WorldWideScience

Sample records for hurricane subcloud layer

  1. Hurricane Boundary-Layer Theory

    Science.gov (United States)

    2010-01-01

    2501. Kundu PK. 1990. Fluid Mechanics . Academic Press: San Diego, USA. Kuo HL. 1982. Vortex boundary layer under quadratic surface stress. Boundary...identification of two mechanisms for the spin-up of the mean tangential circulation of a hurricane. The first involves convergence of absolute angular...momentum above the boundary layer, where this quantity is approximately conserved. This mechanism acts to spin up the outer circulation at radii

  2. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  3. The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane

    Science.gov (United States)

    2015-08-14

    intensifying primary and forming secondary eyewalls is found to be nonlinear. At large radii, exterior to the eyewalls, Ekman -like balance as traditionally...defined, is found to hold true. Where significant departures from Ekman -like balance are found, the departures are characterized by large vertical...hurricane’s inner core boundary layer is found to be nonlinear There are departures from Ekman -like balance in the hurricane boundary layer Azimuthally

  4. Improving Our Understanding of Atlantic Hurricanes Through Knowledge of the Saharan Air Layer: Hope Or Hype?

    Science.gov (United States)

    Braun, Scott

    2009-01-01

    The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air frequently present over the tropical Atlantic Ocean, has long been appreciated. The nature of its impact on hurricanes remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm air aloft, which increases thermodynamic stability; and 3) dry air, which produces cold downdrafts. Some investigators have assumed the validity of these proposed negative influences and have frequently used them to explain the failure of individual storms to intensify or to explain the relative inactivity of recent hurricane seasons. Multiple NASA satellite data sets and National Centers for Environmental Prediction global analyses are used to characterize the SAL's properties and evolution in relation to developing hurricanes. The results will shows that neither jet--induced vertical wind shear nor warm SAL air (high stability) produce significant negative impacts on Atlantic storms. Dry air appears to be a key mechanism for SAL influence, but the presence of dry SAL air is not always a good indicator of whether a storm will weaken since many examples of intensifying storms surrounded by such dry air can be found. Idealized simulations will be used to evaluate the role of dry air. Finally, two case studies of supposedly "prime examples" of SAL influence will show that the negative influences of the SAL are perhaps too readily ascribed to individual storms that fail to reach their maximum potential intensity.

  5. Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes

    Science.gov (United States)

    Liu, Jianjun; Zhang, Feimin; Pu, Zhaoxia

    2017-04-01

    Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina (2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF (Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer (PBL) schemes, the Mellor-Yamada-Janjic (MYJ) and the Yonsei University (YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies (e.g., over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air-sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.

  6. Turbulent flow over a house in a simulated hurricane boundary layer

    CERN Document Server

    Taylor, Zachary; Gurka, Roi; Kopp, Gregory

    2009-01-01

    Every year hurricanes and other extreme wind storms cause billions of dollars in damage worldwide. For residential construction, such failures are usually associated with roofs, which see the largest aerodynamic loading. However, determining aerodynamic loads on different portions of North American houses is complicated by the lack of clear load paths and non-linear load sharing in wood frame roofs. This problem of fluid-structure interaction requires both wind tunnel testing and full-scale structural testing. A series of wind tunnel tests have been performed on a house in a simulated atmospheric boundary layer (ABL), with the resulting wind-induced pressures applied to the full-scale structure. The ABL was simulated for flow over open country terrain where both velocity and turbulence intensity profiles, as well as spectra, were matched with available full scale measurements for this type of terrain. The first set of measurements was 600 simultaneous surface pressure measurements over the entire house. A key...

  7. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    Science.gov (United States)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.

    2017-06-01

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1} ). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.

  8. The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

    Science.gov (United States)

    Braun, Scott A.; Sippel, Jason A.; Shie, Chung-Lin; Boller, Ryan A.

    2013-01-01

    The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.

  9. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  10. Hurricane Safety

    Science.gov (United States)

    ... English Hurricane Safety Checklist - Arabic Hurricane Safety Checklist - Chinese Hurricane Safety Checklist - French Hurricane Safety Checklist - Haitian ... Cross serves in the US, its territories and military installations around the world. Please try again. Your ...

  11. Lime-mud layers in high-energy tidal channels: a record of hurricane deposition

    Science.gov (United States)

    Shinn, E.A.; Steinen, R.P.; Dill, R.F.; Major, R.

    1993-01-01

    During or immediately following the transit of Hurricane Andrew (August 23-24, 1992) across the northern part of the Great Bahama Bank, thin laminated beds of carbonate mud were deposited in high-energy subtidal channels (4 m depth) through the ooid shoals of south Cat Cay and Joulters Cays. Thicker, more cohesive (and therefore older) mud beds and angular mud fragments associated with ooids from Joulters Cays have similar characteristics but lack fresh plant fragments. We infer that these older beds were similarly deposited and thus record the passage of previous hurricanes or tropical storms. -from Authors

  12. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Salamalikis, V., E-mail: vsalamalik@upatras.gr [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Argiriou, A.A. [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Dotsika, E. [Stable Isotope Unit, Institute of Nanoscience and Nanotechnology, National Center of Scientific Research ‘Demokritos’, Ag. Paraskevi Attikis, 15310 Athens (Greece)

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R{sup 2} > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  13. Hurricane Science

    Science.gov (United States)

    Emanuel, Kerry

    2012-10-01

    Hurricanes provide beautiful examples of many of the key physical processes important in geophysical systems. They are rare natural examples of nearly perfect Carnot heat engines with an interesting wrinkle: They recycle much of their waste heat into the front end of the engine, thereby achieving greater wind speeds than would otherwise be possible. They are driven by surface enthalpy fluxes made possible by the thermodynamic disequilibrium between the earth's surface and atmosphere, a characteristic of radiative equilibrium in the presence of greenhouse gases. Their evolution, structure, and intensity all depend on turbulence near the ocean surface and in the outflow layer of the storm, high up in the atmosphere. In the course of this banquet, I will briefly describe these and other interesting aspects of hurricane physics, and also describe the role these storms have played in human history.

  14. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    Science.gov (United States)

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic

  15. Assessment of hurricane's effect on the upper mixed layer of the southwestern Mexican Pacific during ENSO 1997-1998: in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    Raúl Aguirre-Gómez

    2015-03-01

    Full Text Available Using data from closely spaced CTD profiles and satellite imagery we investigated the effect of hurricane Rick on the sea surface temperature (SST and the upper mixed layer of the southwestern Mexican Pacific coast. Effects of ENSO 1997-1998 in this region are also discussed by analysing SST maps. Coincident hydrographic measurements were carried out during an oceanographic campaign over the area in November 1997. Results revealed an increment of SST between 3 to 4°C above the climatological mean temperature (25° ± 2°C, in the Mexican Tropical Pacific, during ENSO. In situ measurements show instabilities in the upper mixed layer after the pass of the hurricane in oceanic areas. Satellite and historical databases enabled interpretation and analyses of ENSO's effect on the southwest coast of Mexico.

  16. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    Science.gov (United States)

    Williams, Gabriel J.

    2016-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  17. Genesis of Pre-Hurricane Felix (2007). Part 1; The Role of the Easterly Wave Critical Layer

    Science.gov (United States)

    Wang, Zhuo; Montgomery, M. T.; Dunkerton, T. J.

    2010-01-01

    The formation of pre Hurricane Felix (2007) in a tropical easterly wave is examined in a two-part study using the Weather Research and Forecasting (WRF) model with a high-resolution nested grid configuration that permits the representation of cloud system processes. The simulation commences during the wave stage of the precursor African easterly-wave disturbance. Here the simulated and observed developments are compared, while in Part II of the study various large-scale analyses, physical parameterizations, and initialization times are explored to document model sensitivities. In this first part the authors focus on the wave/vortex morphology, its interaction with the adjacent intertropical convergence zone complex, and the vorticity balance in the neighborhood of the developing storm. Analysis of the model simulation points to a bottom-up development process within the wave critical layer and supports the three new hypotheses of tropical cyclone formation proposed recently by Dunkerton, Montgomery, and Wang. It is shown also that low-level convergence associated with the ITCZ helps to enhance the wave signal and extend the "wave pouch" from the jet level to the top of the atmospheric boundary layer. The region of a quasi-closed Lagrangian circulation within the wave pouch provides a focal point for diabatic merger of convective vortices and their vortical remnants. The wave pouch serves also to protect the moist air inside from dry air intrusion, providing a favorable environment for sustained deep convection. Consistent with the authors' earlier findings, the tropical storm forms near the center of the wave pouch via system-scale convergence in the lower troposphere and vorticity aggregation. Components of the vorticity balance are shown to be scale dependent, with the immediate effects of cloud processes confined more closely to the storm center than the overturning Eliassen circulation induced by diabatic heating, the influence of which extends to larger radii.

  18. Sub-Cloud Layer Motions from Radar Data Using Correlation Techniques.

    Science.gov (United States)

    2014-09-26

    ORGANIZATION Of[ apicable ) Air Force Geophysics Laborator LY Contract No. F19628-82-C-0023 Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS...motions from the spatial displacement between pattern locations divided by temporal lag. 1. Rinehart, R. E., 1979: Internal Storm Motions from a Single...component. In fact, at some locations the motions are nearly 180. different from the airflow at 2 km. However, the airflow at 4 km does have a southerly

  19. Influence of the subcloud layer on the development of a deep convective ensemble

    NARCIS (Netherlands)

    Böing, S.J.; Jonker, H.J.J; Siebesma, A.P.; Grabowski, W.W.

    2012-01-01

    The rapid transition from shallow to deep convection is investigated using large-eddy simulations. The role of cold pools, which occur due to the evaporation of rainfall, is explored using a series of experiments in which their formation is suppressed.A positive feedback occurs: the presence of cold

  20. Comments on Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere-Wave-Ocean Models and Observations

    Science.gov (United States)

    2014-07-01

    author address: Dr. Jun Zhang, NOAA/AOML/ Hurricane Research Division with University of Miami/ CIMAS , 4301 Rickenbacker Causeway, Miami, FL 33149. E...suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis...S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School

  1. Hurricane Season

    Institute of Scientific and Technical Information of China (English)

    JENNIFER; JETT

    2008-01-01

    Three years after Katrina,the United States isdetermined not to repeatits mistakes This year has seen an unusually activeand deadly hurricane season, asstorms line up in the Atlantic Oceanto pummel the Caribbean and UnitedStates coastline.

  2. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  3. Supplemental Material for: Examining the Roles of the Easterly Wave Critical Layer and Vorticity Accretion During the Tropical Cyclogenesis of Hurricane Sandy

    Science.gov (United States)

    2014-01-01

    Hurricane Sandy Louis L. Lussier III, _ Blake Rutherford, Michael T. Montgomery and Mark A. Boothe Naval Postgraduate School, Monterey, California...et al. (2009), and tested herein for the case of Hurricane Sandy (2012), provides a comprehensive description of the dynamics and thermodynamics...During the Tropical Cyclogenesis of Hurricane Sandy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  4. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  5. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  6. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    Science.gov (United States)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  7. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  8. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  9. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  10. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  11. Hurricane Sandy and earthquakes

    OpenAIRE

    MAVASHEV BORIS; MAVASHEV IGOR

    2013-01-01

    Submit for consideration the connection between formation of a hurricane Sandy and earthquakes. As a rule, weather anomalies precede and accompany earthquakes. The hurricane Sandy emerged 2 days prior to strong earthquakes that occurred in the area. And the trajectory of the hurricane Sandy matched the epicenter of the earthquakes. Possibility of early prediction of natural disasters will minimize the moral and material damage.

  12. Drag Coefficient and Foam in Hurricane Conditions.

    Science.gov (United States)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  13. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation

    Science.gov (United States)

    Kong, Yanlong; Pang, Zhonghe

    2016-11-01

    A negative stable isotope-altitude gradient is commonly observed on the windward side of a mountain. However, after the precipitation passes over a mountain range to the leeward side, the altitude effect becomes ambiguous as a result of an orographic rain shadow in addition to other complex processes such as sub-cloud evaporation and additional moisture mixing. In this study, we found a positive precipitation δ18O-altitude gradient with a value of 0.12‰/100 m in the Urumqi River catchments on the leeward side of the Tianshan Mountains through an analysis of water isotopes sampled in this region. Processes including both sub-cloud evaporation and moisture recycling were found to be responsible for the positive gradient. A simple model was built to analyze the observations quantitatively. We defined the difference of the recycled (evaporated) fraction as the recycled (evaporated) fraction at the lower station minus the fraction at the higher station. The model showed that the δ18O-altitude gradient rises by 0.28‰/100 m with the difference of the recycled fraction increasing by 1%/100 m, and declining by 0.15‰/100 m with the difference of the evaporated fraction increasing by 1%/100 m. The effect of moisture recycling is more significant than that of sub-cloud evaporation on the leeward side of the Tianshan Mountains; therefore, the precipitation in the Tianshan Mountains has a positive δ18O-altitude gradient. The model also explains the distribution of water isotope data points in the δ2H-δ18O figure of Northwest China: while the data points of the mountainous water isotopes are located above the local meteoric water line (LMWL) because of moisture recycling, most data points of basin water isotopes are located below the LMWL because of evaporation. Accordingly, we concluded that the stable isotope-altitude gradient on the leeward side of a mountain is very sensitive to local atmospheric processes; an inference that should be taken into consideration while

  14. Recovering from Hurricane Katrina

    Science.gov (United States)

    Coleman, Nadine

    2006-01-01

    The Gulf Coast region suffered an unusually severe hurricane season in 2005: Hurricane Katrina (August 28-29, 2005) devastated much of southern Mississippi and Louisiana. Approximately 2,700 licensed early care and education facilities in those states and in Alabama were affected by Katrina, in addition to an unknown number of family child care…

  15. Geologic effects of hurricanes

    Science.gov (United States)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  16. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  17. Hurricane! Coping With Disaster

    Science.gov (United States)

    Lifland, Jonathan

    A new AGU book, Hurricane! Coping With Disaster, analyzes the progress made in hurricane science and recounts how advances in the field have affected the public's and the scientific community's understanding of these storms. The book explores the evolution of hurricane study, from the catastrophic strike in Galveston, Texas in 1900—still the worst natural disaster in United States history—to today's satellite and aircraft observations that track a storm's progress and monitor its strength. In this issue, Eos talks with Robert Simpson, the books' senior editor.Simpson has studied severe storms for more than 60 years, including conducting one of the first research flights through a hurricane in 1945. He was the founding director of the (U.S.) National Hurricane Research Project and has served as director of the National Hurricane Center. In collaboration with Herbert Saffir, Simpson helped design and implement the Saffir/Simpson damage potential scale that is widely used to identify potential damage from hurricanes.

  18. Analyzing Hurricane Sandy

    Science.gov (United States)

    Convertino, Angelyn; Meyer, Stephan; Edwards, Becca

    2015-03-01

    Post-tropical Storm Sandy underwent extratropical transition shortly before making landfall in southern New Jersey October 29 2012. Data from this system was compared with data from Hurricane Ike (2008) which represents a classic hurricane with a clear eye wall and symmetry after landfall. Storm Sandy collided with a low pressure system coming in from the north as the hurricane made landfall on the US East coast. This contributed to Storm Sandy acting as a non-typical hurricane when it made landfall. Time histories of wind speed and wind direction were generated from data provided by Texas Tech's StickNet probes for both storms. The NOAA Weather and Climate program were used to generate radar loops of reflectivity during the landfall for both storms; these loops were compared with time histories for both Ike and Sandy to identify a relationship between time series data and storm-scale features identified on radar.

  19. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  20. Hurricane Katrina disaster diplomacy.

    Science.gov (United States)

    Kelman, Ilan

    2007-09-01

    Hurricane Katrina struck the United States at the end of August 2005. The consequent devastation appeared to be beyond the US government's ability to cope with and aid was offered by several states in varying degrees of conflict with the US. Hurricane Katrina therefore became a potential case study for 'disaster diplomacy', which examines how disaster-related activities do and do not yield diplomatic gains. A review of past disaster diplomacy work is provided. The literature's case studies are then categorised using a new typology: propinquity, aid relationship, level and purpose. Hurricane Katrina and its aftermath are then placed in the context of the US government's foreign policy, the international response to the disaster and the US government's reaction to these responses. The evidence presented is used to discuss the potential implications of Hurricane Katrina disaster diplomacy, indicating that factors other than disaster-related activities generally dominate diplomatic relations and foreign policy.

  1. Hurricane Matthew overwash extents

    Science.gov (United States)

    Doran, Kara; Long, Joseph W.; Birchler, Justin; Range, Ginger

    2017-01-01

    The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This data defines the alongshore extent of overwash deposits attributed to coastal processes during Hurricane Matthew.

  2. Hurricane Katrina Water Sampling

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  3. Hurricane Katrina Sediment Sampling

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  4. Hurricane Katrina Soil Sampling

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  5. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  6. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  7. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  8. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  9. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  10. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  11. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  12. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  13. How Hurricanes Get Their Names

    Institute of Scientific and Technical Information of China (English)

    张梅荐

    2000-01-01

    The first people who gave names to hurricanes were those who knew them best the people of Puerto Rico. The small island of Puerto Rico is in the West Indies, off the coast of Florida. This is where all the hurricanes begin that strike the east coast of the United States.

  14. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Science.gov (United States)

    2011-10-13

    ...-2010-0288] Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear... Hurricane Missiles for Nuclear Power Plants.'' This regulatory guide provides licensees and applicants with... hurricane and design-basis hurricane-generated missiles that a nuclear power plant should be designed...

  15. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  16. The observed analysis on the wave spectra of Hurricane Juan (2003)

    Institute of Scientific and Technical Information of China (English)

    XU Fumin; BUI THI Thuy Duyen; PERRIE Will

    2014-01-01

    Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan’s track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan’s track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan’s track:before, dur-ing, and after Juan’s passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths’ variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3’s ability in simulating detailed wave structure during Hurricane Juan.

  17. Household Adjustments to Hurricane Katrina

    National Research Council Canada - National Science Library

    Meri Davlasheridze; Qin Fan

    2017-01-01

    This paper examines household adjustments to Hurricane Katrina by estimating the effects of Katrina-induced damages on changes in household demographics and income distributions in the Orleans Parish...

  18. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  19. The Hurricane and Its Impact

    Science.gov (United States)

    Burpee, Robert W.

    Recent population increases in coastal regions of the tropics and subtropics have greatly enhanced man's vulnerability to tropical cyclones. Thus, this book on hurricanes by Robert H. Simpson and Herbert Riehl, two of the leading contributors to hurricane research during the last 35 years, comes along when people of differing backgrounds want to learn more about hurricanes. In the 20 years since Dunn and Miller published Atlantic Hurricanes, technical advances in weather satellites, computer modeling and data processing, and research aircraft have substantially increased the tropical meteorologist's understanding of hurricane structure and dynamics. During this same time, field experiments have led to detailed knowledge of the atmospheric environment within which tropical cyclones are initiated. The authors have attempted to describe many aspects of hurricanes for readers that range from students of meteorology to those concerned with planning for natural hazards in the coastal zone. Because Simpson and Riehl have addressed such a wide audience, many readers with a knowledge of atmospheric science will find that the book is overly descriptive, while readers without some background in physics will find it is too technical.

  20. Using a Geographic Information System to Assess the Risk of Hurricane Hazards on the Maya Civilization

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Sever, T.

    2014-12-01

    The extent of the Maya civilization spanned across portions of modern day Mexico, Belize, Guatemala, El Salvador and Honduras. Paleoclimatic studies suggest this region has been affected by strong hurricanes for the past six thousand years, reinforced by archeological evidence from Mayan records indicating they experienced strong storms. It is theorized hurricanes aided in the collapse of the Maya, damaging building structures, agriculture, and ceasing industry activities. Today, this region is known for its active tropical climatology, being hit by numerous strong storms including Hurricane Dean, Iris, Keith, and Mitch. This research uses a geographic information system (GIS) to model hurricane hazards, and assess the risk posed on the Maya civilization. GIS has the ability to handle various layer components making it optimal for combining parameters necessary for assessing the risk of experiencing hurricane related hazards. For this analysis, high winds, storm surge flooding, non-storm surge related flooding, and rainfall triggered landslides were selected as the primary hurricane hazards. Data sets used in this analysis include the National Climatic Data Center International Best Track Archive for Climate Stewardships (IBTrACS) hurricane tracks, Shuttle Radar Topography Mission Digital Elevation Model, WorldClim monthly accumulated precipitation, USGS HydroSHEDS river locations, Harmonized World Soil Database soil types, and known Maya site locations from the Electronic Atlas of Ancient Maya Sites. ArcGIS and ENVI software were utilized to process data and model hurricane hazards. To assess locations at risk of experiencing high winds, a model was created using ArcGIS Model Builder to map each storm's temporal wind profile, and adapted to simulate forward storm velocity, and storm frequency. Modeled results were then combined with physical land characteristics, meteorological, and hydrologic data to identify areas likely affected. Certain areas along the eastern

  1. Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region

    Science.gov (United States)

    Androulidakis, Yannis; Kourafalou, Vassiliki; Halliwell, George; Le Hénaff, Matthieu; Kang, Heesook; Mehari, Michael; Atlas, Robert

    2016-12-01

    The evolution of three successive hurricanes (Katia, Maria, and Ophelia) is investigated over the river plume area formed by the Amazon and Orinoco river outflows during September of 2011. The study focuses on hurricane impacts on the ocean structure and the ocean feedback influencing hurricane intensification. High-resolution (1/25° × 1/25° horizontal grid) numerical simulations of the circulation in the extended Atlantic Hurricane Region (Caribbean Sea, Gulf of Mexico, and Northwest Atlantic Ocean) were used to investigate the upper ocean response during the three hurricane-plume interaction cases. The three hurricanes revealed different evolution and intensification characteristics over an area covered by brackish surface waters. The upper ocean response to the hurricane passages over the plume affected region showed high variability due to the interaction of oceanic and atmospheric processes. The existence of a barrier layer (BL), formed by the offshore spreading of brackish waters, probably facilitated intensification of the first storm (Hurricane Katia) because the river-induced BL enhanced the resistance of the upper ocean to cooling. This effect was missing in the subsequent two hurricanes (Maria and Ophelia) as the eroded BL (due to Katia passage) allowed the upper ocean cooling to be increased. As a consequence, the amount of ocean thermal energy provided to these storms was greatly reduced, which acted to limit intensification. Numerical experiments and analyses, in tandem with observational support, lead to the conclusion that the presence of a river plume-induced BL is a strong factor in the ocean conditions influencing hurricane intensification.

  2. Hurricane Data Analysis Tool

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of

  3. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  4. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  5. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  6. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  7. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  8. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  9. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  10. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  11. Forecasting Hurricane by Satellite Image

    Science.gov (United States)

    Liu, M. Y.

    Earth is an endanger planet. Severe weather, especially hurricanes, results in great disaster all the world. World Meteorology Organization and United Nations Environment Program established intergovernment Panel on Climate Change (IPCC) to offer warnings about the present and future disasters of the Earth. It is the mission for scientists to design warning system to predict the severe weather system and to reduce the damage of the Earth. Hurricanes invade all the world every year and made millions damage to all the people. Scientists in weather service applied satellite images and synoptic data to forecast the information for the next hours for warning purposes. Regularly, hurricane hits on Taiwan island directly will pass through her domain and neighbor within 10 hours. In this study, we are going to demonstrate a tricky hurricane NARI invaded Taiwan on September 16, 2000. She wandered in the neighborhood of the island more than 72 hours and brought heavy rainfall over the island. Her track is so tricky that scientists can not forecast her path using the regular method. Fortunately, all scientists in the Central Weather Bureau paid their best effort to fight against the tricky hurricane. Applying the new developed technique to analysis the satellite images with synoptic data and radar echo, scientists forecasted the track, intensity and rainfall excellently. Thus the damage of the severe weather reduced significantly.

  12. Atlantic hurricane response to geoengineering

    Science.gov (United States)

    Moore, John; Grinsted, Aslak; Ji, Duoying; Yu, Xiaoyong; Guo, Xiaoran

    2015-04-01

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase - perhaps by a factor of 5 for a 2°C mean global warming. Geoengineering by sulphate aerosol injection preferentially cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 6 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use aerosols to reduce the radiative forcing under the RCP4.5 scenario. We find that although temperatures are ameliorated by geoengineering, the numbers of storm surge events as big as that caused the 2005 Katrina hurricane are only slightly reduced compared with no geoengineering. As higher levels of sulphate aerosol injection produce diminishing returns in terms of cooling, but cause undesirable effects in various regions, it seems that stratospheric aerosol geoengineering is not an effective method of controlling hurricane damage.

  13. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  14. 7 CFR 701.50 - 2005 hurricanes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  15. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  16. Hurricane Hazel: Canada's storm of the century

    National Research Council Canada - National Science Library

    Gifford, Jim

    2004-01-01

    ... For EleanorHurricane_Hazel_Interior.qxd 6/22/04 3:35 PM Page 3 HURRICANE HAZEL Canada's Storm of the Century Jim Gifford The dundurn Group Toronto * OxfordHurricane_Hazel_Interior.qxd 6/22/04 3:35...

  17. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta

    Science.gov (United States)

    McKee, K.L.; Cherry, J.A.

    2009-01-01

    Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.

  18. A Universal Hurricane Frequency Function

    CERN Document Server

    Ehrlich, Robert

    2010-01-01

    Evidence is provided that the global distribution of tropical hurricanes is principally determined by a universal function H of a single variable z that in turn is expressible in terms of the local sea surface temperature and latitude. The data-driven model presented here carries stark implications for the large increased numbers of hurricanes which it predicts for a warmer world. Moreover, the rise in recent decades in the numbers of hurricanes in the Atlantic, but not the Pacific basin, is shown to have a simple explanation in terms of the specific form of H(z), which yields larger percentage increases when a fixed increase in sea surface temperature occurs at higher latitudes and lower temperatures.

  19. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...... for hurricane generates seas by Young (1998, 2003, and 2006), requiring maximum wind speeds, forward velocity and radius to maximum wind speed. An averaged radius to maximum sustained wind speeds, according to Hsu et al. (1998) and averaged forward speed of cyclonic storms are applied in the initial state...

  20. The dynamics of hurricane balls

    Science.gov (United States)

    Andersen, W. L.; Werner, Steven

    2015-09-01

    We examine the theory of the hurricane balls toy. This toy consists of two steel balls, welded together that are sent spinning on a horizontal surface somewhat like a top. Unlike a top, at high frequency the symmetry axis approaches a limiting inclination that is not perpendicular to the surface. We calculate (and experimentally verify) the limiting inclinations for three toy geometries. We find that at high frequencies, hurricane balls provide an easily realized and testable example of the Poinsot theory of freely rotating symmetrical bodies.

  1. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    2012-09-24

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.  Created: 9/24/2012 by Office of Public Health Preparedness and Response (OPHPR), National Center for Environmental Health (NCEH), and the Agency for Toxic Substances and Disease Registry (ATSDR).   Date Released: 9/24/2012.

  2. How Unique was Hurricane Sandy? Sedimentary Reconstructions of Extreme Flooding from New York Harbor

    Science.gov (United States)

    Brandon, Christine M.; Woodruff, Jonathan D.; Donnelly, Jeffrey P.; Sullivan, Richard M.

    2014-12-01

    The magnitude of flooding in New York City by Hurricane Sandy is commonly believed to be extremely rare, with estimated return periods near or greater than 1000 years. However, the brevity of tide gauge records result in significant uncertainties when estimating the uniqueness of such an event. Here we compare resultant deposition by Hurricane Sandy to earlier storm-induced flood layers in order to extend records of flooding to the city beyond the instrumental dataset. Inversely modeled storm conditions from grain size trends show that a more compact yet more intense hurricane in 1821 CE probably resulted in a similar storm tide and a significantly larger storm surge. Our results indicate the occurrence of additional flood events like Hurricane Sandy in recent centuries, and highlight the inadequacies of the instrumental record in estimating current flood risk by such extreme events.

  3. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    Science.gov (United States)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  4. Hurricane intensification along United States coast suppressed during active hurricane periods.

