within 100 km from the shore, where the water depth is below 200 meters. Three spacing between turbines are considered (with the number of turbines in parenthesis): 7D×7D (149,936), 9D×9D (84,339), and 11D×11D (56,226). A fourth case (9D×9D) with a smaller area and thus less turbines (33,363) is added to the simulations to emphasize the impacts of offshore turbines installed specifically to protect the city of Houston, which was flooded heavily during hurricane Harvey. The model is integrated for 24 hours from 00UTC Aug 26th, 2017 to 00UTC Aug 27th, 2017. Model results indicate that the offshore wind farms have a strong impact on the distribution of 24-hour accumulated precipitation, with an obvious decrease onshore, downstream of the wind farms, and an increase in the offshore areas, upstream of or within the wind farms. A sector covering the metro-Houston area is chosen to study the sensitivity of the four different wind farm layouts. The spatial-average 24-hour accumulated precipitation is decreased by 37%, 28%, 20% and 25% respectively for the four cases. Compared with the control case with no wind turbines, increased horizontal wind divergence and lower vertical velocity are found where the precipitation is reduced onshore, whereas increased horizontal wind convergence and

  20. Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes

    Science.gov (United States)

    Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.

    2009-01-01

    The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.

  1. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    Science.gov (United States)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  2. Who evacuates when hurricanes approach? The role of risk, information, and location.

    Science.gov (United States)

    Stein, Robert M; Dueñas-Osorio, Leonardo; Subramanian, Devika

    2010-01-01

    This article offers an expanded perspective on evacuation decision making during severe weather. In particular, this work focuses on uncovering determinants of individual evacuation decisions. We draw on a survey conducted in 2005 of residents in the eight-county Houston metropolitan area after Hurricane Rita made landfall on September 24, 2005. We find that evacuation decisions are influenced by a heterogeneous set of parameters, including perceived risk from wind, influence of media and neighbors, and awareness of evacuation zone, that are often at variance with one of the primary measures of risk used by public officials to order or recommend an evacuation (i.e., storm surge). We further find that perceived risk and its influence on evacuation behavior is a local phenomenon more readily communicated by and among individuals who share the same geography, as is the case with residents living inside and outside official risk areas. Who evacuates and why is partially dependent on where one lives because perceptions of risk are not uniformly shared across the area threatened by an approaching hurricane and the same sources and content of information do not have the same effect on evacuation behavior. Hence, efforts to persuade residential populations about risk and when, where, and how to evacuate or shelter in place should originate in the neighborhood rather than emanating from blanket statements from the media or public officials. Our findings also raise important policy questions (included in the discussion section) that require further study and consideration by those responsible with organizing and implementing evacuation plans.

  3. Mapping the Extent and Magnitude of Severe Flooding Induced by Hurricanes Harvey, Irma, and Maria with Sentinel-1 SAR and InSAR Observations

    Science.gov (United States)

    Zhang, B.; Koirala, R.; Oliver-Cabrera, T.; Wdowinski, S.; Osmanoglu, B.

    2017-12-01

    Hurricanes can cause winds, rainfall and storm surge, all of which could result in flooding. Between August and September 2017, Hurricanes Harvey, Irma and Maria made landfall over Texas, Florida and Puerto Rico causing destruction and damages. Flood mapping is important for water management and to estimate risks and property damage. Though water gauges are able to monitor water levels, they are normally distributed sparsely. To map flooding products of these extreme events, we use Synthetic Aperture Radar (SAR) observations acquired by the European satellite constellation Sentinel-1. We obtained two acquisitions from before each flooding event, a single acquisition during the hurricane, and two after each event, a total of five acquisitions. We use both amplitude and phase observations to map extent and magnitude of flooding respectively. To map flooding extents, we use amplitude images from before, after and if possible during the hurricane pass. A calibration is used to convert the image raw data to backscatter coefficient, termed sigma nought. We generate a composite of the two image layers using red and green bands to show the change of sigma nought between acquisitions, which directly reflects the extent of flooding. Because inundation can result with either an increase or decrease of sigma nought values depending on the surface scattering characteristics, we map flooded areas in location where sigma nought changes were above a detection threshold. To study magnitude of flooding we study Interferometric Synthetic Aperture Radar (InSAR) phase changes. Changes in the water level can be detected by the radar when the signal is reflected away from water surface and bounces again by another object (e.g. trees and/or buildings) known as double bounce phase. To generate meaningful interferograms, we compare phase information with the nearest water gauge records to verify our results. Preliminary results show that the three hurricanes caused flooding condition over

  4. The perfect storm of information: combining traditional and non-traditional data sources for public health situational awareness during hurricane response.

    Science.gov (United States)

    Bennett, Kelly J; Olsen, Jennifer M; Harris, Sara; Mekaru, Sumiko; Livinski, Alicia A; Brownstein, John S

    2013-12-16

    Hurricane Isaac made landfall in southeastern Louisiana in late August 2012, resulting in extensive storm surge and inland flooding. As the lead federal agency responsible for medical and public health response and recovery coordination, the Department of Health and Human Services (HHS) must have situational awareness to prepare for and address state and local requests for assistance following hurricanes. Both traditional and non-traditional data have been used to improve situational awareness in fields like disease surveillance and seismology. This study investigated whether non-traditional data (i.e., tweets and news reports) fill a void in traditional data reporting during hurricane response, as well as whether non-traditional data improve the timeliness for reporting identified HHS Essential Elements of Information (EEI). HHS EEIs provided the information collection guidance, and when the information indicated there was a potential public health threat, an event was identified and categorized within the larger scope of overall Hurricane Issac situational awareness. Tweets, news reports, press releases, and federal situation reports during Hurricane Isaac response were analyzed for information about EEIs. Data that pertained to the same EEI were linked together and given a unique event identification number to enable more detailed analysis of source content. Reports of sixteen unique events were examined for types of data sources reporting on the event and timeliness of the reports. Of these sixteen unique events identified, six were reported by only a single data source, four were reported by two data sources, four were reported by three data sources, and two were reported by four or more data sources. For five of the events where news tweets were one of multiple sources of information about an event, the tweet occurred prior to the news report, press release, local government\\emergency management tweet, and federal situation report. In all circumstances where

  5. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  6. A Climatological Study of Hurricane Force Extratropical Cyclones

    OpenAIRE

    Laiyemo, Razaak O.

    2012-01-01

    Using data compiled by the National Weather Service Ocean Prediction Center, a hurricane force extratropical cyclone climatology is created for three cold seasons. Using the criteria of Sanders and Gyakum (1980), it is found that 75% of the 259 storms explosively deepened. The frequency maximum in the Atlantic basin is located to the southeast of Greenland. In the Pacific, two maxima to the east of Japan are identified. These results are in good agreement with previous studies, despite differ...

  7. Restoration of freshwater Cypress-Tupelo Wetlands in the southeastern U.S. following severe hurricanes

    Science.gov (United States)

    Conner, William H.; Krauss, Ken W.; Shaffer, Gary P.

    2012-01-01

    Freshwater forested wetlands commonly occur in the lower Coastal Plain of the southeastern US with baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) often being the dominant trees. Extensive anthropogenic activities combined with eustatic sea-level rise and land subsidence have caused widespread hydrological changes in many of these forests. In addition, hurricanes (a common, although aperiodic occurrence) cause wide-spread damage from wind and storm surge events, with impacts exacerbated by human-mediated coastal modifications (e.g., dredging, navigation channels, etc.). Restoration of forested wetlands in coastal areas is important because emergent canopies can greatly diminish wind penetration, thereby reducing the wind stress available to generate surface waves and storm surge that are the major cause of damage to coastal ecosystems and their surrounding communities. While there is an overall paucity of large-scale restoration efforts within coastal forested wetlands of the southeastern US, we have determined important characteristics that should drive future efforts. Restoration efforts may be enhanced considerably if coupled with hydrological enhancement, such as freshwater, sediment, or sewage wastewater diversions. Large-scale restoration of coastal forests should be attempted to create a landscape capable of minimizing storm impacts and maximizing wetland sustainability in the face of climate change. Planting is the preferred regeneration method in many forested wetland sites because hydrological alterations have increased flooding, and planted seedlings must be protected from herbivory to enhance establishment. Programs identifying salt tolerance in coastal forest tree species need to be continued to help increase resilience to repetitive storm surge events.

  8. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  9. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    OpenAIRE

    A. D. Jayakaran; T. M. Williams; H. Ssegane; D. M. Amatya; B. Song; C. C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a rev...

  10. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Science.gov (United States)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  11. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  12. Compressor Surge Control Design Using Linear Matrix Inequality Approach

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2017-01-01

    A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

  13. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  14. Spatial-Temporal Analysis of Openstreetmap Data after Natural Disasters: a Case Study of Haiti Under Hurricane Matthew

    Science.gov (United States)

    Xu, J.; Li, L.; Zhou, Q.

    2017-09-01

    Volunteered geographic information (VGI) has been widely adopted as an alternative for authoritative geographic information in disaster management considering its up-to-date data. OpenStreetMap, in particular, is now aiming at crisis mapping for humanitarian purpose. This paper illustrated that natural disaster played an essential role in updating OpenStreetMap data after Haiti was hit by Hurricane Matthew in October, 2016. Spatial-temporal analysis of updated OSM data was conducted in this paper. Correlation of features was also studied to figure out whether updates of data were coincidence or the results of the hurricane. Spatial pattern matched the damaged areas and temporal changes fitted the time when disaster occurred. High level of correlation values of features were recorded when hurricane occurred, suggesting that updates in data were led by the hurricane.

  15. Hurricane preparedness among elderly residents in South Florida.

    Science.gov (United States)

    Kleier, Jo Ann; Krause, Deirdre; Ogilby, Terry

    2018-01-01

    The purpose of this study was to describe factors associated with hurricane preparation and to test a theoretical model of hurricane preparation decision process among a group of elderly residents living in a high-risk geographical area. This is a descriptive, correlational study. A convenience sample consisted of 188 English-speaking individuals who were aged 55 years or older. In addition to demographic information, two survey instruments were used. Theoretical constructs were operationalized through Moon's Hurricane Preparation Questionnaire. Hurricane preparedness was measured by self-reported responses to FEMA's inventory checklist, which addresses the recommended basic steps of preparation. The theoretical model of hurricane preparation decision process was supported. Main barriers to preparation are the need for cooperation from others and cost of preparation. Participants reported having taken many preparatory steps to shelter-in-place, but too few are prepared if their home were storm-damaged or they should have to evacuate. Findings are consistent with previous studies of samples drawn from similar populations. This report provides guidance as to how public health nurses can become involved with the population and develop interventions based on the constructs of the theoretical model. © 2017 Wiley Periodicals, Inc.

  16. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  17. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  18. Postpartum mental health after Hurricane Katrina: A cohort study

    Directory of Open Access Journals (Sweden)

    Harville Emily W

    2009-06-01

    Full Text Available Abstract Background Natural disaster is often a cause of psychopathology, and women are vulnerable to post-traumatic stress disorder (PTSD and depression. Depression is also common after a woman gives birth. However, no research has addressed postpartum women's mental health after natural disaster. Methods Interviews were conducted in 2006–2007 with women who had been pregnant during or shortly after Hurricane Katrina. 292 New Orleans and Baton Rouge women were interviewed at delivery and 2 months postpartum. Depression was assessed using the Edinburgh Depression Scale and PTSD using the Post-Traumatic Stress Checklist. Women were asked about their experience of the hurricane with questions addressing threat, illness, loss, and damage. Chi-square tests and log-binomial/Poisson models were used to calculate associations and relative risks (RR. Results Black women and women with less education were more likely to have had a serious experience of the hurricane. 18% of the sample met the criteria for depression and 13% for PTSD at two months postpartum. Feeling that one's life was in danger was associated with depression and PTSD, as were injury to a family member and severe impact on property. Overall, two or more severe experiences of the storm was associated with an increased risk for both depression (relative risk (RR 1.77, 95% confidence interval (CI 1.08–2.89 and PTSD (RR 3.68, 95% CI 1.80–7.52. Conclusion Postpartum women who experience natural disaster severely are at increased risk for mental health problems, but overall rates of depression and PTSD do not seem to be higher than in studies of the general population.

  19. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  20. Near-real-time Forensic Disaster Analysis: experiences from hurricane Sandy

    Science.gov (United States)

    Kunz, Michael; Mühr, Bernhard; Schröter, Kai; Kunz-Plapp, Tina; Daniell, James; Khazai, Bijan; Wenzel, Friedemann; Vannieuwenhuyse, Marjorie; Comes, Tina; Münzberg, Thomas; Elmer, Florian; Fohringer, Joachim; Lucas, Christian; Trieselmann, Werner; Zschau, Jochen

    2013-04-01

    Hurricane Sandy was the last tropical cyclone of the 2012 Northern Atlantic Hurricane season that made landfall. It moved on an unusual track from the Caribbean to the East Coast of the United States from 24 to 30 October as a Category 1 and 2 Hurricane according to the Saffir-Simpson Scale. Along its path, the severe storm event caused widespread damage including almost 200 fatalities. In the early hours of 30 October, Sandy made landfall near Atlantic City, N.J. Sandy was an extraordinary event due to its multihazard nature and several cascading effects in the aftermath. From the hydro-meteorological perspective, most unusual was the very large spatial extent of up to 1,700 km. High wind speeds were associated with record breaking storm surges at the U.S. Mid- Atlantic and New England Coast during high (astronomical) tide, leading to widespread flooding. Though Sandy was not the most severe storm event in terms of wind speed and precipitation, the impact in the U.S. was enormous with total damage estimates of up to 90 billion US (own estimate from Dec. 2012). Although much better data emerge weeks after such an event, the Forensic Disaster Analysis (FDA) Task Force of the Center for Disaster Management and Risk Reduction Technology (CEDIM) made an effort to obtain a comprehensive and holistic overview of the causes, hazardous effects and consequences associated with Sandy immediately after landfall at the U.S. coast on 30 October 2012. This was done in an interdisciplinary way by collecting and compiling scattered and distributed information from available databases and sources via the Internet, by applying own methodologies and models for near-real time analyses developed in recent years, and by expert knowledge. This contribution gives an overview about the CEDIM-FDA analyses' results. It describes the situation that led to the extraordinary event, highlights the interaction of the tropical cyclone with other hydro-meteorological events, and examines the

  1. Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast

    Science.gov (United States)

    Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.

    2017-12-01

    As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour

  2. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  3. SPATIAL-TEMPORAL ANALYSIS OF OPENSTREETMAP DATA AFTER NATURAL DISASTERS: A CASE STUDY OF HAITI UNDER HURRICANE MATTHEW

    Directory of Open Access Journals (Sweden)

    J. Xu

    2017-09-01

    Full Text Available Volunteered geographic information (VGI has been widely adopted as an alternative for authoritative geographic information in disaster management considering its up-to-date data. OpenStreetMap, in particular, is now aiming at crisis mapping for humanitarian purpose. This paper illustrated that natural disaster played an essential role in updating OpenStreetMap data after Haiti was hit by Hurricane Matthew in October, 2016. Spatial-temporal analysis of updated OSM data was conducted in this paper. Correlation of features was also studied to figure out whether updates of data were coincidence or the results of the hurricane. Spatial pattern matched the damaged areas and temporal changes fitted the time when disaster occurred. High level of correlation values of features were recorded when hurricane occurred, suggesting that updates in data were led by the hurricane.

  4. 48 CFR 1852.236-73 - Hurricane plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Hurricane plan. 1852.236-73... Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all materials...

  5. Modelling hurricane exposure and wind speed on a mesoclimate scale: a case study from Cusuco NP, Honduras.

    Science.gov (United States)

    Batke, Sven P; Jocque, Merlijn; Kelly, Daniel L

    2014-01-01

    High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%.

  6. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    Science.gov (United States)

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  7. Dependence between sea surge, river flow and precipitation in south and west Britain

    Directory of Open Access Journals (Sweden)

    C. Svensson

    2004-01-01

    Full Text Available Estuaries around Great Britain may be at heightened risk of flooding because of the simultaneous occurrence of extreme sea surge and river flow, both of which may be caused by mid-latitude cyclones. A measure especially suited for extremes was employed to estimate dependence between river flow and sea surge. To assist in the interpretation of why flow-surge dependence occurs in some areas and not in others, the dependence between precipitation and surge and between precipitation and river flow was also studied. Case studies of the meteorological situations leading to high surges and/or river flows were also carried out. The present study concerns catchments draining to the south and west coasts of Great Britain. Statistically significant dependence between river flow and daily maximum sea surge may be found at catchments spread along most of this coastline. However, higher dependence is generally found in catchments in hilly areas with a southerly to westerly aspect. Here, precipitation in south-westerly airflow, which is generally the quadrant of prevailing winds, will be enhanced orographically as the first higher ground is encountered. The sloping catchments may respond quickly to the abundant rainfall and the flow peak may arrive in the estuary on the same day as a large sea surge is produced by the winds and low atmospheric pressure associated with the cyclone. There are three regions where flow-surge dependence is strong: the western part of the English south coast, southern Wales and around the Solway Firth. To reduce the influence of tide-surge interaction on the dependence analysis, the dependence between river flow and daily maximum surge occurring at high tide was estimated. The general pattern of areas with higher dependence is similar to that using the daily maximum surge. The dependence between river flow and daily maximum sea surge is often strongest when surge and flow occur on the same day. The west coast from Wales and

  8. Pre-swirl mechanism in front of a centrifugal compressor: effects on surge line and on unsteady phenomena in surge area

    Directory of Open Access Journals (Sweden)

    Danlos Amélie

    2017-01-01

    Full Text Available Using a pre-swirl mechanism upstream an impeller of a compressor allows to modify its characteristics curve, while weakly damaging its efficiency. Another consequence of the pre-swirl is to push back the surge line limit and to increase the operation zone towards the low flow rate limits. A centrifugal compressor has been modified in order to add a swirl generator device upstream the impeller. The incidence values of blades can vary from 0° (no pre-swirl to ±90°. The variation of the stator blades incidence has several main consequences: to allow a flow rate adjustment with a good efficiency conservation, to increase the angular velocity with a constant shaft power, to produce a displacement of the surge line limit. In this paper, the results of experimental studies are presented to analyze the surge line and the intensity of unsteady phenomena when the compressor works in its surge area.

  9. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons

    Directory of Open Access Journals (Sweden)

    Kerry Milch

    2018-01-01

    Full Text Available Although the field has seen great advances in hurricane prediction and response, the economic toll from hurricanes on U.S. communities continues to rise. We present data from Hurricanes Earl (2010, Irene (2011, Isaac (2012, and Sandy (2012 to show that individual and household decisions contribute to this vulnerability. From phone surveys of residents in communities threatened by impending hurricanes, we identify five decision biases or obstacles that interfere with residents’ ability to protect themselves and minimize property damage: (1 temporal and spatial myopia, (2 poor mental models of storm risk, (3 gaps between objective and subjective probability estimates, (4 prior storm experience, and (5 social factors. We then discuss ways to encourage better decision making and reduce the economic and emotional impacts of hurricanes, using tools such as decision defaults (requiring residents to opt out of precautions rather than opt in and tailoring internet-based forecast information so that it is local, specific, and emphasizes impacts rather than probability.

  10. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana

    Science.gov (United States)

    Morton, Robert A.; Barras, John A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.

  11. A Prospective Study of Religiousness and Psychological Distress Among Female Survivors of Hurricanes Katrina and Rita

    Science.gov (United States)

    Rhodes, Jean E.; Pérez, John E.

    2013-01-01

    This prospective study examined the pathways by which religious involvement affected the post-disaster psychological functioning of women who survived Hurricanes Katrina and Rita. The participants were 386 low-income, predominantly Black, single mothers. The women were enrolled in the study before the hurricane, providing a rare opportunity to document changes in mental health from before to after the storm, and to assess the protective role of religious involvement over time. Results of structural equation modeling indicated that, controlling for level of exposure to the hurricanes, pre-disaster physical health, age, and number of children, pre-disaster religiousness predicted higher levels of post-disaster (1) social resources and (2) optimism and sense of purpose. The latter, but not the former, was associated with better post-disaster psychological outcome. Mediation analysis confirmed the mediating role of optimism and sense of purpose. PMID:21626083

  12. A prospective study of religiousness and psychological distress among female survivors of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Chan, Christian S; Rhodes, Jean E; Pérez, John E

    2012-03-01

    This prospective study examined the pathways by which religious involvement affected the post-disaster psychological functioning of women who survived Hurricanes Katrina and Rita. The participants were 386 low-income, predominantly Black, single mothers. The women were enrolled in the study before the hurricane, providing a rare opportunity to document changes in mental health from before to after the storm, and to assess the protective role of religious involvement over time. Results of structural equation modeling indicated that, controlling for level of exposure to the hurricanes, pre-disaster physical health, age, and number of children, pre-disaster religiousness predicted higher levels of post-disaster (1) social resources and (2) optimism and sense of purpose. The latter, but not the former, was associated with better post-disaster psychological outcome. Mediation analysis confirmed the mediating role of optimism and sense of purpose.

  13. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  14. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  15. Retention of Displaced Students after Hurricanes Katrina and Rita

    Science.gov (United States)

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  16. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  17. 48 CFR 252.217-7001 - Surge option.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Surge option. 252.217-7001... Clauses 252.217-7001 Surge option. As prescribed in 217.208-70(b), use the following clause: Surge Option (AUG 1992) (a) General. The Government has the option to— (1) Increase the quantity of supplies or...

  18. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  19. Hurricane-related emergency department visits in an inland area: an analysis of the public health impact of Hurricane Hugo in North Carolina.

    Science.gov (United States)

    Brewer, R D; Morris, P D; Cole, T B

    1994-04-01

    To evaluate the public health impact of a hurricane on an inland area. Descriptive study. Seven hospital emergency departments. Patients who were treated from September 22 to October 6, 1989, for an injury or illness related to Hurricane Hugo. None. Over the two-week study period, 2,090 patients were treated for injuries or illnesses related to the hurricane. Of these, 1,833 (88%) were treated for injuries. Insect stings and wounds accounted for almost half of the total cases. A substantial proportion (26%) of the patients suffering from stings had a generalized reaction (eg, hives, wheezing, or both). Nearly one-third of the wounds were caused by chain saws. Hurricanes can lead to substantial morbidity in an inland area. Disaster plans should address risks associated with stinging insects and hazardous equipment and should address ways to improve case reporting.

  20. 7 CFR 701.50 - 2005 hurricanes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  1. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  2. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  3. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  4. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  5. The Use of a Statistical Model of Storm Surge as a Bias Correction for Dynamical Surge Models and its Applicability along the U.S. East Coast

    Directory of Open Access Journals (Sweden)

    Haydee Salmun

    2015-02-01

    Full Text Available The present study extends the applicability of a statistical model for prediction of storm surge originally developed for The Battery, NY in two ways: I. the statistical model is used as a biascorrection for operationally produced dynamical surge forecasts, and II. the statistical model is applied to the region of the east coast of the U.S. susceptible to winter extratropical storms. The statistical prediction is based on a regression relation between the “storm maximum” storm surge and the storm composite significant wave height predicted ata nearby location. The use of the statistical surge prediction as an alternative bias correction for the National Oceanic and Atmospheric Administration (NOAA operational storm surge forecasts is shownhere to be statistically equivalent to the existing bias correctiontechnique and potentially applicable for much longer forecast lead times as well as for storm surge climate prediction. Applying the statistical model to locations along the east coast shows that the regression relation can be “trained” with data from tide gauge measurements and near-shore buoys along the coast from North Carolina to Maine, and that it provides accurate estimates of storm surge.

  6. Genesis of tornadoes associated with hurricanes

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  7. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  8. Safety and design impact of hurricane Andrew

    International Nuclear Information System (INIS)

    Guey, Ching N.

    2004-01-01

    Turkey Point completed the IPE in June of 1991. Hurricane Andrew landed at Turkey Point on August 24, 1992. Although the safety related systems, components and structures were not damaged by the Hurricane Andrew, certain nonsafety related components and the neighboring fossil plant sustained noticeable damage. Among the major components that were nonsafety related but would affect the PRA of the plant included the service water pumps and the high tower. This paper discusses the safety and design impact of Hurricane Andrew on Turkey Point Nuclear Power Plant. The risk of hurricanes on the interim and evolving plant configurations are briefly described. The risk of the plant from internal events as a result of damage incurred during Hurricane Andrew are discussed. The design change as the result of Hurricane Andrew and its impact on the PRA are presented. (author)

  9. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; David S. Nolan; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  10. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Slot, H.J.; Meulendijks, D.

    2011-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  11. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Slot, H.J.; Meulendijks, D.; Smeulers, J.P.M.

    2009-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  12. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  13. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  14. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Science.gov (United States)

    2010-09-09

    .... This series was developed to describe and make available to the public such information as methods that... maximum hurricane windspeeds for hurricanes that originate in the Atlantic and make landfall along the... connected and provides an aerodynamic sail area on which the wind can act. An automobile hurricane missile...

  15. Geologic record of Hurricane impacts on the New Jersey coast

    Science.gov (United States)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  16. Identification of Caribbean basin hurricanes from Spanish documentary sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herrera, R. [Depto. Fisica de la Tierra II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gimeno, L. [Universidad de Vigo, Ourense (Spain); Ribera, P.; Gonzalez, E.; Fernandez, G. [Universidad Pablo de Olavide, Sevilla (Spain); Hernandez, E. [Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-15

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurricane activity. The documents provide detailed descriptions of a hurricane's impacts and allow us to identify previously unreported hurricanes, obtain more precise dates for hurricanes previously identified, better define the area affected by a given hurricane and, finally, better assess a hurricane's intensity.

  17. Predicting Typhoon Induced Storm Surges Using the Operational Ocean Forecast System

    Directory of Open Access Journals (Sweden)

    Sung Hyup You

    2010-01-01

    Full Text Available This study was performed to compare storm surges simulated by the operational storm surges/tide forecast system (STORM : Storm surges/Tide Operational Model of the Korea Meteorological Administration (KMA with observations from 30 coastal tidal stations during nine typhoons that occurred between 2005 and 2007. The results (bias showed that for cases of overestimation (or underestimation, storm surges tended to be overestimated (as well as underestimated at all coastal stations. The maximum positive bias was approximately 6.92 cm for Typhoon Ewiniar (2006, while the maximum negative bias was approximately -12.06 cm for Typhoon Khanun (2005. The maximum and minimum root mean square errors (RMSEs were 14.61 and 6.78 cm, which occurred for Typhoons Khanun (2005 and Usagi (2007, respectively. For all nine typhoons, total averaged RMSE was approximately 10.2 cm. Large differences between modeled and observed storm surges occurred in two cases. In the first, a very weak typhoon, such as Typhoon Khanun (2005, caused low storm surges. In the other, exemplified by Typhoon Nari (2007, there were errors in the predicted typhoon strength used as input data for the storm surge model.

  18. Aftermath of Hurricane Ike along Texas Coast

    Science.gov (United States)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and

  19. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.

  20. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.

    Science.gov (United States)

    Georgescu, Dan; Payne, Marielle; Olson, Randall J

    2007-03-01

    To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.

  1. The Development of High-speed Full-function Storm Surge Model and the Case Study of 2013 Typhoon Haiyan

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Lin, C. Y.; Chuang, M. H.; Lin, C. W.

    2016-02-01

    An ideal storm surge operational model should feature as: 1. Large computational domain which covers the complete typhoon life cycle. 2. Supporting both parametric and atmospheric models. 3. Capable of calculating inundation area for risk assessment. 4. Tides are included for accurate inundation simulation. Literature review shows that not many operational models reach the goals for the fast calculation, and most of the models have limited functions. In this paper, a well-developed COMCOT (COrnell Multi-grid Coupled of Tsunami Model) tsunami model is chosen as the kernel to establish a storm surge model which solves the nonlinear shallow water equations on both spherical and Cartesian coordinates directly. The complete evolution of storm surge including large-scale propagation and small-scale offshore run-up can be simulated by nested-grid scheme. The global tide model TPXO 7.2 established by Oregon State University is coupled to provide astronomical boundary conditions. The atmospheric model named WRF (Weather Research and Forecasting Model) is also coupled to provide metrological fields. The high-efficiency thin-film method is adopted to evaluate the storm surge inundation. Our in-house model has been optimized by OpenMp (Open Multi-Processing) with the performance which is 10 times faster than the original version and makes it an early-warning storm surge model. In this study, the thorough simulation of 2013 Typhoon Haiyan is performed. The detailed results will be presented in Oceanic Science Meeting of 2016 in terms of surge propagation and high-resolution inundation areas.

  2. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    Science.gov (United States)

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  3. Mass Media Use by College Students during Hurricane Threat

    Science.gov (United States)

    Piotrowski, Chris

    2015-01-01

    There is a dearth of studies on how college students prepare for the threat of natural disasters. This study surveyed college students' preferences in mass media use prior to an approaching hurricane. The convenience sample (n = 76) were from a university located in the hurricane-prone area of the central Gulf of Mexico coast. Interestingly,…

  4. Surge protective device response to steep front transient in low voltage circuit

    Energy Technology Data Exchange (ETDEWEB)

    Marcuz, J.; Binczak, S.; Bilbault, J.M. [Universite de Bourgogne, Dijon (France)], Emails: jerome.marcuz@ laposte.net, stbinc@u-bourgogne.fr, bilbault@u-bourgogne.fr; Girard, F. [ADEE Electronic, Pont de Pany (France)

    2007-07-01

    Surge propagation on cables of electrical or data lines leads to a major protection problem as the number of equipment based on solid-state circuits or microprocessors increases. Sub-microsecond components of real surge waveform has to be taken into account for a proper protection even in the case of surges caused by indirect lightning effects. The response of a model of transient voltage suppressor diode based surge protection device (SPD) to fast front transient is analytically studied, then compared to simulations, including the lines connected to the SPD and to the protected equipment. (author)

  5. Hurricanes accelerated the Florida-Bahamas lionfish invasion.

    Science.gov (United States)

    Johnston, Matthew W; Purkis, Sam J

    2015-06-01

    In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport. © 2015 John Wiley & Sons Ltd.

  6. On the molecular dynamics in the hurricane interactions with its environment

    Science.gov (United States)

    Meyer, Gabriel; Vitiello, Giuseppe

    2018-06-01

    By resorting to the Burgers model for hurricanes, we study the molecular motion involved in the hurricane dynamics. We show that the Lagrangian canonical formalism requires the inclusion of the environment degrees of freedom. This also allows the description of the motion of charged particles. In view of the role played by moist convection, cumulus and cloud water droplets in the hurricane dynamics, we discuss on the basis of symmetry considerations the role played by the molecular electrical dipoles and the formation of topologically non-trivial structures. The mechanism of energy storage and dissipation, the non-stationary time dependent Ginzburg-Landau equation and the vortex equation are studied. Finally, we discuss the fractal self-similarity properties of hurricanes.

  7. Post-hurricane forest damage assessment using satellite remote sensing

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  8. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  9. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa Forests in the Florida Keys, USA

    Directory of Open Access Journals (Sweden)

    Jay P. Sah

    2010-01-01

    Full Text Available In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  10. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa) Forests in the Florida Keys, USA

    International Nuclear Information System (INIS)

    Sah, J.P.; Ross, M.S.; Ross, M.S.; Ogurcak, D.E.; Snyder, J.R.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on post fire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with under story type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pine lands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  11. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    Science.gov (United States)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  12. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    Science.gov (United States)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  13. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    Science.gov (United States)

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  14. Long-term response of Caribbean palm forests to hurricanes

    Science.gov (United States)

    Ariel Lugo; J.L. Frangi

    2016-01-01

    We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...

  15. A diary of hurricane Hugo.

    Science.gov (United States)

    Counts, C S

    1989-12-01

    Charleston, South Carolina was the recent victim of Hurricane Hugo. This article recalls the events that occurred before, during, and after the hurricane struck. The focus is on four outpatient dialysis units in that area. It is a story from which others may learn more about emergency preparedness.

  16. Race differences in depression vulnerability following Hurricane Katrina.

    Science.gov (United States)

    Ali, Jeanelle S; Farrell, Amy S; Alexander, Adam C; Forde, David R; Stockton, Michelle; Ward, Kenneth D

    2017-05-01

    This study investigated whether racial disparities in depression were present after Hurricane Katrina. Data were gathered from 932 New Orleans residents who were present when Hurricane Katrina struck, and who returned to New Orleans the following year. Multiple logistic regression models evaluated racial differences in screening positive for depression (a score ≥16 on the Center for Epidemiologic Studies Depression Scale), and explored whether differential vulnerability (prehurricane physical and mental health functioning and education level), differential exposure to hurricane-related stressors, and loss of social support moderated and/or reduced the association of race with depression. A univariate logistic regression analysis showed the odds for screening positive for depression were 86% higher for African Americans than for Caucasians (odds ratio [OR] = 1.86 [1.28-2.71], p = .0012). However, after controlling simultaneously for sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors, race was no longer a significant correlate for screening positive for depression (OR = 1.54 [0.95-2.48], p = .0771). The racial disparity in postdisaster depression seems to be confounded by sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors. Nonetheless, even after adjusting for these factors, there was a nonsignificant trend effect for race, which could suggest race played an important role in depression outcomes following Hurricane Katrina. Future studies should examine these associations prospectively, using stronger assessments for depression, and incorporate measures for discrimination and segregation, to further understand possible racial disparities in depression after Hurricane Katrina. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Examining the effects of hurricanes Matthew and Irma on water quality in the intracoastal waterway, St. Augustine, FL.

    Science.gov (United States)

    Ward, N. D.; Osborne, T.; Dye, T.; Julian, P.

    2017-12-01

    The last several years have been marked by a high incidence of Atlantic tropical cyclones making landfall as powerful hurricanes or tropical storms. For example, in 2016 Hurricane Matthew devastated parts of the Caribbean and the southeastern United States. In 2017, this region was further battered by hurricanes Irma and Maria. Here, we present water quality data collected in the intracoastal waterway near the Whitney Lab for Marine Bioscience during hurricanes Matthew and Irma, a region that experienced flooding during both storms. YSI Exo 2 sondes were deployed to measure pH, salinity, temperature, dissolved O2, fluorescent dissolved organic matter (fDOM), turbidity, and Chlorophyll-a (Chl-a) on a 15 minute interval. The Hurricane Matthew sonde deployment failed as soon as the storm hit, but revealed an interesting phenomenon leading up to the storm that was also observed during Irma. Salinity in the intracoastal waterway (off the Whitney Lab dock) typically varies from purely marine to 15-20 psu throughout the tidal cycle. However, several days before both storms approached the Florida coast (i.e. when they were near the Caribbean), the salinity signal became purely marine, overriding any tidal signal. Anecdotally, storm drains were already filled up to street level prior to the storm hitting, poising the region for immense flooding and storm surge. The opposite effect was observed after Irma moved past FL. Water became much fresher than normal for several days and it took almost a week to return to "normal" salinity tidal cycles. As both storms hit, turbidity increased by an order of magnitude for a several hour period. fDOM and O2 behaved similar to salinity during and after Irma, showing a mostly marine signal (e.g. higher O2, lower fDOM) in the lead up, and brief switch to more freshwater influence the week after the storm. Chl-a peaked several days after the storm, presumably due to mobilization of nutrient rich flood and waste waters and subsequent algae

  18. Surge recovery techniques for the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success

  19. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  20. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    Science.gov (United States)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  1. Examining Hurricane Track Length and Stage Duration Since 1980

    Science.gov (United States)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  2. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to

  3. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  4. Not so close but still extremely loud: recollection of the World Trade Center terror attack and previous hurricanes moderates the association between exposure to hurricane Sandy and posttraumatic stress symptoms.