    Science.gov (United States)

    Kossin, James P

    2017-01-19

    The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

  5. Hurricane damage assessment for residential construction considering the non-stationarity in hurricane intensity and frequency

    Institute of Scientific and Technical Information of China (English)

    WANG Cao; LI Quanwang; PANG Long; ZOU Aming; ZHANG Long

    2016-01-01

    Natural hazards such as hurricanes may cause extensive economic losses and social disruption for civil structures and infrastructures in coastal areas, implying the importance of understanding the construction performance subjected to hurricanes and assessing the hurricane damages properly. The intensity and frequency of hurricanes have been reported to change with time due to the potential impact of climate change. In this paper, a probability-based model of hurricane damage assessment for coastal constructions is proposed taking into account the non-stationarity in hurricane intensity and frequency. The non-homogeneous Poisson process is employed to model the non-stationarity in hurricane occurrence while the non-stationarity in hurricane intensity is reflected by the time-variant statistical parameters (e.g., mean value and/or standard deviation), with which the mean value and variation of the cumulative hurricane damage are evaluated explicitly. The Miami-Dade County, Florida, USA, is chosen to illustrate the hurricane damage assessment method proposed in this paper. The role of non-stationarity in hurricane intensity and occurrence rate due to climate change in hurricane damage is investigated using some representative changing patterns of hurricane parameters.

  6. Hurricane intensification along United States coast suppressed during active hurricane periods

    Science.gov (United States)

    Kossin, James P.

    2017-01-01

    The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

  7. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ... COMMISSION Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles AGENCY....221 on Design-Basis Hurricane and Hurricane Missiles.'' The purpose of this ISG is to supplement the guidance regarding the application of Regulatory Guide 1.221, ``Design-Basis Hurricane and...

  8. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  9. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  10. Forecasting hurricane impact on coastal topography: Hurricane Ike

    Science.gov (United States)

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger,, Asbury H.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-01-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  11. Hurricane Footprints in Global Climate Models

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2008-11-01

    Full Text Available This paper addresses the identification of hurricanes in low-resolution global climate models (GCM. As hurricanes are not fully resolvable at the coarse resolution of the GCMs (typically 2.5 × 2.5 deg, indirect methods such as analyzing the environmental conditions favoring hurricane formation have to be sought. Nonetheless, the dynamical cores of the models have limitations in simulating hurricane formation, which is a far from fully understood process. Here, it is shown that variations in the specific entropy rather than in dynamical variables can be used as a proxy of the hurricane intensity as estimated by the Accumulated Cyclone Energy (ACE. The main application of this research is to ascertain the changes in the hurricane frequency and intensity in future climates.

  12. The great Louisiana hurricane of August 1812

    OpenAIRE

    Mock, Cary J.; Chenoweth, Michael; Altamirano, Isabel; Rodgers, Matthew D.; García Herrera, Ricardo

    2010-01-01

    Major hurricanes are prominent meteorological hazards of the U.S. Atlantic and Gulf coasts. However, the official modern record of Atlantic basin tropical cyclones starts at 1851, and it does not provide a comprehensive measure of the frequency and magnitude of major hurricanes. Vast amounts of documentary weather data extend back several centuries, but many of these have not yet been fully utilized for hurricane reconstruction. These sources include weather diaries, ship logbooks, ship prote...

  13. Hurricane Excitation of Earth Eigenmodes

    OpenAIRE

    Peters, Randall D.

    2005-01-01

    A non-conventional vertical seismometer, with good low-frequency sensitivity, was used to study earth motions in Macon, Georgia USA during the time of hurricane Charley, August 2004. During its transitions between water and land, the powerful storm showed an interesting history of microseisms and also generated more than half-a-dozen surprisingly coherent oscillations, whose frequencies ranged from 0.9 to 3 mHz.

  14. Lessons Learnt From Hurricane Katrina.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  15. Dynamic Hurricane Data Analysis Tool

    Science.gov (United States)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  16. African Dust Influence on Atlantic Hurricane Activity and the Peculiar Behaviour of Category 5 Hurricanes

    CERN Document Server

    Herrera, Victor M Velasco; H., Graciela Velasco; Gonzalez, Laura Luna

    2010-01-01

    We study the specific influence of African dust on each one of the categories of Atlantic hurricanes. By applying wavelet analysis, we find a strong decadal modulation of African dust on Category 5 hurricanes and an annual modulation on all other categories of hurricanes. We identify the formation of Category 5 hurricanes occurring mainly around the decadal minimum variation of African dust and in deep water areas of the Atlantic Ocean, where hurricane eyes have the lowest pressure. According to our results, future tropical cyclones will not evolve to Category 5 until the next decadal minimum that is, by the year 2015 +/- 2.

  17. Increased Accuracy in Statistical Seasonal Hurricane Forecasting

    Science.gov (United States)

    Nateghi, R.; Quiring, S. M.; Guikema, S. D.

    2012-12-01

    Hurricanes are among the costliest and most destructive natural hazards in the U.S. Accurate hurricane forecasts are crucial to optimal preparedness and mitigation decisions in the U.S. where 50 percent of the population lives within 50 miles of the coast. We developed a flexible statistical approach to forecast annual number of hurricanes in the Atlantic region during the hurricane season. Our model is based on the method of Random Forest and captures the complex relationship between hurricane activity and climatic conditions through careful variable selection, model testing and validation. We used the National Hurricane Center's Best Track hurricane data from 1949-2011 and sixty-one candidate climate descriptors to develop our model. The model includes information prior to the hurricane season, i.e., from the last three months of the previous year (Oct. through Dec.) and the first five months of the current year (January through May). Our forecast errors are substantially lower than other leading forecasts such as that of the National Oceanic and Atmospheric Administration (NOAA).

  18. Gulf Coast Hurricanes Situation Report #39

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  19. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing;

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined...

  20. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  1. Secondary Eyewall Formation in Two Idealized, Full-Physics Modeled Hurricanes

    Science.gov (United States)

    2008-06-26

    28C. The upper boundary is closed, but includes a Rayleigh ‘‘ sponge ’’ layer exclusively in the stratosphere (uppermost six levels) to strongly damp...A. (2002), A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy, Mon. Weather Rev., 130, 1573–1592. Braun, S

  2. Genesis of tornadoes associated with hurricanes

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  3. Hurricane Katrina deaths, Louisiana, 2005.

    Science.gov (United States)

    Brunkard, Joan; Namulanda, Gonza; Ratard, Raoult

    2008-12-01

    Hurricane Katrina struck the US Gulf Coast on August 29, 2005, causing unprecedented damage to numerous communities in Louisiana and Mississippi. Our objectives were to verify, document, and characterize Katrina-related mortality in Louisiana and help identify strategies to reduce mortality in future disasters. We assessed Hurricane Katrina mortality data sources received in 2007, including Louisiana and out-of-state death certificates for deaths occurring from August 27 to October 31, 2005, and the Disaster Mortuary Operational Response Team's confirmed victims' database. We calculated age-, race-, and sex-specific mortality rates for Orleans, St Bernard, and Jefferson Parishes, where 95% of Katrina victims resided and conducted stratified analyses by parish of residence to compare differences between observed proportions of victim demographic characteristics and expected values based on 2000 US Census data, using Pearson chi square and Fisher exact tests. We identified 971 Katrina-related deaths in Louisiana and 15 deaths among Katrina evacuees in other states. Drowning (40%), injury and trauma (25%), and heart conditions (11%) were the major causes of death among Louisiana victims. Forty-nine percent of victims were people 75 years old and older. Fifty-three percent of victims were men; 51% were black; and 42% were white. In Orleans Parish, the mortality rate among blacks was 1.7 to 4 times higher than that among whites for all people 18 years old and older. People 75 years old and older were significantly more likely to be storm victims (P Hurricane Katrina was the deadliest hurricane to strike the US Gulf Coast since 1928. Drowning was the major cause of death and people 75 years old and older were the most affected population cohort. Future disaster preparedness efforts must focus on evacuating and caring for vulnerable populations, including those in hospitals, long-term care facilities, and personal residences. Improving mortality reporting timeliness will

  4. Modelling the response of Placentia Bay to hurricanes Igor and Leslie

    Science.gov (United States)

    Ma, Zhimin; Han, Guoqi; de Young, Brad

    2017-04-01

    A three-dimensional, baroclinic, finite-volume ocean model (FVCOM) is used to examine hurricane induced responses in Placentia Bay, Newfoundland. Hurricane Igor (2010) and Hurricane Leslie (2012) made landfall within 100 km of the mouth of the bay, with the former to the eastern side and the latter on the western side. The model results have reasonable agreement with field observations on sea level, near-surface currents and sea surface temperature (SST). During landfall the two hurricanes cause the opposite shifts in inner bay circulation. Hurricane Igor overwhelms the mean inflow into the inner bay and shifts the currents to outflow. Hurricane Leslie reinforces the inflow into the inner bay. The peak storm surge is significantly influenced by local wind and air pressure during Leslie, accounting for 34% and 62% at the Argentia and St. Lawrence tide-gauge stations respectively, but predominately due to remote forcing entering the upstream eastern open boundary during Igor. There is a strong near-surface near-inertial response during Leslie, but a weak one during Igor. Stratification plays an important role in both generation and dissipation of near-inertial oscillation. A strong pre-storm stratification during Leslie favours the generation of near-inertia oscillation. Strong turbulent mixing induced on the right side of Leslie generates large vertical movement of the thermocline and thus contributes to strong near-inertia oscillation inside the mixed layer. The barotropic simulation results in a significant underestimation of near-surface currents and near-inertial oscillation. The baroclinic simulation shows a large increase of the current gradient in the vertical, as the first baroclinic mode in response to the hurricane forcing.

  5. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  6. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  7. 78 FR 31614 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2013-05-24

    ....221 on Design-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION... guidance regarding the application of Regulatory Guide (RG) 1.221, ``Design-Basis Hurricane and Hurricane... ML13015A688 Interim Staff Guidance-024 on Implementation of Regulatory Guide 1.221 on Design-Basis...

  8. Hurricane Katrina and perinatal health.

    Science.gov (United States)

    Harville, Emily W; Xiong, Xu; Buekens, Pierre

    2009-12-01

    We review the literature on the effects of Hurricane Katrina on perinatal health, and providing data from our own research on pregnant and postpartum women. After Katrina, obstetric, prenatal, and neonatal care was compromised in the short term, but increases in adverse birth outcomes such as preterm birth, low birthweight, and maternal complications were mostly limited to highly exposed women. Both pregnant and postpartum women had rates of post-traumatic stress disorder similar to, or lower than, others exposed to Katrina, and rates of depression similar to other pregnant and postpartum populations. Health behaviors, such as smoking and breastfeeding, may have been somewhat negatively affected by the disaster, whereas effects on nutrition were likely associated with limited time, money, and food choices, and indicated by both weight gain and loss. We conclude that, with a few specific exceptions, postdisaster concerns and health outcomes for pregnant and postpartum women were similar to those of other people exposed to Hurricane Katrina. In such situations, disaster planners and researchers should focus on providing care and support for the normal concerns of the peripartum period, such as breastfeeding, depression, and smoking cessation. Contraception needs to be available for those who do not want to become pregnant. Although additional physical and mental health care needs to be provided for the most severely exposed women and their babies, many women are capable of surviving and thriving in postdisaster environments.

  9. Gusts and Shear Within Hurricane Eyewalls Can Exceed Offshore Wind-Turbine Design Standards

    CERN Document Server

    Worsnop, Rochelle P; Bryan, George H; Damiani, Rick; Musial, Walt

    2016-01-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than a Category 2. We examine the most turbulent portion of a hurricane (the eyewall) using large-eddy simulations with Cloud Model 1 (CM1). Gusts and mean wind speeds near the eyewall exceed the current design threshold of 50 m s-1 mean wind and 70 m s-1 gusts for Class I turbines. Gust factors are greatest at the eye-eyewall interface. Further, shifts in wind direction at wind turbine hub height suggest turbines must rotate into the wind faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50 deg) suggest that veer should be considered in design standards.

  10. Dependence of Hurricane Intensity and Structures on Vertical Resolution and Time-Step Size

    Institute of Scientific and Technical Information of China (English)

    Da-Lin ZHANG; Xiaoxue WANG

    2003-01-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varyingvertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) arestudied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR)mesoscale model (i.e., MMS) with the finest grid size of 6 km. It is shown that changing vertical resolutionand time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, butlittle impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeperstorm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similareffects, but to a less extent, occur when the time-step size is reduced. It is found that increasing thelow-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-levelvertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layertends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution,a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable tomodel more realistically the intensity and inner-core structures and evolution of tropical storms as well asthe other convectively driven weather systems.

  11. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  12. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  13. Hurricanes

    Science.gov (United States)

    ... spawn tornadoes and lead to flooding. The high winds and heavy rains can destroy buildings, roads and bridges, and knock down power lines and trees. In coastal areas, very high tides called storm ...

  14. Hurricanes

    Science.gov (United States)

    ... Awareness Human Trafficking Awareness Month Holiday Stress Homeless Youth Awareness Month Bullying Prevention Domestic Violence Awareness Month Suicide Prevention Month/World Suicide Day Sept. 11th National ...

  15. Hurricane Katrina - Murphy Oil Spill Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  16. Hurricane Sandy science plan: New York

    Science.gov (United States)

    Ransom, Clarice N.

    2013-01-01

    Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. More than one-half of the U.S. population lives within 50 miles of a coast, and this number is increasing. The U.S. Geological Survey (USGS) is one of the largest providers of geologic and hydrologic information in the world. Federal, State, and local partners depend on the USGS science to know how to prepare for hurricane hazards and reduce losses from future hurricanes. The USGS works closely with other bureaus within the Department of the Interior, the Federal Emergency Management Agency, the National Oceanic Atmospheric Administration, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and many State and local agencies to identify their information needs before, during, and after hurricanes.

  17. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  18. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  19. Final Gulf Coast Hurricanes Situation Report #46

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-01-26

    According to Entergy New Orleans, electricity has been restored to the vast majority of residents and businesses in the city, except in a few isolated areas that sustained severe devastation from Hurricane Katrina.

  20. Hurricane Irene Poster (August 27, 2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Irene poster. Color composite GOES image shows Irene moving through the North Carolina Outer Banks on August 27, 2011. Poster size is 36"x27"

  1. Forecasting OctoberNovember Caribbean hurricane days

    National Research Council Canada - National Science Library

    Philip J. Klotzbach

    2011-01-01

      Late season Caribbean hurricane activity is predictable ENSO and the AWP show skill as predictors for OctNov Caribbean activity OctoberNovember Caribbean activity can significantly impact the US...

  2. Hurricane Katrina - Murphy Oil Spill Boundary

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  3. Hurricane Matthew Takes Aim At Florida

    Science.gov (United States)

    ... plan for adequate supplies in case you lose power and water for several days and you are not able to leave due to flooding or blocked roads. Hurricane winds can cause trees and branches to fall, so trim or remove ...

  4. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  5. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined....... There is a good agreement between the SAR-estimated HE center location and the best track data from the National Hurricane Center. The wind speeds at 10 m above the ocean surface are also retrieved from the SAR data using the geophysical model function (GMF), CMOD5, and compared with in situ wind speed...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  6. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  7. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2017-01-01

    Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.

  8. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  9. Identification of Caribbean basin hurricanes from Spanish documentary sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herrera, R. [Depto. Fisica de la Tierra II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gimeno, L. [Universidad de Vigo, Ourense (Spain); Ribera, P.; Gonzalez, E.; Fernandez, G. [Universidad Pablo de Olavide, Sevilla (Spain); Hernandez, E. [Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-15

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurricane activity. The documents provide detailed descriptions of a hurricane's impacts and allow us to identify previously unreported hurricanes, obtain more precise dates for hurricanes previously identified, better define the area affected by a given hurricane and, finally, better assess a hurricane's intensity.

  10. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  11. Child mortality after Hurricane Katrina.

    Science.gov (United States)

    Kanter, Robert K

    2010-03-01

    Age-specific pediatric health consequences of community disruption after Hurricane Katrina have not been analyzed. Post-Katrina vital statistics are unavailable. The objectives of this study were to validate an alternative method to estimate child mortality rates in the greater New Orleans area and compare pre-Katrina and post-Katrina mortality rates. Pre-Katrina 2004 child mortality was estimated from death reports in the local daily newspaper and validated by comparison with pre-Katrina data from the Louisiana Department of Health. Post-Katrina child mortality rates were analyzed as a measure of health consequences. Newspaper-derived estimates of mortality rates appear to be valid except for possible underreporting of neonatal rates. Pre-Katrina and post-Katrina mortality rates were similar for all age groups except infants. Post-Katrina, a 92% decline in mortality rate occurred for neonates (Katrina decline in infant mortality rate exceeds the pre-Katrina discrepancy between newspaper-derived and Department of Health-reported rates. A declining infant mortality rate raises questions about persistent displacement of high-risk infants out of the region. Otherwise, there is no evidence of long-lasting post-Katrina excess child mortality. Further investigation of demographic changes would be of interest to local decision makers and planners for recovery after public health emergencies in other regions.

  12. Cold wake of Hurricane Frances

    Science.gov (United States)

    D'Asaro, Eric A.; Sanford, Thomas B.; Niiler, P. Peter; Terrill, Eric J.

    2007-08-01

    An array of instruments air-deployed ahead of Hurricane Frances measured the three-dimensional, time dependent response of the ocean to this strong (60 ms-1) storm. Sea surface temperature cooled by up to 2.2°C with the greatest cooling occurring in a 50-km-wide band centered 60-85 km to the right of the track. The cooling was almost entirely due to vertical mixing, not air-sea heat fluxes. Currents of up to 1.6 ms-1 and thermocline displacements of up to 50 m dispersed as near-inertial internal waves. The heat in excess of 26°C, decreased behind the storm due primarily to horizontal advection of heat away from the storm track, with a small contribution from mixing across the 26°C isotherm. SST cooling under the storm core (0.4°C) produced a 16% decrease in air-sea heat flux implying an approximately 5 ms-1 reduction in peak winds

  13. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    Science.gov (United States)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  14. 77 FR 74341 - Establishing the Hurricane Sandy Rebuilding Task Force

    Science.gov (United States)

    2012-12-14

    ... the Hurricane Sandy Rebuilding Task Force By the authority vested in me as President by the.... Hurricane Sandy made landfall on October 29, 2012, resulting in major flooding, extensive structural damage... assist the affected region. A disaster of Hurricane Sandy's magnitude merits a comprehensive...

  15. Increase in West Nile neuroinvasive disease after Hurricane Katrina.

    Science.gov (United States)

    Caillouët, Kevin A; Michaels, Sarah R; Xiong, Xu; Foppa, Ivo; Wesson, Dawn M

    2008-05-01

    After Hurricane Katrina, the number of reported cases of West Nile neuroinvasive disease (WNND) sharply increased in the hurricane-affected regions of Louisiana and Mississippi. In 2006, a >2-fold increase in WNND incidence was observed in the hurricane-affected areas than in previous years.

  16. Increase in West Nile Neuroinvasive Disease after Hurricane Katrina

    OpenAIRE

    Caillou?t, Kevin A.; Michaels, Sarah R.; Xiong, Xu; Foppa, Ivo; Wesson, Dawn M.

    2008-01-01

    After Hurricane Katrina, the number of reported cases of West Nile neuroinvasive disease (WNND) sharply increased in the hurricane-affected regions of Louisiana and Mississippi. In 2006, a >2-fold increase in WNND incidence was observed in the hurricane-affected areas than in previous years.

  17. Community College Re-Enrollment after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Rhodes, Jean E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants' pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources…

  18. Numerical modeling of altocumulus cloud layers

    Science.gov (United States)

    Liu, Shuairen

    1998-07-01

    Altocumulus (Ac) clouds are predominantly water clouds and typically less than several hundred meters thick. Ac cloud heights are mid-level, from 2 to 8 km. Ac clouds cover large portions of the Earth and play an important role in the Earth's energy budget through their effects on solar and infrared radiation. A two-dimensional cloud resolving model (CRM) and a one-dimensional turbulent closure model (TCM) are used to study Ac clouds with idealized initial conditions. An elevated mixed layer model (MLM) is developed and the results for the MLM are compared with results for CRM. The impacts of large-scale vertical motion, and solar and IR radiation, the utility of the TCM, the mixed layer characteristics and circulation of Ac layers, the turbulent kinetic energy (TKE) budget, and effects of relative humidify (RH) above the cloud are studied with a series of numerical simulations using the CRM and TCM. The results show that weak large-scale vertical motion may allow for a long lifetime of Ac clouds. In the nocturnal case, feedbacks between the liquid water path (LWP), IR radiation, and entrainment lead to an Ac layer with a nearly steady structure and circulation. The solar radiation in the diurnal case leads to decreases in the LWP, circulation intensity, and entrainment rate during the day. The comparison of TCM and CRM simulations suggests that TCM simulations can portray the basic characteristics of Ac clouds. The Ac convective layer includes mainly the cloud region and a shallow subcloud layer. In the Ac convective layers, the updrafts are wide and weak, whereas the downdrafts are narrow and strong. The updrafts are associated with regions of large cloud water mixing ratio, and the downdrafts with the regions of small cloud water mixing ratio. In Ac layers, the TKE is as large as in stratocumulus-topped-boundary-layer (STBL). The TKE is produced by buoyancy in the cloud region, dissipated by viscous dissipation, and redistributed upward and downward through

  19. The Department of Defense and Homeland Security relationship: Hurricane Katrina through Hurricane Irene.

    Science.gov (United States)

    Weaver, John Michael

    2015-01-01

    This research explored federal intervention with the particular emphasis on examining how a collaborative relationship between Department of Defense (DOD) and Homeland Security (DHS) led to greater effectiveness between these two federal departments and their subordinates (United States Northern Command and Federal Emergency Management Agency, respectively) during the preparation and response phases of the disaster cycle regarding US continental-based hurricanes. Through the application of a two-phased, sequential mixed methods approach, this study determined how their relationship has led to longitudinal improvements in the years following Hurricane Katrina, focusing on hurricanes as the primary unit of analysis.

  20. Hurricane Katrina: addictive behavior trends and predictors.

    Science.gov (United States)

    Beaudoin, Christopher E

    2011-01-01

    Post-disaster trends in alcohol consumption and cigarette smoking, as well as their predictors, were identified. Methods. Data from cross-sectional and panel surveys of African American adults in New Orleans, Louisiana, were used from before (2004: n = 1,867; 2005: n = 879) and after (2006a: n = 500; 2006b: n = 500) Hurricane Katrina. Alcohol consumption increased significantly from pre- to post-Hurricane Katrina, while cigarette smoking remained constant. In 2006, posttraumatic stress disorder (PTSD) was associated with cigarette smoking, whereas "news attention" and "provided social support" were inversely associated with cigarette smoking. "News attention" was also inversely associated with cigarette smoking frequency, while "neighborliness" was associated with alcohol consumption. In addition, the effects of PTSD on alcohol consumption were moderated by "neighborliness." In the wake of Hurricane Katrina, there were complex predictive processes of addictive behaviors involving PTSD, news information, and social capital-related measures.

  1. Near-inertial motions in the DeSoto Canyon during Hurricane Georges

    Science.gov (United States)

    Jordi, Antoni; Wang, Dong-Ping; Hamilton, Peter

    2016-09-01

    Hurricane Georges passed directly over an array of 13 moorings deployed in the DeSoto Canyon in the northern Gulf of Mexico on 27-28 September 1998. Current velocity data from the mooring array were analyzed together with a primitive-equation model simulation with realistic hurricane forcing, to characterize the generation and propagation of the hurricane-generated near-inertial waves. The model successfully reproduces the observed mean (sub-inertial) and near-inertial motions. The upper ocean response is strongly impacted by the canyon 'wall': a strong jet is formed along the slope, and the near-inertial motions on the shelf are rapidly suppressed. The model results moreover suggest that strong near-inertial waves in the mixed layer are mostly trapped in an energy flux recirculating gyre around the canyon. This gyre retains the near-inertial energy in the canyon region and enhances the transfer of near-inertial energy below the mixed layer. Additional simulations with idealized topographies show that the presence of a steep slope rather than the canyon is fundamental for the generation of this recirculating gyre. The near-inertial wave energy budget shows that during the study period the wind generated an input of 6.79 × 10-2 Wm-2 of which about 1/3, or 2.43 × 10-2 Wm-2, was transferred below the mixed layer. The horizontal energy flux into and out of the canyon region, in contrast, was relatively weak.

  2. Hurricane Ike: Field Investigation Survey (Invited)

    Science.gov (United States)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  3. Worldwide historical hurricane tracks from 1848 through the previous hurricane season

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and...

  4. Hurricane Charley Exposure and Hazard of Preterm Delivery, Florida 2004.

    Science.gov (United States)

    Grabich, Shannon C; Robinson, Whitney R; Engel, Stephanie M; Konrad, Charles E; Richardson, David B; Horney, Jennifer A

    2016-12-01

    Objective Hurricanes are powerful tropical storm systems with high winds which influence many health effects. Few studies have examined whether hurricane exposure is associated with preterm delivery. We aimed to estimate associations between maternal hurricane exposure and hazard of preterm delivery. Methods We used data on 342,942 singleton births from Florida Vital Statistics Records 2004-2005 to capture pregnancies at risk of delivery during the 2004 hurricane season. Maternal exposure to Hurricane Charley was assigned based on maximum wind speed in maternal county of residence. We estimated hazards of overall preterm delivery (<37 gestational weeks) and extremely preterm delivery (<32 gestational weeks) in Cox regression models, adjusting for maternal/pregnancy characteristics. To evaluate heterogeneity among racial/ethnic subgroups, we performed analyses stratified by race/ethnicity. Additional models investigated whether exposure to multiples hurricanes increased hazard relative to exposure to one hurricane. Results Exposure to wind speeds ≥39 mph from Hurricane Charley was associated with a 9 % (95 % CI 3, 16 %) increase in hazard of extremely preterm delivery, while exposure to wind speed ≥74 mph was associated with a 21 % (95 % CI 6, 38 %) increase. Associations appeared greater for Hispanic mothers compared to non-Hispanic white mothers. Hurricane exposure did not appear to be associated with hazard of overall preterm delivery. Exposure to multiple hurricanes did not appear more harmful than exposure to a single hurricane. Conclusions Hurricane exposure may increase hazard of extremely preterm delivery. As US coastal populations and hurricane severity increase, the associations between hurricane and preterm delivery should be further studied.

  5. Sensitivity of Tropical-Cyclone Models to the Surface Drag Coefficient in Different Boundary-Layer Schemes

    Science.gov (United States)

    2014-04-01

    2006). The far-field temperature and humidity are based on Jordan’s Caribbean sounding for the hurricane season (Jordan, 1958). For the purpose of...in this direction. Key Words: hurricanes ; tropical cyclones; typhoons; surface drag coefficient; frictional drag; boundary layer Received 16 June 2010...using one of five available schemes were compared, not only between themselves, but where possible with recent observational analyses of hurricane

  6. Hurricane names: A bunch of hot air?

    Directory of Open Access Journals (Sweden)

    Gary Smith

    2016-06-01

    Full Text Available It has been argued that female-named hurricanes are deadlier because people do not take them seriously. However, this conclusion is based on a questionable statistical analysis of a narrowly defined data set. The reported relationship is not robust in that it is not confirmed by a straightforward analysis of more inclusive data or different data.

  7. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  8. Economic impacts of hurricanes on forest owners

    Science.gov (United States)

    Jeffrey P. Prestemon; Thomas P. Holmes

    2010-01-01

    We present a conceptual model of the economic impacts of hurricanes on timber producers and consumers, offer a framework indicating how welfare impacts can be estimated using econometric estimates of timber price dynamics, and illustrate the advantages of using a welfare theoretic model, which includes (1) welfare estimates that are consistent with neo-classical...

  9. Investigation of long-term hurricane activity

    NARCIS (Netherlands)

    Nguyen, B.M.; Van Gelder, P.H.A.J.M.

    2012-01-01

    This paper presents a new approach of applying numerical methods to model storm processes. A storm empirical track technique is utilized to simulate the full tracks of hurricanes, starting with their initial points over the sea and ending with their landfall locations or final dissipations. The

  10. Hurricane Ike versus an Atomic Bomb

    Science.gov (United States)

    Pearson, Earl F.

    2013-01-01

    The destructive potential of one of nature's most destructive forces, the hurricane, is compared to one of human's most destructive devices, an atomic bomb. Both can create near absolute devastation at "ground zero". However, how do they really compare in terms of destructive energy? This discussion compares the energy, the…

  11. Rapid mapping of hurricane damage to forests

    Science.gov (United States)

    Erik M. Nielsen

    2009-01-01

    The prospects for producing rapid, accurate delineations of the spatial extent of forest wind damage were evaluated using Hurricane Katrina as a test case. A damage map covering the full spatial extent of Katrina?s impact was produced from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery using higher resolution training data. Forest damage...

  12. The economics and ethics of Hurricane Katrina.

    Science.gov (United States)

    Rockwell, Llewellyn H; Block, Walter E

    2010-01-01

    How might free enterprise have dealt with Hurricane Katrina and her aftermath. This article probes this question at increasing levels of radicalization, starting with the privatization of several government “services” and ending with the privatization of all of them.