    Science.gov (United States)

    Palgi, Yuval; Shrira, Amit; Hamama-Raz, Yaira; Palgi, Sharon; Goodwin, Robin; Ben-Ezra, Menachem

    2014-05-01

    The present study examined whether recollections of the World Trade Center (WTC) terror attack and previous hurricanes moderated the relationship between exposure to Hurricane Sandy and related posttraumatic stress disorder (PTSD) symptoms. An online sample of 1000 participants from affected areas completed self-report questionnaires a month after Hurricane Sandy hit the East Coast of the United States. Participants reported their exposure to Hurricane Sandy, their PTSD symptoms, and recollections of the WTC terror attack and previous hurricanes elicited due to Hurricane Sandy. Exposure to Hurricane Sandy was related to PTSD symptoms among those with high level of recollections of the WTC terror attack and past hurricanes, but not among those with low level of recollections. The aftermath of exposure to Hurricane Sandy is related not only to exposure, but also to its interaction with recollections of past traumas. These findings have theoretical and practical implications for practitioners and health policy makers in evaluating and interpreting the impact of past memories on future natural disasters. This may help in intervention plans of social and psychological services. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Exercising Tactically for Taming Postmeal Glucose Surges

    Directory of Open Access Journals (Sweden)

    Elsamma Chacko

    2016-01-01

    Full Text Available This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  6. Exercising Tactically for Taming Postmeal Glucose Surges.

    Science.gov (United States)

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  7. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  8. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  9. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  10. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  11. Low ionospheric reactions on tropical depressions prior hurricanes

    Science.gov (United States)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  12. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  13. Radiological analyses of France Telecom surge arresters. Study performed for the CGT FAPT Cantal

    International Nuclear Information System (INIS)

    2010-02-01

    This document reports the radiological characterization of various versions of surge arresters used in the past to protect telephone lines against over-voltages. These equipment, which use various radioactive materials, were assessed by gamma radiation flow measurements, alpha-beta-gamma count rate measurements, dose rate measurements, gamma spectrometry analyses, tritium emanation test, radon 222 emanation test, smearing. Recommendations are formulated to manage radioactive surge arresters which are still being operated

  14. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  15. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  16. Condition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier

    Directory of Open Access Journals (Sweden)

    M Khodsuz

    2015-12-01

    Full Text Available This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition monitoring. Also, the effects of operating voltage fluctuation, third harmonic of voltage, overvoltage and surge arrester aging on these indicators were studied. Then, obtained data are applied to the multi-layer support vector machine for recognizing of surge arrester conditions. Obtained results show that introduced indicators have the high ability for evaluation of surge arrester conditions.

  17. Volume-based characterization of postocclusion surge.

    Science.gov (United States)

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  18. Hurricane feedback research may improve intensity forecasts

    Science.gov (United States)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  19. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  20. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  1. Adolescent Survivors of Hurricane Katrina: A Pilot Study of Hypothalamic-Pituitary-Adrenal Axis Functioning

    Science.gov (United States)

    Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal

    2015-01-01

    Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…

  2. Documentation and hydrologic analysis of Hurricane Sandy in New Jersey, October 29–30, 2012

    Science.gov (United States)

    Suro, Thomas P.; Deetz, Anna; Hearn, Paul

    2016-11-17

    In 2012, a late season tropical depression developed into a tropical storm and later a hurricane. The hurricane, named “Hurricane Sandy,” gained strength to a Category 3 storm on October 25, 2012, and underwent several transitions on its approach to the mid-Atlantic region of the eastern coast of the United States. By October 28, 2012, Hurricane Sandy had strengthened into the largest hurricane ever recorded in the North Atlantic and was tracking parallel to the east coast of United States, heading toward New Jersey. On October 29, 2012, the storm turned west-northwest and made landfall near Atlantic City, N.J. The high winds and wind-driven storm surge caused massive damage along the entire coastline of New Jersey. Millions of people were left without power or communication networks. Many homes were completely destroyed. Sand dunes were eroded, and the barrier island at Mantoloking was breached, connecting the ocean with Barnegat Bay.Several days before the storm made landfall in New Jersey, the U.S. Geological Survey (USGS) made a decision to deploy a temporary network of storm-tide sensors and barometric pressure sensors from Virginia to Maine to supplement the existing USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent tide monitoring stations. After the storm made landfall, the USGS conducted a sensor data recovery and high-water-mark collection campaign in cooperation with the Federal Emergency Management Agency (FEMA).Peak storm-tide elevations documented at USGS tide gages, tidal crest-stage gages, temporary storm sensor locations, and high-water-mark sites indicate the area from southern Monmouth County, N.J., north through Raritan Bay, N.J., had the highest peak storm-tide elevations during this storm. The USGS tide gages at Raritan River at South Amboy and Raritan Bay at Keansburg, part of the New Jersey Tide Telemetry System, each recorded peak storm-tide elevations of greater than 13 feet (ft)—more than 5 ft

  3. Using data envelopment analysis to evaluate the performance of post-hurricane electric power restoration activities

    International Nuclear Information System (INIS)

    Reilly, Allison C.; Davidson, Rachel A.; Nozick, Linda K.; Chen, Thomas; Guikema, Seth D.

    2016-01-01

    Post-hurricane restoration of electric power is attracting increasing scrutiny as customers’ tolerance for even short power interruptions decreases. At the peak, 8.5 million customers were without power after Hurricane Sandy and over 1 million customers were without power more than a week after the storm made landfall. Currently, restoration processes are typically evaluated on a case-by-case basis by a regional public service commission or similar body and lack systematic comparisons to other restoration experiences. This paper introduces a framework using data envelopment analysis to help evaluate post-hurricane restorations through comparison with the experiences of other companies in similar storms. The method accounts for the variable severity of the hurricanes themselves, so that companies are not penalized for outages that are long only because the hurricane that caused them was particularly severe. The analysis is illustrated through an application comparing 27 recent post-hurricane restoration experiences across 13 different electric power companies in the United States. The results of the study show some consistency in performance among individual utilities after the hurricanes they experience. The method could be applied to other types of infrastructure systems and other extreme events as well. - Highlights: • A Data Envelopment Analysis (DEA) framework is developed to compare post- hurricane power-outage restoration performance. • Hurricane severity is considered, so that utilities are not penalized for long outages caused by severe storms. • A case study using real data compares 27 recent post-hurricane restoration experiences. • The results of the study show utilities tend to perform consistently after the hurricanes they experience.

  4. [Analysis of articles published in Chin J Surg since founded in 1951].

    Science.gov (United States)

    Xia, Shuang; Li, Jing

    2016-01-01

    To discuss the characteristics of the articles published in Chin J Surg from 1951 to 2015. The journals and articles of Acad Surg from 1951 to 1952 and Chin J Surg from 1953 to 2015 were analyzed. The subjects, foundation, basic medical study, international cooperation of the articles were recorded. In 65 years, there were 20 090 academic articles published in Chin J Surg. The proportions of general surgery, orthopedic surgery, thoracocardiac surgery, urology surgery and neurosurgery articles were 34.08%, 17.96%, 13.09%, 11.91% and 5.85%, respectively. There were 14.83% (1 728/11 653) articles receiving foundation, and 9.42% (1 817/19 290) articles reporting basic medical study. There were 14.8% articles from international authors and 119 articles with international cooperation. From 2000 to 2003, 29 articles in original English were published. The coverage of Chin J Surg contains all the fields of surgery. It tends to publish the studies focus on clinical issues.Through reinforcing the content plan and optimizing the show form, the more Chinese surgical research achievements could be shared by the surgeons worldwide.

  5. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    Science.gov (United States)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-08-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  6. Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita

    Science.gov (United States)

    Cruz, A. M.; Krausmann, E.

    2009-04-01

    and occurred on both fixed and floating platforms. The total number of pipelines damaged by Hurricanes Katrina and Rita as of May 1, 2006, was 457. Pipeline damage was mostly caused by damage or failure of the host platform or its development and production piping, the impact of dragging and displaced objects, and pipeline interaction at a crossing. Damage to pipelines was a major contributing factor in delaying start up of offshore oil and gas production. During our analysis of the NRC database we identified 611 reported hazardous-materials releases directly attributed to offshore platforms and pipelines affected by the two hurricanes. There were twice as many releases during Hurricane Katrina than during Rita; 80% or more of the releases reported in the NRC database occurred from platforms. Our analysis suggests that the majority of releases were petroleum products, such as crude oil and condensate, followed by natural gas. In both Katrina and Rita, releases were more likely in the front, right quadrant of the storm. Storm-surge values were highest closer to the coastline. This may help explain the higher number of releases in shallow waters. The higher number of hazardous-materials releases from platforms during Katrina may partly be attributed to the higher wind speeds for this storm as it approached land.

  7. The CI-Flow Project: A System for Total Water Level Prediction from the Summit to the Sea

    Science.gov (United States)

    2011-11-01

    round and may be applied to all types of coastal storms , including intense cool- season extratropical cyclones (i.e., nor’easters). In addition...associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface Within this project, Cl-FLOW addresses...presented for Hurricane Isabel (2003), Hurricane Earl (20I0), and Tropical Storm Nicole (2010) for the Tar -Pamlico and Neuse River basins of North

  8. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Gonzalez Díez, N.; Slot, H.J.

    2012-01-01

    Surge of turbo compressors can cause large almost step like changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. In spite of an anti-surge controller (ASC), at extreme events surge cycles may occur. In order to

  9. Disaster-related injuries and illnesses treated by American Red Cross disaster health services during Hurricanes Gustav and Ike.

    Science.gov (United States)

    Noe, Rebecca S; Schnall, Amy H; Wolkin, Amy F; Podgornik, Michelle N; Wood, April D; Spears, Jeanne; Stanley, Sharon A R

    2013-01-01

    To describe the injuries and illnesses treated by the American Red Cross (Red Cross) during Hurricanes Gustav and Ike disaster relief operations reported on a new Aggregate Morbidity Report Form. From August 28 to October 18, 2008, 119 Red Cross field service locations in Louisiana, Mississippi, Tennessee, and Texas addressed the healthcare needs of people affected by the hurricanes. From these locations, individual client visit data were retrospectively collated per site onto new 24-hour Aggregate Morbidity Report Forms. A total of 3863 clients were treated. Of the clients, 48% were girls and women and 44% were boys and men; 61% were 19 to 64 years old. Ninety-eight percent of the visits occurred in shelters. The reasons for half of the visits were acute illness and symptoms (eg, pain) and 16% were for routine follow-up care. The majority (65%) of the 2516 visits required treatment at a field location, although 34%, or 1296 visits, required a referral, including 543 healthcare facility transfers. During the hurricanes, a substantial number of displaced evacuees sought care for acute and routine healthcare needs. The capacity of the Red Cross to address the immediate and ongoing health needs of sheltered clients for an extended period of time is a critical resource for local public health agencies, which are often overwhelmed during a disaster. This article highlights the important role that this humanitarian organization fills, to decrease surge to local healthcare systems and to monitor health effects following a disaster. The Aggregate Morbidity Report Form has the potential to assist greatly in this role, and thus its utility for real-time reporting should be evaluated further.

  10. Assessment of the Water Levels and Currents at the Mississippi Bight During Hurricane Katrina.

    Science.gov (United States)

    Nwankwo, U. C.; Howden, S. D.; Dodd, D.; Wells, D. E.

    2017-12-01

    In an effort to extend the length of GPS baselines further offshore, the Hydrographic Science Research Center at the University of Southern Mississippi deployed a buoy which had a survey grade GPS receiver, an ADPC and a motion sensor unit in the Mississippi Bight in late 2004. The GPS data were initially processed using the Post Processed Kinematic technique with data from a nearby GPS base station on Horn Island. This processing technique discontinued when the storm (Hurricane Katrina) destroyed the base station in late August of 2005. However, since then a stand-alone positioning technique termed Precise Point Positioning (PPP) matured and allowed for the reprocessing of the buoy GPS data throughout Katrina. The processed GPS data were corrected for buoy angular motions using Tait Bryan transformation model. Tidal datums (Epoch 1983-2001) were transferred from the National Oceanic and Atmospheric Administration (NOAA) National Water Level at Waveland, Mississippi (Station ID 8747766) to the buoy using the Modified Range Ratio method. The maximum water level during the storm was found to be about 3.578m, relative to the transferred Mean Sea Level datum. The storm surge built over more than 24 hours, but fell back to normal levels in less than 3 hours. The maximum speed of the current with respect to the seafloor was recorded to be about 4knots towards the southeast as the storm surge moved back offshore.

  11. Physical aspects of Hurricane Hugo in Puerto Rico

    Science.gov (United States)

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  12. On the Influence of Global Warming on Atlantic Hurricane Frequency

    Science.gov (United States)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  13. Gulf of Mexico hurricane wave simulations using SWAN : Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate

  14. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    International Nuclear Information System (INIS)

    Balaguru, Karthik; Ruby Leung, L; Yoon, Jin-ho

    2013-01-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north–south demarcation are considered rather than the basin as a whole. (letter)

  15. Developing Local Scale, High Resolution, Data to Interface with Numerical Hurricane Models

    Science.gov (United States)

    Witkop, R.; Becker, A.

    2017-12-01

    In 2017, the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) developed hurricane models that specify wind speed, inundation, and erosion around Rhode Island with enough precision to incorporate impacts on individual facilities. At the same time, URI's Marine Affairs Visualization Lab (MAVL) developed a way to realistically visualize these impacts in 3-D. Since climate change visualizations and water resource simulations have been shown to promote resiliency action (Sheppard, 2015) and increase credibility (White et al., 2010) when local knowledge is incorporated, URI's hurricane models and visualizations may also more effectively enable hurricane resilience actions if they include Facility Manager (FM) and Emergency Manager (EM) perceived hurricane impacts. This study determines how FM's and EM's perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale while exploring methods to elicit this information from FMs and EMs in a format usable for incorporation into URI GSO's hurricane models.

  16. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  17. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  18. Active surge control for variable speed axial compressors.

    Science.gov (United States)

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan

    2014-09-01

    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  20. NOAA predicts active 2013 Atlantic hurricane season

    Science.gov (United States)

    (discussion) El Niño/Southern Oscillation (ENSO) Diagnostic Discussion National Hurricane Preparedness Week in both English and Spanish, featuring NOAA hurricane experts and the FEMA administrator at

  1. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  2. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    Science.gov (United States)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  3. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  4. Distribution of auroral surges in the evening sector

    International Nuclear Information System (INIS)

    Kidd, S.R.; Rostoker, G.

    1991-01-01

    Over the past dacades a large statistical data base has been gathered consisting of both ground-based magnetometer and all-sky camera records from which researchers have inferred the distribution of substorm expansive phase events across the nighttime sector. Almost without exception, the activity distribution has been based on single station data acquired over periods of years. However, to truly establish the occurrence frequency of substorm expansive phase events, it is necessary to view the entire nighttime sector instantaneously in the light of evidence which shows that more than one expansive phase disturbance can be in progress across the broad expanse of the evening sector. In this paper, the authors study the distribution of regions of localized auroral luminosity in the poleward portion of the evening sectorauroral oval using images in the ultraviolet portion of the auroral spectrum acquired by the Viking satellite over 9 months in 1986. They find that auroral surge activity peaks in the hour before local magnetic midnight, with the probability of detecting a surge steadily decreasing to 10% of the probability of finding a surge in the hour prior to midnight as one moves westward towards 1,900 MLT. They show that their conclusion is not dependent on the threshold chosen for surge identification over a reasonable portion of the intensity range covered by the Viking imager. They further show that for the interval of several months near sunspot minimum in 1986 there is better than a 90% chance that no surge will be detected in a 1-hour range of magnetic local time if one were to sample that segment of the auroral oval at any arbitrary time

  5. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  6. Sedimentary and Vegetative Impacts of Hurricane Irma to Coastal Wetland Ecosystems across Southwest Florida

    Science.gov (United States)

    Moyer, R. P.; Khan, N.; Radabaugh, K.; Engelhart, S. E.; Smoak, J. M.; Horton, B.; Rosenheim, B. E.; Kemp, A.; Chappel, A. R.; Schafer, C.; Jacobs, J. A.; Dontis, E. E.; Lynch, J.; Joyse, K.; Walker, J. S.; Halavik, B. T.; Bownik, M.

    2017-12-01

    Since 2014, our collaborative group has been working in coastal marshes and mangroves across Southwest Florida, including Tampa Bay, Charlotte Harbor, Ten Thousand Islands, Biscayne Bay, and the lower Florida Keys. All existing field sites were located within 50 km of Hurricane Irma's eye path, with a few sites in the Lower Florida Keys and Naples/Ten Thousand Islands region suffering direct eyewall hits. As a result, we have been conducting storm-impact and damage assessments at these locations with the primary goal of understanding how major hurricanes contribute to and/or modify the sedimentary record of mangroves and salt marshes. We have also assessed changes to the vegetative structure of the mangrove forests at each site. Preliminary findings indicate a reduction in mangrove canopy cover from 70-90% pre-storm, to 30-50% post-Irma, and a reduction in tree height of approximately 1.2 m. Sedimentary deposits consisting of fine carbonate mud up to 12 cm thick were imported into the mangroves of the lower Florida Keys, Biscayne Bay, and the Ten Thousand Islands. Import of siliciclastic mud up to 5 cm thick was observed in Charlotte Harbor. In addition to fine mud, all sites had imported tidal wrack consisting of a mixed seagrass and mangrove leaf litter, with some deposits as thick as 6 cm. In areas with newly opened canopy, a microbial layer was coating the surface of the imported wrack layer. Overwash and shoreline erosion were also documented at two sites in the lower Keys and Biscayne Bay, and will be monitored for change and recovery over the next few years. Because active research was being conducted, a wealth of pre-storm data exists, thus these locations are uniquely positioned to quantify hurricane impacts to the sedimentary record and standing biomass across a wide geographic area. Due to changes in intensity along the storm path, direct comparisons of damage metrics can be made to environmental setting, wind speed, storm surge, and distance to eyewall.

  7. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  8. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  9. Wetland Accretion Rates Along Coastal Louisiana: Spatial and Temporal Variability in Light of Hurricane Isaac’s Impacts

    Directory of Open Access Journals (Sweden)

    Thomas A. Bianchette

    2015-12-01

    Full Text Available The wetlands of the southern Louisiana coast are disappearing due to a host of environmental stressors. Thus, it is imperative to analyze the spatial and temporal variability of wetland vertical accretion rates. A key question in accretion concerns the role of landfalling hurricanes as a land-building agent, due to their propensity to deposit significant volumes of inorganic sediments. Since 1996, thousands of accretion measurements have been made at 390 sites across coastal Louisiana as a result of a regional monitoring network, called the Coastal Reference Monitoring System (CRMS. We utilized this dataset to analyze the spatial and temporal patterns of accretion by mapping rates during time periods before, around, and after the landfall of Hurricane Isaac (2012. This analysis is vital for quantifying the role of hurricanes as a land-building agent and for understanding the main mechanism causing heightened wetland accretion. The results show that accretion rates averaged about 2.89 cm/year from stations sampled before Isaac, 4.04 cm/year during the period encompassing Isaac, and 2.38 cm/year from sites established and sampled after Isaac. Accretion rates attributable to Isaac’s effects were therefore 40% and 70% greater than before and after the event, respectively, indicating the event’s importance toward coastal land-building. Accretion associated with Isaac was highest at sites located 70 kilometers from the storm track, particularly those near the Mississippi River and its adjacent distributaries and lakes. This spatial pattern of elevated accretion rates indicates that freshwater flooding from fluvial channels, rather than storm surge from the sea per se, is the main mechanism responsible for increased wetland accretion. This significance of riverine flooding has implications toward future coastal restoration policies and practices.

  10. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  11. Numerical modelling of tides and storm surges in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sindhu, B.

    were done. A storm surge model was developed to simulate total water levels and derived surges caused by low pressure systems identified during the past 27 years (1974-2000) in the Bay of Bengal. Study also estimated the return levels of extreme sea...

  12. Sleep disturbance and its relationship to psychiatric morbidity after Hurricane Andrew.

    Science.gov (United States)

    Mellman, T A; David, D; Kulick-Bell, R; Hebding, J; Nolan, B

    1995-11-01

    Sleep disturbance is an important dimension of posttraumatic stress disorder (PTSD), but most of the limited available data were obtained years after the original traumatic event. This study provides information on sleep disturbance and its relationship to posttraumatic morbidity from evaluations done within a year after the trauma. Sleep and psychiatric symptoms of 54 victims (12 men and 42 women) of Hurricane Andrew who had no psychiatric illness in the 6 months before the hurricane were evaluated. A subset of hurricane victims with active psychiatric morbidity (N = 10) and nine comparison subjects who were unaffected by the hurricane were examined in a sleep laboratory. A broad range of sleep-related complaints were rated as being greater after the hurricane, and psychiatric morbidity (which was most commonly PTSD, followed by depression) had a significant effect on most of the subjective sleep measures. In addition, subjects with active morbidity endorsed greater frequencies of "bad dreams" and general sleep disturbances before the hurricane. Polysomnographic results for the hurricane victims revealed a greater number of arousals and entries into stage 1 sleep. REM density correlated positively with both the PTSD symptom of reexperiencing trauma and global distress. Subjects affected by Hurricane Andrew reported sleep disturbances, particularly those subjects with psychiatric morbidity. Tendencies to experience bad dreams and interrupted sleep before a trauma appear to mark vulnerability to posttraumatic morbidity. Results of sleep laboratory evaluations suggested brief shifts toward higher arousal levels during sleep for PTSD subjects and a relationship of REM phasic activity and symptom severity.

  13. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    Science.gov (United States)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is

  14. Influence of Surge on Extreme Roll Amplitudes

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Rognebakke, Olav; Pedersen, Preben Terndrup

    2008-01-01

    Interference of the wave-induced ship surge motion with roll dynamics has been studied. The surge motion has been included in a previously derived hydrodynamic roll prediction model in order to account for the ship speed variation due to the longitudinal incident wave pressure force. Depending...... balanced in order to determine the added thrust term that would represent actions to maintain speed The resulting forward speed variation affects the frequency of encounter and the parametric roll resonant condition is directly influenced by this speed variation. The analysis procedure is demonstrated...... for an example containership sailing mainly in head sea condition and higher sea states. Sensitivity of the results to the added thrust model and vertical motion calculation is discussed....

  15. Effects of track and threat information on judgments of hurricane strike probability.

    Science.gov (United States)

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  16. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  17. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  18. Pressure-surge mitigation methods in fluid-conveying piping

    International Nuclear Information System (INIS)

    Shin, Y.W.; Youngdahl, C.K.; Wiedermann, A.H.

    1991-01-01

    Pressure surges in the heat transport system of nuclear reactor plants can affect the safety and reliability of the plants. Hence the pressure surges must be considered in the design, operation, and maintenance of the plants in order to minimize their occurrence and impacts. The objectives of this paper are to review various methods to control or mitigate the pressure surges, to analyze these methods to gain understanding of the mitigation mechanisms, and examine applicability of the methods to nuclear power plants. 6 refs., 13 figs

  19. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  20. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  1. Performance of Surge Arrester Installation to Enhance Protection

    Directory of Open Access Journals (Sweden)

    Mbunwe Muncho Josephine

    2017-01-01

    Full Text Available The effects of abnormal voltages on power system equipment and appliances in the home have raise concern as most of the equipments are very expensive. Each piece of electrical equipment in an electrical system needs to be protected from surges. To prevent damage to electrical equipment, surge protection considerations are paramount to a well designed electrical system. Lightning discharges are able to damage electric and electronic devices that usually have a low protection level and these are influenced by current or voltage pulses with a relatively low energy, which are induced by lightning currents. This calls for proper designed and configuration of surge arresters for protection on the particular appliances. A more efficient non-linear surge arrester, metal oxide varistor (MOV, should be introduced to handle these surges. This paper shows the selection of arresters laying more emphasis on the arresters for residential areas. In addition, application and installation of the arrester will be determined by the selected arrester. This paper selects the lowest rated surge arrester as it provides insulation when the system is under stress. It also selected station class and distribution class of arresters as they act as an open circuit under normal system operation and to bring the system back to its normal operation mode as the transient voltage is suppressed. Thus, reduces the risk of damage, which the protection measures can be characterized, by the reduction value of the economic loss to an acceptable level.

  2. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  3. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  4. Performance assessment of topologically diverse power systems subjected to hurricane events

    International Nuclear Information System (INIS)

    Winkler, James; Duenas-Osorio, Leonardo; Stein, Robert; Subramanian, Devika

    2010-01-01

    Large tropical cyclones cause severe damage to major cities along the United States Gulf Coast annually. A diverse collection of engineering and statistical models are currently used to estimate the geographical distribution of power outage probabilities stemming from these hurricanes to aid in storm preparedness and recovery efforts. Graph theoretic studies of power networks have separately attempted to link abstract network topology to transmission and distribution system reliability. However, few works have employed both techniques to unravel the intimate connection between network damage arising from storms, topology, and system reliability. This investigation presents a new methodology combining hurricane damage predictions and topological assessment to characterize the impact of hurricanes upon power system reliability. Component fragility models are applied to predict failure probability for individual transmission and distribution power network elements simultaneously. The damage model is calibrated using power network component failure data for Harris County, TX, USA caused by Hurricane Ike in September of 2008, resulting in a mean outage prediction error of 15.59% and low standard deviation. Simulated hurricane events are then applied to measure the hurricane reliability of three topologically distinct transmission networks. The rate of system performance decline is shown to depend on their topological structure. Reliability is found to correlate directly with topological features, such as network meshedness, centrality, and clustering, and the compact irregular ring mesh topology is identified as particularly favorable, which can influence regional lifeline policy for retrofit and hardening activities to withstand hurricane events.

  5. A Pilot Study of Post-Hurricane Katrina Floodwater Pumping on Marsh Infauna

    National Research Council Canada - National Science Library

    Ray, Gary L

    2006-01-01

    ... and consequences of structural failures to the New Orleans area following Hurricane Katrina. This evaluation includes determining environmental impacts to habitat and other biological resources...

  6. The weight of a storm: what observations of Earth surface deformation can tell us about Hurricane Harvey

    Science.gov (United States)

    Borsa, A. A.; Mencin, D.; van Dam, T. M.

    2017-12-01

    Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to

  7. The dynamics of surge in compression systems

    Indian Academy of Sciences (India)

    is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.

  8. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  9. A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005 Simulation

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2011-06-01

    Full Text Available The life cycle of Hurricane Katrina (2005 was simulated using three different modeling systems of Weather Research and Forecasting (WRF mesoscale model. These are, HWRF (Hurricane WRF designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW model and the Non-hydrostatic Mesoscale Model (NMM. The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR, incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina.

  10. Estimating the Risk of Tropical Cyclone Characteristics Along the United States Gulf of Mexico Coastline Using Different Statistical Approaches

    Science.gov (United States)

    Trepanier, J. C.; Ellis, K.; Jagger, T.; Needham, H.; Yuan, J.

    2017-12-01

    Tropical cyclones, with their high wind speeds, high rainfall totals and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting off shore economic activities. Events, such as Hurricane Katrina in 2005 and Hurricane Isaac in 2012, can be physically different but still provide detrimental effects due to their locations of influence. There are a wide variety of ways to estimate the risk of occurrence of extreme tropical cyclones. Here, the combined risk of tropical cyclone storm surge and nearshore wind speed using a statistical copula is provided for 22 Gulf of Mexico coastal cities. Of the cities considered, Bay St. Louis, Mississippi has the shortest return period for a tropical cyclone with at least a 50 m s-1 nearshore wind speed and a three meter surge (19.5 years, 17.1-23.5). Additionally, a multivariate regression model is provided estimating the compound effects of tropical cyclone tracks, landfall central pressure, the amount of accumulated precipitation, and storm surge for five locations around Lake Pontchartrain in Louisiana. It is shown the most intense tropical cyclones typically approach from the south and a small change in the amount of rainfall or landfall central pressure leads to a large change in the final storm surge depth. Data are used from the National Hurricane Center, U-Surge, SURGEDAT, and Cooperative Observer Program. The differences in the two statistical approaches are discussed, along with the advantages and limitations to each. The goal of combining the results of the two studies is to gain a better understanding of the most appropriate risk estimation technique for a given area.

  11. Case Study of Hurricane Felix (2007) Rapid Intensification

    Science.gov (United States)

    Colon-Pagan, I. C.; Davis, C. A.; Holland, G. J.

    2010-12-01

    The forecasting of tropical cyclones (TC) rapid intensification (RI) is one of the most challenging problems that the operational community experiences. Research advances leading to improvements in predicting this phenomenon would help government agencies make decisions that could reduce the impact on communities that are so often affected by these weather-related events. It has been proposed that TC RI is associated to various factors, including high sea-surface temperatures, weak vertical wind shear, and the ratio of inertial to static stability, which improves the conversion of diabatic heating into circulation. While a cyclone develops, the size of the region of high inertial stability (IS) decreases whereas the magnitude of IS increases. However, it’s unknown whether this is a favorable condition or a result of RI occurrences. The purpose of this research, therefore, is to determine if the IS follows, leads or changes in sync with the intensity change by studying Hurricane Felix (2007) RI phase. Results show a trend of increasing IS before the RI stage, followed by an expansion of the region of high IS. This episode is eventually followed by a decrease in both the intensity and region of positive IS, while the maximum wind speed intensity of the TC diminished. Therefore, we propose that monitoring the IS may provide a forecast tool to determine RI periods. Other parameters, such as static stability, tangential wind, and water vapor mixing ratio may help identify other features of the storm, such as circulation and eyewall formation. The inertial stability (IS) trend during the period of rapid intensification, which occurred between 00Z and 06Z of September 3rd. Maximum values of IS were calculated before and during this period of RI within a region located 30-45 km from the center. In fact, this region could represent the eye-wall of Hurricane Felix.

  12. ON THE INFLUENCE OF GLOBAL WARMING ON ATLANTIC HURRICANE FREQUENCY

    Directory of Open Access Journals (Sweden)

    S. R. Hosseini

    2018-04-01

    Full Text Available In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane’s intensity and Sea Surface Temperature (SST has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR. The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82. In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  13. The destruction influence of pulse and surge currents on overvoltage protection

    International Nuclear Information System (INIS)

    Glasa, M.; Huettner, L.

    2012-01-01

    This article deals about the influences caused during the active operation process of the surge arrester against the pulse and surge currents. It also refers about a lightning, the characteristic of lightning and about the lightning (surge) currents caused its influence. One parts of the article is focused on a total elimination of surge current energy, and on an ineffective operation, which leads to partially or totally destruction of a protection element. There is a comparison with two basic types of surge arresters (spark gap and varistor based arresters), and theirs re-effectiveness on prescribed level. (Authors)

  14. Surge dynamics on Bering Glacier, Alaska, in 2008–2011

    Directory of Open Access Journals (Sweden)

    M. Braun

    2012-11-01

    Full Text Available A surge cycle of the Bering Glacier system, Alaska, is examined using observations of surface velocity obtained using synthetic aperture radar (SAR offset tracking, and elevation data obtained from the University of Alaska Fairbanks LiDAR altimetry program. After 13 yr of quiescence, the Bering Glacier system began to surge in May 2008 and had two stages of accelerated flow. During the first stage, flow accelerated progressively for at least 10 months and reached peak observed velocities of ~ 7 m d−1. The second stage likely began in 2010. By 2011 velocities exceeded 9 m d−1 or ~ 18 times quiescent velocities. Fast flow continued into July 2011. Surface morphology indicated slowing by fall 2011; however, it is not entirely clear if the surge is yet over. The quiescent phase was characterized by small-scale acceleration events that increased driving stresses up to 70%. When the surge initiated, synchronous acceleration occurred throughout much of the glacier length. Results suggest that downstream propagation of the surge is closely linked to the evolution of the driving stress during the surge, because driving stress appears to be tied to the amount of resistive stress provided by the bed. In contrast, upstream acceleration and upstream surge propagation is not dependent on driving stress evolution.

  15. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  16. Sensitivity of tropical cyclone simulations to microphysics parameterizations in WRF

    International Nuclear Information System (INIS)

    Reshmi Mohan, P.; Srinivas, C.V.; Bhaskaran, R.; Venkatraman, B.; Yesubabu, V.

    2018-01-01

    Tropical cyclones (TC) cause storm surge along coastal areas where these storms cross the coast. As major nuclear facilities are usually installed in coastal region, the surge predictions are highly important for DAE. The critical TC parameters needed in estimating storm surge are intensity (winds, central pressure and radius of maximum winds) and storm tracks. The predictions with numerical models are generally made by representing the clouds and precipitation processes using convective and microphysics parameterization. At high spatial resolutions (1-3Km) microphysics can act as cloud resolving NWP model to explicitly resolve the convective precipitation without using convection schemes. Recent simulation studies using WRF on severe weather phenomena such as thunderstorms and hurricanes indicated large sensitivity of predicted rainfall and hurricane tracks to microphysics due to variation in temperature and pressure gradients which generate winds that determine the storm track. In the present study the sensitivity of tropical cyclone tracks and intensity to different microphysics schemes has been conducted

  17. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  18. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  19. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Directory of Open Access Journals (Sweden)

    B. Rojo-Garibaldi

    2018-04-01

    Full Text Available Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT and the published historical information. The hurricane time series provides a unique historical record on information about ocean–atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  20. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Science.gov (United States)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Adela Monreal-Gómez, María; Sánchez-Santillán, Norma Leticia; Salas-Monreal, David

    2018-04-01

    Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean-atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  1. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  2. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  3. Overview and Design Considerations of Storm Surge Barriers

    NARCIS (Netherlands)

    Mooyaart, L.F.; Jonkman, S.N.

    2017-01-01

    The risk of flooding in coastal zones is expected to increase due to sea level rise and economic development. In larger bays, estuaries, and coastal waterways, storm surge barriers can be constructed to temporarily close off these systems during storm surges to provide coastal flood protection.

  4. Assessing economic impact of storm surge under projected sea level rise scenarios

    Science.gov (United States)

    Del Angel, D. C.; Yoskowitz, D.