  13. Gulf Coast Hurricanes Situation Report #40

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-11-14

    On 11/12 Florida Power & Light (FPL) announced that crews had essentially completed Hurricane Wilma restoration efforts to all 3.2 million customers in South Florida who had been without power. Electricity restoration efforts are now essentially complete in Florida.

  14. Hurricanes as Heat Engines: Two Undergraduate Problems

    Science.gov (United States)

    Pyykko, Pekka

    2007-01-01

    Hurricanes can be regarded as Carnot heat engines. One reason that they can be so violent is that thermodynamically, they demonstrate large efficiency, [epsilon] = (T[subscript h] - T[subscript c]) / T[subscript h], which is of the order of 0.3. Evaporation of water vapor from the ocean and its subsequent condensation is the main heat transfer…

  15. Evacuating the Area of a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If a hurricane warning is issued for your area, or authorities tell you to evacuate, take only essential items. If you have time, turn off gas, electricity, and water and disconnect appliances.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/10/2007.

  16. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane f

  17. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane f

  18. Investigation of long-term hurricane activity

    NARCIS (Netherlands)

    Nguyen, B.M.; Van Gelder, P.H.A.J.M.

    2012-01-01

    This paper presents a new approach of applying numerical methods to model storm processes. A storm empirical track technique is utilized to simulate the full tracks of hurricanes, starting with their initial points over the sea and ending with their landfall locations or final dissipations. The theo

  19. Preparing for a Hurricane: Prescription Medications

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    What you should do to protect yourself and your family from a hurricane. As you evacuate, remember to take your prescription medicines with you.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 7/17/2008.

  20. Hurricane Ike versus an Atomic Bomb

    Science.gov (United States)

    Pearson, Earl F.

    2013-01-01

    The destructive potential of one of nature's most destructive forces, the hurricane, is compared to one of human's most destructive devices, an atomic bomb. Both can create near absolute devastation at "ground zero". However, how do they really compare in terms of destructive energy? This discussion compares the energy, the…

  1. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.;

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...

  2. Atlantic Hurricane Activity: 1851-1900

    Science.gov (United States)

    Landsea, C. W.

    2001-12-01

    This presentation reports on the second year's work of a three year project to re-analyze the North Atlantic hurricane database (or HURDAT). The original database of six-hourly positions and intensities were put together in the 1960s in support of the Apollo space program to help provide statistical track forecast guidance. In the intervening years, this database - which is now freely and easily accessible on the Internet from the National Hurricane Center's (NHC's) Webpage - has been utilized for a wide variety of uses: climatic change studies, seasonal forecasting, risk assessment for county emergency managers, analysis of potential losses for insurance and business interests, intensity forecasting techniques and verification of official and various model predictions of track and intensity. Unfortunately, HURDAT was not designed with all of these uses in mind when it was first put together and not all of them may be appropriate given its original motivation. One problem with HURDAT is that there are numerous systematic as sell as some random errors in the database which need correction. Additionally, analysis techniques have changed over the years at NHC as our understanding of tropical cyclones has developed, leading to biases in the historical database that have not been addressed. Another difficulty in applying the hurricane database to studies concerned with landfalling events is the lack exact location, time and intensity at hurricane landfall. Finally, recent efforts into uncovering undocumented historical hurricanes in the late 1800s and early 1900s led by Jose Fernandez-Partagas have greatly increased our knowledge of these past events, which are not yet incorporated into the HURDAT database. Because of all of these issues, a re-analysis of the Atlantic hurricane database is being attempted that will be completed in three years. As part of the re-analyses, three files will be made available: {* } The revised Atlantic HURDAT (with six hourly intensities

  3. Impact of Hurricane Exposure on Reproductive Health Outcomes, Florida, 2004.

    Science.gov (United States)

    Grabich, Shannon C; Robinson, Whitney R; Konrad, Charles E; Horney, Jennifer A

    2017-08-01

    Prenatal hurricane exposure may be an increasingly important contributor to poor reproductive health outcomes. In the current literature, mixed associations have been suggested between hurricane exposure and reproductive health outcomes. This may be due, in part, to residual confounding. We assessed the association between hurricane exposure and reproductive health outcomes by using a difference-in-difference analysis technique to control for confounding in a cohort of Florida pregnancies. We implemented a difference-in-difference analysis to evaluate hurricane weather and reproductive health outcomes including low birth weight, fetal death, and birth rate. The study population for analysis included all Florida pregnancies conceived before or during the 2003 and 2004 hurricane season. Reproductive health data were extracted from vital statistics records from the Florida Department of Health. In 2004, 4 hurricanes (Charley, Frances, Ivan, and Jeanne) made landfall in rapid succession; whereas in 2003, no hurricanes made landfall in Florida. Overall models using the difference-in-difference analysis showed no association between exposure to hurricane weather and reproductive health. The inconsistency of the literature on hurricane exposure and reproductive health may be in part due to biases inherent in pre-post or regression-based county-level comparisons. We found no associations between hurricane exposure and reproductive health. (Disaster Med Public Health Preparedness. 2017;11:407-411).

  4. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  5. 78 FR 32296 - Second Allocation of Public Transportation Emergency Relief Funds in Response to Hurricane Sandy...

    Science.gov (United States)

    2013-05-29

    ... Response to Hurricane Sandy: Response, Recovery & Resiliency AGENCY: Federal Transit Administration (FTA... recipients most severely affected by Hurricane Sandy: the Metropolitan Transportation Authority, New Jersey... Federal Register notice, bringing the total amount of Hurricane Sandy Emergency Relief funds allocated...

  6. Rediscovering community--reflections after Hurricane Sandy.

    Science.gov (United States)

    See, Sharon

    2013-01-01

    Hoboken, New Jersey, is a town of 50,000 residents located across the Hudson River from New York City. Most of Hoboken's infrastructure was compromised during Hurricane Sandy as a result of flooding and power outages that rendered many businesses inoperable, including all of the pharmacies in town. Despite a focus on emergency preparedness since Hurricane Katrina and 9/11, there were no contingencies in place to facilitate and assess the medication needs of the community in the event of a natural disaster. This essay describes how the author rediscovered the meaning of community, and through working with colleagues in other health care disciplines and non-health care volunteers, provided care to patients in suboptimal circumstances.

  7. Hurricane damaged fixed platforms and wellhead structures

    Energy Technology Data Exchange (ETDEWEB)

    Shuttleworth, E.P.; Frieze, P.A.

    1998-03-01

    The objective of this study was to review data on damages to offshore platforms with a view to determining their suitability for further exploitation and analysis through a preliminary assessment of trends in the data when viewed from a risk standpoint. To realise this objective, a database on hurricane and other storm related damages was generated and past design practice, particularly concerning environmental load levels, was established. Information was gathered on extreme wave heights, damages, platform details, pushover analyses and structural frame load tests. The information was obtained through: a literature survey of journals, conference proceedings, design codes and guidelines; approaches to organisations in the offshore industry with significant experience of hurricanes, storm-damaged structures and pushover analyses; and interrogation of three major databases on offshore storm and other damages - PMB, MMS and WOAD. (author)

  8. Lagrangian mixing in an axisymmetric hurricane model

    Directory of Open Access Journals (Sweden)

    B. Rutherford

    2009-09-01

    Full Text Available This paper discusses the extension of established Lagrangian mixing measures to make them applicable to data extracted from a 2-D axisymmetric hurricane simulation. Because of the non-steady and unbounded characteristics of the simulation, the previous measures are extended to a moving frame approach to create time-dependent mixing rates that are dependent upon the initial time of particle integration, and are computed for nonlocal regions. The global measures of mixing derived from finite-time Lyapunov exponents, relative dispersion, and a measured mixing rate are applied to distinct regions representing different characteristic feautures within the model. It is shown that these time-dependent mixing rates exhibit correlations with maximal tangential winds during a quasi-steady state, establishing a connection between mixing and hurricane intensity.

  9. Atlantic hurricane surge response to geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-10-26

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase by a factor of 2-7 for each degree of increase in mean global temperature. Geoengineering by stratospheric sulphate aerosol injection cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 8 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the RCP4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those in RCP4.5, but sulphate injection would have to double between 2020 and 2070 to balance RCP 4.5 to nearly 10 Tg SO2 yr-1, with consequent implications for damage to stratospheric ozone. We project changes in storm frequencies using a temperature-dependent Generalized Extreme Value statistical model calibrated by historical storm surges from 1923 and observed temperatures. The numbers of storm surge events as big as the one that caused the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this is only marginally statistically significant. However, when sea level rise differences at 2070 between RCP4.5 and geoengineering are factored in to coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5 year events and perhaps halved for 50 year surges.

  10. Atlantic hurricane surge response to geoengineering.

    Science.gov (United States)

    Moore, John C; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-11-10

    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges.

  11. Complicated grief associated with hurricane Katrina.

    Science.gov (United States)

    Shear, M Katherine; McLaughlin, Katie A; Ghesquiere, Angela; Gruber, Michael J; Sampson, Nancy A; Kessler, Ronald C

    2011-08-01

    Although losses are important consequences of disasters, few epidemiological studies of disasters have assessed complicated grief (CG) and none assessed CG associated with losses other than death of loved one. Data come from the baseline survey of the Hurricane Katrina Community Advisory Group, a representative sample of 3,088 residents of the areas directly affected by Hurricane Katrina. A brief screen for CG was included containing four items consistent with the proposed DSM-V criteria for a diagnosis of bereavement-related adjustment disorder. Fifty-eight and half percent of respondents reported a significant hurricane-related loss: Most-severe losses were 29.0% tangible, 9.5% interpersonal, 8.1% intangible, 4.2% work/financial, and 3.7% death of loved one. Twenty-six point one percent respondents with significant loss had possible CG and 7.0% moderate-to-severe CG. Death of loved one was associated with the highest conditional probability of moderate-to-severe CG (18.5%, compared to 1.1-10.5% conditional probabilities for other losses), but accounted for only 16.5% of moderate-to-severe CG due to its comparatively low prevalence. Most moderate-to-severe CG was due to tangible (52.9%) or interpersonal (24.0%) losses. Significant predictors of CG were mostly unique to either bereavement (racial-ethnic minority status, social support) or other losses (prehurricane history of psychopathology, social competence.). Nonbereavement losses accounted for the vast majority of hurricane-related possible CG despite risk of CG being much higher in response to bereavement than to other losses. This result argues for expansion of research on CG beyond bereavement and alerts clinicians to the need to address postdisaster grief associated with a wide range of losses. © 2011 Wiley-Liss, Inc.

  12. Hurricane Katrina as a "teachable moment"

    Science.gov (United States)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  13. Coastal Change During Hurricane Isabel 2003

    Science.gov (United States)

    Morgan, Karen

    2009-01-01

    On September 18, 2003, Hurricane Isabel made landfall on the northern Outer Banks of North Carolina. At the U.S. Army Corps of Engineer's Field Research Facility in Duck, 125 km north of where the eyewall cut across Hatteras Island, the Category 2 storm generated record conditions for the 27 years of monitoring. The storm produced an 8.1 m high wave measured at a waverider buoy in 20 m of water and a 1.5 m storm surge. As part of a program to document and better understand the changes in vulnerability of the Nation's coasts to extreme storms, the U.S. Geological Survey (USGS), in collaboration with the National Aeronautics and Space Administration (NASA), surveyed the impact zone of Hurricane Isabel. Methods included pre- and post-storm photography, videography, and lidar. Hurricane Isabel caused extensive erosion and overwash along the Outer Banks near Cape Hatteras, including the destruction of houses, the erosion of protective sand dunes, and the creation of island breaches. The storm eroded beaches and dunes in Frisco and Hatteras Village, southwest of the Cape. Overwash deposits covered roads and filled homes with sand. The most extensive beach changes were associated with the opening of a new breach about 500 m wide that divided into three separate channels that completely severed the island southwest of Cape Hatteras. The main breach, and a smaller one several kilometers to the south (not shown), occurred at minima in both island elevation and island width.

  14. Hurricane Katrina as a "teachable moment"

    Directory of Open Access Journals (Sweden)

    M. H. Glantz

    2008-04-01

    Full Text Available By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time.

    Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region.

    The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1.

    Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on

  15. Nova Scotia Power response to Hurricane Juan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    Hurricane Juan hit the Halifax Regional Municipality on September 28, 2003, creating the largest outage in Nova Scotia Power's history. This detailed report documents the extensive damage that Hurricane Juan caused to the power transmission and distribution system in Nova Scotia. It also reviews the massive power restoration effort, with reference to numerous interviews, computer records and data logs which offer a wide range of observations, statistics and insights into the preparation and performance of Nova Scotia Power Inc. (NSPI) and the efforts of other key organizations following the storm. NSPI organized a recovery effort that matched the intensity of the hurricane. A fire in the Scotia Square Office Tower caused the evacuation of the company's call centre. The Tufts Cove station in Dartmouth, which generates 400 megawatts of power, was forced to shut down. Excess electricity was moved into New Brunswick and other jurisdictions to maintain system stability. The main priority was to restore customers back to service. Within 5 days of the hurricane, 95 per cent of those who lost power had service restored. Hurricane Juan caused the most damage to the transmission and distribution system in NSPI's history. Three out of five high capacity transmission lines were put out of service. Three 120-foot high transmission towers fell, and 17 main transmission lines were damaged and put out of service. Forty-five major substations were affected and 145 distribution feeders were damaged or tripped off, including 106 in the Halifax Regional Municipality. Large portions of 4,500 kilometres of local distribution lines in the Halifax Regional Municipality were damaged, including thousands of kilometers across the Northeast. The power crew, consisting of 2,000 individuals from the region and neighbouring utilities in New Brunswick and Maine, worked for 15 consecutive days to replace 275 transformers, 760 power poles, and 125,000 metres of conductor wire. NSPI

  16. Cloud Microphysics in Hurricane Outflows: Observations in 'Bonnie' (1998) at 12 km Altitude

    Science.gov (United States)

    Pueschel, Rudolf F.; Hallett, J.; Strawa, A. W.; Ferry, G. V.; Bui, T. P.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    The water balance of a hurricane is controlled by boundary layer inflow, near vertical motion in the eyewall causing coalescence precipitation at above and residual ice precipitation at below freezing temperatures, and cirrus outflow at below -40 C aloft. In this paper we address the question of efficiency of water removal by this cirrus outflow which is important for the release of latent heat at high altitudes and its role in the dynamic flow at that level. During NASA's 1998 Convection and Moisture Experiment campaign we acquired microphysical outflow data in order to (1) determine the release and redistribution of latent heat near the top of hurricanes, (2) aid in TRMM algorithm development for remote sensing of precipitation, and (3) determine the optical/radiative characteristics of hurricane outflow. The data were acquired with Particle Measuring Systems two dimensional imaging spectrometers. On 23 August and again during the hurricane's landfall on 26 August, 1998, the NASA DC-8 aircraft penetrated hurricane 'Bonnie' four times each near 200 hPa pressure altitude. The eye crossing times were determined by (1) zero counts of cloud particles, (2) approximately 5 C increases in static and potential temperatures, and (3) minima in speeds and changes of direction of horizontal winds. The vertical winds showed shear between -6 m per second and +4 m per second and tangential winds approached 30 m per second in the eyewall. The particle volumes in the eyewall (determined by the pixels the particles shadowed in the direction of flight [x-direction] and normally to it by the number of diodes that they shadowed [y-direction]) ranged between 0.5 and 5.0 cubic centimeters per cubic meter. With a particle density near 0.2 g per cubic centimeter (determined from in situ melting and evaporation on a surface collector), the 1.0 g per meter corresponding mass of cloud ice ranged between 0.27 and 2.7 g per kilograms yielding horizontal fluxes between 8.1 and 81 g per square

  17. Mechanisms for Secondary Eyewall Formation in Tropical Cyclones: A Case Study of Hurricane Katrina (2005)

    Science.gov (United States)

    Garcia-Rivera, J. M.; Lin, Y.

    2013-05-01

    The Weather Research and Forecast (WRF) model is used to simulate the last eyewall replacement cycle (ERC) of Hurricane Katrina (2005) just before it's landfall in the Louisiana coastline. In this study, we pursue a complete understanding of the physics behind the secondary eyewall formation (SEF) in tropical cyclones. The simulation results show the occurrence of the early stages of an ERC in the simulated storm just before landfall. This confirms that with the appropriate set of physics parameterization schemes, grid spacing and initial conditions, the numerical model is able to reproduce ERCs on certain tropical cyclones with no data assimilation or extra data inputs. Strong updrafts are observed to converge in a ring outside the primary eyewall of Hurricane Katrina (2005) suggesting SEF during that period. The increase of divergence outside the primary eyewall with an outer-ring of convergence forming above the boundary layer can be part of the mechanisms that lead to SEF. Also, potential vorticity (PV) field is analyzed for its possible relationship with the development of the secondary eyewall. This detailed study of the pre-ERC events in the inner-core of Hurricane Katrina can build the foundations for testing some of the existing hypotheses for the development of secondary eyewalls leading to new ideas behind their formation.

  18. Avifauna response to hurricanes: regional changes in community similarity

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Chengquan Huang; Jeffrey G. Masek; Volker C. Radeloff

    2010-01-01

    Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does...

  19. Long-term response of Caribbean palm forests to hurricanes

    Science.gov (United States)

    Ariel Lugo; J.L. Frangi

    2016-01-01

    We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...

  20. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  1. The Business of Intimacy: Hurricanes and Howling Wolves

    Science.gov (United States)

    Paley, Vivian

    2006-01-01

    The date is September 9, 2005. This article is set in a rural Wisconsin community, a thousand miles north of New Orleans, where Hurricane Katrina is about to make landfall. The four- and five- year- olds in Mrs. Olson's classroom have never experienced a hurricane or seen flood waters rise to cover the farms and houses they know, but they cannot…

  2. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  3. Teacher Guidelines for Helping Students after a Hurricane

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  4. Post-hurricane forest damage assessment using satellite remote sensing

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  5. Mass Media Use by College Students during Hurricane Threat

    Science.gov (United States)

    Piotrowski, Chris

    2015-01-01

    There is a dearth of studies on how college students prepare for the threat of natural disasters. This study surveyed college students' preferences in mass media use prior to an approaching hurricane. The convenience sample (n = 76) were from a university located in the hurricane-prone area of the central Gulf of Mexico coast. Interestingly,…

  6. Experience of Hurricane Katrina and Reported Intimate Partner Violence

    Science.gov (United States)

    Harville, Emily W.; Taylor, Catherine A.; Tesfai, Helen; Xiong, Xu; Buekens, Pierre

    2011-01-01

    Intimate partner violence (IPV) has been associated with stress, but few studies have examined the effect of natural disaster on IPV. In this study, the authors examine the relationship between experience of Hurricane Katrina and reported relationship aggression and violence in a cohort of 123 postpartum women. Hurricane experience is measured…

  7. Retention of Displaced Students after Hurricanes Katrina and Rita

    Science.gov (United States)

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  8. Physical aspects of Hurricane Hugo in Puerto Rico

    Science.gov (United States)

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  9. Teacher Guidelines for Helping Students after a Hurricane

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  10. Experience of Hurricane Katrina and Reported Intimate Partner Violence

    Science.gov (United States)

    Harville, Emily W.; Taylor, Catherine A.; Tesfai, Helen; Xiong, Xu; Buekens, Pierre

    2011-01-01

    Intimate partner violence (IPV) has been associated with stress, but few studies have examined the effect of natural disaster on IPV. In this study, the authors examine the relationship between experience of Hurricane Katrina and reported relationship aggression and violence in a cohort of 123 postpartum women. Hurricane experience is measured…

  11. Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?

    Directory of Open Access Journals (Sweden)

    J. F. Price

    2009-05-01

    Full Text Available The ocean thermal field is often represented in hurricane-ocean interaction by a metric termed the upper Ocean Heat Content (OHC, the vertical integral of ocean temperature in excess of 26°C. High values of OHC have proven useful for identifying ocean regions that are especially favorable for hurricane intensification. Nevertheless, it is argued here that a more direct and robust metric of the ocean thermal field may be afforded by a vertical average of temperature, in one version from the surface to 100 m, a typical depth of vertical mixing by a mature hurricane. OHC and the depth-averaged temperature, dubbed T100, are well correlated over the deep open ocean in the high range of OHC, OHC≥75 kJ cm−2. They are poorly correlated in the low range of OHC, ≤50 kJ cm−2, in part because OHC is degenerate when evaluated on cool ocean temperatures ≤26°C. OHC and T100 can be qualitatively different also over shallow continental shelves: OHC will generally indicate comparatively low values regardless of the ocean temperature, while T100 will take on high values over a shelf that is warm and upwelling neutral or negative, since there will be little cool water that could be mixed into the surface layer. Some limited evidence is that continental shelves may be regions of comparatively small sea surface cooling during a hurricane passage, but more research is clearly required on this important issue.

  12. Predicting hurricane wind damage by claim payout based on Hurricane Ike in Texas

    Directory of Open Access Journals (Sweden)

    Ji-Myong Kim

    2016-09-01

    Full Text Available The increasing occurrence of natural disasters and their related damage have led to a growing demand for models that predict financial loss. Although considerable research on the financial losses related to natural disasters has found significant predictors, there has been a lack of comprehensive study that addresses the relationship among vulnerabilities, natural disasters, and the economic losses of individual buildings. This study identifies the vulnerability indicators for hurricanes to establish a metric to predict the related financial loss. We classify hurricane-prone areas by highlighting the spatial distribution of losses and vulnerabilities. This study used a Geographical Information System (GIS to combine and produce spatial data and a multiple regression method to establish a wind damage prediction model. As the dependent variable, we used the value of the Texas Windstorm Insurance Association (TWIA claim payout divided by the appraised values of the buildings to predict real economic loss. As independent variables, we selected a hurricane indicator and built environment vulnerability indicators. The model we developed can be used by government agencies and insurance companies to predict hurricane wind damage.

  13. Hurricane Ike Deposits on the Bolivar Peninsula, Galveston Bay, Texas

    Science.gov (United States)

    Evans, Cynthia A.; Wilkinson, M. J.; Eppler, Dean

    2011-01-01

    In September 2008, Hurricane Ike made landfall on Galveston Bay, close to the NASA Johnson Space Center (JSC). The storm flooded much of the area with a storm surge ranging from 11 -20 feet. The Bolivar peninsula, the southeastern coast of Galveston Bay, experienced the brunt of the surge. Several agencies collected excellent imagery baselines before the storm and complementary data a few days afterward that helped define the impacts of the storm. In April of 2011, a team of scientists and astronauts from JSC conducted field mapping exercises along the Bolivar Peninsula, the section of the Galveston Bay coast most impacted by the storm. Astronauts routinely observe and document coastal changes from orbit aboard the International Space Station. As part of their basic Earth Science training, scientists at the Johnson Space Center take astronauts out for field mapping exercises so that they can better recognize and understand features and processes that they will later observe from the International Space Station. Using pre -storm baseline images of the Bolivar Peninsula near Rollover Pass and Gilchrist (NOAA/Google Earth Imagery and USGS aerial imagery and lidar data), the astronauts mapped current coastline positions at defined locations, and related their findings to specific coastal characteristics, including channel, jetties, and other developments. In addition to mapping, we dug trenches along both the Gulf of Mexico coast as well as the Galveston Bay coast of the Bolivar peninsula to determine the depth of the scouring from the storm on the Gulf side, and the amount of deposition of the storm surge deposits on the Bay side of the peninsula. The storm signature was easy to identify by sharp sediment transitions and, in the case of storm deposits, a layer of storm debris (roof shingles, PVC pipes, etc) and black, organic rich layers containing buried sea grasses in areas that were marshes before the storm. The amount of deposition was generally about 20 -25 cm

  14. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Science.gov (United States)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  15. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  16. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling

    Science.gov (United States)

    Aijaz, S.; Ghantous, M.; Babanin, A. V.; Ginis, I.; Thomas, B.; Wake, G.

    2017-05-01

    The effects of turbulence generated by nonbreaking waves have been investigated by testing and evaluating a new nonbreaking wave parameterization in a coupled hurricane-ocean-wave model. The MPI version of the Princeton Ocean Model (POM) with hurricane forcing is coupled with the WAVEWATCH-III (WW3) surface wave model. Hurricane Ivan is chosen as the test case due to its extreme intensity and availability of field data during its passage. The model results are validated against field observations of wave heights and sea surface temperatures (SSTs) from the National Data Buoy Centre (NDBC) during Hurricane Ivan and against limited in situ current and bottom temperature data. A series of numerical experiments is set up to examine the influence of the nonbreaking wave parameterization on the mixing of upper ocean. The SST response from the modeling experiments indicates that the nonbreaking wave-induced mixing leads to significant cooling of the SST and deepening of the mixed layer. It was found that the nondimensional constant b1 in the nonbreaking wave parameterization has different impacts on the weak and the strong sides of the storm track. A constant value of b1 leads to improved predictions on the strong side of the storm while a steepness-dependent b1 provides a better agreement with in situ observations on the weak side. A separate simulation of the intense tropical cyclone Olwyn in north-west Australia revealed the same trend for b1 on the strong side of the tropical cyclone.

  17. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac

    Science.gov (United States)

    Spencer, Laura J.; DiMarco, Steven F.; Wang, Zhankun; Kuehl, Joseph J.; Brooks, David A.

    2016-10-01

    The eye of Hurricane Isaac passed through the center of an array of six deep water water-column current meter moorings deployed in the northern Gulf of Mexico. The trajectory of the hurricane provided for a unique opportunity to quantify differences in the full water-column oceanic response to a hurricane to the left and right of the hurricane trajectory. Prior to the storm passage, relative vorticity on the right side of the hurricane was strongly negative, while on the left, relative vorticity was positive. This resulted in an asymmetry in the near-inertial frequencies oceanic response at depth and horizontally. A shift in the response to a slightly larger inertial frequencies ˜1.11f was observed and verified by theory. Additionally, the storm passage coincided with an asymmetric change in relative vorticity in the upper 1000 m, which persisted for ˜15 inertial periods. Vertical propagation of inertial energy was estimated at 29 m/d, while horizontal propagation at this frequency was approximately 5.7 km/d. Wavelet analysis showed two distinct subinertial responses, one with a period of 2-5 days and another with a period of 5-12 days. Analysis of the subinertial bands reveals that the spatial and temporal scales are shorter and less persistent than the near-inertial variance. As the array is geographically located near the site of the Deep Water Horizon oil spill, the spatial and temporal scales of response have significant implications for the fate, transport, and distribution of hydrocarbons following a deep water spill event.

  18. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  19. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate tha

  20. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  1. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate tha

  2. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate

  3. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; Morris, M.; Uhlhorn, E. W.; Black, P. G.

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  4. Ocean-Wave Coupled Modeling in COAMPS-TC: A Study of Hurricane Ivan (2004)

    Science.gov (United States)

    2013-08-15

    Hurricane Ivan (2004) 0603207N 73-9270-01-5 Travis A. Smith, Sue Chen, Timothy Campbell, Paul Martin, W. Erick Rogers, Sasa Gabersek, David Wang, Suzanne...Timothy Campbell a, Paul Martin a, W. Erick Rogers a, Saša Gaberšek b, David Wang a, Suzanne Carroll c, Richard Allard a aNaval Research Laboratory...the shelf currents followed Ekman dynamics with overlapping surface and bottom layers during Ivan’s approach and transitioned to a dominant surface

  5. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  6. Estimating hurricane hazards using a GIS system

    Directory of Open Access Journals (Sweden)

    A. Taramelli

    2008-08-01

    Full Text Available This paper develops a GIS-based integrated approach to the Multi-Hazard model method, with reference to hurricanes. This approach has three components: data integration, hazard assessment and score calculation to estimate elements at risk such as affected area and affected population. First, spatial data integration issues within a GIS environment, such as geographical scales and data models, are addressed. Particularly, the integration of physical parameters and population data is achieved linking remotely sensed data with a high resolution population distribution in GIS. In order to assess the number of affected people, involving heterogeneous data sources, the selection of spatial analysis units is basic. Second, specific multi-hazard tasks, such as hazard behaviour simulation and elements at risk assessment, are composed in order to understand complex hazard and provide support for decision making. Finally, the paper concludes that the integrated approach herein presented can be used to assist emergency management of hurricane consequences, in theory and in practice.