    2017-12-01

    Global sea level is expected to rise 0.2-2m by the year 2100. Rising sea level is expected to have a number of impacts such as erosion, saltwater intrusion, and decline in coastal wetlands; all which have direct and indirect socio-economic impact to coastal communities. By 2050, 25% of the world's population will reside within flood-prone areas. These statistics raise a concern for the economic cost that sea level and flooding has on the growing coastal communities. Economic cost of storm surge inundation and rising seas may include loss or damage to public facilities and infrastructure that may become temporarily inaccessible, as well as disruptions to business and services. This goal of this project is to assess economic impacts of storms under four SLR scenarios including low, intermediate-low, intermediate-high, and high (0.2m, 0.5m, 1.2m and 2m, respectively) in the Northern Gulf of Mexico region. To assess flooding impact on communities from storm surge, this project utilizes HAZUS-MH software - a Geographic Information System (GIS)-based modeling tool developed by the Federal Emergency Management Agency - to estimate physical, economic, and social impacts of natural disasters such as floods, earthquakes and hurricanes. The HAZUS database comes integrated with aggregate and site specific inventory which includes: demographic data, general building stock, agricultural statistics, vehicle inventory, essential facilities, transportation systems, utility systems (among other sensitive facilities). User-defined inundation scenarios will serve to identify assets at risk and damage estimates will be generated using the Depth Damage Function included in the HAZUS software. Results will focus on 3 communities in the Gulf and highlight changes in storm flood impact. This approach not only provides a method for economic impact assessment but also begins to create a link between ecosystem services and natural and nature-based features such as wetlands, beaches and dunes

  5. Using Satellite Altimetry to Calibrate the Simulation of Typhoon Seth Storm Surge off Southeast China

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2018-04-01

    Full Text Available Satellite altimeters can capture storm surges generated by typhoons and tropical storms, if the satellite flies over at the right time. In this study, we show TOPEX/Poseidon altimeter-observed storm surge features off Southeast China on 10 October 1994 during Typhoon Seth. We then use a three-dimensional, barotropic, finite-volume community ocean model (FVCOM to simulate storm surges. An innovative aspect is that satellite data are used to calibrate the storm surge model to improve model performance, by adjusting model wind forcing fields (the National Center for Environment Prediction (NCEP reanalysis product in reference to the typhoon best-track data. The calibration reduces the along-track root-mean-square (RMS difference between model and altimetric data from 0.15 to 0.10 m. It also reduces the RMS temporal difference from 0.21 to 0.18 m between the model results and independent tide-gauge data at Xiamen. In particular, the calibrated model produces a peak storm surge of 1.01 m at 6:00 10 October 1994 at Xiamen, agreeing with tide-gauge data; while the peak storm surge with the NCEP forcing is 0.71 m only. We further show that the interaction between storm surges and astronomical tides contributes to the peak storm surge by 34% and that the storm surge propagates southwestward as a coastally-trapped Kelvin wave.

  6. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  7. Hurricane Katrina as a "teachable moment"

    Directory of Open Access Journals (Sweden)

    M. H. Glantz

    2008-04-01

    Full Text Available By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time.

    Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region.

    The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1.

    Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on

  8. Hurricane Katrina as a "teachable moment"

    Science.gov (United States)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  9. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  10. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    2012-09-24

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.  Created: 9/24/2012 by Office of Public Health Preparedness and Response (OPHPR), National Center for Environmental Health (NCEH), and the Agency for Toxic Substances and Disease Registry (ATSDR).   Date Released: 9/24/2012.

  11. Improved PV system reliability results from surge evaluations at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Russell H. Bonn; Sigifredo Gonzalez

    2000-01-01

    Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia

  12. Application of a regional hurricane wind risk forecasting model for wood-frame houses.

    Science.gov (United States)

    Jain, Vineet Kumar; Davidson, Rachel Ann

    2007-02-01

    Hurricane wind risk in a region changes over time due to changes in the number, type, locations, vulnerability, and value of buildings. A model was developed to quantitatively estimate changes over time in hurricane wind risk to wood-frame houses (defined in terms of potential for direct economic loss), and to estimate how different factors, such as building code changes and population growth, contribute to that change. The model, which is implemented in a simulation, produces a probability distribution of direct economic losses for each census tract in the study region at each time step in the specified time horizon. By changing parameter values and rerunning the analysis, the effects of different changes in the built environment on the hurricane risk trends can be estimated and the relative effectiveness of hypothetical mitigation strategies can be evaluated. Using a case study application for wood-frame houses in selected counties in North Carolina from 2000 to 2020, this article demonstrates how the hurricane wind risk forecasting model can be used: (1) to provide insight into the dynamics of regional hurricane wind risk-the total change in risk over time and the relative contribution of different factors to that change, and (2) to support mitigation planning. Insights from the case study include, for example, that the many factors contributing to hurricane wind risk for wood-frame houses interact in a way that is difficult to predict a priori, and that in the case study, the reduction in hurricane losses due to vulnerability changes (e.g., building code changes) is approximately equal to the increase in losses due to building inventory growth. The potential for the model to support risk communication is also discussed.

  13. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    rescuers could find persons trapped in attics and porches. They also delivered food and water to residents stranded along the lower Mississippi River for several days. That work is reported in chapter 3 of this volume. A great number of scientists contributed to this peer-reviewed report designed for a general audience. Because they work for USGS—an unbiased, multidisciplinary science organization that focuses on biology, geography, geology, geospatial information, and water—they are dedicated to the timely, relevant, and impartial study of the landscape and natural resources of the Nation, as well as natural hazards, like hurricanes, that threaten the Nation. To learn more about their work, visit the USGS Web site (www.usgs.gov).

  14. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    Science.gov (United States)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  15. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  16. Worldwide historical hurricane tracks from 1848 through the previous hurricane season

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and...

  17. Storm surge model based on variational data assimilation method

    Directory of Open Access Journals (Sweden)

    Shi-li Huang

    2010-06-01

    Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.

  18. Hurricane Irma's Effects on Dune and Beach Morphology at Matanzas Inlet, Atlantic Coast of North Florida: Impacts and Inhibited Recovery?

    Science.gov (United States)

    Adams, P. N.; Conlin, M. P.; Johnson, H. A.; Paniagua-Arroyave, J. F.; Woo, H. B.; Kelly, B. P.

    2017-12-01

    During energetic coastal storms, surge from low atmospheric pressure, high wave set-up, and increased wave activity contribute to significant morphologic change within the dune and upper beach environments of barrier island systems. Hurricane Irma made landfall on the southwestern portion of the Florida peninsula, as a category 4 storm on Sept 10th, 2017 and tracked northward along the axis of the Florida peninsula for two days before dissipating over the North American continent. Observations along the North Florida Atlantic coast recorded significant wave heights of nearly 7 m and water levels that exceeded predictions by 2 meters on the early morning of Sept. 11th. At Fort Matanzas National Monument, the dune and upper beach adjacent to Matanzas Inlet experienced landward retreat during the storm, diminishing the acreage of dune and scrub habitat for federally-listed endangered and threatened animal species, including the Anastasia beach mouse, gopher tortoises, and several protected shore birds. Real Time Kinematic (RTK) GPS surveys, conducted prior to the passage of the storm (Sept. 8) and immediately after the storm (Sept. 13) document dune scarp retreat >10 m in places and an average retreat of 7.8 m (+/- 5.2 m) of the 2-m beach contour, attributable to the event, within the study region. Although it is typical to see sedimentary recovery at the base of dunes within weeks following an erosive event of this magnitude, our follow up RTK surveys, two weeks (Sept. 26) and five weeks (Oct. 19) after the storm, document continued dune retreat and upper beach lowering. Subsequent local buoy observations during the offshore passage of Hurricanes Jose, Maria (Sept. 17 and 23, respectively) and several early-season Nor'easters recorded wave heights well above normal (2-3 meters) from the northeast. The lack of recovery may reveal a threshold vulnerability of the system, in which the timing of multiple moderate-to-high wave events, in the aftermath of a land falling-hurricane

  19. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  20. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  1. Risk assessment of storm surge disaster based on numerical models and remote sensing

    Science.gov (United States)

    Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu

    2018-06-01

    Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.

  2. Hurricane Harvey Building Damage Assessment Using UAV Data

    Science.gov (United States)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  3. Present dynamics and future prognosis of a slowly surging glacier

    Directory of Open Access Journals (Sweden)

    G. E. Flowers

    2011-03-01

    Full Text Available Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2 valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed

  4. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  5. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    Science.gov (United States)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  6. 30 CFR 56.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... MINES Materials Storage and Handling § 56.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled or...

  7. 30 CFR 57.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... NONMETAL MINES Materials Storage and Handling § 57.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled...

  8. Validation of a probabilistic model for hurricane insurance loss projections in Florida

    International Nuclear Information System (INIS)

    Pinelli, J.-P.; Gurley, K.R.; Subramanian, C.S.; Hamid, S.S.; Pita, G.L.

    2008-01-01

    The Florida Public Hurricane Loss Model is one of the first public models accessible for scrutiny to the scientific community, incorporating state of the art techniques in hurricane and vulnerability modeling. The model was developed for Florida, and is applicable to other hurricane-prone regions where construction practice is similar. The 2004 hurricane season produced substantial losses in Florida, and provided the means to validate and calibrate this model against actual claim data. This paper presents the predicted losses for several insurance portfolios corresponding to hurricanes Andrew, Charley, and Frances. The predictions are validated against the actual claim data. Physical damage predictions for external building components are also compared to observed damage. The analyses show that the predictive capabilities of the model were substantially improved after the calibration against the 2004 data. The methodology also shows that the predictive capabilities of the model could be enhanced if insurance companies report more detailed information about the structures they insure and the types of damage they suffer. This model can be a powerful tool for the study of risk reduction strategies

  9. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    Science.gov (United States)

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  10. Parameter identification of ZnO surge arrester models based on genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bayadi, Abdelhafid [Laboratoire d' Automatique de Setif, Departement d' Electrotechnique, Faculte des Sciences de l' Ingenieur, Universite Ferhat ABBAS de Setif, Route de Bejaia Setif 19000 (Algeria)

    2008-07-15

    The correct and adequate modelling of ZnO surge arresters characteristics is very important for insulation coordination studies and systems reliability. In this context many researchers addressed considerable efforts to the development of surge arresters models to reproduce the dynamic characteristics observed in their behaviour when subjected to fast front impulse currents. The difficulties with these models reside essentially in the calculation and the adjustment of their parameters. This paper proposes a new technique based on genetic algorithm to obtain the best possible series of parameter values of ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the predicted results with the experimental results available in the literature. Using the ATP-EMTP package, an application of the arrester model on network system studies is presented and discussed. (author)

  11. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  12. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  13. "Just-in-Time" Personal Preparedness: Downloads and Usage Patterns of the American Red Cross Hurricane Application During Hurricane Sandy.

    Science.gov (United States)

    Kirsch, Thomas D; Circh, Ryan; Bissell, Richard A; Goldfeder, Matthew

    2016-10-01

    Personal preparedness is a core activity but has been found to be frequently inadequate. Smart phone applications have many uses for the public, including preparedness. In 2012 the American Red Cross began releasing "disaster" apps for family preparedness and recovery. The Hurricane App was widely used during Hurricane Sandy in 2012. Patterns of download of the application were analyzed by using a download tracking tool by the American Red Cross and Google Analytics. Specific variables included date, time, and location of individual downloads; number of page visits and views; and average time spent on pages. As Hurricane Sandy approached in late October, daily downloads peaked at 152,258 on the day of landfall and by mid-November reached 697,585. Total page views began increasing on October 25 with over 4,000,000 page views during landfall compared to 3.7 million the first 3 weeks of October with a 43,980% increase in views of the "Right Before" page and a 76,275% increase in views of the "During" page. The Hurricane App offered a new type of "just-in-time" training that reached tens of thousands of families in areas affected by Hurricane Sandy. The app allowed these families to access real-time information before and after the storm to help them prepare and recover. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  14. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  15. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  16. An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

    Science.gov (United States)

    2012-08-01

    of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane ...An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey, California, and... Hurricane Research Division, Miami, Florida WEN-CHAU LEE National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 23 June 2011, in

  17. A Community-Led Medical Response Effort in the Wake of Hurricane Sandy.

    Science.gov (United States)

    Kraushar, Matthew L; Rosenberg, Rebecca E

    2015-08-01

    On October 29, 2012, Hurricane Sandy made landfall in the neighborhood of Red Hook in Brooklyn, New York. The massive tidal surge generated by the storm submerged the coastal area, home to a population over 11,000 individuals, including the largest public housing development in Brooklyn. The infrastructure devastation was profound: the storm rendered electricity, heat, water, Internet, and phone services inoperative, whereas local ambulatory medical services including clinics, pharmacies, home health agencies, and other resources were damaged beyond functionality. Lacking these services or lines of communication, medically fragile individuals became isolated from the hospital and 911-emergency systems without a preexisting mechanism to identify or treat them. Medically fragile individuals primarily included those with chronic medical conditions dependent on frequent and consistent monitoring and treatments. In response, the Red Hook community established an ad hoc volunteer medical relief effort in the wake of the storm, filling a major gap that continues to exist in disaster medicine for low-income urban environments. Here we describe this effort, including an analysis of the medically vulnerable in this community, and recommend disaster risk reduction strategies and resilience measures for future disaster events.

  18. Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes.

    Science.gov (United States)

    Saporta, Diego; Hurst, David

    2017-01-01

    Objective . To report on changes in sensitivity to mold allergens determined by changes in intradermal skin testing reactivity, after exposure to two severe hurricanes. Methods . A random, retrospective allergy charts review divided into 2 groups of 100 patients each: Group A, patients tested between 2003 and 2010 prior to hurricanes, and Group B, patients tested in 2014 and 2015 following hurricanes. Reactivity to eighteen molds was determined by intradermal skin testing. Test results, age, and respiratory symptoms were recorded. Chi-square test determined reactivity/sensitivity differences between groups. Results . Posthurricane patients had 34.6 times more positive results ( p hurricanes ( p hurricanes ( p hurricanes. This supports climatologists' hypothesis that environmental changes resulting from hurricanes can be a health risk as reflected in increased allergic sensitivities and symptoms and has significant implications for physicians treating patients from affected areas.

  19. Coastal Storm Surge Analysis: Storm Surge Results. Report 5: Intermediate Submission No. 3

    Science.gov (United States)

    2013-11-01

    Vickery, P., D. Wadhera, A. Cox, V. Cardone , J. Hanson, and B. Blanton. 2012. Coastal storm surge analysis: Storm forcing (Intermediate Submission No...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeffrey L. Hanson, Michael F. Forte, Brian Blanton

  20. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  1. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.

    2002-01-01

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  2. How Disasters Affect Local Labor Markets: The Effects of Hurricanes in Florida

    Science.gov (United States)

    Belasen, Ariel R.; Polachek, Solomon W.

    2009-01-01

    This study improves upon the Difference in Difference approach by examining exogenous shocks using a Generalized Difference in Difference (GDD) technique that identifies economic effects of hurricanes. Based on the Quarterly Census of Employment and Wages data, worker earnings in Florida counties hit by a hurricane increase up to 4 percent,…

  3. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  4. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Directory of Open Access Journals (Sweden)

    Yong-liang Zhang

    2010-06-01

    Full Text Available This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  5. Use of outpatient mental health services by homeless veterans after hurricanes.

    Science.gov (United States)

    Brown, Lisa M; Barnett, Scott; Hickling, Edward; Frahm, Kathryn; Campbell, Robert R; Olney, Ronald; Schinka, John A; Casey, Roger

    2013-05-01

    Little is known about the impact of hurricanes on people who are homeless at the time a disaster occurs. Although researchers have extensively studied the psychosocial consequences of disaster produced homelessness on the general population, efforts focused on understanding how homeless people fare have been limited to a few media reports and the gray literature. In the event of a hurricane, homeless veterans may be at increased risk for negative outcomes because of their cumulative vulnerabilities. Health care statistics consistently document that homeless veterans experience higher rates of medical, emotional, substance abuse, legal, and financial problems compared with the general population. This study used the 2004 to 2006 Veterans Health Administration (VHA) Outpatient Medical Dataset to examine the effects of hurricanes on use of outpatient mental health services by homeless veterans. Homeless veterans residing in hurricane-affected counties were significantly more likely to participate in group psychotherapy (32.4% vs. 13.4%, p < .002), but less likely to participate in individual 30-40-min sessions with medical evaluations (3.5% vs. 17.3%, p < .001). The study findings have implications for homeless programs and the provision of VHA mental health services to homeless veterans postdisaster. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Disaster metrics: quantitative benchmarking of hospital surge capacity in trauma-related multiple casualty events.

    Science.gov (United States)

    Bayram, Jamil D; Zuabi, Shawki; Subbarao, Italo

    2011-06-01

    Hospital surge capacity in multiple casualty events (MCE) is the core of hospital medical response, and an integral part of the total medical capacity of the community affected. To date, however, there has been no consensus regarding the definition or quantification of hospital surge capacity. The first objective of this study was to quantitatively benchmark the various components of hospital surge capacity pertaining to the care of critically and moderately injured patients in trauma-related MCE. The second objective was to illustrate the applications of those quantitative parameters in local, regional, national, and international disaster planning; in the distribution of patients to various hospitals by prehospital medical services; and in the decision-making process for ambulance diversion. A 2-step approach was adopted in the methodology of this study. First, an extensive literature search was performed, followed by mathematical modeling. Quantitative studies on hospital surge capacity for trauma injuries were used as the framework for our model. The North Atlantic Treaty Organization triage categories (T1-T4) were used in the modeling process for simplicity purposes. Hospital Acute Care Surge Capacity (HACSC) was defined as the maximum number of critical (T1) and moderate (T2) casualties a hospital can adequately care for per hour, after recruiting all possible additional medical assets. HACSC was modeled to be equal to the number of emergency department beds (#EDB), divided by the emergency department time (EDT); HACSC = #EDB/EDT. In trauma-related MCE, the EDT was quantitatively benchmarked to be 2.5 (hours). Because most of the critical and moderate casualties arrive at hospitals within a 6-hour period requiring admission (by definition), the hospital bed surge capacity must match the HACSC at 6 hours to ensure coordinated care, and it was mathematically benchmarked to be 18% of the staffed hospital bed capacity. Defining and quantitatively benchmarking the

  7. Nurses respond to Hurricane Hugo victims' disaster stress.

    Science.gov (United States)

    Weinrich, S; Hardin, S B; Johnson, M

    1990-06-01

    Hugo, a class IV hurricane, hit South Carolina September 22, 1989, and left behind a wake of terror and destruction. Sixty-one nursing students and five faculty were involved in disaster relief with families devastated by the hurricane. A review of the literature led these authors to propose a formulation of the concept of disaster stress, a synthesis of theories that explains response to disaster as a crisis response, a stress response, or as posttraumatic stress. With the concept of disaster stress serving as a theoretical foundation, the nurses observed, assessed, and intervened with one population of hurricane Hugo victims, noting their immediate psychosocial reactions and coping mechanisms. Victims' reactions to disaster stress included confusion, irritability, lethargy, withdrawal, and crying. The most frequently observed coping strategy of these hurricane Hugo victims was talking about their experiences; other coping tactics involved humor, religion, and altruism.