  7. A Simulation Tool for Hurricane Evacuation Planning

    Directory of Open Access Journals (Sweden)

    Daniel J. Fonseca

    2009-01-01

    Full Text Available Atlantic hurricanes and severe tropical storms are a serious threat for the communities in the Gulf of Mexico region. Such storms are violent and destructive. In response to these dangers, coastal evacuation may be ordered. This paper describes the development of a simulation model to analyze the movement of vehicles through I-65, a major US Interstate highway that runs north off the coastal City of Mobile, Alabama, towards the State of Tennessee, during a massive evacuation originated by a disastrous event such a hurricane. The constructed simulation platform consists of a primary and two secondary models. The primary model is based on the entry of vehicles from the 20 on-ramps to I-65. The two secondary models assist the primary model with related traffic events such as car breakdowns and accidents, traffic control measures, interarrival signaling, and unforeseen emergency incidents, among others. Statistical testing was performed on the data generated by the simulation model to indentify variation in relevant traffic variables affecting the timely flow of vehicles travelling north. The performed statistical analysis focused on the closing of alternative on-ramps throughout the Interstate.

  8. Weathering the storm: hurricanes and birth outcomes.

    Science.gov (United States)

    Currie, Janet; Rossin-Slater, Maya

    2013-05-01

    A growing literature suggests that stressful events in pregnancy can have negative effects on birth outcomes. Some of the estimates in this literature may be affected by small samples, omitted variables, endogenous mobility in response to disasters, and errors in the measurement of gestation, as well as by a mechanical correlation between longer gestation and the probability of having been exposed. We use millions of individual birth records to examine the effects of exposure to hurricanes during pregnancy, and the sensitivity of the estimates to these econometric problems. We find that exposure to a hurricane during pregnancy increases the probability of abnormal conditions of the newborn such as being on a ventilator more than 30min and meconium aspiration syndrome (MAS). Although we are able to reproduce previous estimates of effects on birth weight and gestation, our results suggest that measured effects of stressful events on these outcomes are sensitive to specification and it is preferable to use more sensitive indicators of newborn health. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Dynamics and Predictability of Hurricane Dolly (2008)

    Science.gov (United States)

    Fang, J.; Zhang, F.; Weng, Y.

    2008-12-01

    Through several cloud-resolving simulations with the Weather Research and Forecast (WRF-ARW) model, this study examines the dynamics and predictability of Hurricane Dolly (2008) with an emphasis on its initial development (around the time being declared as a tropical storm) and subsequent rapid intensification entering into the Gulf of Mexico. These WRF simulations include three that are directly initialized with the operational NCEP GFS analyses at 06, 12 and 18Z 20 July 2008, respectively (EXP06, EXP12, EXP18) and another the same as EXP06 except that the airborne Doppler velocity observations by a NOAA P3 aircraft during 12-15Z are assimilated with an ensemble-Kalman filter (ENKF06). Among the four experiments, only EXP06 fails to capture the rapid intensification and fails to develop the tropical storm into a mature hurricane. Preliminary comparison between the simulated fields of EXP06 and the GFS analysis at 12Z (e.g., IC of EXP12) indicates that large scale features favorable to the tropical cyclogenesis cannot be properly simulated in EXP06. The initial disturbance is rather weak positioned too far south-west that is far away from the primary convective. However, after the airborne radar data during 12-15Z are assimilated into the model, (from EXP06 into ENKF06), the ENKF06 simulation is greatly improved in that a well-organized warm-core vortex appears at the low level right after radar assimilation, which subsequently developed into a hurricane consistent with timing, track and intensity of observations. Interestingly, there are significant differences in the initial vortex position, structure and evolution among the three simulations (EXP12, EXP18, ENKF06) that all eventually develop a mature hurricane along the observed track (before landfall) with right timing after enters into the Gulf of Mexico. At 18Z 20 July, there is no apparent initial low-level cyclonic vortex in EXP12 and EXP18 (that is assimilated into ENKF06 due to radar observations

  10. Geologic record of Hurricane impacts on the New Jersey coast

    Science.gov (United States)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  11. Upper Ocean Responses to Hurricane Frances in September 2004

    Science.gov (United States)

    Sanford, T. B.; Price, J. F.; Webb, D. C.; Girton, J. B.

    2007-05-01

    Three new autonomous ocean velocity and density profilers were deployed ahead of Hurricane Frances as it passed north of Hispaniola in September 2004. These EM-APEX floats (velocity sensing versions of Webb Research Corp APEX floats) were launched from a C-130. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX float went in about 55 km to the right of the track (where the surface winds are strongest) and the third float was about 110 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m then continued profiling between 30 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean momentum, turbulence and salt and heat changes in response to the hurricane. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s produced vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.2 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of 50 m or more. Comparison with a 3-D numerical model of the ocean response to Frances' winds simulates accurately SML deepening and surface cooling as well as significant differences in maximum currents and heat content changes. These differences highlight the sensitivity of the ocean's response to both the specification of the wind field and the parameterization of stress

  12. The basic mechanism behind the hurricane-free warm tropical ocean

    Directory of Open Access Journals (Sweden)

    Z. Yuan

    2010-01-01

    Full Text Available No hurricane is detected in the tropics off the Brazilian coast due to the lack of initial conditions (e.g., the weak vertical shear of horizontal wind despite that high sea surface temperature is available. According to previous studies, the initial conditions (as the ingredients of hurricane's embryo are related so that the thick warm-and-moist layer (due to the updraft vapour below a cold-and-dry layer frames the convective instability which enhances diabatic processes accompanied by tropical cyclones with the weak vertical shear. So the basic question is how, starting with an internal-disturbance-free balance-situation, external forces create the rapidly-upward acceleration of moist air at the warm sea surface. The answer is revealed by the vertical-momentum equation which shows that boosted by the external-force-induced significant lower-layer equatorial westerly wind (LLEWW, the upward (unit-mass acceleration could be as significant as the midlatitude Coriolis force. Besides creating cyclonic vortices through the upward acceleration and diabatic processes, the external-force-induced significant-LLEWW could directly create cyclonic wind shears along with easterly jets for the low-level cyclonic vorticity through reducing the peak value of zonally-homogeneous trade easterlies (centered at the Equator between the Northern and Southern Hemisphere subtropical high-belts. We emphasize external forces to avoid the ''chicken-and-egg'' problem accompanying nonlinear interactions of internal-forcing processes. The external-force-induced significant-LLEWW could result from the deflection of the cross-equatorial flow characterized by the seasonal shift coincident with that of locations of most embryos. This significant cross-equatorial flow is driven by the significant differential heating between the largest continent with the highest plateau and the largest ocean with the warm pool located to the east and on the equatorward side of the continent on

  13. On the validity of representing hurricanes as Carnot heat engine

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2008-09-01

    Full Text Available It is argued, on the basis of detailed critique of published literature, that the existing thermodynamic theory of hurricanes, where it is assumed that the hurricane power is formed due to heat input from the ocean, is not physically consistent, as it comes in conflict with the first and second laws of thermodynamics. A quantitative perspective of describing hurricane energetics as that of an adiabatic atmospheric process occurring at the expense of condensation of water vapor that creates drop of local air pressure, is outlined.

  14. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  15. Hurricane Relief Operations in the Caribbean: Is the Use of the Military in Hurricane Relief Operations

    Science.gov (United States)

    2007-11-02

    Caribbean hurricanes are a type of tropical cyclone . They originate in the Atlantic Ocean off the coast of Africa and affect the Caribbean and 2 the...that will prove to be more suitable in disaster relief situations. Matthew Yarrow also shares Dynes’ view. He believes that soldiers are ill-suited... Haiti operations, in part due to the battalion commander’s lack of authority over troops from different countries. However, the performance of the

  16. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Directory of Open Access Journals (Sweden)

    A. D. Jayakaran

    2013-09-01

    Full Text Available Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  17. Genesis and maintenance of "Mediterranean hurricanes"

    Directory of Open Access Journals (Sweden)

    K. Emanuel

    2005-01-01

    Full Text Available Cyclonic storms that closely resemble tropical cyclones in satellite images occasionally form over the Mediterranean Sea. Synoptic and mesoscale analyses of such storms show small, warm-core structure and surface winds sometimes exceeding 25ms-1 over small areas. These analyses, together with numerical simulations, reveal that in their mature stages, such storms intensify and are maintained by a feedback between surface enthalpy fluxes and wind, and as such are isomorphic with tropical cyclones. In this paper, I demonstrate that a cold, upper low over the Mediterranean can produce strong cyclogenesis in an axisymmetric model, thereby showing that baroclinic instability is not necessary during the mature stages of Mediterranean hurricanes.

  18. National Assessment of Hurricane-Induced Coastal Erosion Hazards

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the United States...

  19. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  20. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    Science.gov (United States)

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  1. Hurricane Katrina Air Quality Sampling/Daily Monitoring (AQSDM)

    Science.gov (United States)

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  2. ENVIRONMENTAL SAMPLING AND ANALYSIS IN THE AFTERMATH OF HURRICANE KATRINA

    Science.gov (United States)

    This presentation describes the environmental sampling completed by EPA in southeastern Louisiana after Hurricane Katrina caused major catastrophic damage. Presentation also describes EPA's Environmental Unit activities in Baton Rouge and New Orleans, LA, and Dallas, TX.

  3. EMERGENCY RESPONSE FOR PUBLIC WATER SUPPLIES AFTER HURRICANE KATRINA

    Science.gov (United States)

    Hurricane Katrina resulted in damage and destruction to local water supplies in Mississippi and Louisiana affecting millions of people. Immediately following the devastation, a multidisciplinary team of 30 EPA emergency response, research, and water program personnel joined force...

  4. Hurricane Katrina Air Quality Sampling/Daily Monitoring (AQSDM)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  5. Landslides triggered by Hurricane Mitch in Tegucigalpa, Honduras

    Science.gov (United States)

    Harp, Edwin L.; Castaneda, Mario; Held, Matthew D.

    2002-01-01

    The arrival of Hurricane Mitch in Honduras in the latter part of the 1998 hurricane season produced effects that were unprecedented in their widespread nature throughout Central America. After winds from the storm had blown down more than 70 percent of the conifer forest on the Bay Island of Guanaja, the hurricane turned inland and stalled over the mainland of Honduras for 3 days. The resulting deluge of rainfall produced devastating flooding and landslides that resulted in more than 9,000 fatalities and 3 million people displaced. Although the eye of Hurricane Mitch passed through the northern part of Honduras, the greatest rainfall totals and intensities occurred in the southern part of the country near Choluteca. For the three days October 29-31, 1998, total rainfall at Choluteca exceeded 900 mm. Not surprisingly, it was in this area that the highest landslide concentrations occurred.

  6. Using new satellite data would improve hurricane forecasts

    National Research Council Canada - National Science Library

    Schultz, Colin

    2013-01-01

    To track and forecast the development of dangerous tropical cyclones, the National Weather Service's National Centers for Environmental Prediction uses a model known as the Hurricane Weather Research and Forecasting (HWRF) system...

  7. Fuel for cyclones: How the water vapor budget of a hurricane depends on its motion

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Chikunov, Alexander V; Sheil, Douglas; Nobre, Antonio D; Li, Bai-Lian

    2016-01-01

    Tropical cyclones are fueled by water vapor. Here we estimate the oceanic evaporation within an Atlantic hurricane to be less than one sixth of the total moisture flux precipitating over the same area. So how does the hurricane get the remaining water vapor? Our analysis of TRMM rainfall, MERRA atmospheric moisture and hurricane translation velocities suggests that access to water vapor relies on the hurricane's motion -- as it moves through the atmosphere, the hurricane consumes the water vapor it encounters. This depletion of atmospheric moisture by the hurricane leaves a "dry footprint" of suppressed rainfall in its wake. The thermodynamic efficiency of hurricanes -- defined as kinetic energy production divided by total latent heat release associated with the atmospheric moisture supply -- remains several times lower than Carnot efficiency even in the most intense hurricanes. Thus, maximum observed hurricane power cannot be explained by the thermodynamic Carnot limit.

  8. Divine Wind - The History and Science of Hurricanes

    Science.gov (United States)

    Emanuel, Kerry

    2005-09-01

    Imagine standing at the center of a Roman coliseum that is 20 miles across, with walls that soar 10 miles into the sky, towering walls with cascades of ice crystals falling along its brilliantly white surface. That's what it's like to stand in the eye of a hurricane. In Divine Wind , Kerry Emanuel, one of the world's leading authorities on hurricanes, gives us an engaging account of these awe-inspiring meteorological events, revealing how hurricanes and typhoons have literally altered human history, thwarting military incursions and changing the course of explorations. Offering an account of the physics of the tropical atmosphere, the author explains how such benign climates give rise to the most powerful storms in the world and tells what modern science has learned about them. Interwoven with this scientific account are descriptions of some of the most important hurricanes in history and relevant works of art and literature. For instance, he describes the 17th-century hurricane that likely inspired Shakespeare's The Tempest and that led to the British colonization of Bermuda. We also read about the Galveston Hurricane of 1900, by far the worst natural calamity in U.S. history, with a death toll between 8,000 and 12,000 that exceeded the San Francisco earthquake, the Johnstown Flood, and the Okeechobee Hurricane combined. Boasting more than one hundred color illustrations, from ultra-modern Doppler imagery to classic paintings by Winslow Homer, Divine Wind captures the profound effects that hurricanes have had on humanity. Its fascinating blend of history, science, and art will appeal to weather junkies, science buffs, and everyone who read Isaac's Storm .

  9. A team approach to preparing for hurricanes and other disasters.

    Science.gov (United States)

    Kendig, Jim

    2009-01-01

    Applying lessons learned in Hurricane Floyd in 1999, a three-hospital system located on Florida's exposed Space Coast was able to better deal with the devastation caused by hurricanes in 2004 and make changes in its plans to better prepare for the named storms which hit its area in 2008. Each new disaster, the author points out, brings with it new challenges which have to be considered in disaster planning.

  10. Mangrove forest recovery in the Everglades following Hurricane Wilma

    Science.gov (United States)

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  11. Hurricane Katrina: Impact on Cardiac Surgery Case Volume and Outcomes

    OpenAIRE

    Bakaeen, Faisal G.; Huh, Joseph; Chu, Danny; Coselli, Joseph S.; LeMaire, Scott A.; Mattox, Kenneth L.; Wall, Matthew J.; Wang, Xing Li; Shenaq, Salwa A.; Atluri, Prasad V.; Awad, Samir S.; Berger, David H.

    2008-01-01

    Hurricane Katrina produced a surge of patient referrals to our facility for cardiac surgery. We sought to determine the impact of this abrupt volume change on operative outcomes. Using our cardiac surgery database, which is part of the Department of Veterans Affairs' Continuous Improvement in Cardiac Surgery Program, we compared procedural outcomes for all cardiac operations that were performed in the year before the hurricane (Year A, 29 August 2004–28 August 2005) and the year after (Year B...

  12. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  13. Case study on visualizing hurricanes using illustration-inspired techniques.

    Science.gov (United States)

    Joshi, Alark; Caban, Jesus; Rheingans, Penny; Sparling, Lynn

    2009-01-01

    The devastating power of hurricanes was evident during the 2005 hurricane season, the most active season on record. This has prompted increased efforts by researchers to understand the physical processes that underlie the genesis, intensification, and tracks of hurricanes. This research aims at facilitating an improved understanding into the structure of hurricanes with the aid of visualization techniques. Our approach was developed by a mixed team of visualization and domain experts. To better understand these systems, and to explore their representation in NWP models, we use a variety of illustration-inspired techniques to visualize their structure and time evolution. Illustration-inspired techniques aid in the identification of the amount of vertical wind shear in a hurricane, which can help meteorologists predict dissipation. Illustration-style visualization, in combination with standard visualization techniques, helped explore the vortex rollup phenomena and the mesovortices contained within. We evaluated the effectiveness of our visualization with the help of six hurricane experts. The expert evaluation showed that the illustration-inspired techniques were preferred over existing tools. Visualization of the evolution of structural features is a prelude to a deeper visual analysis of the underlying dynamics.

  14. Hospitalization rates among dialysis patients during Hurricane Katrina.

    Science.gov (United States)

    Howard, David; Zhang, Rebecca; Huang, Yijian; Kutner, Nancy

    2012-08-01

    Dialysis centers struggled to maintain continuity of care for dialysis patients during and immediately following Hurricane Katrina's landfall on the US Gulf Coast in August 2005. However, the impact on patient health and service use is unclear. The impact of Hurricane Katrina on hospitalization rates among dialysis patients was estimated. Data from the United States Renal Data System were used to identify patients receiving dialysis from January 1, 2001 through August 29, 2005 at clinics that experienced service disruptions during Hurricane Katrina. A repeated events duration model was used with a time-varying Hurricane Katrina indicator to estimate trends in hospitalization rates. Trends were estimated separately by cause: surgical hospitalizations, medical, non-renal-related hospitalizations, and renal-related hospitalizations. The rate ratio for all-cause hospitalization associated with the time-varying Hurricane Katrina indicator was 1.16 (95% CI, 1.05-1.29; P = .004). The ratios for cause-specific hospitalization were: surgery, 0.84 (95% CI, 0.68-1.04; P = .11); renal-related admissions, 2.53 (95% CI, 2.09-3.06); P Katrina was 140, representing approximately three percent of dialysis patients at the affected clinics. Hospitalization rates among dialysis patients increased in the month following the Hurricane Katrina landfall, suggesting that providers and patients were not adequately prepared for large-scale disasters.

  15. 2006 United States Army Corps of Engineers (USACE) Post Hurricane Wilma Lidar: Hurricane Pass to Big Hickory Pass, FL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained in these files contain hydrographic and topographic data collected by the CHARTS system along the west coast of Florida from Hurricane Pass to Big...

  16. Analyzing after-action reports from Hurricanes Andrew and Katrina: repeated, modified, and newly created recommendations.

    Science.gov (United States)

    Knox, Claire Connolly

    2013-01-01

    Thirteen years after Hurricane Andrew struck Homestead, FL, Hurricane Katrina devastated the Gulf Coast of Mississippi, Alabama, and southeastern Louisiana. Along with all its destruction, the term "catastrophic" was redefined. This article extends the literature on these hurricanes by providing a macrolevel analysis of The Governor's Disaster Planning and Response Review Committee Final Report from Hurricane Andrew and three federal after-action reports from Hurricane Katrina, as well as a cursory review of relevant literature. Results provide evidence that previous lessons have not been learned or institutionalized with many recommendations being repeated or modified. This article concludes with a discussion of these lessons, as well as new issues arising during Hurricane Katrina.

  17. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  18. Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2014-09-01

    Full Text Available The turbulent structure of a stratocumulus-topped marine boundary layer over a two-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud-driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and time scales related to the cloud driven mixing are investigated, which are shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the upper cut-off wavelength of the inertial subrange is studied through spectral analysis of the vertical velocity. The bulk statistical profiles and the scaling of the inertial subrange show consistent behaviour as the boundary layer undergoes transitions between a coupled and decoupled stratocumulus layer. The cut-off wavelength of the inertial subrange does not appear to scale robustly with the relative depth of the local mixing regime at different altitudes during decoupled periods. Rather, the competition between surface-based and cloud-driven mixed layers suppresses the range of eddy sizes at all heights inside the boundary layer.

  19. A geospatial dataset for U.S. hurricane storm surge and sea-level rise vulnerability: Development and case study applications

    Directory of Open Access Journals (Sweden)

    Megan C. Maloney

    2014-01-01

    Full Text Available The consequences of future sea-level rise for coastal communities are a priority concern arising from anthropogenic climate change. Here, previously published methods are scaled up in order to undertake a first pass assessment of exposure to hurricane storm surge and sea-level rise for the U.S. Gulf of Mexico and Atlantic coasts. Sea-level rise scenarios ranging from +0.50 to +0.82 m by 2100 increased estimates of the area exposed to inundation by 4–13% and 7–20%, respectively, among different Saffir-Simpson hurricane intensity categories. Potential applications of these hazard layers for vulnerability assessment are demonstrated with two contrasting case studies: potential exposure of current energy infrastructure in the U.S. Southeast and exposure of current and future housing along both the Gulf and Atlantic Coasts. Estimates of the number of Southeast electricity generation facilities potentially exposed to hurricane storm surge ranged from 69 to 291 for category 1 and category 5 storms, respectively. Sea-level rise increased the number of exposed facilities by 6–60%, depending on the sea-level rise scenario and the intensity of the hurricane under consideration. Meanwhile, estimates of the number of housing units currently exposed to hurricane storm surge ranged from 4.1 to 9.4 million for category 1 and category 4 storms, respectively, while exposure for category 5 storms was estimated at 7.1 million due to the absence of landfalling category 5 hurricanes in the New England region. Housing exposure was projected to increase 83–230% by 2100 among different sea-level rise and housing scenarios, with the majority of this increase attributed to future housing development. These case studies highlight the utility of geospatial hazard information for national-scale coastal exposure or vulnerability assessment as well as the importance of future socioeconomic development in the assessment of coastal vulnerability.

  20. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  1. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  2. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  3. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  4. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    Science.gov (United States)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  5. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  6. Monitoring Hurricane Effects on Aquifer Salinity Using ALSM

    Science.gov (United States)

    Sedighi, A.; Starek, M. J.

    2005-12-01

    During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the severity of the storms resulted in drastic changes to the littoral zone geomorphology including extensive shoreline erosion and accretion that directly affected the subsurface hydrogeologic environment. The most important direct physical effects of a hurricane are the following: coastal erosion, shoreline inundation owing to higher than normal tide levels plus increased temporary surge levels during storms, and saltwater intrusion primarily into estuaries and groundwater aquifers. Erosion and deposition during the hurricane change the elevation, which causes change in the position of shoreline. The purpose of this study was to investigate the effects of sea level inundation due to the hurricanes on the near shore subsurface freshwater-saltwater interface. By utilizing high-resolution Airborne Laser Swath Mapping (ALSM) altimetry data acquired shortly before and after the three major hurricane landfalls, the change in shoreline topography was estimated to determine both small-scale and large-scale horizontal encroachment and volumetric change in shoreline. This information was used to develop a before and after variable density groundwater flow model to determine the impact of the hurricanes on the subsurface saltwater-freshwater interface. SEAWAT (Langevin 2001; Guo and Langevin 2002), which simulates three-dimensional, variable-density groundwater flow following a modular structure similar to MODFLOW (McDonald and Harbaugh 1988), was selected to represent the saltwater-freshwater interface in this investigation.

  7. Increases in gonorrhea among high school students following hurricane Katrina.

    Science.gov (United States)

    Nsuami, M J; Taylor, S N; Smith, B S; Martin, D H

    2009-06-01

    To determine the prevalence of Neisseria gonorrhoeae in a student population before hurricane Katrina and after their residential neighbourhoods were devastated in the wake of the hurricane. Students in a New Orleans public high school were offered urine screening for N gonorrhoeae and Chlamydia trachomatis using nucleic acid amplification tests before (n = 346) and after (n = 333) hurricane Katrina. Based on studies showing gonorrhea clustering in physically deteriorated neighbourhoods, it was hypothesised that the post-Katrina gonorrhea prevalence would be higher among students whose neighbourhoods still showed signs of deterioration in the aftermath of the hurricane. Before and after hurricane Katrina, the prevalence of gonorrhea increased from 2.3% (8/346, 95% CI 1.3% to 4.6%) to 5.1% (17/333, 95% CI 3.1% to 8.2%), respectively (one-sided p = 0.027). In logistic regression of gonorrhea controlling for gender, age, chlamydia infection and exposure to hurricane-affected residential neighbourhood conditions, gonorrhea was significantly associated with female gender (odds ratio (OR) 2.6, 95% CI 1.0 to 6.3; p = 0.04) and with chlamydia infection (OR 9.2, 95% CI 3.9 to 21.7; phurricane (OR 2.2, 95% CI 0.9 to 5.4; p = 0.09). The analysis indicates that the odds of testing positive for gonorrhea more than doubled among students after the hurricane, indicating that surveillance activities should be restored to monitor sexually transmitted infections (STIs) among at-risk populations. Redoubled efforts should be put into STI screening programmes as soon as possible following natural disasters to prevent resurgent STI incidence rates.

  8. Aftermath of Hurricane Ike along Texas Coast

    Science.gov (United States)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and

  9. Aftermath of Hurricane Ike along Texas Coast

    Science.gov (United States)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and

  10. EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: Bare Earth

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed,...

  11. EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed,...

  12. Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Derived products of a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane...

  13. EAARL Coastal Topography--Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Mississippi and Alabama barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from...

  14. 2012-2013 Post-Hurricane Sandy EAARL-B Submerged Topography - Barnegat Bay, New Jersey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically...

  15. Comparison of hurricane exposure methods and associations with county fetal death rates, adjusting for environmental quality

    Science.gov (United States)

    Adverse effects of hurricanes are increasing as coastal populations grow and events become more severe. Hurricane exposure during pregnancy can influence fetal death rates through mechanisms related to healthcare, infrastructure disruption, nutrition, and injury. Estimation of hu...

  16. Tropical Storm Frances/ Hurricane Ivan Situation Report, September 10, 2014 (10:00 AM EDT)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-10

    The report provides highlights related to impacts of Hurricane Frances and Hurricane Ivan in the Florida area. Sections on electric information, oil and gas information, county outage data, and a table for restoration targets/status are provided.

  17. Tropical Storm Frances and Hurricane Ivan Situation Report, September 9, 2004 (10:00 PM EDT)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-09

    The report provides highlights related to impacts of Hurricane Frances and Hurricane Ivan in the Florida area. Sections on electric information, oil and gas information, and county outage data are provided.

  18. EAARL Coastal Topography--Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the eastern Louisiana barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely...

  19. EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: Bare Earth

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed,...

  20. EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed,...

  1. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  2. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols

    National Research Council Canada - National Science Library

    Rosenfeld, D; Khain, A; Lynn, B; Woodley, W. L

    2007-01-01

    ...). The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN) on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning...

  3. EAARL Coastal Topography--Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Mississippi and Alabama barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from...

  4. EAARL Coastal Topography--Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the eastern Louisiana barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely...

  5. Mapping Hurricane Rita inland storm tide

    Science.gov (United States)

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  6. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2017-04-01

    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current

  7. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  8. The Hurricane-Flood-Landslide Continuum: Forecasting Hurricane Effects at Landfall

    Science.gov (United States)

    Negri, A.; Golden, J. H.; Updike, R.

    2004-01-01

    Hurricanes, typhoons, and cyclones strike Central American, Caribbean, Southeast Asian and Pacific Island nations even more frequently than the U.S. The global losses of life and property from the floods, landslides and debris flows caused by cyclonic storms are staggering. One of the keys to reducing these losses, both in the U.S. and internationally, is to have better forecasts of what is about to happen from several hours to days before the event. Particularly in developing nations where science, technology and communication are limited, advance-warning systems can have great impact. In developing countries, warnings of even a few hours or days can mitigate or reduce catastrophic losses of life. With the foregoing needs in mind, we propose an initial project of three years total duration that will aim to develop and transfer a warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispanola. The Hurricane-Flood-Landslide Continuum will include satellite observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict near-future runoff, and streamflow changes in affected regions, and landslide models to warn when and where landslides and debris flows are imminent. Since surface communications are likely to be interrupted during these crises, the project also includes the capability to communicate disaster information via satellite to vital government officials in Puerto Rico, Haiti, and Dominican Republic.

  9. Hurricane Risk Variability along the Gulf of Mexico Coastline

    Science.gov (United States)

    Trepanier, Jill C.; Ellis, Kelsey N.; Tucker, Clay S.

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran’s I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs. PMID:25767885

  10. Recent Developments of the Florida Public Hurricane Loss Model

    Science.gov (United States)

    Cocke, S.; Shin, D. W.; Annane, B.

    2016-12-01

    Catastrophe models are used extensively by the insurance industry to estimate losses due to natural hazards such as hurricanes and earthquakes. In the state of Florida, primary insurers for hurricane damage to residential properties are required by law to use certified catastrophe models to establish their premiums and capital reserves. The Florida Public Hurricane Loss Model (FPHLM) is one of only five certified catastrophe models in Florida, and the only non-commercial model certified. The FPHLM has been funded through the Florida Legislature and is overseen by the Florida Office of Insurance Regulation (OIR). The model was developed by a consortium of universities and private consultants primary located in Florida, but includes some partners outside of the state. The FPHLM has met Florida requirements since 2006 and has undergone continuous evolution to maintain state-of-the-art capabilities and changes in state requirements established by the Florida Commission on Hurricane Loss Projection Methodology. Recently the model has been undergoing major enhancement to incorporate damage due to flooding, which not only includes hurricane floods but floods due to all potential natural hazards. This work is being done in anticipation of future changes in the National Flood Insurance Program (NFIP) that will bring private insurers to the flood market. The model will incorporate a surge model as well as an inland flood model. We will present progress on these recent enhancements along with additional progress of the model.