  8. Optimization of Evacuation Warnings Prior to a Hurricane Disaster

    Directory of Open Access Journals (Sweden)

    Dian Sun

    2017-11-01

    Full Text Available The key purpose of this paper is to demonstrate that optimization of evacuation warnings by time period and impacted zone is crucial for efficient evacuation of an area impacted by a hurricane. We assume that people behave in a manner consistent with the warnings they receive. By optimizing the issuance of hurricane evacuation warnings, one can control the number of evacuees at different time intervals to avoid congestion in the process of evacuation. The warning optimization model is applied to a case study of Hurricane Sandy using the study region of Brooklyn. We first develop a model for shelter assignment and then use this outcome to model hurricane evacuation warning optimization, which prescribes an evacuation plan that maximizes the number of evacuees. A significant technical contribution is the development of an iterative greedy heuristic procedure for the nonlinear formulation, which is shown to be optimal for the case of a single evacuation zone with a single evacuee type case, while it does not guarantee optimality for multiple zones under unusual circumstances. A significant applied contribution is the demonstration of an interface of the evacuation warning method with a public transportation scheme to facilitate evacuation of a car-less population. This heuristic we employ can be readily adapted to the case where response rate is a function of evacuation number in prior periods and other variable factors. This element is also explored in the context of our experiment.

  9. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  10. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  11. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  12. Estimating the human influence on Hurricanes Harvey, Irma and Maria

    Science.gov (United States)

    Wehner, M. F.; Patricola, C. M.; Risser, M. D.

    2017-12-01

    Attribution of the human-induced climate change influence on the physical characteristics of individual extreme weather events has become an advanced science over the past decade. However, it is only recently that such quantification of anthropogenic influences on event magnitudes and probability of occurrence could be applied to very extreme storms such as hurricanes. We present results from two different classes of attribution studies for the impactful Atlantic hurricanes of 2017. The first is an analysis of the record rainfall amounts during Hurricane Harvey in the Houston, Texas area. We analyzed observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of ENSO. We found that human-induced climate change likely increased Hurricane Harvey's total rainfall by at least 19%, and likely increased the chances of the observed rainfall by a factor of at least 3.5. This suggests that changes exceeded Clausius-Clapeyron scaling, motivating attribution studies using dynamical climate models. The second analysis consists of two sets of hindcast simulations of Hurricanes Harvey, Irma, and Maria using the Weather Research and Forecasting model (WRF) at 4.5 km resolution. The first uses realistic boundary and initial conditions and present-day greenhouse gas forcings while the second uses perturbed conditions and pre-industrial greenhouse has forcings to simulate counterfactual storms without anthropogenic influences. These simulations quantify the fraction of Harvey's precipitation attributable to human activities and test the super Clausius-Clapeyron scaling suggested by the observational analysis. We will further quantify the human influence on intensity for Harvey, Irma, and Maria.

  13. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  14. Developing models for patient flow and daily surge capacity research.

    Science.gov (United States)

    Asplin, Brent R; Flottemesch, Thomas J; Gordon, Bradley D

    2006-11-01

    Between 1993 and 2003, visits to U.S. emergency departments (EDs) increased by 26%, to a total of 114 million visits annually. At the same time, the number of U.S. EDs decreased by more than 400, and almost 200,000 inpatient hospital beds were taken out of service. In this context, the adequacy of daily surge capacity within the system is clearly an important issue. However, the research agenda on surge capacity thus far has focused primarily on large-scale disasters, such as pandemic influenza or a serious bioterrorism event. The concept of daily surge capacity and its relationship to the broader research agenda on patient flow is a relatively new area of investigation. In this article, the authors begin by describing the overlap between the research agendas on daily surge capacity and patient flow. Next, they propose two models that have potential applications for both daily surge capacity and hospitalwide patient-flow research. Finally, they identify potential research questions that are based on applications of the proposed research models.

  15. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Science.gov (United States)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  16. Surge of plasma waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Benhassine, Mohammed

    1985-01-01

    The first part of this research thesis addresses the propagation of waves in a plasma. It presents the equation of propagation of an electromagnetic wave in a plasma without magnetic field, and analyses the propagation in an inhomogeneous medium. The second part addresses the wave-particle interaction: interaction between electrons and an electromagnetic wave, between electrons and an electrostatic wave (trapping), and between electrons and a localised electric field. The third chapter presents the analytic theory of oscillations of a cold plasma (macroscopic equations in Lagrangian coordinates, analytic solution before surge). The next chapter discusses physical interpretations before the wave surge, after the wave surge, and about energy exchange (within or outside of resonance). Numerical simulations and their results are then reported and discussed. The sixth chapter addresses the case of an electrostatic wave surge in a hot plasma. It notably addresses the following aspects: equivalence between the description of moments and the Waterbag model, interaction between non linearity and thermal effects, variation of electric field amplitude with temperature. Results of numerical simulations are presented, and the last part addresses experimental predictions for microwaves-plasma interaction and laser-matter interaction [fr

  17. Tide-surge Interaction Intensified by the Taiwan Strait

    Science.gov (United States)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  18. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  19. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  20. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  1. The impact of Hurricane Sandy on the mental health of New York area residents.

    Science.gov (United States)

    Schwartz, Rebecca M; Sison, Cristina; Kerath, Samantha M; Murphy, Lisa; Breil, Trista; Sikavi, Daniel; Taioli, Emanuela

    2015-01-01

    To evaluate the long-term psychological impact of Hurricane Sandy on New York residents. Prospective, cross-sectional study. Community-based study. From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure). Depression, anxiety, and post-traumatic stress disorder (PTSD). Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues. Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.

  2. Performance of Oil Infrastructure during Hurricane Harvey

    Science.gov (United States)

    Bernier, C.; Kameshwar, S.; Padgett, J.

    2017-12-01

    Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.

  3. Structure design of water discharge surge tank of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Fang; Hou Shuqiang

    2015-01-01

    Drainage is an important function of water discharge surge tank in nuclear power plant. There is little wall and beam inside the water discharge surge tank due to the requirement of major work, which is different from the general structure. Taking water discharge surge tank of nuclear power plant for example, concerned problems are expatiated in the structure scheme of water discharge surge tank, and important structural components are analyzed. Structural analysis model is established by ANSYS finite element analysis. A comprehensive and numerical analysis is performed for different combinations of structural model, and the internal force of structure is extracted. Finally, suggestions for design of similar structure are proposed. (authors)

  4. Circular Conditional Autoregressive Modeling of Vector Fields.

    Science.gov (United States)

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2012-02-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.

  5. Machine characteristics, system arrangement, driver and operation effects on surge of dynamic compressor in oil and gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Amin

    2012-12-15

    Working in the surge area will result in an unstable compressor operation, exposing the dynamic compressor (centrifugal compressor or axial compressor) to destructive stress, high vibration and other damaging effects. The destructive power of the surge is enormous, ranging from changes in clearances, which result in a penalty in the compressor efficiency, to destruction of parts leading to bearing, rotor or seal replacements. The effects of compressor characteristics, driver type, compressor accessories, vent valve, check valve, trip delay and operation details on surge events and anti-surge system designs are studied. A case study is also discussed. (orig.)

  6. A Qualitative Case Study of Hurricane Katrina and University Presidential Leadership

    Science.gov (United States)

    McNeely, Stanton Francis, III

    2013-01-01

    Leaders of many institutions of higher education are not equipped to manage a major crisis or disaster, and presidential leadership during a disaster is essential, as university presidents are ultimately accountable for the well-being of their institutions. Hurricane Katrina devastated New Orleans in 2005, flooding 80% of the city for many weeks…

  7. Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy

    Science.gov (United States)

    Warner, John C.; Schwab, William C.; List, Jeffrey; Safak, Ilgar; Liste, Maria; Baldwin, Wayne E.

    2017-01-01

    Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system and observation analysis from a series of geologic surveys and oceanographic instrument deployments focused on a region offshore of Fire Island, NY. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis

  8. Traumatic Loss and Natural Disaster: A Case Study of a School-Based Response to Hurricanes Katrina and Rita

    Science.gov (United States)

    Clettenberg, Stacey; Gentry, Judy; Held, Matthew; Mock, Lou Ann

    2011-01-01

    This article tracks the trajectory and impact of Hurricanes Katrina and Rita on the communities of Houston/Harris County, Texas, USA, the schools, children, and families; along with the community partnerships that addressed the trauma and upheaval. Following the influx of individuals and families who were displaced by Hurricanes Katrina and Rita…

  9. The contribution of pre- and postdisaster social support to short- and long-term mental health after Hurricanes Katrina: A longitudinal study of low-income survivors.

    Science.gov (United States)

    Chan, Christian S; Lowe, Sarah R; Weber, Elyssa; Rhodes, Jean E

    2015-08-01

    A previous study of Hurricane Katrina survivors found that higher levels of predisaster social support were associated with lower psychological distress one year after the storm, and that this pathway was mediated by lower exposure to hurricane-related stressors. As a follow-up, we examined the impact of pre- and postdisaster social support on longer-term of mental health-both psychological distress and posttraumatic stress. In this three-wave longitudinal study, 492 residents in the region affected by Hurricane Katrina reported levels of perceived social support and symptoms of psychological distress prior to the storm (Wave 1). Subsequently, one year after Hurricane Katrina (Wave 2), they reported levels of exposure, perceived social support, and symptoms of psychological distress and posttraumatic stress. The latter three variables were assessed again four years after the hurricane (Wave 3). Results of mediation analysis indicated that levels of exposure to hurricane-related stressors mediated the relationship between Wave 1 perceived social support and Wave 3 psychological distress as well as postdisaster posttraumatic stress. Results of regression analyses indicated that, controlling for Wave 1 psychological distress and disaster exposure, Wave 2 perceived social support was associated with Wave 2 and Wave 3 psychological distress but not posttraumatic stress. Our results confirmed the social causation processes of social support and suggest that posttraumatic stress might not stem directly from the lack of social support. Rather, preexisting deficits in social resources might indirectly affect longer-term posttraumatic stress and general psychological distress by increasing risk for disaster-related stressors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  11. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  12. Comparison of two recent storm surge events based on results of field surveys

    Science.gov (United States)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  13. Association of morning blood pressure surge with carotid intima-media thickness and cardiac dysfunction in patients with cardiac syndrome-X.

    Science.gov (United States)

    Mahfouz, Ragab A; Goda, Mohammad; Galal, Islam; Ghareb, Mohamed S

    2018-05-23

    Background & hypothesis: We hypothesized that exaggerated morning blood pressure surge, may contribute in cardiac dysfunction and arterial stiffness in patients with cardiac syndrome X. Thus we investigated the impact of morning blood pressure surge on cardiac function and carotid intima-media thickness in subjects with cardiac syndrome X. We studied patients with cardiac syndrome X using ambulatory blood pressure monitoring and investigated the association of morning blood pressure surge with carotid intima thickness, left atrial volume index and left ventricular filling (E/e'). Seventy patients with cardiac syndrome X were enrolled for the study and compared with 70 age and sex matched controls. Patients with cardiac syndrome X were stratified based on the systolic morning blood pressure surge value of control subjects to patients with exaggerated blood pressure surge (n = 42) and those with normal morning blood pressure surge (n = 28). Basal heart rate (p blood pressure surge group than those with morning blood pressure surge group. Morning blood pressure surge was significantly correlated with carotid intima-media thickness, high sensitive C-reactive protein, left atrial volume index and E/e' ratio in patients with cardiac syndrome X. In multivariate analysis, exaggerated morning blood pressure surge was the only independent predictor of increased carotid intima-media thickness (OR = 2.379; p blood pressure surge is an independent predictor for arterial stiffness and diastolic dysfunction in patients with cardiac syndrome X.

  14. Use of historical information in extreme storm surges frequency analysis

    Science.gov (United States)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    use of historical information (to the Brest tide gauge located in the French Atlantic coast). In addition, the present work contributes to addressing the problem of the presence of outliers in data sets. Historical data are generally imprecise, and their inaccuracy should be properly accounted for in the analysis. However, as several authors believe, even with substantial uncertainty in the data, the use of historical information is a viable mean to improve estimates of rare events related to extreme environmental conditions. The preliminary results of this study suggest that the use of historical information increases the representativity of an outlier in the systematic data. It is also shown that the use of historical information, specifically the perception sea water level, can be considered as a reliable solution for the optimal planning and design of facilities to withstand extreme environmental conditions, which will occur during its lifetime, with an appropriate optimum of risk level. Findings are of practical relevance for applications in storm surge risk analysis and flood management.

  15. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Science.gov (United States)

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  16. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    Storm surges are a major concern for many coastal communities, and rising levels of surges is a key concern in relation to climate change. The sea level of a statistical 100-year or 1000-year storm surge event and similar statistical measures are used for spatial planning and emergency preparedness...

  17. Examining the Aftereffects of Hurricane Katrina in New Orleans: A Qualitative Study of Faculty and Staff Perceptions

    Directory of Open Access Journals (Sweden)

    Joy J. Burnham

    2012-01-01

    Full Text Available Researchers have reported how Hurricane Katrina has affected teachers who work with Kindergarten to Grade 12 (K-12, yet little is known about how the natural disaster has affected other important K-12 faculty and staff (e.g., coaches, librarians, school counselors, and cafeteria workers. Missing from the literature is the impact that this natural disaster has had on these formal (school counselors and informal (coaches, librarians helpers of K-12 students. Using a focus group methodology, the authors examined the aftereffects of Hurricane Katrina on 12 school employees in New Orleans, Louisiana, 18 months after the hurricane. Informed by qualitative content analysis, three emergent themes were identified: emotion-focused aftereffects, positive coping, and worry and fear. The implications for future research and promoting hope in mental health counseling are discussed.

  18. Examining the Aftereffects of Hurricane Katrina in New Orleans: A Qualitative Study of Faculty and Staff Perceptions

    Science.gov (United States)

    Burnham, Joy J.; Hooper, Lisa M.

    2012-01-01

    Researchers have reported how Hurricane Katrina has affected teachers who work with Kindergarten to Grade 12 (K-12), yet little is known about how the natural disaster has affected other important K-12 faculty and staff (e.g., coaches, librarians, school counselors, and cafeteria workers). Missing from the literature is the impact that this natural disaster has had on these formal (school counselors) and informal (coaches, librarians) helpers of K-12 students. Using a focus group methodology, the authors examined the aftereffects of Hurricane Katrina on 12 school employees in New Orleans, Louisiana, 18 months after the hurricane. Informed by qualitative content analysis, three emergent themes were identified: emotion-focused aftereffects, positive coping, and worry and fear. The implications for future research and promoting hope in mental health counseling are discussed. PMID:22629217

  19. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  20. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  1. Quantifying the hurricane catastrophe risk to offshore wind power.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  2. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  3. 33 CFR 203.15 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... of hurricanes, tsunamis, and coastal storms. These effects are primarily to protect against wave action, storm surge, wind, and the complicating factors of extraordinary high tides. HSPP's include..., after the structure has been damaged by a flood, hurricane, or coastal storm, to the level of protection...

  4. Divergent responses of leaf herbivory to simulated hurricane effects in a rainforest understory

    Science.gov (United States)

    Chelse Prather

    2014-01-01

    Hurricanes are major disturbances in many forests, but studies showing effects of natural hurricanes on herbivory rates have yielded mixed results. Forest managers could benefit from a better understanding of the effects of disturbances on herbivory to manage for particular recovery or restoration goals after anthropogenic or natural disturbances, such as logging and...

  5. A Pilot Study of the Effects of Post-Hurricane Katrina Floodwater Pumping on the Chemistry and Toxicity of Violet Marsh Sediments

    National Research Council Canada - National Science Library

    Suedel, Burton C; Steevens, Jeffery A; Splichal, David E

    2006-01-01

    The Interagency Performance Evaluation Task Force (IPET) is investigating the environmental impacts of the future of the hurricane protection system around New Orleans, Louisiana, during Hurricane Katrina...

  6. Structural evaluation method study and procedure development for pressurizer surge line subjected to thermal stratification phenomenon

    International Nuclear Information System (INIS)

    Zhang Yixiong; Yu Xiaofei; Ai Honglei

    2014-01-01

    Thermal stratification phenomenon of pressurizer surge line can lead potential threaten to plant safety. Base on the mechanism of thermal stratification occurrence, Fr number is used to judge whether the stratification occurs or not. Also the method of calculating heat transfer coefficient is investigated. Theoretically the 3-dimension thermal stress induced by thermal stratification is decoupled to 1-dimension global stress and 2-dimension local stress, and the complex 3-dimension problem is simplified into a combination of 1-dimension and 2-dimension to compute the stress. Comply with criterion RCC-M, the complete structure integrity evaluation is accomplished after combining the stress produced by thermal stratification and the stresses produced by the other loadings. In order to match the above combined analysis method, Code SYSTUS and ROCOCO are developed. By means of aforesaid evaluation method and corresponding analysis program, surge line thermal stratification of Qinshan Phase II Extension project is investigated in this paper. And the results show that structural integrity of the pressurizer surge line affected by thermal stratification still satisfies criterion RCC-M. (authors)

  7. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  8. Assessing the present and future probability of Hurricane Harvey’s rainfall

    OpenAIRE

    Emanuel, Kerry

    2017-01-01

    Significance Natural disasters such as the recent Hurricanes Harvey, Irma, and Maria highlight the need for quantitative estimates of the risk of such disasters. Statistically based risk assessment suffers from short records of often poor quality, and in the case of meteorological hazards, from the fact that the underlying climate is changing. This study shows how a recently developed physics-based risk assessment method can be applied to assessing the probabilities of extreme hurricane rainf...

  9. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    Science.gov (United States)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  10. Developing an early warning system for storm surge inundation in the Philippines

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  11. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  12. Variation in RGS2 is associated with suicidal ideation in an epidemiological study of adults exposed to the 2004 Florida hurricanes.

    Science.gov (United States)

    Amstadter, Ananda B; Koenen, Karestan C; Ruggiero, Kenneth J; Acierno, Ron; Galea, Sandro; Kilpatrick, Dean G; Gelernter, Joel

    2009-01-01

    This study examined whether rs4606, a single nucleotide polymorphism (SNP) in the translated region at the 3' end of RGS2, was related to suicidal ideation in an epidemiologic sample of adults living in areas affected by the 2004 Florida hurricanes. An epidemiologic sample of residents of Florida was recruited via random digit-dial procedures after the 2004 Florida hurricanes; participants were interviewed about suicidal ideation, hurricane exposure, and social support. Participants who returned buccal DNA samples via mail (n = 607) were included here. Rs4606 in RGS2 was associated with increased symptoms of current suicidal ideation (p < 0.01). Each "C" allele was associated with 5.59 times increased risk of having current ideation. No gene-by-environment interactions were found, perhaps due to low power. RGS2 rs4606 is related to risk of current suicidal ideation in stressor-exposed adults.

  13. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress

    Science.gov (United States)

    Brown, Jennifer M.; Wolf, Judith

    2009-05-01

    We revisit the surge of November 1977, a storm event which caused damage on the Sefton coast in NW England. A hindcast has been made with a coupled surge-tide-wave model, to investigate whether a wave-dependent surface drag is necessary for accurate surge prediction, and also if this can be represented by an optimised Charnock parameter. The Proudman Oceanographic Laboratory Coastal Modelling System-Wave Model (POLCOMS-WAM) has been used to model combined tides, surges, waves and wave-current interaction in the Irish Sea on a 1.85 km grid. This period has been previously thoroughly studied, e.g. Jones and Davies [Jones, J.E., Davies, A.M., 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research 18(2), 201-251] and we build upon this previous work to validate the POLCOMS-WAM model to test the accuracy of surge elevation predictions in the study area. A one-way nested approach has been set up from larger scale models to the Irish Sea model. It was demonstrated that (as expected) swell from the North Atlantic does not have a significant impact in the eastern Irish Sea. To capture the external surge generated outside of the Irish Sea a (1/9° by 1/6°) model extending beyond the continental shelf edge was run using the POLCOMS model for tide and surge. The model results were compared with tide gauge observations around the eastern Irish Sea. The model was tested with different wind-stress formulations including Smith and Banke [Smith, S.D., Banke, E.G., 1975. Variation of the surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorology Society, 101(429), 665-673] and Charnock [Charnock, H., 1955. Wind-stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640]. In order to get a single parameterisation that works with wave-coupling, the wave-derived surface roughness length has been imposed in the surge model

  14. Maternal exposure to hurricane destruction and fetal mortality.

    Science.gov (United States)

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Elevation Change, Mass Balance, Dynamics, and Surging of Langjökull, Iceland from 1997 to 2007

    OpenAIRE

    Pope, Allen; Willis, Ian Craig; Pálsson, Finnur; Arnold, Neil Stuart; Rees, William Gareth; Björnsson, Helgi; Grey, Lauren

    2016-01-01

    Glaciers and ice caps around the world are changing quickly, with surge-type behaviour superimposed upon climatic forcing. Here, we study Iceland’s second largest ice cap, Langjökull, which has both surge- and non-surge-type outlets. By differencing elevation change with surface mass balance, we estimate the contribution of ice dynamics to elevation change. We use DEMs, in situ stake measurements, regional reanalyses, and a mass balance model to calculate the vertical ice velocity. Thus,...

  16. Studying and Improving Human Response to Natural Hazards: Lessons from the Virtual Hurricane Lab

    Science.gov (United States)

    Meyer, R.; Broad, K.; Orlove, B. S.

    2010-12-01

    One of the most critical challenges facing communities in areas prone to natural hazards is how to best encourage residents to invest in individual and collective actions that would reduce the damaging impact of low-probability, high-consequence, environmental events. Unfortunately, what makes this goal difficult to achieve is that the relative rarity natural hazards implies that many who face the risk of natural hazards have no previous experience to draw on when making preparation decisions, or have prior experience that provides misleading guidance on how best to prepare. For example, individuals who have experienced strings of minor earthquakes or near-misses from tropical cyclones may become overly complacent about the risks that extreme events actually pose. In this presentation we report the preliminary findings of a program of work that explores the use of realistic multi-media hazard simulations designed for two purposes: 1) to serve as a basic research tool for studying of how individuals make decisions to prepare for rare natural hazards in laboratory settings; and 2) to serve as an educational tool for giving people in hazard-prone areas virtual experience in hazard preparation. We demonstrate a prototype simulation in which participants experience the approach of a virtual hurricane, where they have the opportunity to invest in different kinds of action to protect their home from damage. As the hurricane approaches participants have access to an “information dashboard” in which they can gather information about the storm threat from a variety of natural sources, including mock television weather broadcasts, web sites, and conversations with neighbors. In response to this information they then have the opportunity to invest in different levels of protective actions. Some versions of the simulation are designed as games, where participants are rewarded based on their ability to make the optimal trade-off between under and over-preparing for the

  17. Community health facility preparedness for a cholera surge in Haiti.

    Science.gov (United States)

    Mobula, Linda Meta; Jacquet, Gabrielle A; Weinhauer, Kristin; Alcidas, Gladys; Thomas, Hans-Muller; Burnham, Gilbert

    2013-01-01

    With increasing population displacement and worsening water insecurity after the 2010 earthquake, Haiti experienced a large cholera outbreak. Our goal was to evaluate the strengths and weaknesses of seven community health facilities' ability to respond to a surge in cholera cases. Since 2010, Catholic Relief Services (CRS) with a number of public and private donors has been working with seven health facilities in an effort to reduce morbidity and mortality from cholera infection. In November 2012, CRS through the Centers for Disease Control and Prevention (CDC)'s support, asked the Johns Hopkins Center for Refugee and Disaster Response to conduct a cholera surge simulation tabletop exercise at these health facilities to improve each facility's response in the event of a cholera surge. Using simulation development guidelines from the Pan American Health Organization and others, a simulation scenario script was produced that included situations of differing severity, supply chain, as well as a surge of patients. A total of 119 hospital staff from seven sites participated in the simulation exercise including community health workers, clinicians, managers, pharmacists, cleaners, and security guards. Clinics that had challenges during the simulated clinical care of patients were those that did not appropriately treat all cholera patients according to protocol, particularly those that were vulnerable, those that would need additional staff to properly treat patients during a surge of cholera, and those that required a better inventory of supplies. Simulation-based activities have the potential to identify healthcare delivery system vulnerabilities that are amenable to intervention prior to a cholera surge.

  18. Studies of Bagley Icefield during surge and Black Rapids Glacier, Alaska, using spaceborne SAR interferometry

    Science.gov (United States)

    Fatland, Dennis Robert

    1998-12-01

    This thesis presents studies of two temperate valley glaciers---Bering Glacier in the Chugach-St.Elias Mountains, South Central Alaska, and Black Rapids Glacier in the Alaska Range, Interior Alaska---using differential spaceborne radar interferometry. The first study was centered on the 1993--95 surge of Bering Glacier and the resultant ice dynamics on its accumulation area, the Bagley Icefield. The second study site was chosen for purposes of comparison of the interferometry results with conventional field measurements, particularly camera survey data and airborne laser altimetry. A comprehensive suite of software was written to interferometrically process synthetic aperture radar (SAR) data in order to derive estimates of surface elevation and surface velocity on these subject glaciers. In addition to these results, the data revealed unexpected but fairly common concentric rings called 'phase bull's-eyes', image features typically 0.5 to 4 km in diameter located over the central part of various glaciers. These bull's-eyes led to a hypothetical model in which they were interpreted to indicate transitory instances of high subglacial water pressure that locally lift the glacier from its bed by several centimeters. This model is associated with previous findings about the nature of glacier bed hydrology and glacier surging. In addition to the dynamical analysis presented herein, this work is submitted as a contribution to the ongoing development of spaceborne radar interferometry as a glaciological tool.

  19. Teacher Guidelines for Helping Students after a Hurricane

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  20. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  1. Disturbance effects of hurricane Hugo on a pristine coastal landscape: North Inlet, South Carolina, USA

    Science.gov (United States)

    Gardner, L. R.; Michener, W. K.; Williams, T. M.; Blood, E. R.; Kjerve, B.; Smock, L. A.; Lipscomb, D. J.; Gresham, C.

    Despite its intensity and landfall at high tide, Hurricane Hugo (22 Sept. 1989) had only a modest impact on the geomorphology of the undeveloped coastal landscape at North Inlet, South Carolina. Pre- and post-Hugo aerial photographs (April 1987 and October 1989) showed no change in the salt-marsh creek network, nor could changes be seen in the size or shape of sand bars within the creeks. Several new, small washover fans formed on the adjacent barrier islands. These lobate fans extend 50 to 100 m from the dune line into the back barrier area and are deposited on older but recently formed fans in areas where the islands are thin and devoid of large shrubs and trees. Hugo's failure to have a more dramatic geomorphic effect was probably related to the rapid approach of the storm along a path perpendicular to the coast. This allowed minimal time for the surge to build and for wave attack to modify the shoreface. In contrast, the nearby coastal forest experienced extensive wind damage as well as tree mortality due to soil salinization by the surge. Wind damage was a function of tree species, diameter and soil type. The most severe damage occurred in mixed bottomland hardwood sites on Rutledge (sandy, silicious, thermic Typic Humaquepts) soils. Salt-induced foliage discoloration and defoliation became fully evident in the surge-inundated area by January 1990. Above-normal salt concentrations were found in shallow groundwater samples from sites up to the 3.0-m contour (MSL). Salt concentrations generally decreased inland from the forest-marsh boundary and with the passage of time. Trees standing along the forest-marsh boundary and in swales suffered the most severe salt-induced mortality. As of June 1991, new understory vegetation and pine seedlings appeared to be flourishing in the salt-affected area. Salinization also mobilized ammonium from soil storage as a result of ion exchange with seawater cations and disruption of nitrogen cycling processes. There was a virtual

  2. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  3. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  4. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Energy Technology Data Exchange (ETDEWEB)

    Makarieva, A.M., E-mail: ammakarieva@gmail.co [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Gorshkov, V.G. [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    2011-02-14

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  5. Extreme Hurricane-Generated Waves in Gulf of Mexico

    National Research Council Canada - National Science Library

    Alberto, Carlos; Fernandes, Santos

    2005-01-01

    .... Although WaveWatchIII (WW3) is used by many operational forecasting centers around the world, there is a lack of field studies to evaluate its accuracy in regional applications and under extreme conditions, such as Hurricanes...

  6. A numerical storm surge forecast model with Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Yu Fujiang; Zhang Zhanhai; Lin Yihua

    2001-01-01

    Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.

  7. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  8. Frequent Disasters in Mexico: hurricanes Pauline and Manuel in Acapulco, Guerrero

    Directory of Open Access Journals (Sweden)

    Juan Manuel Rodríguez Esteves

    2017-06-01

    Full Text Available Hurricanes and other tropical storms are natural phenomena that attract the interest of people all over the world, especially when they affect coastal communities. Each year, especially during the hurricane season, it is common to read or see in the different media damage caused by tropical storms in several countries, especially in Latin America and Asia. In Mexico total economic losses associated with natural phenomena has been increasing. During the year 2000 were allocated 230 million US dollars for the reconstruction of the infrastructure affected by hydrometeorological phenomena, while in 2013 damage amounted to $ 4,476 million, peaking during 2010 were recorded when 7,208 million dollars in losses. On the other hand, the total of damage caused by natural phenomena, 92 % were associated with hydrometeorological phenomena, which include hurricanes and other phenomena (SEGOB, 2014. The aim of this paper is to analyze the impacts caused by disasters associated with the influence of hurricanes from a comparative perspective between two phenomena in particular, hurricane Pauline in 1997 and Manuel storm in 2013 events hydrometeorological which affected the Mexican state of Guerrero, but especially to the port of Acapulco. one of the main conclusions of this study refers to that no matter only the intensity of the natural phenomenon to generate damage on society, but the total of damages also refers to the contexts of vulnerability generated by a society with the course of the years.

  9. Hospitals Capability in Response to Disasters Considering Surge Capacity Approach

    Directory of Open Access Journals (Sweden)

    Gholamreza Khademipour

    2016-01-01

    Full Text Available Background: The man-made and natural disasters have adverse effects with sound, apparent, and unknown consequences. Among various components of disaster management in health sector, the most important role is performed by health-treatment systems, especially hospitals. Therefore, the present study aimed to evaluate the surge capacity of hospitals of Kerman Province in disaster in 2015. Materials and Methods: This is a quantitative study, conducted on private, military, and medical sciences hospitals of Kerman Province. The sampling method was total count and data collection for the research was done by questionnaire. The first section of the questionnaire included demographic information of the studied hospitals and second part examined the hospital capacity in response to disasters in 4 fields of equipment, physical space, human resources, and applied programs. The extracted data were analyzed by descriptive statistics. Results: The mean capability of implementing the surge capacity programs by hospitals of Kerman Province in disasters and in 4 fields of equipment, physical space, human resources, and applied programs was evaluated as 7.33% (weak. The surge capacity capability of state hospitals in disasters was computed as 8% and compared to private hospitals (6.07% had a more suitable condition. Conclusion: Based on the results of study and significance of preparedness of hospitals in response to disasters, it is proposed that managers of studied hospitals take measures to promote the hospital response capacity to disasters based on 4 components of increasing hospital capacity.

  10. Special needs hurricane shelters and the ageing population: development of a methodology and a case study application.

    Science.gov (United States)

    Horner, Mark W; Ozguven, Eren Erman; Marcelin, Jean Michael; Kocatepe, Ayberk

    2018-01-01

    Recent experience of hurricanes, particularly in the southeast United States, has heightened awareness of the multifaceted nature of and the challenges to effective disaster relief planning. One key element of this planning is providing adequate shelter at secure locations for people who evacuate. Some of these individuals will have 'special needs', yet there is little research on the relationship with shelter space. This study designed a geographic information systems-based network optimisation methodology for the siting of special needs hurricane relief shelters, with a focus on the transportation component. It sought to find new locations for shelters that maximise accessibility by vulnerable populations, given capacity constraints, concentrating on the ageing population. The framework was implemented in a medium-sized metropolitan statistical area in the state of Florida where data suggest a possible deficit in special needs shelter space. The study analysed options for increasing special needs shelter capacity, while considering potential uncertainties in transportation network availability. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  11. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    Science.gov (United States)

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Hospital-Based Coalition to Improve Regional Surge Capacity

    Directory of Open Access Journals (Sweden)

    James M. Learning

    2012-12-01

    Full Text Available Introduction: Surge capacity for optimization of access to hospital beds is a limiting factor in response to catastrophic events. Medical facilities, communication tools, manpower, and resource reserves exist to respond to these events. However, these factors may not be optimally functioning to generate an effective and efficient surge response. The objective was to improve the function of these factors.Methods: Regional healthcare facilities and supporting local emergency response agencies developed a coalition (the Healthcare Facilities Partnership of South Central Pennsylvania; HCFP¬SCPA to increase regional surge capacity and emergency preparedness for healthcare facilities. The coalition focused on 6 objectives: (1 increase awareness of capabilities and assets, (2 develop and pilot test advanced planning and exercising of plans in the region, (3 augment written medical mutual aid agreements, (4 develop and strengthen partnership relationships, (5 ensure National Incident Management System compliance, and (6 develop and test a plan for effective utilization of volunteer healthcare professionals.Results: In comparison to baseline measurements, the coalition improved existing areas covered under all 6 objectives documented during a 24-month evaluation period. Enhanced communications between the hospital coalition, and real-time exercises, were used to provide evidence of improved preparedness for putative mass casualty incidents.Conclusion: The HCFP-SCPA successfully increased preparedness and surge capacity through a partnership of regional healthcare facilities and emergency response agencies.

  13. Aging assessment of surge protective devices in nuclear power plants

    International Nuclear Information System (INIS)

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters

  14. Brief communication: The Khurdopin glacier surge revisited - extreme flow velocities and formation of a dammed lake in 2017

    Science.gov (United States)

    Steiner, Jakob F.; Kraaijenbrink, Philip D. A.; Jiduc, Sergiu G.; Immerzeel, Walter W.

    2018-01-01

    Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually led to a rapid surge in May 2017 peaking with velocities above 5000 m a-1, which were among the fastest rates globally for a mountain glacier. Our data reveal that velocities on the lower tongue increase steadily during a 4-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at ca. 20 years. We show the potential of a combination of repeat Planet and ASTER imagery to (a) capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b) observe surface changes that indicate potential drivers of a surge and (c) monitor hazards associated with a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in the case of a sudden breach.