  11. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  12. Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)

    Science.gov (United States)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  13. Hurricane Loss Analysis Based on the Population-Weighted Index

    Directory of Open Access Journals (Sweden)

    Grzegorz Kakareko

    2017-08-01

    Full Text Available This paper discusses different measures for quantifying regional hurricane loss. The main measures used in the past are normalized percentage loss and dollar value loss. In this research, we show that these measures are useful but may not properly reflect the size of the population influenced by hurricanes. A new loss measure is proposed that reflects the hurricane impact on people occupying the structure. For demonstrating the differences among these metrics, regional loss analysis was conducted for Florida. The regional analysis was composed of three modules: the hazard module stochastically modeled the wind occurrence in the region; the vulnerability module utilized vulnerability functions developed in this research to calculate the loss; and the financial module quantified the hurricane loss. In the financial module, we calculated three loss metrics for certain region. The first metric is the average annual loss (AAL which represents the expected loss per year in percentage. The second is the average annual dollar loss which represents the expected dollar amount loss per year. The third is the average annual population-weighted loss (AAPL—a new measure proposed in this research. Compared with the AAL, the AAPL reflects the number of people influenced by the hurricane. The advantages of the AAPL are illustrated using three different analysis examples: (1 conventional regional loss analysis, (2 mitigation potential analysis, and (3 forecasted future loss analysis due to the change in population.

  14. Hurricanes accelerated the Florida-Bahamas lionfish invasion.

    Science.gov (United States)

    Johnston, Matthew W; Purkis, Sam J

    2015-06-01

    In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport. © 2015 John Wiley & Sons Ltd.

  15. Hurricane risk variability along the Gulf of Mexico coastline.

    Directory of Open Access Journals (Sweden)

    Jill C Trepanier

    Full Text Available Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency, the scale or σ (range, and the shape or ξ (intensity of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant, suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran's I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs.

  16. Hurricane risk variability along the Gulf of Mexico coastline.

    Science.gov (United States)

    Trepanier, Jill C; Ellis, Kelsey N; Tucker, Clay S

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran's I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs.

  17. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    Science.gov (United States)

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high-resolution hur......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  19. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise.

    Science.gov (United States)

    Walters, David C; Kirwan, Matthew L

    2016-05-01

    The interplay between storms and sea level rise, and between ecology and sediment transport governs the behavior of rapidly evolving coastal ecosystems such as marshes and barrier islands. Sediment deposition during hurricanes is thought to increase the resilience of salt marshes to sea level rise by increasing soil elevation and vegetation productivity. We use mesocosms to simulate burial of Spartina alterniflora during hurricane-induced overwash events of various thickness (0-60 cm), and find that adventitious root growth within the overwash sediment layer increases total biomass by up to 120%. In contrast to most previous work illustrating a simple positive relationship between burial depth and vegetation productivity, our work reveals an optimum burial depth (5-10 cm) beyond which burial leads to plant mortality. The optimum burial depth increases with flooding frequency, indicating that storm deposition ameliorates flooding stress, and that its impact on productivity will become more important under accelerated sea level rise. Our results suggest that frequent, low magnitude storm events associated with naturally migrating islands may increase the resilience of marshes to sea level rise, and in turn, slow island migration rates. We find that burial deeper than the optimum results in reduced growth or mortality of marsh vegetation, which suggests that future increases in overwash thickness associated with more intense storms and artificial heightening of dunes could lead to less resilient marshes.

  20. 78 FR 46999 - Additional Waivers and Alternative Requirements for Hurricane Sandy Grantees in Receipt of...

    Science.gov (United States)

    2013-08-02

    ... URBAN DEVELOPMENT Additional Waivers and Alternative Requirements for Hurricane Sandy Grantees in... impacted and distressed areas declared a major disaster due to Hurricane Sandy (see 78 FR 14329, published....) (Stafford Act), due to Hurricane Sandy and other eligible events in calendar years 2011, 2012, and 2013....

  1. 77 FR 74891 - Order Granting Exemptions From Certain Rules of Regulation SHO Related to Hurricane Sandy

    Science.gov (United States)

    2012-12-18

    ... COMMISSION Order Granting Exemptions From Certain Rules of Regulation SHO Related to Hurricane Sandy December 12, 2012. I. Introduction Hurricane Sandy made landfall along the mid-Atlantic Coast on October 29... in the Vault at the time Hurricane Sandy made landfall, facilitating DTCC's ability to...

  2. 78 FR 33467 - Second Allocation of Public Transportation Emergency Relief Funds in Response to Hurricane Sandy...

    Science.gov (United States)

    2013-06-04

    ... Response to Hurricane Sandy: Response, Recovery & Resiliency; Correction AGENCY: Federal Transit... by Hurricane Sandy. This amount was in addition to the initial $2 billion allocation announced in the... allocation restoration FTA Section 5324 Emergency Relief Program Allocations for Hurricane Sandy, by...

  3. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  4. Hurricanes in the Gulf of Mexico and the Caribbean Sea and their relationship with sunspots

    Science.gov (United States)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Sánchez, Norma Leticia; Monreal-Gómez, María Adela

    2016-10-01

    We present the results of a time series analysis of hurricanes and sunspots occurring from 1749 to 2010. Exploratory analysis shows that the total number of hurricanes is declining. This decline is related to an increase in sunspot activity. Spectral analysis shows a relationship between hurricane oscillation periods and sunspot activity. Several sunspot cycles were identified from the time series analysis.

  5. Sediment Quality in Near Coastal Waters of the Gulf of Mexico: Influence of Hurricane Katrina

    Science.gov (United States)

    The results from this study represent a synoptic analysis of sediment quality in coastal waters of Lake Pontchartrain and Mississippi Sound two months after the landfall of Hurricane Katrina. Post-hurricane conditions were compared to pre-hurricane (2000-2004) conditions, for se...

  6. Trends in Serious Emotional Disturbance among Youths Exposed to Hurricane Katrina

    Science.gov (United States)

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Osofsky, Joy D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2010-01-01

    Objective: To examine patterns and predictors of trends in "DSM-IV" serious emotional disturbance (SED) among youths exposed to Hurricane Katrina. Method: A probability sample of adult pre-hurricane residents of the areas affected by Katrina completed baseline and follow-up telephone surveys 18 to 27 months post-hurricane and 12 to 18…

  7. Serious Emotional Disturbance among Youths Exposed to Hurricane Katrina 2 Years Postdisaster

    Science.gov (United States)

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Lakoma, Matthew D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2009-01-01

    Objective: To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, sociodemographics, and family factors 18 to 27 months after the hurricane. Method: A probability sample of prehurricane residents of areas…

  8. Assessing a 1500-year record of Atlantic hurricane activity from South Andros Island, the Bahamas, using modeled hurricane climatology

    Science.gov (United States)

    Wallace, E. J.; Donnelly, J. P.; Emanuel, K.; Wiman, C.; van Hengstum, P. J.; Sullivan, R.; Winkler, T. S.

    2016-12-01

    Tropical cyclones can cause substantial loss of life and economic resources in coastal areas. In the current changing climate, it is of critical importance for society to understand any links between hurricane activity and climactic conditions. Unfortunately, historical tropical cyclone records are too short and incomplete to constrain how climate controls cyclone activity or to accurately quantify the risk of such storms to local human populations. Hurricane-induced deposits preserved in sediment cores can offer records of past hurricane activity stretching over thousands of years. Here we present a 1500 year annually resolved record of the frequency of intense hurricane events in a blue hole (AM4) on South Andros Island on the Great Bahama Bank. This carbonate island in the western North Atlantic Ocean is positioned along the trackway of many storms originating in the Caribbean and Atlantic basins. The record is corroborated by cores collected from three other blue holes near AM4. Over the past 1500 years, there have been periods of elevated hurricane activity from 750 to 950 CE, 1150 to 1300 CE and 1550 to 1850 CE. The statistical significance of this sedimentary record is assessed utilizing a set of synthetic storms generated from a previously published statistical deterministic hurricane model. The model simulates climatological conditions from the NCEP/NCAR reanalysis dataset, and the CMIP5 MPI model for the 20th century calibration (1850-2005 CE), and the millennial simulation (850-1849 CE). The average reoccurrence rates of hurricanes passing within 100 km of AM4 under each simulation are 1.06, 0.62, and 0.61 storms per year respectively. Using each climatology, thousands of hurricane induced deposits for the site are generated based on a random draw of these storms, a wind speed threshold for deposit, and a temporal resolution given the sedimentation rate of approximately 1 cm/yr at the site. Overall, the results of this study offer information on changes

  9. Mangroves, hurricanes, and lightning strikes: Assessment of Hurricane Andrew suggests an interaction across two differing scales of disturbance

    Science.gov (United States)

    Smith, Thomas J.; Robblee, Michael B.; Wanless, Harold R.; Doyle, Thomas W.

    1994-01-01

    The track of Hurricane Andrew carried it across one of the most extensive mangrove for ests in the New World. Although it is well known that hurricanes affect mangrove forests, surprisingly little quantitative information exists concerning hurricane impact on forest structure, succession, species composition, and dynamics of mangrove-dependent fauna or on rates of eco-system recovery (see Craighead and Gilbert 1962, Roth 1992, Smith 1992, Smith and Duke 1987, Stoddart 1969).After Hurricane Andrew's passage across south Florida, we assessed the environmental damage to the natural resources of the Everglades and Biscayne National Parks. Quantitative data collected during subsequent field trips (October 1992 to July 1993) are also provided. We present measurements of initial tree mortality by species and size class, estimates of delayed (or continuing) tree mortality, and observations of geomorphological changes along the coast and in the forests that could influence the course of forest recovery. We discuss a potential interaction across two differing scales of disturbance within mangrove forest systems: hurricanes and lightning strikes.

  10. Did Hurricane Sandy influence the 2012 US presidential election?

    Science.gov (United States)

    Hart, Joshua

    2014-07-01

    Despite drawing on a common pool of data, observers of the 2012 presidential campaign came to different conclusions about whether, how, and to what extent "October surprise" Hurricane Sandy influenced the election. The present study used a mixed correlational and experimental design to assess the relation between, and effect of, the salience of Hurricane Sandy on attitudes and voting intentions regarding President Barack Obama and Mitt Romney in a large sample of voting-aged adults. Results suggest that immediately following positive news coverage of Obama's handling of the storm's aftermath, Sandy's salience positively influenced attitudes toward Obama, but that by election day, reminders of the hurricane became a drag instead of a boon for the President. In addition to theoretical implications, this study provides an example of how to combine methodological approaches to help answer questions about the impact of unpredictable, large-scale events as they unfold.

  11. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  12. Nonlinear interaction of axisymmetric circulation and nonaxisymmetric disturbances in hurricanes

    Institute of Scientific and Technical Information of China (English)

    LUO Zhexian

    2004-01-01

    The nonlinear interaction of axisymmetric circulation and nonaxisymmetric disturbances in hurricanes is numerically studied with a quasigeostrophic barotropic model of a higher resolution. It is pointed out that the interaction may be divided into two categories. In the first category, nonaxisymmetric disturbances decay, the coordinate locus of maximum relative vorticity ζmax is seemingly unordered, and the central pressure of hurricane rises; while in the second one, nonaxisymmetric disturbances develop, the locus of ζmax shows an ordered limit cycle pattern, and the central pressure falls remarkably. A succinct criterion is given to judge which category the interaction belongs to, i.e. the vortex beta Rossby number at the initial time Rβ 1 to the developing one. Finally, practical applications of theoretical results of the rotational adaptation process presented by Zeng and numerical results in this paper to the hurricane intensity prediction in China are also discussed.

  13. Pet Ownership and Evacuation Prior to Hurricane Irene

    Directory of Open Access Journals (Sweden)

    Nick Rohrbaugh

    2012-09-01

    Full Text Available Pet ownership has historically been one of the biggest risk factors for evacuation failure prior to natural disasters. The forced abandonment of pets during Hurricane Katrina in 2005 made national headlines and led to the passage of the Pet Evacuation and Transportation Standards Act (PETS, 2006 which mandated local authorities to plan for companion animal evacuation. Hurricane Irene hit the East Coast of the United States in 2011, providing an excellent opportunity to examine the impact of the PETS legislation on frequency and ease of evacuation among pet owners and non-pet owners. Ninety pet owners and 27 non-pet owners who lived in mandatory evacuation zones completed questionnaires assessing their experiences during the hurricane and symptoms of depression, PTSD, dissociative experiences, and acute stress. Pet ownership was not found to be a statistical risk factor for evacuation failure. However, many pet owners who failed to evacuate continue to cite pet related reasons.

  14. Unique Meteorological Data During Hurricane Ike's Passage Over Houston

    Science.gov (United States)

    Schade, Gunnar; Rappenglück, Bernhard

    2009-06-01

    Hurricane Ike passed over the Houston, Tex., metropolitan area during the early morning of 13 September 2008. Although Ike had been rated only a category 2 on the Saffir-Simpson scale at landfall near Galveston, Tex., the storm's widespread damage to urban trees, many lacking proper trimming, knocked out the area's power distribution system; for some customers, power was only restored a month later. The hurricane's path after landfall (Figure 1a) went north through Galveston Bay and Baytown. The city of Houston—with its economically important ship channel—experienced the less severe western eye wall, the tight circulation with maximum wind speeds around the hurricane'ps center. The eye's passage was recorded between 3:00 and 4:30 A.M. Central Standard Time (CST; Figures 1a and 1c). It had maintained its unusually large diameter of 35-40 kilometers in its first hours after landfall.

  15. Anomalous Gulf Heating and Hurricane Katrinas Rapid Intensification

    CERN Document Server

    Kafatos, M; Gautam, R; Sun, Z B D; Cervone, Guido; Gautam, Ritesh; Kafatos, Menas; Sun, Zafer Boybeyi & Donglian

    2005-01-01

    Global warming due to the increasing concentration of greenhouse gases has become a great concern and has been linked to increased hurricane activity associated with higher sea surface temperatures with conflicting views. Our observational results based on long term trends of sea surface temperatures reveal that the anomaly reached a record 0.8 C in the Gulf of Mexico in August 2005 as compared to previous years and may have been responsible for the intensification of the devastating Hurricane Katrina into a category 5 hurricane that hit the Southern coast of United States severely impacting the low lying city of New Orleans and the surrounding areas. In most intensifying storms, air-sea interaction is the major contributing factor and here we show how air-sea interactions might have affected Katrinas rapid intensification in the Gulf.

  16. Two Empirical Models for Land-falling Hurricane Gust Factors

    Science.gov (United States)

    Merceret, Franics J.

    2008-01-01

    Gaussian and lognormal models for gust factors as a function of height and mean windspeed in land-falling hurricanes are presented. The models were empirically derived using data from 2004 hurricanes Frances and Jeanne and independently verified using data from 2005 hurricane Wilma. The data were collected from three wind towers at Kennedy Space Center and Cape Canaveral Air Force Station with instrumentation at multiple levels from 12 to 500 feet above ground level. An additional 200-foot tower was available for the verification. Mean wind speeds from 15 to 60 knots were included in the data. The models provide formulas for the mean and standard deviation of the gust factor given the mean windspeed and height above ground. These statistics may then be used to assess the probability of exceeding a specified peak wind threshold of operational significance given a specified mean wind speed.

  17. Simulations of Hurricane Nadine (2012) during HS3 Using the NASA Unified WRF with Aerosol-Cloud Microphysics-Radiation Coupling

    Science.gov (United States)

    Shi, J. J.; Braun, S. A.; Sippel, J. A.; Tao, W. K.; Tao, Z.

    2014-12-01

    The impact of the SAL on the development and intensification of hurricanes has garnered significant attention in recent years. Many past studies have shown that synoptic outbreaks of Saharan dust, which usually occur from late spring to early fall and can extend from western Africa across the Atlantic Ocean into the Caribbean, can have impacts on hurricane genesis and subsequent intensity change. The Hurricane and Severe Storm Sentinel (HS3) mission is a multiyear NASA field campaign with the goal of improving understanding of hurricane formation and intensity change. One of HS3's primary science goals is to obtain measurements to help determine the extent to which the Saharan air layer impacts storm intensification. HS3 uses two of NASA's unmanned Global Hawk aircrafts equipped with three instruments each to measure characteristics of the storm environment and inner core. The Goddard microphysics and longwave/shortwave schemes in the NASA Unified Weather Research and Forecasting (NU-WRF) model have been coupled in real-time with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model in WRF-Chem to account for the direct (radiation) and indirect (microphysics) impact. NU-WRF with interactive aerosol-cloud-radiation physics is used to generate 30-member ensemble simulations of Nadine (2012) with and without the aerosol interactions. Preliminary conclusions related to the impact of the SAL on the evolution of Nadine from the HS3 observations and model output will be described.

  18. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  19. The Hurricane-Flood-Landslide Continuum

    Science.gov (United States)

    Negri, Andrew J.; Burkardt, Nina; Golden, Joseph H.; Halverson, Jeffrey B.; Huffman, George J.; Larsen, Matthew C.; McGinley, John A.; Updike, Randall G.; Verdin, James P.; Wieczorek, Gerald F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the USGS, and other government agencies convened in San Juan, Puerto Rim for a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The essence of the HFLC is to develop and integrate tools across disciplines to enable the issuance of regional guidance products for floods and landslides associated with major tropical rain systems, with sufficient lead time that local emergency managers can protect vulnerable populations and infrastructure. All three lead agencies are independently developing precipitation-flood-debris flow forecasting technologies, and all have a history of work on natural hazards both domestically and overseas. NOM has the capability to provide tracking and prediction of storm rainfall, trajectory and landfall and is developing flood probability and magnTtude capabilities. The USGS has the capability to evaluate the ambient stability of natural and man-made landforms, to assess landslide susceptibilities for those landforms, and to establish probabilities for initiation of landslides and debris flows. Additionally, the USGS has well-developed operational capacity for real-time monitoring and reporting of streamflow across distributed networks of automated gaging stations (http://water.usgs.gov/waterwatch/). NASA has the capability to provide sophisticated algorithms for satellite remote sensing of precipitation, land use, and in the future, soil moisture. The Workshop sought to initiate discussion among three agencies regarding their specific and highly complimentary capabilities. The fundamental goal of the Workshop was to establish a framework that will leverage the strengths of each agency. Once a prototype system is developed for example, in relatively data-rich Puerto Rim, it could be adapted for use in data-poor, low-infrastructure regions such as the Dominican Republic or Haiti. This paper provides an overview of the Workshop s goals

  20. Contribution of recent hurricanes to wetland sedimentation in coastal Louisiana

    Science.gov (United States)

    Liu, Kam-biu; Bianchette, Thomas; Zou, Lei; Qiang, Yi; Lam, Nina

    2017-04-01

    Hurricanes are important agents of sediment deposition in the wetlands of coastal Louisiana. Since Hurricanes Katrina and Rita of 2005, coastal Louisiana has been impacted by Hurricanes Gustav (2008), Ike (2008), and Isaac (2012). By employing the principles and methods of paleotempestology we have identified the storm deposits attributed to the three most recent hurricanes in several coastal lakes and swamps in Louisiana. However, the spatial distribution and volume of these storm depositions cannot be easily inferred from stratigraphic data derived from a few locations. Here we report on results from a GIS study to analyze the spatial and temporal patterns of storm deposition based on data extracted from the voluminous CRMS (Coastal Reference Monitoring System) database, which contains vertical accretion rate measurements obtained from 390 wetland sites over various time intervals during the past decade. Wetland accretion rates averaged about 2.89 cm/yr from stations sampled before Hurricane Isaac, 4.04 cm/yr during the 7-month period encompassing Isaac, and 2.38 cm/yr from sites established and sampled after Isaac. Generally, the wetland accretion rates attributable to the Isaac effects were 40% and 70% greater than before and after the event, respectively. Accretion rates associated with Isaac were highest at wetland sites along the Mississippi River and its tributaries instead of along the path of the hurricane, suggesting that freshwater flooding from fluvial channels, enhanced by the storm surge from the sea, is the main mechanism responsible for increased accretion in the wetlands. Our GIS work has recently been expanded to include other recent hurricanes. Preliminary results indicate that, for non-storm periods, the average wetland accretion rates between Katrina/Rita and Gustav/Ike was 2.58 cm/yr; that between Gustav/Ike and Isaac was 1.95 cm/yr; and that after Isaac was 2.37 cm/yr. In contrast, the accretion rates attributable to the effects of Gustav

  1. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  2. Large-Eddy Simulations of Strongly Precipitating, Shallow, Stratocumulus-Topped Boundary Layers.

    Science.gov (United States)

    Stevens, Bjorn; Cotton, William R.; Feingold, Graham; Moeng, Chin-Hoh

    1998-12-01

    Large-eddy simulations that incorporate a size-resolving representation of cloud water are used to study the effect of heavy drizzle on PBL structure. Simulated surface precipitation rates average about 1 mm day1. Heavily drizzling simulations are compared to nondrizzling simulations under two nocturnal PBL regimes-one primarily driven by buoyancy and the other driven equally by buoyancy and shear. Drizzle implies a net latent heating in the cloud that leads to sharp reductions in both entrainment and the production of turbulent kinetic energy by buoyancy (particularly in downdrafts). Drizzle, which evaporates below cloud base, promotes a cooler and moister subcloud layer that further inhibits deep mixing. The cooling and moistening is in quantitative agreement with some observations and is shown to favor the formation of cumuli rising out of the subcloud layer. The cumuli, which are local in space and time, are responsible for most of the heat and moisture transport. They also appear to generate a larger-scale circulation that differs dramatically from the regularity typically found in nonprecipitating stratocumulus. Time-averaged turbulent fluxes of heat and moisture increase in the presence of precipitation, suggesting that drizzle (and drizzle-induced stratification) should not necessarily be taken as a sign of decoupling. Because drizzle primarily affects the vertical distribution of buoyancy, shear production of turbulent kinetic energy mitigates some of the effects described above. Based on large-eddy simulation the authors hypothesize that shallow, well-mixed, radiatively driven stratocumulus cannot persist in the presence of heavy drizzle. In accord with some simpler models, the simulated case with heavy precipitation promotes a reduction in both liquid-water path and entrainment. However, the simulations suggest that time-integrated cloud fraction may increase as a result of drizzle because thinner precipitating clouds may persist longer if the boundary

  3. The Impact of Hurricane Katrina on the United States Tourism Industry

    Directory of Open Access Journals (Sweden)

    Nemanja Tomić

    2013-01-01

    Full Text Available The goal of this paper is to present hurricane Katrina in all its stages, from the beginning to the end and to highlight the economic, environmental and social consequences that occurred in the hurricane aftermath with a focus on the tourism industry. This paper also briefly explains the basic mechanism of tropical cyclones and hurricanes and their occurrences through a detailed explanation of hurricane Katrina and its effects on the United States. Some attention is also given to the immense damage and aftermath which is the largest ever made by any hurricane.

  4. Overheat Instability in an Ascending Moist Air Flow as a Mechanism of Hurricane Formation

    CERN Document Server

    Nechayev, Andrei

    2011-01-01

    The universal instability mechanism in an ascending moist air flow is theoretically proposed and analyzed. Its origin comes to the conflict between two processes: the increasing of pressure forcing applied to the boundary layer and the decelerating of the updraft flow due to air heating. It is shown that the intensification of tropical storm with the redistribution of wind velocities, pressure and temperature can result from the reorganization of the dissipative structure which key parameters are the moist air lifting velocity and the temperature of surrounding atmosphere. This reorganization can lead to formation of hurricane eye and inner ring of convection. A transition of the dissipative structure in a new state can occur when the temperature lapse rate in a zone of air lifting reaches certain critical value. The accordance of observational data with the proposed theoretical description is shown.

  5. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    Science.gov (United States)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  6. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  7. Mental health outcomes at the Jersey Shore after Hurricane Sandy.

    Science.gov (United States)

    Boscarino, Joseph A; Hoffman, Stuart N; Kirchner, H Lester; Erlich, Porat M; Adams, Richard E; Figley, Charles R; Solhkhah, Ramon

    2013-01-01

    On October 29, 2012, Hurricane Sandy made landfall in the most densely populated region in the US. In New Jersey, thousands of families were made homeless and entire communities were destroyed in the worst disaster in the history of the state. The economic impact of Sandy was huge, comparable to Hurricane Katrina. The areas that sustained the most damage were the small- to medium-sized beach communities along New Jersey's Atlantic coastline. Six months following the hurricane, we conducted a random telephone survey of 200 adults residing in 18 beach communities located in Monmouth County. We found that 14.5% (95% CI = 9.9-20.2) of these residents screened positive for PTSD and 6.0% (95% CI = 3.1-10.2) met criteria for major depression. Altogether 13.5% (95% CI = 9.1-19.0) received mental health counseling and 20.5% (95% CI = 15.1-26.8) sought some type of mental health support in person or online, rates similar to those reported in New York after the World Trade Center disaster In multivariate analyses, the best predictors of mental health status and service use were having high hurricane exposure levels, having physical health limitations, and having environmental health concerns. Research is needed to assess the mental health status and service use of Jersey Shore residents over time, to evaluate environmental health concerns, and to better understand the storm's impact among those with physical health limitations.

  8. Hurricane Sandy Washover Deposits on Southern Long Beach Island, NJ

    Science.gov (United States)

    Bishop, J. M.; Richmond, B. M.; Kane, H. H.; Lunghino, B.

    2015-12-01

    Hurricane Sandy washover deposits were investigated at Forsyth National Wildlife Refuge (FNWR) on Southern Long Beach Island, New Jersey in order to map deposit thickness and characterize the sedimentary deposits. FNWR was chosen as a field area because there has been relatively little anthropogenic shoreline modification since washover deposition from Hurricane Sandy. Sediment, elevation, and geophysical data were collected during the April 2015 field campaign, approximately two and a half years after the storm. Sediment deposit data included trenches, stratigraphic descriptions, bulk sediment samples, push cores, Russian cores, and photos. Computed tomography (CT) scanning was conducted on push cores in order to acquire high resolution imaging of density, grain size, and sedimentary structure. Profiles of washover elevation were measured using Differential GPS with Real Time Kinematic processing. Ground Penetrating Radar data was collected to image the depth of the deposit and identify sedimentary structures. These data sets are compared to pre- and post -Sandy lidar surveys in order to determine post-Sandy modification in the two and a half years following the hurricane. We compare sediment thickness and sedimentary characteristics to hurricane Sandy deposits elsewhere along the U.S. eastern seaboard and to tsunami deposits.

  9. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    Science.gov (United States)

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  10. Tornadoes & Hurricanes. The Natural Disaster Series. Grades 4-8.

    Science.gov (United States)

    Deery, Ruth

    The topics of tornadoes and hurricanes are important to children but are often missing from elementary textbooks. This document is a part of "The Natural Disaster Series" and is an attempt to supplement elementary science and social studies programs with lessons and student activities. Reasoning skills are emphasized throughout the…

  11. Quantifying the hurricane catastrophe risk to offshore wind power.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk.

  12. Calibration of Hurricane Imaging Radiometer C-Band Receivers

    Science.gov (United States)

    Biswas, Sayak K.; Cecil, Daniel J.; James, Mark W.

    2017-01-01

    The laboratory calibration of airborne Hurricane Imaging Radiometer's C-Band multi-frequency receivers is described here. The method used to obtain the values of receiver frontend loss, internal cold load brightness temperature and injected noise diode temperature is presented along with the expected RMS uncertainty in the final calibration.

  13. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  14. SIMULATING LAKE PONTCHARTRAIN AND MISSISSIPPI RIVER OUTFLOW AFTER HURRICANE KATRINA

    Science.gov (United States)

    Hurricane Katrina was the direct cause of the flooding of New Orleans in September 2005. Between its passage and the pumping of flood waters back into Lake Pontchartrain and the Mississippi River, the flood waters acquired considerable amounts of contaminants, notably silver, but...

  15. Hurricane Katrina winds damaged longleaf pine less than loblolly pine

    Science.gov (United States)

    Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana. Nelson

    2009-01-01

    Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...

  16. Gone with the Wind? Integrity and Hurricane Katrina

    Science.gov (United States)

    Lucas, Frances; Katz, Brit

    2011-01-01

    Hurricane Katrina slammed into 80 miles of Mississippi shoreline on August 29, 2005. It was the nation's worst natural disaster, a perfect storm. One hundred sixty miles-per-hour winds sent 55-foot-tall waves and a 30-foot wall of water across the shore and miles inland. It displaced 400,000 residents along the coast of the Mississippi, and…

  17. Stress and Support in Family Relationships after Hurricane Katrina

    Science.gov (United States)

    Reid, Megan; Reczek, Corinne

    2011-01-01

    In this article, the authors merge the study of support, strain, and ambivalence in family relationships with the study of stress to explore the ways family members provide support or contribute to strain in the disaster recovery process. The authors analyze interviews with 71 displaced Hurricane Katrina survivors, and identify three family…

  18. Breakup of New Orleans Households after Hurricane Katrina

    Science.gov (United States)

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  19. Socioecological disparities in New Orleans following Hurricane Katrina

    Science.gov (United States)

    Joshua A. Lewis; Wayne C. Zipperer; Henrik Ernstson; Brittany Bernik; Rebecca Hazen; Thomas Elmqvist; Michael J. Blum

    2017-01-01

    Despite growing interest in urban resilience, remarkably little is known about vegetation dynamics in the aftermath of disasters. In this study, we examined the composition and structure of plant communities across New Orleans (Louisiana, USA) following catastrophic flooding triggered by levee failures during Hurricane Katrina in 2005. Focusing on eight...

  20. 48 CFR 1852.236-73 - Hurricane plan.

    Science.gov (United States)

    2010-10-01

    ... event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all materials possible in a protected location; (b) Tie down, or identify and store, all outside equipment and materials; (c) Clear all surrounding areas and roofs of buildings, or tie down loose material, equipment,...

  1. Staying Safe in Your Home During a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If you are not ordered to evacuate, and you stay in your home through a hurricane, there are things you can do to protect yourself and your family.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 8/13/2008.

  2. Climatology of landfalling hurricanes and tropical storms in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2003-10-01

    The potential for damage from hurricanes landfalling in Mexico is assessed. During the 1951-2000 period, Pacific hurricane hits were more frequent on coastal areas of the northwest of country (e.g., Sinaloa and the southern half of Baja California Peninsula) as well as in southern Mexico (Michoacan). On the Atlantic side, the Yucatan Peninsula and the northern state of Tamaulipas were most exposed to these storms. The hurricane season reaches maximum activity in September for both the Atlantic and Pacific coasts of the country. During the 50 year period, five intense hurricanes (category 5) made landfall on the Gulf/Caribbean coasts, while only one such intense hurricane made a land hit on the Pacific side. While hurricanes affecting Pacific coasts show a marked increase during the last decade, those of the Atlantic side exhibit a marked decrease since the 1970s. However, when considering the frequency of landfalling tropical storms and hurricanes impacting on both littorals of the country, their numbers have considerably increased during the 1990s. [Spanish] Se determino el potencial de dano de los huracanes que entran a tierra en Mexico. Durante el periodo 1951-2000 los impactos de los huracanes del Pacifico fueron mas frecuentes en las areas costeras del noroeste del pais, como Sinaloa y la mitad sur de la peninsula de Baja California, asi como en el sur de Mexico (Michoacan). En el lado del Atlantico la peninsula de Yucatan y el estado norteno de Tamaulipas fueron los mas expuestos a estas tormentas. Para las dos costas del pais, del Pacifico y del Atlantico, la temporada de huracanes alcanza su maxima actividad en septiembre. Durante los 50 anos del periodo de estudio cinco huracanes intensos (categoria 5) tocaron tierra en el lado del Atlantico y uno en el Pacifico. Mientras que los huracanes que afectan las costas del Pacifico muestran un incremento en numero durante la ultima decada, los del Atlantico exhiben una disminucion notable desde la decada de los

  3. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Science.gov (United States)

    Wang, Qi; Taylor, John E

    2014-01-01

    Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  4. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  5. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  6. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane

    Science.gov (United States)

    William H. McDowell; Daniel Liptzin

    2014-01-01

    Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...

  7. Mother and Child Reports of Hurricane Related Stressors: Data from a Sample of Families Exposed to Hurricane Katrina

    Science.gov (United States)

    Lai, Betty S.; Beaulieu, Brooke; Ogokeh, Constance E.; Self-Brown, Shannon; Kelley, Mary Lou

    2015-01-01

    Background: Families exposed to disasters such as Hurricane Katrina are at risk for numerous adverse outcomes. While previous literature suggests that the degree of disaster exposure corresponds with experiencing negative outcomes, it is unclear if parents and children report similar levels of disaster exposure. Objective: The purpose of this…

  8. Combined effects of Hurricane Katrina and Hurricane Gustav on the mental health of mothers of small children.

    Science.gov (United States)

    Harville, E W; Xiong, X; Smith, B W; Pridjian, G; Elkind-Hirsch, K; Buekens, P

    2011-05-01

    Few studies have assessed the results of multiple exposures to disaster. Our objective was to examine the effect of experiencing Hurricane Gustav on mental health of women previously exposed to Hurricane Katrina. A total of 102 women from Southern Louisiana were interviewed by telephone. Experience of the hurricanes was assessed with questions about injury, danger and damage, while depression was assessed with the Edinburgh Depression Scale and post-traumatic stress disorder using the Post-Traumatic Checklist. Minor stressors, social support, trait resilience and perceived benefit had been measured previously. Mental health was examined with linear and log-linear models. Women who had a severe experience of both Gustav and Katrina scored higher on the mental health scales, but finding new ways to cope after Katrina or feeling more prepared was not protective. About half the population had better mental health scores after Gustav than at previous measures. Improvement was more likely among those who reported high social support or low levels of minor stressors, or were younger. Trait resilience mitigated the effect of hurricane exposure. Multiple disaster experiences are associated with worse mental health overall, although many women are resilient. Perceiving benefit after the first disaster was not protective. © 2010 Blackwell Publishing.

  9. Mother and Child Reports of Hurricane Related Stressors: Data from a Sample of Families Exposed to Hurricane Katrina

    Science.gov (United States)

    Lai, Betty S.; Beaulieu, Brooke; Ogokeh, Constance E.; Self-Brown, Shannon; Kelley, Mary Lou

    2015-01-01

    Background: Families exposed to disasters such as Hurricane Katrina are at risk for numerous adverse outcomes. While previous literature suggests that the degree of disaster exposure corresponds with experiencing negative outcomes, it is unclear if parents and children report similar levels of disaster exposure. Objective: The purpose of this…

  10. Combined effects of Hurricane Katrina and Hurricane Gustav on the mental health of mothers of small children

    Science.gov (United States)

    Harville, Emily W.; Xiong, Xu; Smith, Bruce W.; Pridjian, Gabriella; Elkind-Hirsch, Karen; Buekens, Pierre

    2012-01-01

    Few studies assessed the results of multiple exposures to disaster. Our objective was to examine the effect of experiencing Hurricane Gustav on mental health of women previously exposed to Hurricane Katrina. 102 women from Southern Louisiana were interviewed by telephone. Experience of the hurricanes was assessed with questions about injury, danger, and damage, while depression was assessed with the Edinburgh Depression Scale and post-traumatic stress disorder (PTSD) using the Post-traumatic Checklist. Minor stressors, social support, trait resilience, and perceived benefit had been measured previously. Mental health was examined with linear and log-linear models. Women who had a severe experience of both Gustav and Katrina scored higher on the mental health scales, but finding new ways to cope after Katrina or feeling more prepared was not protective. About half the population had better mental health scores after Gustav than at previous measures. Improvement was more likely among those who reported high social support or low levels of minor stressors, or were younger. Trait resilience mitigated the effect of hurricane exposure. Multiple disaster experiences are associated with worse mental health overall, though many women are resilient. Perceiving benefit after the first disaster was not protective. PMID:21418428

  11. LASE measurements of water vapor, aerosol, and cloud distribution in hurricane environments and their role in hurricane development

    Science.gov (United States)

    Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.; Halverson, J.; Rizvi, S.; Krishn, T. N.

    2002-01-01

    LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.

  12. Gulf of California Response to Hurricane Juliette

    Science.gov (United States)

    2010-01-01

    articles (Christensen et al., 1983; Enfield and Allen, 1983; Merri - field, 1992; Gjevik and Merrifield, 1993; Zamudio et al., 2002) have investigated...water column and a deepening of 10 m in the mixed layer. Those effects are more evident close to the BCP coast (Fig. 9c). A day latter, Juliette get

  13. Assessing the suitability of Holocene environments along the central Belize coast, Central America, for the reconstruction of hurricane records

    Science.gov (United States)

    Adomat, Friederike; Gischler, Eberhard

    2016-03-01

    Since the Belize coast was repeatedly affected by hurricanes and the paleohurricane record for this region is poor, sediment cores from coastal lagoon environments along the central Belize coast have been examined in order to identify storm deposits. The paleohurricane record presented in this study spans the past 8000 years and exhibits three periods with increased evidences of hurricane strikes occurring at 6000-4900, 4200-3600 and 2200-1500 cal yr BP. Two earlier events around 7100 and 7900 cal yr BP and more recent events around 180 cal yr BP and during modern times have been detected. Sand layers, redeposited corals and lagoon shell concentrations have been used as proxies for storm deposition. Additionally, hiatuses and reversed ages may indicate storm influence. While sand layers and corals represent overwash deposits, the lagoon shell concentrations, which mainly comprise the bivalve Anomalocardia cuneimeris and cerithid gastropods, have been deposited due to changes in lagoon salinity during and after storm landfalls. Comparison with other studies reveals similarities with one record from Belize, but hardly any matches with other published records. The potential for paleotempestology reconstructions of the barrier-lagoon complexes along the central Belize coast differs depending on geomorphology, and deposition of washovers in the lagoon basins is limited, probably due to the interplay of biological, geological and geomorphological processes.

  14. Assessing the suitability of Holocene environments along the central Belize coast, Central America, for the reconstruction of hurricane records

    Science.gov (United States)

    Adomat, Friederike; Gischler, Eberhard

    2017-01-01

    Since the Belize coast was repeatedly affected by hurricanes and the paleohurricane record for this region is poor, sediment cores from coastal lagoon environments along the central Belize coast have been examined in order to identify storm deposits. The paleohurricane record presented in this study spans the past 8000 years and exhibits three periods with increased evidences of hurricane strikes occurring at 6000-4900, 4200-3600 and 2200-1500 cal yr BP. Two earlier events around 7100 and 7900 cal yr BP and more recent events around 180 cal yr BP and during modern times have been detected. Sand layers, redeposited corals and lagoon shell concentrations have been used as proxies for storm deposition. Additionally, hiatuses and reversed ages may indicate storm influence. While sand layers and corals represent overwash deposits, the lagoon shell concentrations, which mainly comprise the bivalve Anomalocardia cuneimeris and cerithid gastropods, have been deposited due to changes in lagoon salinity during and after storm landfalls. Comparison with other studies reveals similarities with one record from Belize, but hardly any matches with other published records. The potential for paleotempestology reconstructions of the barrier-lagoon complexes along the central Belize coast differs depending on geomorphology, and deposition of washovers in the lagoon basins is limited, probably due to the interplay of biological, geological and geomorphological processes.

  15. Impacts of Hurricane Katrina on floodplain forests of the Pearl River: Chapter 6A in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael

    2007-01-01

    Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.

  16. Rapid Response Measurements of Hurricane Waves and Storm Surge

    Science.gov (United States)

    Gravois, U.

    2010-12-01

    Andrew (1992), Katrina (2005), and Ike (2008) are recent examples of extensive damage that resulted from direct hurricane landfall. Some of the worst damages from these hurricanes are caused by wind driven waves and storm surge flooding. The potential for more hurricane disasters like these continues to increase as a result of population growth and real estate development in low elevation coastal regions. Observational measurements of hurricane waves and storm surge play an important role in future mitigation efforts, yet permanent wave buoy moorings and tide stations are more sparse than desired. This research has developed a rapid response method using helicopters to install temporary wave and surge gauges ahead of hurricane landfall. These temporary installations, with target depths from 10-15 m and 1-7 km offshore depending on the local shelf slope, increase the density of measurement points where the worst conditions are expected. The method has progressed to an operational state and has successfully responded to storms Ernesto (2006), Noel (2007), Fay (2008), Gustav (2008), Hanna (2008) and Ike (2008). The temporary gauges are pressure data loggers that measure at 1 Hz continuously for 12 days and are post-processed to extract surge and wave information. For the six storms studied, 45 out of 49 sensors were recovered by boat led scuba diver search teams, with 43 providing useful data for an 88 percent success rate. As part of the 20 sensor Hurricane Gustav response, sensors were also deployed in lakes and bays inLouisiana, east of the Mississippi river delta. Gustav was the largest deployment to date. Generally efforts were scaled back for storms that were not anticipated to be highly destructive. For example, the cumulative total of sensors deployed for Ernesto, Noel, Fay and Hanna was only 20. Measurement locations for Gustav spanned over 800 km of exposed coastline from Louisiana to Florida with sensors in close proximity to landfall near Cocodrie

  17. A metastatistical approach to modelling extreme hurricane intensities

    Science.gov (United States)

    Hosseini, Seyed Reza; Marani, Marco; Scaioni, Marco

    2017-04-01

    Estimating the probability of occurrence of extreme hurricane intensities is significant in a vast number of fields and plays a crucial role in hurricane risk assessment. The method typically employed for these analyses applies traditional Extreme Value Theory (EVT) to fit the Generalize Extreme Value Distribution (GEVD) to hurricane maximum wind speed. In this framework, an asymptotic regime or a Poisson occurrence process are assumed to derive the GEVD, which is fitted using values over a high threshold or yearly maxima. However, the relative rarity of hurricanes implies that the number of events per year is not nearly sufficient for this asymptotic hypothesis to be valid, and the selection of a subset of the events drastically reduces the amount of information used. To overcome this limitation, we apply an alternative approach based on the Metastatistical Extreme Value Distribution (MEVD) to extreme hurricane intensity analyses. The derivation of the MEVD relaxes the limiting assumption of the traditional EVT, by taking into account the distribution of the entire range of recorded event magnitudes, rather than just the distributional tail. Taking advantage of this method, we can use the entire observational set, including hurricanes with relatively lower intensities, with clear statistical advantages. We comparatively assess the MEVD and the classical EVT quantile estimation uncertainties using the 130-year long Maximum Sustained Wind (MSW) speed time series for all hurricanes in the north Atlantic basin obtained from the National Hurricane Center (Atlantic HURDAT2). The parameters of the GEVD are estimated using a range of methods to ensure an optimal estimator is found. The MEVD is fitted assuming a Generalize Pareto Distribution (GPD) for the "ordinary" values of MSW over 5- to 10-year blocks using Probability Weighted Moments (PWM). The statistical tests are performed by dividing the dataset (of length L) into two distinct parts: S years for calibration and

  18. Mooring observations of the near-inertial wave wake of Hurricane Ida (2009)

    Science.gov (United States)

    Pallàs-Sanz, Enric; Candela, Julio; Sheinbaum, Julio; Ochoa, José

    2016-12-01

    The near-inertial wave wake of Hurricane Ida is examined of the basis of horizontal velocity observations acquired from 7 moorings instrumented with acoustic Doppler current profilers deployed across the shelf break, slope, and at the abyssal plain of the Yucatan Peninsula, from 130 m to ∼3300 m. During the forced stage, background mean-flow consisted on a dominant cyclonic circulation of ∼100 km of diameter intensified toward the Yucatan's shelf (topographic constraint) and bounded by anticyclonic vorticity northeastward (north 25° N). In the low frequency band, subinertial signals of ∈ [5.5-7.5] day period propagating along the Yucatan shelf break. After the passage of Hurricane Ida, energetic near-inertial oscillations spread away from the storm's track over cyclonic vorticity. The wave's Eulerian frequency increases shoreward and toward the Yucatan's shelf. After Ida's passage, mooring data show a contrasting velocity response: semi-diurnal and diurnal tides are enhanced at the shelf break of the Yucatan Peninsula and near-inertial oscillations at the slope and abyssal plain. The near-inertial kinetic energy is largest to the right of the storm track because of the asymmetric wind-stress and amplified due to vorticity trapping near z =-500 m, which is a proxy of the base of the mesoscale structure and where the mean-flow is nearly zero. The blue frequency shifted wave wake propagates downward at ∼57-70 m day-1 and horizontally at 23-28 km day-1 leading a downward vertical energy flux of [1.3-1.6] × 10-2 W m-2. This represents a 7-9% of the total wind power input to near-inertial oscillations that, ultimately, became available for interior ocean mixing. The results suggest that the most energetic wave packet propagated poleward and downward from a broad upwelling region located near the Hurricane's track. The vertical structure of the near-inertial kinetic energy is described as a sum of the first 12 standing vertical modes and as vertically

  19. Hurricanes and Climate: the U.S. CLIVAR Working Group on Hurricanes

    Science.gov (United States)

    Walsh, Kevin; Camargo, Suzana J.; Vecchi, Gabriel A.; Daloz, Anne Sophie; Elsner, James; Emanuel, Kerry; Horn, Michael; Lim, Young-Kwon; Roberts, Malcolm; Patricola, Christina; Scoccimarro, Enrico; Sobel, Adam; Strazzo, Sarah; Villarini, Gabriele; Wehner, Michael; Zhao, Ming; Kossin, Jim; Larow, Tim; Oouchi, Kazuyoshi; Schubert, Siegfried; Wang, Hui; Bacmeister, Julio; Chang, Ping; Chauvin, Fabrice; Jablonowski, Christine

    2015-01-01

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. The idealized experiments of the Hurricane Working Group of U.S. CLIVAR, combined with results from other model simulations, have suggested relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity. Systematic differences are shown between experiments in which only sea surface temperature is increases versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate a decrease in numbers. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.

  20. Origin of the Term "Hurricane"%"飓风(hurricane)"缘起

    Institute of Scientific and Technical Information of China (English)

    I.阿西莫夫; 卞毓麟; 唐小英

    2006-01-01

    @@ 大多数风暴在性质上属旋风,一般来说它们还是相当温和的.但是,外界条件偶尔会使旋风旋转得非常快,你就会感到不舒服. 美国东部及墨西哥湾沿岸居民最熟悉的情况是这样一种旋风:它于夏末秋初在加勒比海上开始形成,并成为一种时速超过160千米的巨大旋风,且开始朝西北方向移动.这就叫做"飓风"(hurricane),它源自一个加勒比印第安词Hurakan,这是他们的一种凶恶的鬼怪的名称.在飓风经过的地方居住的任何人(本书作者就是其中之一)都能证实这种说法是有道理的.

  1. The public health planners' perfect storm: Hurricane Matthew and Zika virus.

    Science.gov (United States)

    Ahmed, Qanta A; Memish, Ziad A

    Hurricane Matthew threatened to be one of the most powerful Hurricanes to hit the United States in a century. Fortunately, it avoided making landfall on Florida, the eye of the Hurricane remaining centered 40 miles off the Florida coast. Even so it has resulted in over $7 Billion USD in damage according to initial estimates with much of the damage ongoing in severe flooding. Response to and recovery from Hurricane Matthew challenged Florida's public health services and resources just as emergency Zika-specific congressional funding to combat Zika outbreaks in Florida had become available. Hurricanes can disrupt the urban environment in a way that increases the likelihood of vector-borne illnesses and their aftermath can severely strain the very infectious disease and infection control academe needed to combat vector-borne outbreaks. This commentary attempts to examine the challenges posed by Hurricane Matthew in Florida's efforts to contain Zika. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Online Media Use and Adoption by Hurricane Sandy Affected Fire and Police Departments

    OpenAIRE

    Chauhan, Apoorva

    2014-01-01

    In this thesis work, I examine the use and adoption of online communication media by 840 fire and police departments that were affected by the 2012 Hurricane Sandy. I began by exploring how and why these fire and police departments used (or did not use) online media to communicate with the public during Hurricane Sandy. Results show that fire and police departments used online media during Hurricane Sandy to give timely and relevant information to the public about things such as evacuations, ...

  3. Calculations of the hurricane eye motion based on singularity propagation theory

    Directory of Open Access Journals (Sweden)

    Vladimir Danilov

    2002-02-01

    Full Text Available We discuss the possibility of using calculating singularities to forecast the dynamics of hurricanes. Our basic model is the shallow-water system. By treating the hurricane eye as a vortex type singularity and truncating the corresponding sequence of Hugoniot type conditions, we carry out many numerical experiments. The comparison of our results with the tracks of three actual hurricanes shows that our approach is rather fruitful.

  4. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  5. Quantifying the digital traces of Hurricane Sandy on Flickr.

    Science.gov (United States)

    Preis, Tobias; Moat, Helen Susannah; Bishop, Steven R; Treleaven, Philip; Stanley, H Eugene

    2013-11-05

    Society's increasing interactions with technology are creating extensive "digital traces" of our collective human behavior. These new data sources are fuelling the rapid development of the new field of computational social science. To investigate user attention to the Hurricane Sandy disaster in 2012, we analyze data from Flickr, a popular website for sharing personal photographs. In this case study, we find that the number of photos taken and subsequently uploaded to Flickr with titles, descriptions or tags related to Hurricane Sandy bears a striking correlation to the atmospheric pressure in the US state New Jersey during this period. Appropriate leverage of such information could be useful to policy makers and others charged with emergency crisis management.

  6. Performance of social network sensors during Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Yury Kryvasheyeu

    Full Text Available Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the "friendship paradox", is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users' network centrality effectively translate into moderate awareness advantage (up to 26 hours; and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple "sentiment sensing" technique that can detect and locate disasters.

  7. Performance of social network sensors during Hurricane Sandy.

    Science.gov (United States)

    Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel

    2015-01-01

    Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the "friendship paradox", is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users' network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple "sentiment sensing" technique that can detect and locate disasters.

  8. Transformative experiences for Hurricanes Katrina and Rita disaster volunteers.

    Science.gov (United States)

    Clukey, Lory

    2010-07-01

    The massive destruction caused by Hurricanes Katrina and Rita in 2005 provided an opportunity for many volunteers to be involved with disaster relief work. Exposure to devastation and personal trauma can have long-lasting and sometimes detrimental effects on people providing help. This qualitative study explored the experience of volunteer relief workers who provided disaster relief services after the hurricanes. Three major themes emerged: emotional reactions that included feelings of shock, fatigue, anger and grief as well as sleep disturbances; frustration with leadership; and life-changing personal transformation. Stress reactions were noted but appeared to be mitigated by feelings of compassion for the victims and personal satisfaction in being able to provide assistance. Suggestions are provided for further research.

  9. Comments on "Isentropic Analysis of a Simulated Hurricane"

    CERN Document Server

    Marquet, Pascal

    2016-01-01

    This paper describes Comments to the paper of Mrowiec et al. published in the J. Atmos. Sci. in May 2016 (Vol 73, Issue 5, pages 1857-1870) and entitled "Isentropic analysis of a simulated hurricane". It is explained that the plotting of isentropic surfaces (namely the isentropes) requires a precise definition of the specific moist-air entropy, and that most of existing "equivalent potential temperatures" lead to inaccurate definitions of isentropes. It is shown that the use of the third law of thermodynamics leads to a definition of the specific moist-air entropy (and of a corresponding potential temperature) which allow the plotting of unambigous moist-air isentropes. Numerical applications are shown by using a numerical simulation of the hurricane DUMILE.

  10. Bleeding Mud: The Testimonial Poetry of Hurricane Mitch in Nicaragua

    Directory of Open Access Journals (Sweden)

    Erin S Finzer

    2015-01-01

    Full Text Available Beginning with Rubén Darío, Nicaragua has long prided itself in being a country of poets. During the Sandinista Revolution, popular poetry workshops dispatched by Minister of Culture Ernesto Cardenal taught peasants and soldiers to write poetry about everyday life and to use poetry as a way to work through trauma from the civil war. When Hurricane Mitch--one of the first superstorms that heralded climate change--brought extreme flooding to Nicaragua in 1998, poetry again served as a way for victims to process the devastation. Examining testimonial poetry from Hurricane Mitch, this article shows how the mud and despair of this environmental disaster function as palimpsests of conquest and imperial oppression.

  11. Performance of Social Network Sensors during Hurricane Sandy

    Science.gov (United States)

    Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel

    2015-01-01

    Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the “friendship paradox”, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users’ network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple “sentiment sensing” technique that can detect and locate disasters. PMID:25692690

  12. Use of Windbreaks for Hurricane Protection of Critical Facilities

    Science.gov (United States)

    Hyater-Adams, Sinone; DeYoung, Russell J.

    2012-01-01

    The protection of NASA Langley Research Center from future hurricanes is important in order to allow the center to fulfill its mission. The impact of the center is not only great within NASA but the economy as well. The infrastructure of the Center is under potential risk in the future because of more intense hurricanes with higher speed winds and flooding. A potential method of protecting the Center s facilities is the placement of a windbreak barrier composed of indigenous trees. The New Town program that is now in progress creates a more condensed area of focus for protection. A potential design for an efficient tree windbreak barrier for Langley Research center is proposed.

  13. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    Science.gov (United States)

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh A.; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  14. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  15. Estimation of the CO2 fluxes between the ocean and atmosphere for the hurricane wind forces using remote sensing data.

    Science.gov (United States)

    Sergeev, Daniil; Soustova, Irina; Balandina, Galina

    2017-04-01

    CO2 transfer between the hydrosphere and atmosphere in the boundary layer is an important part of the global cycle of the main greenhouse gas. Gas flux is determined by the difference of the partial pressures of the gas between the atmosphere and hydrosphere, near the border, as well as to a large extent processes involving turbulent boundary layer. The last is usually characterized by power dependence on the equivalent wind speed (10-m height). Hurricane-force winds lead to intensive wave breaking, with formation of spray in the air, and bubbles in the water. Such multiphase turbulent processes at the interface strongly intensify gas transfer. Currently, data characterizing the dependence of the gas exchange of the wind speed for the hurricane conditions demonstrate a strong variation. On the other hand there is an obvious problem of obtaining reliable data on the wind speed. Widely used reanalysis data typically underestimate wind speed, due to the low spatial and temporal resolution One of the most promising ways to measure near water wind speed is the use of the data of remote sensing. The present study used technique to obtain near water wind speed based on the processing of remote sensing of the ocean surface data obtained with C-band scattermeter of RADARSAT using geophysical model function, developed in a laboratory conditions for a wide range of wind speeds, including hurricanes (see [1]). This function binds wind speed with effective radar cross-section in cross-polarized mode. We used two different parameterizations of gas transfer velocity of the wind speed. Widely used in [2], and obtained by processing results of recent experiment in modeling winds up to hurricane on wind-wave facility [3]. The new method of calculating was tested by the example of hurricane Earl image (09.2010). Estimates showed 13-18 times excess CO2 fluxes rates in comparison with monitoring data NOAA (see. [4]). 1. Troitskaya Yu., Abramov V., Ermoshkin A., Zuikova E., Kazakov V

  16. Quantifying the Digital Traces of Hurricane Sandy on Flickr

    OpenAIRE

    Preis, Tobias; Moat, Helen Susannah; Bishop, Steven R.; Treleaven, Philip; Stanley, H. Eugene

    2013-01-01

    Society’s increasing interactions with technology are creating extensive “digital traces” of our collective human behavior. These new data sources are fuelling the rapid development of the new field of computational social science. To investigate user attention to the Hurricane Sandy disaster in 2012, we analyze data from Flickr, a popular website for sharing personal photographs. In this case study, we find that the number of photos taken and subsequently uploaded to Flickr with titles, desc...

  17. A complex adaptive system approach to forecasting hurricane tracks

    OpenAIRE

    Lear, Matthew R.

    2005-01-01

    , for the life of the storm, perform the best in terms of the distance between forecast and best-track positions. A TAF forecast is developed using a linear combination of the highest weighted predictors. When applied to the 2004 Atlantic hurricane season, the TAF system with a requirement to contain a minimum of three predictors, consistently outperformed, although not statistically significant, the CONU forecast at 72 and 96 hours for a homogeneous data set. At 120 hours, the TAF system s...

  18. Forecasting hurricane tracks using a complex adaptive system

    OpenAIRE

    Lear, Matthew R.

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that is comprised by linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual dynamic model forecast errors. In this experiment, a complex adaptive system, the Tropical Agent Forecaster (TAF), is created to fashion a 'smart' ensemble forecast. The TAF uses autonomous agents to assess the historical performance of individual models and model combinations, called predicto...

  19. The Repopulation of New Orleans After Hurricane Katrina

    Science.gov (United States)

    2006-01-01

    Stryker, “Economic Impacts of the Loma Prieta Earthquake: A Focus on Small Business,” Berkeley Planning Journal, Vol. 5, No. 1, 1990, pp. 39 58...M. Dahlhamer, “Predicting Long-Term Business Recovery from Disaster: A Comparison of the Loma Prieta Earthquake and Hurricane Andrew,” Newark, Del...analysis and effective solutions that address the challenges facing the public and private sectors around the world. Visit RAND at www.rand.org Explore

  20. Hurricane Risk Variability along the Gulf of Mexico Coastline

    OpenAIRE

    Jill C Trepanier; Ellis, Kelsey N.; Clay S Tucker

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locatio...