  15. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    International Nuclear Information System (INIS)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok

    2016-01-01

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  16. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok [Chungnam National Univ., Daejeon (Korea, Republic of)

    2016-05-15

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  17. Racial Differences in Posttraumatic Stress Disorder Vulnerability Following Hurricane Katrina Among a Sample of Adult Cigarette Smokers from New Orleans.

    Science.gov (United States)

    Alexander, Adam C; Ali, Jeanelle; McDevitt-Murphy, Meghan E; Forde, David R; Stockton, Michelle; Read, Mary; Ward, Kenneth D

    2017-02-01

    Although blacks are more likely than whites to experience posttraumatic stress disorder (PTSD) after a natural disaster, the reasons for this disparity are unclear. This study explores whether race is associated with PTSD after adjusting for differences in preexisting vulnerabilities, exposure to stressors, and loss of social support due to Hurricane Katrina using a representative sample of 279 black and white adult current and past smokers who were present when Hurricane Katrina struck, and identified it as the most traumatic event in their lifetime. Multiple logistic regression models evaluated whether differential vulnerability (pre-hurricane physical and mental health functioning, and education level), differential exposure to hurricane-related stressors, and loss of social support deterioration reduced the association of race with PTSD. Blacks were more likely than whites to screen positive for PTSD (49 vs. 39 %, respectively, p = 0.030). Although blacks reported greater pre-hurricane vulnerability (worse mental health functioning and lower educational attainment) and hurricane-related stressor exposure and had less social support after the hurricane, only pre-hurricane mental health functioning attenuated the association of race with screening positive for PTSD. Thus, racial differences in pre-hurricane functioning, particularly poorer mental health, may partially explain racial disparities in PTSD after natural disasters, such as Hurricane Katrina. Future studies should examine these associations prospectively using representative cohorts of black and whites and include measures of residential segregation and discrimination, which may further our understanding of racial disparities in PTSD after a natural disaster.

  18. Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region

    International Nuclear Information System (INIS)

    Han, S.-R.; Guikema, Seth D.; Quiring, Steven M.; Lee, Kyung-Ho; Rosowsky, David; Davidson, Rachel A.

    2009-01-01

    Hurricanes have caused severe damage to the electric power system throughout the Gulf coast region of the US, and electric power is critical to post-hurricane disaster response as well as to long-term recovery for impacted areas. Managing power outage risk and preparing for post-storm recovery efforts requires accurate methods for estimating the number and location of power outages. This paper builds on past work on statistical power outage estimation models to develop, test, and demonstrate a statistical power outage risk estimation model for the Gulf Coast region of the US. Previous work used binary hurricane-indicator variables representing particular hurricanes in order to achieve a good fit to the past data. To use these models for predicting power outages during future hurricanes, one must implicitly assume that an approaching hurricane is similar to the average of the past hurricanes. The model developed in this paper replaces these indicator variables with physically measurable variables, enabling future predictions to be based on only well-understood characteristics of hurricanes. The models were developed using data about power outages during nine hurricanes in three states served by a large, investor-owned utility company in the Gulf Coast region

  19. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Science.gov (United States)

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  20. Evaluation of surge transferred overvoltages in distribution transformers

    NARCIS (Netherlands)

    Popov, M.; Sluis, van der L.; Smeets, R.P.P.

    2008-01-01

    The paper presents an analysis of very fast-transient overvoltages that occur because of the capacitive surge transfer from the high-voltage (HV) transformer winding to the low-voltage (LV) transformer winding. The study is done on a 6.6 kV single-phase test transformer. By applying a pulse with a

  1. Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data

    Science.gov (United States)

    Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.

    2017-12-01

    The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane

  2. Using satellite altimetry and tide gauges for storm surge warning

    DEFF Research Database (Denmark)

    Andersen, O. B.; Cheng, Yongcun; Deng, X.

    2014-01-01

    of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have...

  3. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  4. Psychological distress of adolescents exposed to Hurricane Hugo.

    Science.gov (United States)

    Hardin, S B; Weinrich, M; Weinrich, S; Hardin, T L; Garrison, C

    1994-07-01

    To ascertain the effects of a natural disaster on adolescents, 1482 South Carolina high school students who were exposed to Hurricane Hugo were surveyed 1 year after the disaster. Subjects completed a self-administered questionnaire measuring Hugo exposure, nonviolent and violent life events, social support, self-efficacy, and psychological distress. Results showed that the students reported minimal exposure to the hurricane and psychological distress variables approximated national norms. As exposure increased, adolescents reported increased symptoms of psychological distress; i.e., anger, depression, anxiety, and global mental distress. Females and white students experienced higher levels of distress. In most cases, other stressful life events were at least as strong a predictor of psychological distress as was exposure to the hurricane. Self-efficacy and social support were protective.

  5. Assessment of Risk of Cholera in Haiti following Hurricane Matthew.

    Science.gov (United States)

    Khan, Rakib; Anwar, Rifat; Akanda, Shafqat; McDonald, Michael D; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita

    2017-09-01

    Damage to the inferior and fragile water and sanitation infrastructure of Haiti after Hurricane Matthew has created an urgent public health emergency in terms of likelihood of cholera occurring in the human population. Using satellite-derived data on precipitation, gridded air temperature, and hurricane path and with information on water and sanitation (WASH) infrastructure, we tracked changing environmental conditions conducive for growth of pathogenic vibrios. Based on these data, we predicted and validated the likelihood of cholera cases occurring past hurricane. The risk of cholera in the southwestern part of Haiti remained relatively high since November 2016 to the present. Findings of this study provide a contemporary process for monitoring ground conditions that can guide public health intervention to control cholera in human population by providing access to vaccines, safe WASH facilities. Assuming current social and behavioral patterns remain constant, it is recommended that WASH infrastructure should be improved and considered a priority especially before 2017 rainy season.

  6. Risk Perceptions on Hurricanes: Evidence from the U.S. Stock Market.

    Science.gov (United States)

    Feria-Domínguez, José Manuel; Paneque, Pilar; Gil-Hurtado, María

    2017-06-05

    This article examines the market reaction of the main Property and Casualty (P & C) insurance companies listed in the New York Stock Exchange (NYSE) to seven most recent hurricanes that hit the East Coast of the United States from 2005 to 2012. For this purpose, we run a standard short horizon event study in order to test the existence of abnormal returns around the landfalls. P & C companies are one of the most affected sectors by such events because of the huge losses to rebuild, help and compensate the inhabitants of the affected areas. From the financial investors' perception, this kind of events implies severe losses, which could influence the expected returns. Our research highlights the existence of significant cumulative abnormal returns around the landfall event window in most of the hurricanes analyzed, except for the Katrina and Sandy Hurricanes.

  7. Hurricane modification and adaptation in Miami-Dade County, Florida.

    Science.gov (United States)

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  8. Hurricane Impacts on Ecological Services and Economic Values of Coastal Urban Forest: A Case Study of Pensacola, Florida

    Science.gov (United States)

    As urbanized areas continue to grow and green spaces dwindle, the importance of urban forests increases for both ecologically derived health benefits and for their potential to mitigate climate change. This study examined pre- and post- hurricane conditions of Pensacola's urban f...

  9. Hurricane Val in American Samoa: A case study

    International Nuclear Information System (INIS)

    Weaver, D.A.; Henderson, H.

    1993-01-01

    On Monday, December 9, 1991, Hurricane Val hit American Samoa. Along with the many homes and buildings that had been destroyed, nine abandoned fishing vessels were torn from their mooring and washed up onto the reef in Pago Pago Harbor. Several hundred gallons of diesel fuel were released into the water; about 12,000 gallons remained onboard the vessels. The efforts of the US Coast Guard (USCG), Federal Emergency Management Agency (FEMA), Samoa Environmental Protection Agency (SEPA), and local contractors helped mitigate the damage. The USCG Pacific Strike Team (PST) was tasked with monitoring, removing, and disposing of the petroleum products that remained onboard the vessels. The strike team also investigated reports of chemical spills throughout the island

  10. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  11. Litterfall Production Prior to and during Hurricanes Irma and Maria in Four Puerto Rican Forests

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2018-06-01

    Full Text Available Hurricanes Irma and Maria struck Puerto Rico on the 6th and 20th of September 2017, respectively. These two powerful Cat 5 hurricanes severely defoliated forest canopy and deposited massive amounts of litterfall in the forests across the island. We established a 1-ha research plot in each of four forests (Guánica State Forest, Río Abajo State Forest, Guayama Research Area and Luquillo Experiment Forest before September 2016, and had collected one full year data of litterfall production prior to the arrival of Hurricanes Irma and Maria. Hurricane-induced litterfall was collected within one week after Hurricane Irma, and within two weeks after Hurricane Maria. Each litterfall sample was sorted into leaves, wood (branches and barks, reproductive organs (flowers, fruits and seeds and miscellaneous materials (mostly dead animal bodies or feces after oven-drying to constant weight. Annual litterfall production prior to the arrival of Hurricanes Irma and Maria varied from 4.68 to 25.41 Mg/ha/year among the four forests, and annual litterfall consisted of 50–81% leaffall, 16–44% woodfall and 3–6% fallen reproductive organs. Hurricane Irma severely defoliated the Luquillo Experimental Forest, but had little effect on the other three forests, whereas Hurricane Maria defoliated all four forests. Total hurricane-induced litterfall from Hurricanes Irma and Maria amounted to 95–171% of the annual litterfall production, with leaffall and woodfall from hurricanes amounting to 63–88% and 122–763% of their corresponding annual leaffall and woodfall, respectively. Hurricane-induced litterfall consisted of 30–45% leaves and 55–70% wood. Our data showed that Hurricanes Irma and Maria deposited a pulse of litter deposition equivalent to or more than the total annual litterfall input with at least a doubled fraction of woody materials. This pulse of hurricane-induced debris and elevated proportion of woody component may trigger changes in

  12. Telehealth at the US Department of Veterans Affairs after Hurricane Sandy.

    Science.gov (United States)

    Der-Martirosian, Claudia; Griffin, Anne R; Chu, Karen; Dobalian, Aram

    2018-01-01

    Background Like other integrated health systems, the US Department of Veterans Affairs has widely implemented telehealth during the past decade to improve access to care for its patient population. During major crises, the US Department of Veterans Affairs has the potential to transition healthcare delivery from traditional care to telecare. This paper identifies the types of Veterans Affairs telehealth services used during Hurricane Sandy (2012), and examines the patient characteristics of those users. Methods This study conducted both quantitative and qualitative analyses. Veterans Affairs administrative and clinical data files were used to illustrate the use of telehealth services 12 months pre- and 12 months post- Hurricane Sandy. In-person interviews with 31 key informants at the Manhattan Veterans Affairs Medical Center three-months post- Hurricane Sandy were used to identify major themes related to telecare. Results During the seven-month period of hospital closure at the Manhattan Veterans Affairs Medical Center after Hurricane Sandy, in-person patient visits decreased dramatically while telehealth visits increased substantially, suggesting that telecare was used in lieu of in-person care for some vulnerable patients. The most commonly used types of Veterans Affairs telehealth services included primary care, triage, mental health, home health, and ancillary services. Using qualitative analyses, three themes emerged from the interviews regarding the use of Veterans Affairs telecare post- Hurricane Sandy: patient safety, provision of telecare, and patient outreach. Conclusion Telehealth offers the potential to improve post-disaster access to and coordination of care. More information is needed to better understand how telehealth can change the processes and outcomes during disasters. Future studies should also evaluate key elements, such as adequate resources, regulatory and technology issues, workflow integration, provider resistance, diagnostic fidelity and

  13. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    Science.gov (United States)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  14. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    Science.gov (United States)

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. © 2013 Society for Risk Analysis.

  15. Calculations of the hurricane eye motion based on singularity propagation theory

    Directory of Open Access Journals (Sweden)

    Vladimir Danilov

    2002-02-01

    Full Text Available We discuss the possibility of using calculating singularities to forecast the dynamics of hurricanes. Our basic model is the shallow-water system. By treating the hurricane eye as a vortex type singularity and truncating the corresponding sequence of Hugoniot type conditions, we carry out many numerical experiments. The comparison of our results with the tracks of three actual hurricanes shows that our approach is rather fruitful.

  16. Avifauna response to hurricanes: regional changes in community similarity

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Chengquan Huang; Jeffrey G. Masek; Volker C. Radeloff

    2010-01-01

    Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does...

  17. Influence of Northeast Monsoon cold surges on air quality in Southeast Asia

    Science.gov (United States)

    Ashfold, M. J.; Latif, M. T.; Samah, A. A.; Mead, M. I.; Harris, N. R. P.

    2017-10-01

    Ozone (O3) is an important ground-level pollutant. O3 levels and emissions of O3 precursors have increased significantly over recent decades in East Asia and export of this O3 eastward across the Pacific Ocean is well documented. Here we show that East Asian O3 is also transported southward to tropical Southeast (SE) Asia during the Northeast Monsoon (NEM) season (defined as November to February), and that this transport pathway is especially strong during 'cold surges'. Our analysis employs reanalysis data and measurements from surface sites in Peninsular Malaysia, both covering 2003-2012, along with trajectory calculations. Using a cold surge index (northerly winds at 925 hPa averaged over 105-110°E, 5°N) to define sub-seasonal strengthening of the NEM winds, we find the largest changes in a region covering much of the Indochinese Peninsula and surrounding seas. Here, the levels of O3 and another key pollutant, carbon monoxide, calculated by the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis are on average elevated by, respectively, >40% (∼15 ppb) and >60% (∼80 ppb) during cold surges. Further, in the broader region of SE Asia local afternoon exceedances of the World Health Organization's air quality guideline for O3 (100 μg m-3, or ∼50 ppb, averaged over 8 h) largely occur during these cold surges. Day-to-day variations in available O3 observations at surface sites on the east coast of Peninsular Malaysia and in corresponding parts of the MACC Reanalysis are similar, and are clearly linked to cold surges. However, observed O3 levels are typically ∼10-20 ppb lower than the MACC Reanalysis. We show that these observations are also subject to influence from local urban pollution. In agreement with past work, we find year-to-year variations in cold surge activity related to the El Nino-Southern Oscillation (ENSO), but this does not appear to be the dominant influence of ENSO on atmospheric composition in this region. Overall, our study

  18. Designsafe-Ci a Cyberinfrastructure for Natural Hazard Simulation and Data

    Science.gov (United States)

    Dawson, C.; Rathje, E.; Stanzione, D.; Padgett, J.; Pinelli, J. P.

    2017-12-01

    DesignSafe is the web-based research platform of the Natural Hazards Engineering Research Infrastructure (NHERI) network that provides the computational tools needed to manage and analyze critical data for natural hazards research, with wind and storm surge related hazards being a primary focus. One of the simulation tools under DesignSafe is the Advanced Circulation (ADCIRC) model, a coastal ocean model used in storm surge analysis. ADCIRC is an unstructured, finite element model with high resolution capabilities for studying storm surge impacts, and has long been used in storm surge hind-casting and forecasting. In this talk, we will demonstrate the use of ADCIRC within the DesignSafe platform and its use for forecasting Hurricane Harvey. We will also demonstrate how to analyze, visualize and archive critical storm surge related data within DesignSafe.

  19. Hurricane Harvey rapid response: observations of infragravity wave dynamics and morphological change during inundation of a barrier island cut

    Science.gov (United States)

    Anarde, K.; Figlus, J.; Dellapenna, T. M.; Bedient, P. B.

    2017-12-01

    Prior to landfall of Hurricane Harvey on August 25, 2017, instrumentation was deployed on the seaward and landward sides of a barrier island on the central Texas Gulf Coast to collect in-situ hydrodynamic measurements during storm impact. High-resolution devices capable of withstanding extreme conditions included inexpensive pressure transducers and tilt current meters mounted within and atop (respectively) shallow monitoring wells. In order to link measurements of storm hydrodynamics with the morphological evolution of the barrier, pre- and post-storm digital elevation models were generated using a combination of unmanned aerial imagery, LiDAR, and real-time kinematic GPS. Push-cores were collected and analyzed for grain size and sedimentary structure to relate hydrodynamic observations with the local character of storm-generated deposits. Observations show that at Hog Island, located approximately 160 miles northeast of Harvey's landfall location, storm surge inundated an inactive storm channel. Infragravity waves (0.003 - 0.05 Hz) dominated the water motion onshore of the berm crest over a 24-hour period proximate to storm landfall. Over this time, approximately 50 cm of sediment accreted vertically atop the instrument located in the backshore. Storm deposits at this location contained sub-parallel alternating laminae of quartz and heavy mineral-enriched sand. While onshore progression of infragravity waves into the back-barrier was observed over several hours prior to storm landfall, storm deposits in the back-barrier lack the characteristic laminae preserved in the backshore. These field measurements will ultimately be used to constrain and validate numerical modeling schemes that explore morphodynamic conditions of barriers in response to extreme storms (e.g., XBeach, CSHORE). This study provides a unique data set linking extreme storm hydrodynamics with geomorphic changes during a relatively low surge, but highly dissipative wave event.

  20. Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles

    OpenAIRE

    Bennett, Joan W.

    2015-01-01

    In the aftermath of Hurricane Katrina, the levees protecting New Orleans, Louisiana failed. Because approximately 80% of the city was under sea level, widespread flooding ensued. As a resident of New Orleans who had evacuated before the storm and a life-long researcher on filamentous fungi, I had known what to expect. After the hurricane I traveled home with a suitcase full of Petri dishes and sampling equipment so as to study the fungi that were “eating my house.” Not only were surfaces cove...