  1. G-Power最快四门轿车Hurricane RR

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    近日,德国改装商G-Power打造了一款号称世界上最快的四门轿车,这款G-Power Hurricane RR以宝马M5为基础,其最高时速可达372公里/小时,与迈凯轮F1基本一致。

  2. Using the QBO to predict the number of hurricanes hitting the U.S

    CERN Document Server

    Coughlin, Katie

    2007-01-01

    A simple study of the relationship between the QBO and the number of hurricanes in the Atlantic, both in the Basin and hitting the U.S. coastline, demonstrates that the QBO is not a particularly useful index to help predict hurricane numbers on five-year time scales. It is shown that there is very little difference between the number of hurricanes following easterly winds in the equatorial stratosphere and the number that follow westerly winds. Given this it is reasonable one would make better predictions just using the mean number of hurricanes in lieu of using the QBO and this is also simply demonstrated here.

  3. Fusion of Hurricane Models and Observations: Developing the Technology to Improve the Forecasts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop the technology to provide the fusion of observations and operational model simulations to help improve the understanding and forecasting of hurricane...

  4. Impact of Hurricane Ivan on pharmacies in Baldwin County, Alabama.

    Science.gov (United States)

    Azziz-Baumgartner, Eduardo; Wolkin, Amy; Sanchez, Carlos; Bayleyegn, Tesfaye; Young, Stacy; Kieszak, Stephanie; Oberst, Kathleen; Batts, Dahna; Thomas, Charles C; Rubin, Carol

    2005-01-01

    To evaluate the impact of Hurricane Ivan, which made landfall east of Mobile, Alabama, on September 16, 2004, on pharmacies in the affected areas. Retrospective cross-sectional analysis. Baldwin County, Alabama. Pharmacy community rapid-needs-assessment survey. 41 hospital and community (chain and independent) pharmacies. Posthurricane pharmacy hours of operations, prescription volumes, infrastructure damage, and prehurricane disaster planning. During the week of the hurricane, both chain and independent community pharmacies within the evacuation zone worked significantly fewer hours (46% and 49%, respectively) and dispensed significantly fewer prescriptions (37% and 52%) compared with the same week of the prior year. Overall, 40% of pharmacies depleted their supplies of certain medications (e.g., anxiolytics, antihypertensives). A total of 60% of the chain and independent pharmacies outside the evacuation zone closed because of loss of electricity, but pharmacies with a generator were significantly less likely to report having turned away patients. The proportion of pharmacies that had a disaster plan but turned away patients or rationed or ran out of medications was similar to that of pharmacies without a disaster plan. Although Hurricane Ivan primarily affected the operation of pharmacies within the evacuation zone, pharmacies in the surrounding area were also affected because of loss of power. Emergency management officials should evaluate the efficacy of specific guidelines outlined in disaster plans and identify ways to deliver essential medications to people in disaster-affected areas.

  5. Diabetes Care Provided to Children Displaced by Hurricane Katrina.

    Science.gov (United States)

    Quast, Troy; Mortensen, Karoline

    2015-10-01

    Although previous studies have examined the impact of Hurricane Katrina on adults with diabetes, less is known about the effects on children with diabetes and on those displaced by the storm. We analyzed individual-level enrollment and utilization data of children with diabetes who were displaced from Louisiana and were enrolled in the Texas Medicaid Hurricane Katrina emergency waiver (TexKat). We compared the utilization and outcomes of children displaced from Louisiana with those of children who lived in areas less affected by Hurricane Katrina. Data from both before and after the storm were used to calculate difference-in-difference estimates of the effects of displacement on the children. We analyzed 4 diabetes management procedures (glycated hemoglobin [HbA1C] tests, eye exams, microalbumin tests, and thyroid tests) and a complication from poor diabetes management (diabetic ketoacidosis). Children enrolled in the waiver generally did not experience a decrease in care relative to the control group while the waiver program was in effect. After the waiver ended, however, we observed a drop in care and an increase in complications relative to the control group. Although the waiver appeared to have been largely successful immediately following Katrina, future waivers may be improved by ensuring that enrollees continue to receive care after the waivers expire.

  6. Gaussian and Lognormal Models of Hurricane Gust Factors

    Science.gov (United States)

    Merceret, Frank

    2009-01-01

    A document describes a tool that predicts the likelihood of land-falling tropical storms and hurricanes exceeding specified peak speeds, given the mean wind speed at various heights of up to 500 feet (150 meters) above ground level. Empirical models to calculate mean and standard deviation of the gust factor as a function of height and mean wind speed were developed in Excel based on data from previous hurricanes. Separate models were developed for Gaussian and offset lognormal distributions for the gust factor. Rather than forecasting a single, specific peak wind speed, this tool provides a probability of exceeding a specified value. This probability is provided as a function of height, allowing it to be applied at a height appropriate for tall structures. The user inputs the mean wind speed, height, and operational threshold. The tool produces the probability from each model that the given threshold will be exceeded. This application does have its limits. They were tested only in tropical storm conditions associated with the periphery of hurricanes. Winds of similar speed produced by non-tropical system may have different turbulence dynamics and stability, which may change those winds statistical characteristics. These models were developed along the Central Florida seacoast, and their results may not accurately extrapolate to inland areas, or even to coastal sites that are different from those used to build the models. Although this tool cannot be generalized for use in different environments, its methodology could be applied to those locations to develop a similar tool tuned to local conditions.

  7. Hurricane Sandy washover deposits on Fire Island, New York

    Science.gov (United States)

    La Selle, SeanPaul M.; Lunghino, Brent D.; Jaffe, Bruce E.; Gelfenbaum, Guy; Costa, Pedro J.M.

    2017-02-16

    Washover deposits on Fire Island, New York, from Hurricane Sandy in 2012 were investigated a year after the storm to document the sedimentary characteristics of hurricane washover features. Sediment data collected in the field includes stratigraphic descriptions and photos from trenches, bulk sediment samples, U-channels, and gouge and push cores. Samples and push cores were further analyzed in the laboratory for grain size, density variations using x-ray computed tomography (CT), and surface microtexture using a scanning electron microscope (SEM). Elevation profiles of washover features were measured using Differential Global Positioning System (DGPS) with Real Time Kinematic processing. The DGPS elevations were compared to lidar (light detection and ranging) data from pre- and post-Sandy surveys to assess the degree to which washover deposit thicknesses changed within the year following deposition. Hurricane Sandy washover deposits as much as 1 meter thick were observed in trenches. Initial results show that the upper parts of the deposits have been reworked significantly in some places by wind, but there are still areas where the deposits are almost entirely intact. Where mostly intact, the washover deposits consist of massive or weakly laminated sand near the base, overlain by more strongly laminated sands.

  8. Hurricane-driven alteration in plankton community size structure in the Gulf of Mexico: A modeling study

    Science.gov (United States)

    Gierach, Michelle M.; Subrahmanyam, Bulusu; Samuelsen, Annette; Ueyoshi, Kyozo

    2009-04-01

    This was the first study to analyze phytoplankton and zooplankton community size structure during hurricane passage. A three-dimensional biophysical model was used to assess ecosystem dynamics, plankton biomass, and plankton distribution in the Gulf of Mexico during Hurricane Katrina (2005). Model simulations revealed that large phytoplankton were most responsive to hurricane-induced turbulent mixing and nutrient injection, with increases in biomass along the hurricane track. Small phytoplankton, microzooplankton, and mesozooplankton biomass primarily shifted in location and increased in spatial extent as a result of Hurricane Katrina. Hurricane passage disrupted the distribution of plankton biomass associated with mesoscale eddies. Biomass minimums and maximums that resided in the center of warm- and cold-core eddies and along eddy peripheries prior to hurricane passage were displaced during Hurricane Katrina.

  9. Serious emotional disturbance among youths exposed to Hurricane Katrina 2 years postdisaster.

    Science.gov (United States)

    McLaughlin, Katie A; Fairbank, John A; Gruber, Michael J; Jones, Russell T; Lakoma, Matthew D; Pfefferbaum, Betty; Sampson, Nancy A; Kessler, Ronald C

    2009-11-01

    To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, sociodemographics, and family factors 18 to 27 months after the hurricane. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey. Respondents provided information on up to two of their children (n = 797) aged 4 to 17 years. The survey assessed hurricane-related stressors and lifetime history of psychopathology in respondents, screened for 12-month SED in respondents' children using the Strengths and Difficulties Questionnaire, and determined whether children's emotional and behavioral problems were attributable to Hurricane Katrina. The estimated prevalence of SED was 14.9%, and 9.3% of the youths were estimated to have SED that is directly attributable to Hurricane Katrina. Stress exposure was associated strongly with SED, and 20.3% of the youths with high stress exposure had hurricane-attributable SED. Death of a loved one had the strongest association with SED among prehurricane residents of New Orleans, whereas exposure to physical adversity had the strongest association in the remainder of the sample. Among children with stress exposure, parental psychopathology and poverty were associated with SED. The prevalence of SED among youths exposed to Hurricane Katrina remains high 18 to 27 months after the storm, suggesting a substantial need for mental health treatment resources in the hurricane-affected areas. The youths who were exposed to hurricane-related stressors, have a family history of psychopathology, and have lower family incomes are at greatest risk for long-term psychiatric impairment.

  10. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008.

    Science.gov (United States)

    Kleinpeter, Myra A

    2009-01-01

    Hurricanes Katrina and Rita resulted in massive devastation of the Gulf Coast at Mississippi, Louisiana, and Texas during 2005. Because of those disasters, dialysis providers, nephrologists, and dialysis patients used disaster planning activities to work to mitigate the morbidity and mortality associated with the 2005 hurricane season for future events affecting dialysis patients. As Hurricane Gustav approached, anniversary events for Hurricane Katrina were postponed because of evacuation orders for nearly the entire Louisiana Gulf Coast. As part of the hurricane preparation, dialysis units reviewed the disaster plans of patients, and patients made preparation for evacuation. Upon evacuation, many patients returned to the dialysis units that had provided services during their exile from Hurricane Katrina; other patients went to other locations as part of their evacuation plan. Patients uniformly reported positive experiences with dialysis providers in their temporary evacuation communities, provided that those communities did not experience the effects of Hurricane Gustav. With the exception of evacuees to Baton Rouge, patients continued to receive their treatments uninterrupted. Because of extensive damage in the Baton Rouge area, resulting in widespread power losses and delayed restoration of power to hospitals and other health care facilities, some patients missed one treatment. However, as a result of compliance with disaster fluid and dietary recommendations, no adverse outcomes occurred. In most instances, patients were able to return to their home dialysis unit or a nearby unit to continue dialysis treatments within 4 - 5 days of Hurricane Gustav. Hurricane Ike struck the Texas Gulf Coast near Galveston, resulting in devastation of that area similar to the devastation seen in New Orleans after Katrina. The storm surge along the Louisiana Gulf Coast resulted in flooding that temporarily closed coastal dialysis units. Patients were prepared and experienced

  11. Examining Pacific and Atlantic Hurricane Stage Duration and Length Since 1980

    Science.gov (United States)

    Wachtel, C. J.; Godek, M. L.

    2015-12-01

    Examining Pacific and Atlantic Hurricane Stage Duration and Length Since 1980Cassidy Wachtel and Melissa L. GodekDepartment of Earth and Atmospheric Sciences, State University of New York College at Oneonta, New York 13820 Abstract:Each year hurricanes impact thousands of people and over time changes in hurricane characteristics, such as intensity and frequency, have been identified. This study aims to examine changes in hurricane stage duration and track length of West Atlantic and eastern North Pacific hurricanes between 1980 and 2013. Category 2 through 5 hurricanes are analyzed as they evolved through the full life cycle of a hurricane (tropical depression to tropical storm to category). The NOAA National Ocean Service hurricane reanalysis datasets are used to identify 286 storms which are statistically analyzed by category for 1) temporal changes in stage duration with time and 2) temporal changes in stage track lengths with time. NOAA Earth System Research Laboratory daily mean composites of variables such as vertical wind shear and sea surface temperatures are then examined to explain the temporal tendencies that may be related to climate change. Preliminary results indicate that category 2, 4 and 5 storms experienced an overall decrease in stage duration since 1980. For storms of these magnitudes, generally more rapid intensification to category has occurred over time. Contrarily, increased stage duration is detected for hurricanes that reached category 3 status, showing that these storms have strengthened more slowly with time. In all categories, a few unique cases occurred that exhibited stage durations greater than 1 standard deviation from the mean of the long term trend. These cases require further scrutiny for the environmental conditions that might explain the anomalous departures. Keywords: Hurricanes, West Atlantic Ocean, North Pacific Ocean, Storm Tracks, Tropical Storm, Tropical Depression, Hurricane Stage

  12. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  13. 78 FR 52560 - Hurricane Sandy Rebuilding Task Force-Rebuild-by-Design; Announcement of Selection of Design Teams

    Science.gov (United States)

    2013-08-23

    ... URBAN DEVELOPMENT Hurricane Sandy Rebuilding Task Force--Rebuild-by-Design; Announcement of Selection of Design Teams AGENCY: Hurricane Sandy Task Force, HUD. ACTION: Notice. SUMMARY: In June 2013, the Hurricane Sandy Task Force launched Rebuild by Design, a multi-stage regional design competition to...

  14. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Science.gov (United States)

    2011-09-01

    ... Facilities Caused by the Passage of Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration... to pipeline facilities caused by the passage of Hurricanes. ADDRESSES: This document can be viewed on...-related issues that can result from the passage of hurricanes. That includes the potential for damage to...

  15. Modelling dune erosion, overwash and breaching at Fire Island (NY) during hurricane Sandy

    NARCIS (Netherlands)

    De Vet, P.L.M.; McCall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M.

    2015-01-01

    In 2012, Hurricane Sandy caused a breach at Fire Island (NY, USA), near Pelican Island. This paper aims at modelling dune erosion, overwash and breaching processes that occured during the hurricane event at this stretch of coast with the numerical model XBeach. By using the default settings, the ero

  16. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NARCIS (Netherlands)

    Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-01-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-

  17. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NARCIS (Netherlands)

    Lammers, J. M.|info:eu-repo/dai/nl/344765601; van Soelen, E.|info:eu-repo/dai/nl/304079766; Liebrand, D.; Donders, T.|info:eu-repo/dai/nl/290469872; Reichart, G. J.|info:eu-repo/dai/nl/165599081

    2009-01-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the record

  18. Impacts of Hurricanes Frances and Jeanne on Two Nourished Beaches along the Southeast Florida Coast

    NARCIS (Netherlands)

    Benedet, L.; Campbell, T.; Finkl, C.W.; Stive, M.J.F.; Spadoni, R.

    2005-01-01

    Site inspections and beacli profile surveys of nourislied beaclies in the city of Boca Raton, and Town of Palm Beach, Florida show that the nourished beaches protected the shore from hurricane impacts in 2004. Striking the southeast coast of Florida within 20 days of each other. Hurricane Frances (S

  19. Lessons from Crisis Recovery in Schools: How Hurricanes Impacted Schools, Families and the Community

    Science.gov (United States)

    Howat, Holly; Curtis, Nikki; Landry, Shauna; Farmer, Kara; Kroll, Tobias; Douglass, Jill

    2012-01-01

    This article examines school and school district-level efforts to reopen schools after significant damage from hurricanes. Through an empirical, qualitative research design, four themes emerged as critical to the hurricane recovery process: the importance of communication, resolving tension, coordinating with other services and learning from the…

  20. How Disasters Affect Local Labor Markets: The Effects of Hurricanes in Florida

    Science.gov (United States)

    Belasen, Ariel R.; Polachek, Solomon W.

    2009-01-01

    This study improves upon the Difference in Difference approach by examining exogenous shocks using a Generalized Difference in Difference (GDD) technique that identifies economic effects of hurricanes. Based on the Quarterly Census of Employment and Wages data, worker earnings in Florida counties hit by a hurricane increase up to 4 percent,…

  1. Intensive longleaf pine management for hurricane recovery: fourth-year results

    Science.gov (United States)

    David S. Dyson; Dale G. Brockway

    2015-01-01

    The frequency and intensity of hurricanes affecting the United States has been projected to increase during coming decades, and this rising level of cyclonic storm activity is expected to substantially damage southeastern forests. Although hurricane damage to forests in this region is not new, recent emphasis on longleaf pine (Pinus palustris Mill...

  2. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    Directory of Open Access Journals (Sweden)

    J. M. Kim

    2013-08-01

    Full Text Available Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  3. Hurricane recovery at Cabezas de San Juan, Puerto Rico, and research opportunities at Conservation Trust Reserves

    Science.gov (United States)

    Peter L. Weaver; Elizabeth Padilla Rodriguez

    2009-01-01

    The Cabezas de San Juan Natural Reserve (El Faro), an exposed peninsular area located in the Subtropical dry forest of northeastern Puerto Rico, was impacted by hurricanes Hugo (1989) and Georges (1998). From 1998 to 2008, a 0.10 ha plot was used to assess forest structure, species composition, and stem growth. During post-hurricane recovery, stem density, tree height...

  4. Impacts of Hurricanes Frances and Jeanne on Two Nourished Beaches along the Southeast Florida Coast

    NARCIS (Netherlands)

    Benedet, L.; Campbell, T.; Finkl, C.W.; Stive, M.J.F.; Spadoni, R.

    2005-01-01

    Site inspections and beacli profile surveys of nourislied beaclies in the city of Boca Raton, and Town of Palm Beach, Florida show that the nourished beaches protected the shore from hurricane impacts in 2004. Striking the southeast coast of Florida within 20 days of each other. Hurricane Frances

  5. Just-in-Time Training: The Lessons of Hurricane Katrina, 10 Years Later

    Science.gov (United States)

    Boerner, Heather

    2016-01-01

    Hurricane Katrina reshaped college workforce development programs as thoroughly as it did the coastline--but in this case, the changes were for the good of students, employers and the community. This article discusses the effects and changes made by 4 community colleges who were effected by Hurricane Katrina: (1) Louisiana Community and Technical…

  6. EFFECTS OF HURRICANE IVAN ON WATER QUALITY IN PENSACOLA BAY, FL USA

    Science.gov (United States)

    Pensacola Bay was in the strong NE quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, ...

  7. 33 CFR 203.49 - Rehabilitation of Hurricane and Shore Protection Projects.

    Science.gov (United States)

    2010-07-01

    ... Shore Protection Projects. 203.49 Section 203.49 Navigation and Navigable Waters CORPS OF ENGINEERS... authorized hurricane or shore protection structure damaged or destroyed by wind, wave, or water action of an... of damage to a Hurricane/Shore Protection Project. “Prolongation or severity” means a Category 3...

  8. Lessons from Crisis Recovery in Schools: How Hurricanes Impacted Schools, Families and the Community

    Science.gov (United States)

    Howat, Holly; Curtis, Nikki; Landry, Shauna; Farmer, Kara; Kroll, Tobias; Douglass, Jill

    2012-01-01

    This article examines school and school district-level efforts to reopen schools after significant damage from hurricanes. Through an empirical, qualitative research design, four themes emerged as critical to the hurricane recovery process: the importance of communication, resolving tension, coordinating with other services and learning from the…

  9. Factors Influencing the Course of Posttraumatic Stress Following a Natural Disaster: Children's Reactions to Hurricane Katrina

    Science.gov (United States)

    Terranova, Andrew M.; Boxer, Paul; Morris, Amanda Sheffield

    2009-01-01

    This investigation examined psychosocial and behavioral factors involved in the course of post-traumatic stress disorder (PTSD) symptoms in youth affected by Hurricane Katrina. Participants (N = 152; 54% female; 61% Caucasian; mean age = 11.5 years) self-reported on hurricane exposure, PTSD symptoms, fear reactivity, regulatory abilities, social…

  10. Reactive Aggression and Posttraumatic Stress in Adolescents Affected by Hurricane Katrina

    Science.gov (United States)

    Marsee, Monica A.

    2008-01-01

    The current study tests a theoretical model illustrating a potential pathway to reactive aggression through exposure to a traumatic event (Hurricane Katrina) in 166 adolescents (61% female, 63% Caucasian) recruited from high schools on the Gulf Coast of Mississippi. Results support an association between exposure to Hurricane Katrina and reactive…

  11. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  12. ENVIRONMENTAL CONDITIONS IN NORTHERN GULF OF MEXICO COASTAL WATERS FOLLOWING HURRICANE KATRINA

    Science.gov (United States)

    On the morning of August 29, 2005 Hurricane Katrina struck the coast of Louisiana, between New Orleans and Biloxi, Mississippi, as a strong category three hurricane on the Saffir-Simpson scale. The massive winds and flooding had the potential for a tremendous environmental impac...

  13. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  14. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NARCIS (Netherlands)

    Lammers, J. M.; van Soelen, E.; Liebrand, D.; Donders, T.; Reichart, G. J.

    2009-01-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the record

  15. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NARCIS (Netherlands)

    Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-01-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-

  16. Impacts of Hurricanes Frances and Jeanne on Two Nourished Beaches along the Southeast Florida Coast

    NARCIS (Netherlands)

    Benedet, L.; Campbell, T.; Finkl, C.W.; Stive, M.J.F.; Spadoni, R.

    2005-01-01

    Site inspections and beacli profile surveys of nourislied beaclies in the city of Boca Raton, and Town of Palm Beach, Florida show that the nourished beaches protected the shore from hurricane impacts in 2004. Striking the southeast coast of Florida within 20 days of each other. Hurricane Frances (S

  17. EFFECTS OF HURRICANE IVAN ON WATER QUALITY IN PENSACOLA BAY, FL USA

    Science.gov (United States)

    Pensacola Bay was in the strong NE quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, ...

  18. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NARCIS (Netherlands)

    Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-01-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at

  19. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NARCIS (Netherlands)

    Lammers, J. M.; van Soelen, E.; Liebrand, D.; Donders, T.; Reichart, G. J.

    2009-01-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the

  20. Modelling dune erosion, overwash and breaching at Fire Island (NY) during hurricane Sandy

    NARCIS (Netherlands)

    De Vet, P.L.M.; McCall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M.

    2015-01-01

    In 2012, Hurricane Sandy caused a breach at Fire Island (NY, USA), near Pelican Island. This paper aims at modelling dune erosion, overwash and breaching processes that occured during the hurricane event at this stretch of coast with the numerical model XBeach. By using the default settings, the

  1. Analysis of the variation of Hurricane frequency over Atlantic region during 1851-2010

    Science.gov (United States)

    Banerjee, Dhruba; Bondyopadhaya, Ramaprosad

    Analysis of the variation of Hurricane frequency over Atlantic region during 1851-2010 The variation of number of Hurricane over Atlantic and East Caribbean region during more than 150 years (1851-2010) have been analyzed. The general observations regarding characteristics are (ref{GrindEQ__1_}) the frequency increases monotonically, (ref{GrindEQ__2_}) the monthly variation of the frequencies also exists and the frequency of Hurricanes are much more during August to October, September being the month of maximum hurricane nearly 3.2 per year. Reverse is the situation during December to June. If we note the 30 years variation of Hurricane frequency we find 1941-1970 and 1971-2000 are two spans of years when total Hurricane number over Atlantic region was maximum. When we analyze these rates of increase we find this rate is monotonically increasing from 1851upto1910 but after that it begins to drop slowly. The maximum rate was 1.22 per yr.(roughly).In recent decade during 1971-2010, actually decadal analysis shows that it was less than 10 before1991 but more than 10 after that time and during 2001-10 it was 13.3. Another very important observation is that while the average frequency of hurricane over the period 1851-2010 is 8.8, the average frequency during solar maxima years is 8.3but the said frequency during solar minima is 9.53.This is very significant. Because this implies that solar influence must have negative effect on Hurricane formation. We may note that similar situation prevail for the formation of tropical cyclone like 1957. In fact, in many solar maximum years Hurricane does not form over Atlantic and East Caribbean region. On the contrary many deadliest hurricanes over USA occurred in solar minima years or in the neighborhood. Finally it is outlined the possible mechanism due to which solar activities may decrease the formation of hurricane. It may be worth noting that the nature variation of solar phase/cycle is more predictable than the hurricane

  2. Water level response in back-barrier bays unchanged following Hurricane Sandy

    Science.gov (United States)

    Aretxabaleta, Alfredo L.; Butman, Bradford; Ganju, Neil K.

    2014-01-01

    On 28–30 October 2012, Hurricane Sandy caused severe flooding along portions of the northeast coast of the United States and cut new inlets across barrier islands in New Jersey and New York. About 30% of the 20 highest daily maximum water levels observed between 2007 and 2013 in Barnegat and Great South Bay occurred in 5 months following Hurricane Sandy. Hurricane Sandy provided a rare opportunity to determine whether extreme events alter systems protected by barrier islands, leaving the mainland more vulnerable to flooding. Comparisons between water levels before and after Hurricane Sandy at bay stations and an offshore station show no significant differences in the transfer of sea level fluctuations from offshore to either bay following Sandy. The post-Hurricane Sandy bay high water levels reflected offshore sea levels caused by winter storms, not by barrier island breaching or geomorphic changes within the bays.

  3. The impact of pet loss on the perceived social support and psychological distress of hurricane survivors.

    Science.gov (United States)

    Lowe, Sarah R; Rhodes, Jean E; Zwiebach, Liza; Chan, Christian S

    2009-06-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support.

  4. Persistent influence of tropical North Atlantic wintertime sea surface temperature on the subsequent Atlantic hurricane season

    Science.gov (United States)

    Wang, Xidong; Liu, Hailong; Foltz, Gregory R.

    2017-08-01

    This study explores the seasonally lagged impact of wintertime sea surface temperature (SST) in the Atlantic main development region (MDR) on the subsequent Atlantic hurricane season. It is found that wintertime SST anomalies in the MDR can persist into the summer, explaining 42% of the variance in the subsequent hurricane season's SST during 1951-2010. An anomalously warm wintertime in the MDR is usually followed by an anomalously active hurricane season. Analysis shows an important constraint on the seasonal evolution of the MDR SST by the water vapor feedback process, in addition to the well-known wind-evaporation-SST and cloud-SST feedback mechanisms over the tropical North Atlantic. The water vapor feedback influences the seasonal evolution of MDR SST by modulating seasonal variations of downward longwave radiation. This wintertime thermal control of hurricane activity has significant implications for seasonal predictions and long-term projections of hurricane activity over the North Atlantic.

  5. Diagnosing United States hurricane landfall risk: An alternative to count-based methodologies

    Science.gov (United States)

    Staehling, Erica M.; Truchelut, Ryan E.

    2016-08-01

    Assessing hurricane landfall risk is of immense public utility, yet extant methods of diagnosing annual tropical cyclone (TC) activity demonstrate no skill in diagnosing U.S. hurricane landfalls. Atlantic TC count itself has limited skill, explaining less than 20% of interannual variance in landfall incidence. Using extended landfall activity and reanalysis data sets, we employed empirical Poisson modeling to produce a landfall diagnostic index (LDI), incorporating spatially and temporally averaged upper level divergence, relative sea surface temperature, meridional wind, and zonal shear vorticity. LDI captures 31% of interannual variability of U.S. hurricane landfalls and offers physical insight into why indices that successfully capture TC activity fail to diagnose landfalls: there is inherent tension between conditions likely to steer hurricanes toward the U.S. and conditions favorable for TC development. Given this tension, attempting to diagnose, predict, or understand TC count is inadequate for quantifying societal impacts due to landfalling hurricanes.

  6. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Duller, G.A.T.; Donnelly, J.P.

    2009-01-01

    Optical dating has been applied to sediments preserved in Little Sippewissett Marsh, Massachusetts, USA, which are associated with overwashing of the beach barrier during hurricane strikes on the coast. The aims were to determine the hurricane landfall frequency, and make comparisons...... with independent age control and the historical record. Written sources of hurricane activity along the American east coast are only considered reliable back to the mid 19th century, but the sedimentary record is potentially much longer. Optical dating was applied to quartz grains extracted from thirteen samples...... the potential of optical dating in this setting. The hurricane record based upon optical dating extends approximately 300 years further back in time than the official National Oceanic Atmospheric Administration (NOAA) record. The localised nature of hurricane landfalls means that it will be necessary to collect...

  7. Evolution of the atmospheric boundary-layer structure of an arid Andes Valley

    Science.gov (United States)

    Khodayar, S.; Kalthoff, N.; Fiebig-Wittmaack, M.; Kohler, M.

    2008-04-01

    The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley. Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3-4 m s-1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night. The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while

  8. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is

  9. Risk Assessment of Hurricane Storm Surge for Tampa Bay

    Science.gov (United States)

    Lin, N.; Emanuel, K.

    2011-12-01

    Hurricane storm surge presents a major hazard for the United States and many other coastal areas around the world. Risk assessment of current and future hurricane storm surge provides the basis for risk mitigation and related decision making. This study investigates the hurricane surge risk for Tampa Bay, located on the central west coast of Florida. Although fewer storms have made landfall in the central west Florida than in regions farther west in the Gulf of Mexico and the east coast of U.S., Tampa Bay is highly vulnerable to storm surge due to its geophysical features. It is surrounded by low-lying lands, much of which may be inundated by a storm tide of 6 m. Also, edge waves trapped on the west Florida shelf can propagate along the coastline and affect the sea level outside the area of a forced storm surge; Tampa Bay may be affected by storms traversing some distance outside the Bay. Moreover, when the propagation speed of the edge wave is close to that of a storm moving parallel to the coast, resonance may occur and the water elevation in the Bay may be greatly enhanced. Therefore, Tampa Bay is vulnerable to storms with a broad spectrum of characteristics. We apply a model-based risk assessment method to carry out the investigation. To estimate the current surge risk, we apply a statistical/deterministic hurricane model to generate a set of 1500 storms for the Tampa area, under the observed current climate (represented by 1981-2000 statistics) estimated from the NCAR/NCEP reanalysis. To study the effect of climate change, we use four climate models, CNRM-CM3, ECHAM, GFDL-CM2.0, and MIROC3.2, respectively, to drive the hurricane model to generate four sets of 1500 Tampa storms under current climate conditions (represented by 1981-2000 statistics) and another four under future climate conditions of the IPCC-AR4 A1B emission scenario (represented by 2081-2100 statistics). Then, we apply two hydrodynamic models, the Advanced Circulation (ADCIRC) model and the Sea

  10. Postpartum mental health after Hurricane Katrina: A cohort study

    Directory of Open Access Journals (Sweden)

    Harville Emily W

    2009-06-01

    Full Text Available Abstract Background Natural disaster is often a cause of psychopathology, and women are vulnerable to post-traumatic stress disorder (PTSD and depression. Depression is also common after a woman gives birth. However, no research has addressed postpartum women's mental health after natural disaster. Methods Interviews were conducted in 2006–2007 with women who had been pregnant during or shortly after Hurricane Katrina. 292 New Orleans and Baton Rouge women were interviewed at delivery and 2 months postpartum. Depression was assessed using the Edinburgh Depression Scale and PTSD using the Post-Traumatic Stress Checklist. Women were asked about their experience of the hurricane with questions addressing threat, illness, loss, and damage. Chi-square tests and log-binomial/Poisson models were used to calculate associations and relative risks (RR. Results Black women and women with less education were more likely to have had a serious experience of the hurricane. 18% of the sample met the criteria for depression and 13% for PTSD at two months postpartum. Feeling that one's life was in danger was associated with depression and PTSD, as were injury to a family member and severe impact on property. Overall, two or more severe experiences of the storm was associated with an increased risk for both depression (relative risk (RR 1.77, 95% confidence interval (CI 1.08–2.89 and PTSD (RR 3.68, 95% CI 1.80–7.52. Conclusion Postpartum women who experience natural disaster severely are at increased risk for mental health problems, but overall rates of depression and PTSD do not seem to be higher than in studies of the general population.

  11. Resilience after Hurricane Katrina among pregnant and postpartum women

    Science.gov (United States)

    Harville, Emily W.; Xiong, Xu; Buekens, Pierre; Pridjian, Gabriella; Elkind-Hirsch, Karen

    2010-01-01

    Background Although disaster causes distress, many disaster victims do not develop long-term psychopathology. Others report benefits after traumatic experiences (post-traumatic growth). The objective of this study was to examine demographic and hurricane-related predictors of resilience and post-traumatic growth. Methods 222 pregnant southern Louisiana women were interviewed, and 292 postpartum women completed interviews at delivery and eight weeks later. Resilience was measured by scores lower than a non-affected population, using the Edinburgh Depression Scale and the Post-Traumatic Stress Checklist (PCL). Post-traumatic growth was measured by questions about perceived benefits of the storm. Women were asked about their experience of the hurricane, addressing danger, illness/injury, and damage. Chi-square tests and log-Poisson models were used to calculate associations and relative risks (RR) for demographics, hurricane experience, and mental health resilience and perceived benefit. Findings 35% of pregnant and 34% of the postpartum women were resilient from depression, while 56% and 49% were resilient from post-traumatic stress disorder. Resilience was most likely among white women, older women, and women who had a partner. A greater experience of the storm, particularly injury/illness or danger, was associated with lower resilience. Experiencing damage due to the storm was associated with increased report of some perceived benefits. Conclusions Many pregnant and postpartum women are resilient from the mental health consequences of disaster, and perceive benefits after a traumatic experience. Certain aspects of experiencing disaster reduce resilience, but may increase perceived benefit. PMID:20123173

  12. Family Structures, Relationships, and Housing Recovery Decisions after Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Ali Nejat

    2016-04-01

    Full Text Available Understanding of the recovery phase of a disaster cycle is still in its infancy. Recent major disasters such as Hurricane Sandy have revealed the inability of existing policies and planning to promptly restore infrastructure, residential properties, and commercial activities in affected communities. In this setting, a thorough grasp of housing recovery decisions can lead to effective post-disaster planning by policyholders and public officials. The objective of this research is to integrate vignette and survey design to study how family bonds affected rebuilding/relocating decisions after Hurricane Sandy. Multinomial logistic regression was used to investigate respondents’ family structures before Sandy and explore whether their relationships with family members changed after Sandy. The study also explores the effect of the aforementioned relationship and its changes on households’ plans to either rebuild/repair their homes or relocate. These results were compared to another multinomial logistic regression which was applied to examine the impact of familial bonds on respondents’ suggestions to a vignette family concerning rebuilding and relocating after a hurricane similar to Sandy. Results indicate that respondents who lived with family members before Sandy were less likely to plan for relocating than those who lived alone. A more detailed examination shows that this effect was driven by those who improved their relationships with family members; those who did not improve their family relationships were not significantly different from those who lived alone, when it came to rebuilding/relocation planning. Those who improved their relationships with family members were also less likely to suggest that the vignette family relocate. This study supports the general hypothesis that family bonds reduce the desire to relocate, and provides empirical evidence that family mechanisms are important for the rebuilding/relocating decision

  13. The geography of mortality from Hurricane Katrina in New Orleans

    Science.gov (United States)

    Mutter, J. C.; Mara, V.; Jayaprakash, S.; None

    2011-12-01

    Hurricane Katrina was one of the highest mortality disasters in US history. Typical hurricanes of the same strength take very few lives. Katrina's mortality is exceeded only by the so-called Galveston Flood (a hurricane) of 1900 that occurred at a time when forecasting was poor and evacuation was possible only by train or horse. The levee failures in New Orleans were a major contributing factor unique to Katrina. An examination of the characteristics of mortality may give insight into the cause of the great scope of the tragedy and the special vulnerability of those who died. We examine the spatial aspects of mortality. The locations of deceased victims were matched with victim information including age, race and gender for approximately 800 victims (data from Louisiana Department of Health and Hospitals). From this we can analyze for spatial clustering of mortality. We know that Katrina took a particularly heavy toll on the elderly so we can analyze, for instance, whether the elderly were more likely to die in some locations than in others. Similarly, we analyze for gender and race against age (dividing age into five groups this gives 20 categories) as a factory in the geographic distribution of mortality as a way to recover measures of vulnerability. We can also correlate the spatial characteristics of mortality with underlying causes that might contribute to vulnerability. Data is available at a census block level on household income, poverty rates, education, home ownership, car ownership and a variety of other factors that can be correlated with the spatial mortality data. This allows for a multi-parameter estimation of factors that govern mortality in this unusually high mortality event.

  14. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  15. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols

    Directory of Open Access Journals (Sweden)

    D. Rosenfeld

    2007-07-01

    Full Text Available The feasibility of hurricane modification was investigated for hurricane Katrina using the Weather Research and Forecasting Model (WRF. The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning–off" warm rain formation in the clouds at Katrina's periphery (where wind speeds were less than 22 m s−1. This simplification of the simulation of aerosol effects is aimed at evaluating the largest possible response. This resulted in the weakening of the hurricane surface winds compared to the "non-seeded" simulated storm during the first 24 h within the entire tropical cyclone (TC area compared to a control simulation without warm rain suppression. Later, the seeding-induced evaporative cooling at the TC periphery led to a shrinking of the eye and hence to some increase in the wind within the small central area of the TC. Yet, the overall strength of the hurricane, as defined by the area covered by hurricane force winds, decreased in response to the suppressed warm rain at the periphery, as measured by a 25% reduction in the radius of hurricane force winds. In a simulation with warm rain suppression throughout the hurricane, the radius of the hurricane force winds was reduced by more than 42%, and although the diameter of the eye shrunk even further the maximum winds weakened. This shows that the main mechanism by which suppressing warm rain weakens the TC is the low level evaporative cooling of the un-precipitated cloud drops and the added cooling due to melting of precipitation that falls from above.

  16. Quantifying the Stable Boundary Layer Structure and Evolution during T-REX 2006

    Science.gov (United States)

    2014-09-30

    and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment, EGU General Assembly 2013. 12-APR-13, . : , TOTAL: 1 08...examining the sensitivity of planetary boundary layer schemes in association with landfalling hurricanes (e.g., Tropical Storm Fay 2008). The goal was...WRF model planetary boundary layer schemes were also conducted to study a downslope windstorm and rotors in Las Vegas valley. Two events (March 20

  17. Emergency evacuation orders: considerations and lessons from Hurricane Sandy.

    Science.gov (United States)

    O'Neil, Patrick D

    2014-01-01

    This article analyzes the problems surrounding the execution of emergency evacuation orders by evaluating Hurricane Sandy and the emergency actions taken by the State of New Jersey and the City of Atlantic City New Jersey. The analysis provides an overview of the legal authority granting emergency powers to governors and mayors to issue evacuation proclamations in addition to an evaluation of the New Jersey's emergency evacuation mandate and subsequent compliance. The article concludes with provision of planning and preparedness recommendations for public managers facing similar hazards, including a recommendation for provision of emergency shelter contingencies within the threat zone in anticipation of citizen noncompliance evacuation orders.

  18. VLF signal anomalies dues to TS and Hurricanes

    Science.gov (United States)

    Nait Amor, Samir

    2017-04-01

    VLF signal propagates by multiples reflection in the Earth-Ionosphere wave guide. It constitutes a powerful tool to study the lower region of the ionosphere, the D region. This technique was applied to study perturbations related to the solar flares effect, TGF, the connection between TLEs and Early events.... In this contribution I will present a new results on the evidence of signal perturbations associated with TS and Hurricanes. A wavelet spectral analysis is applied to the signal amplitude to search for eventual Atmospheric Gravity wave which may be the origin of the signal perturbations.

  19. Religious Coping and Psychological and Behavioral Adjustment After Hurricane Katrina.

    Science.gov (United States)

    Henslee, Amber M; Coffey, Scott F; Schumacher, Julie A; Tracy, Melissa; Norris, Fran H; Galea, Sandro

    2015-01-01

    Positive and negative religious coping are related to positive and negative psychological adjustment, respectively. The current study examined the relation between religious coping and PTSD, major depression, quality of life, and substance use among residents residing in Mississippi at the time of Hurricane Katrina. Results indicated that negative religious coping was positively associated with major depression and poorer quality of life and positive religious coping was negatively associated with PTSD, depression, poorer quality of life, and increased alcohol use. These results suggest that mental health providers should be mindful of the role of religious coping after traumatic events such as natural disasters.

  20. Hurricane risk management and climate information gatekeeping in southeast Florida

    Science.gov (United States)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  1. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  2. Examination of Hurricane Sandy's (2012 structure and intensity evolution from full-field and anomaly-field analyses

    Directory of Open Access Journals (Sweden)

    Wei-Hong Qian

    2016-08-01

    Full Text Available An anomaly-based field analysis approach and a set of simple beta-advection models (BAMs have been used to examine the structure evolution and unusual left turn of Hurricane Sandy (2012 before it made the landfall and caused severe damage along the eastern US coast. Results show that the anomaly-based analysis approach can clearly reveal Sandy's structure evolution, including its interaction with other synoptic-scale systems as well as the intensification and extratropical transition (ET processes. During its lifetime, Sandy experienced two consecutive periods of intensification caused by the merging of anomalous vortices on 27 and 29 October. The unusual left turn and the ET process prior to the landfall are respectively influenced by an anomalous anticyclone to the northeast and an anomalous cold vortex at the 300–850 hPa layer to the northwest, which is confirmed by the experiments using the generalised BAM.

  3. The effects of Hurricanes Katrina and Rita on seabed polycyclic aromatic hydrocarbon dynamics in the Gulf of Mexico.

    Science.gov (United States)

    Mitra, Siddhartha; Lalicata, Joseph J; Allison, Mead A; Dellapenna, Timothy M

    2009-06-01

    To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited approximately 10cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.

  4. Potential of MODIS EVI in Identifying Hurricane Disturbance to Coastal Vegetation in the Northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Fugui Wang

    2009-12-01

    Full Text Available Frequent hurricane landfalls along the northern Gulf of Mexico, in addition to causing immediate damage to vegetation, also have long term effects on coastal ecosystem structure and function. This study investigated the utility of using time series enhanced vegetation index (EVI imagery composited in MODIS product MOD13Q1 for assessing hurricane damage to vegetation and its recovery. Vegetation in four US coastal states disturbed by five hurricanes between 2002 and 2008 were explored by change imagery derived from pre- and post-hurricane EVI data. Interpretation of the EVI changes within months and between years distinguished a clear disturbance pattern caused by Hurricanes Katrina and Rita in 2005, and a recovering trend of the vegetation between 2005 and 2008, particularly within the 100 km coastal zone. However, for Hurricanes Gustav, Ike, and Lili, the disturbance pattern which varied by the change imagery were not noticeable in some images due to lighter vegetation damage. The EVI pre- and post-hurricane differences between two adjacent years and around one month after hurricane disturbance provided the most likely damage area and patterns. The study also revealed that as hurricanes damaged vegetation in some coastal areas, strong precipitation associated with these storms may benefit growth of vegetation in other areas. Overall, the study illustrated that the MODIS product could be employed to detect severe hurricane damage to vegetation, monitor vegetation recovery dynamics, and assess benefits of hurricanes to vegetation.

  5. New Orleans After Hurricane Katrina: An Unnatural Disaster?

    Science.gov (United States)

    McNamara, D.; Werner, B.; Kelso, A.

    2005-12-01

    Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.

  6. Quantifying the hurricane risk to offshore wind turbines.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs.

  7. Carbon monoxide exposures after hurricane Ike - Texas, September 2008.

    Science.gov (United States)

    2009-08-14

    During power outages after hurricanes, survivors can be at risk for carbon monoxide (CO) poisoning if they use portable generators improperly. On September 13, 2008, Hurricane Ike struck the coast of Texas, leaving approximately 2.3 million households in the southeastern portion of the state without electricity. Six days later, 1.3 million homes were still without electrical power. To assess the impact of storm-related CO exposures and to enhance prevention efforts, CDC analyzed data from five disparate surveillance sources on CO exposures reported during September 13--26 in counties of southeast Texas that were declared disaster areas by the federal government. This report describes the results of that analysis, which indicated that one data source, Texas poison centers, received reports of 54 persons with storm-related CO exposures during the surveillance period. Another data source, the Undersea and Hyperbaric Medical Society (UHMS) hyperbaric oxygen treatment database, reported that 15 persons received hyperbaric oxygen treatment for storm-related CO poisoning. Medical examiners, public health officials, and hospitals in Texas reported that seven persons died from storm-related CO poisoning. Among the data sources, the percentage of reported storm-related CO exposures caused by improper generator use ranged from 82% to 87%. These findings underscore the need for effective prevention messages during storm preparation, warnings, and response periods regarding the correct use of generators and the installation and maintenance of battery-powered CO detectors.

  8. Hurricanes and coral reefs: The intermediate disturbance hypothesis revisited

    Science.gov (United States)

    Rogers, C. S.

    1993-11-01

    A review of research on the effects of hurricanes on coral reefs suggests that the intermediate disturbance hypothesis may be applicable to shallow reef zones dominated by branching or foliaceous coral species that are especially susceptible to mechanical damage from storms. Diversity ( H') increases because of an increase in evenness following destruction or removal of the species that was monopolizing the space. The intermediate disturbance hypothesis as presented by Connell focuses on changes in number of species, but should be expanded to include diversity ( H') and evenness. It should also be modified to incorporate changes in living cover and the time elapsed since disturbances of varying intensities. This hypothesis predicts that when cover is high, diversity will be low. However, research on coral reefs does not consistently demonstrate an inverse correlation of coral diversity, and coral cover. An increase in cover and decrease in diversity with depth would also be expected because deeper reef zones generally experience less disturbance. However, higher diversity (both H' and species richness) is often associated with deeper zones. The effects of hurricanes on coral reefs will depend on the temporal and spatial scales under consideration, the life history characteristics and morphology of the dominant species, the depth of the reef zone, the ecological history of the site, and the influence of any additional natural or human stresses.

  9. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  10. Engineering education in the wake of hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Lima Marybeth

    2007-10-01

    Full Text Available Abstract Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1 we must practice radical (to the root engineering, (2 we must illustrate connections between engineering and public policy, and (3 we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world.

  11. The 2016 North Atlantic hurricane season: A season of extremes

    Science.gov (United States)

    Collins, Jennifer M.; Roache, David R.

    2017-05-01

    The 2016 North Atlantic hurricane season had an early start with a rare and powerful storm for January impacting the Azores at hurricane force. Likewise, the end of season heralded Otto which was record breaking in location and intensity being a high-end Category 2 storm at landfall over southern central America in late November. We show that high precipitable water, positive relative vorticity, and low sea level pressure allowed for conducive conditions. During the season, few storms occurred in the main development region. While some environmental conditions were conducive for formation there (such as precipitable water, relative vorticity, and shear), the midlevel relative humidity was too low there for most of the season, presenting very dry conditions in that level of the atmosphere. We further find that the October peak in the accumulated cyclone energy was related to environmentally conducive conditions with positive relative humidity, precipitable water, relative humidity, and low values of sea level pressure. Overall 2016 was notable for a series of extremes, some rarely, and a few never before observed in the Atlantic basin, a potential harbinger of seasons to come in the face of ongoing global climate change.

  12. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  13. High-income does not protect against hurricane losses

    Science.gov (United States)

    Geiger, Tobias; Frieler, Katja; Levermann, Anders

    2016-08-01

    Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation’s affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm’s wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.

  14. Probabilistic prediction of barrier-island response to hurricanes

    Science.gov (United States)

    Plant, Nathaniel G.; Stockdon, Hilary F.

    2012-01-01

    Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.

  15. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey

    Science.gov (United States)

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  16. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey.

    Science.gov (United States)

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  17. Five years later: recovery from post traumatic stress and psychological distress among low-income mothers affected by Hurricane Katrina.

    Science.gov (United States)

    Paxson, Christina; Fussell, Elizabeth; Rhodes, Jean; Waters, Mary

    2012-01-01

    Hurricane Katrina, which struck the Gulf Coast of the United States in August 2005, exposed area residents to trauma and extensive property loss. However, little is known about the long-run effects of the hurricane on the mental health of those who were exposed. This study documents long-run changes in mental health among a particularly vulnerable group-low income mothers-from before to after the hurricane, and identifies factors that are associated with different recovery trajectories. Longitudinal surveys of 532 low-income mothers from New Orleans were conducted approximately one year before, 7-19 months after, and 43-54 months after Hurricane Katrina. The surveys collected information on mental health, social support, earnings and hurricane experiences. We document changes in post-traumatic stress symptoms (PTSS), as measured by the Impact of Event Scale-Revised, and symptoms of psychological distress (PD), as measured by the K6 scale. We find that although PTSS has declined over time after the hurricane, it remained high 43-54 months later. PD also declined, but did not return to pre-hurricane levels. At both time periods, psychological distress before the hurricane, hurricane-related home damage, and exposure to traumatic events were associated with PTSS that co-occurred with PD. Hurricane-related home damage and traumatic events were associated with PTSS without PD. Home damage was an especially important predictor of chronic PTSS, with and without PD. Most hurricane stressors did not have strong associations with PD alone over the short or long run. Over the long run, higher earnings were protective against PD, and greater social support was protective against PTSS. These results indicate that mental health problems, particularly PTSS alone or in co-occurrence with PD, among Hurricane Katrina survivors remain a concern, especially for those who experienced hurricane-related trauma and had poor mental health or low socioeconomic status before the hurricane

  18. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas.

    Science.gov (United States)

    Ruckart, Perri Zeitz; Orr, Maureen F; Lanier, Kenneth; Koehler, Allison

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  19. Happily Ever After? Pre-and-Post Disaster Determinants of Happiness Among Survivors of Hurricane Katrina

    Science.gov (United States)

    Calvo, Rocío; Arcaya, Mariana; Baum, Christopher F.; Lowe, Sarah R.; Waters, Mary C.

    2014-01-01

    This study investigated pre- to post-disaster changes in happiness of 491 women affected by Hurricane Katrina, and identified factors that were associated with the survivors’ happiness after the storm. Participants completed surveys approximately 1 year before and 1 and 4 years after the storm. The surveys collected information on the women’s happiness, social support, household characteristics, and hurricane exposure. We found that happiness significantly decreased from pre-disaster to 1 year post-disaster but there were no significant differences in happiness between the pre-disaster and 4 years post-disaster assessments. An exception were 38 women who continued to have lower levels of happiness 4 years post-disaster than at pre-disaster. These women were more likely to be living on their own after the storm and reported consistently lower levels of perceived social support from the community both before and after the storm than the other women of the sample. Factors associated with the survivor’s happiness after the storm included exposure to hurricane stressors and losing a loved one to the hurricane. These were predictive of lower happiness 1 year post-disaster. Four years after the hurricane only exposure to hurricane stressors was predictive of lower levels of happiness. In contrast, pre-disaster happiness and post-disaster social support were protective against the negative effect of the hurricane on survivors’ happiness. PMID:26078701

  20. Effects and outcomes of Caribbean hurricanes in a climate change scenario.

    Science.gov (United States)

    Lugo, A E

    2000-11-15

    Hurricanes are complex disturbance systems with significant effects on vegetation and built-up land. This paper summarizes research on the effects and outcomes of hurricanes on Caribbean forests. Twelve effects and outcome topics are presented: sudden and massive tree mortality; delayed patterns of tree mortality; alternative methods of forest regeneration; opportunities for a change in successional direction; high species turnover and opportunities for species change in forests; diversity of age classes; faster biomass and nutrient turnover; species substitutions and changes in turnover time of biomass and nutrients; lower aboveground biomass in mature vegetation; carbon sinks; selective pressure on organisms; and convergence of community structure and organization. Effects of hurricanes on urban systems are also discussed. While there is scientific uncertainty as to whether hurricane frequencies and intensity will change as a result of global climate change, available understanding on the effects and outcomes of hurricanes can be used to anticipate possible effects of either increasing or decreasing hurricane frequency and intensity. Proposed mitigation actions and research priorities can be effective and desirable even if the frequency and intensity of hurricanes remains unchanged.

  1. Adverse respiratory symptoms and environmental exposures among children and adolescents following Hurricane Katrina.

    Science.gov (United States)

    Rath, Barbara; Young, Elizabeth A; Harris, Amy; Perrin, Keith; Bronfin, Daniel R; Ratard, Raoult; Vandyke, Russell; Goldshore, Matthew; Magnus, Manya

    2011-01-01

    Children and adolescents are especially vulnerable to environmental exposures and their respiratory effects. Following Hurricane Katrina in 2005, residents experienced multiple adverse environmental exposures. We characterized the association between upper respiratory symptoms (URS) and lower respiratory symptoms (LRS) and environmental exposures among children and adolescents affected by Hurricane Katrina. We conducted a cross-sectional study following the return of the population to New Orleans after Hurricane Katrina (October 2005 and February 2006) among a convenience sample of children and adolescents attending New Orleans health facilities. We used uni-, bi-, and multivariable analyses to describe participants, exposures, and associations with URS/LRS. Of 1,243 participants, 47% were Caucasian, 50% were male, and 72% were younger than 11 years of age. Multiple environmental exposures were identified during and after the storm and at current residences: roof/glass/storm damage (50%), outside mold (22%), dust (18%), and flood damage (15%). Self-reported URS and LRS (76% and 36%, respectively) were higher after the hurricane than before the hurricane (22% and 9%, respectively, pHurricane Katrina experienced environmental exposures associated with increased prevalence of reported URS and LRS. Additional research is needed to investigate the long-term health impacts of Hurricane Katrina.

  2. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale.

    Science.gov (United States)

    Wang, Fugui; Xu, Y Jun

    2009-09-01

    Forest stand stability to strong winds such as hurricanes has been found to be associated with a number of forest, soil and topography factors. In this study, through applying geographic information system (GIS) and logit regression, we assessed effects of forest characteristics and site conditions on pattern, severity and probability of Hurricane Katrina disturbance to forests in the Lower Pearl River Valley, USA. The factors included forest type, forest coverage, stand density, soil great group, elevation, slope, aspect, and stream buffer zone. Results showed that Hurricane Katrina damaged 60% of the total forested land in the region. The distribution and intensity of the hurricane disturbance varied across the landscape, with the bottomland hardwood forests on river floodplains most severely affected. All these factors had a variety of effects on vulnerability of the forests to the hurricane disturbance and thereby spatial patterns of the disturbance. Soil groups and stand factors including forest types, forest coverage and stand density contributed to 85% of accuracy in modeling the probability of the hurricane disturbance to forests in this region. Besides assessment of Katrina's damage, this study elucidates the great usefulness of remote sensing and GIS techniques combined with statistics modeling in assessment of large-scale risks of hurricane damage to coastal forests.

  3. Physically and sexually violent experiences of reproductive-aged women displaced by Hurricane Katrina.

    Science.gov (United States)

    Picardo, Carla W; Burton, Shirley; Naponick, John

    2010-01-01

    Measure the frequency of physical and sexual abuse in a sample of reproductive aged women displaced by Hurricane Katrina, and compare those experiences to the year before Hurricane Katrina. Sixty-six English-speaking women aged 18-49 years residing in Louisiana Federal Emergency Management Agency (FEMA) housing were screened for physical and sexual abuse seven to nine months after Hurricane Katrina, using modified 30x7 cluster sampling methodology. Twenty-three percent (95% confidence interval [CI], 14, 34%) of women reported being hit or verbally threatened since Hurricane Katrina. Abuse had increased for 33% (95% CI, 13, 63%) and decreased for 13% (95% CI, 4, 37%) of women. Twenty percent (95% CI, 6, 51%) of abused women were with a new partner, while 13% (95% CI, 4, 39%) reported new abuse with the same partner. Four women reported sexual abuse since Hurricane Katrina. Compared to before the storm, the frequency of sexual abuse was the same for two women, and one reported new abuse with the same partner. Physical abuse was not uncommon among displaced women following Hurricane Katrina. Increasing and new abuse were the most commonly reported experiences. Violence against women should not be overlooked as a continued, and perhaps escalating, occurrence requiring attention following displacement after disasters of such magnitude as Hurricane Katrina.

  4. Unified Program for the Specification of Hurricane Boundary Layer Winds Over Surfaces of Specified Roughness.

    Science.gov (United States)

    1992-09-01

    commercial products. rFnn APWn.,W REPORT DOCUMENTATION PAGE oJ_ NO_ o____ PUNK GOPo m=for ta.meuarnca €4 rwmton It "s to "Wuqe I a"oW a•. ama, Wmusma e tune...the mesh size and K is a non-dimensional constant (K = .4 is assumed). The drag coefficient was assumed to increase linearly with wind speed CD a (0.5...system; if the mesh size of the innermost nest is say 5 kln, the second through fifth mesh sizes are 10 , 20 , 40 , and 80 km respectively, and the

  5. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement

    Science.gov (United States)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Chikunov, Alexander V.; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2017-09-01

    Despite the dangers associated with tropical cyclones and their rainfall, the origin of the moisture in these storms, which include destructive hurricanes and typhoons, remains surprisingly uncertain. Existing studies have focused on the region 40-400 km from a cyclone's center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from cyclone center, we analyze precipitation, atmospheric moisture and movement velocities for severe tropical cyclones - North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40% compared to the local long-term mean. The inner radius of this dry footprint approximately coincides with the hurricane's radius of water self-sufficiency. We discuss how Carnot efficiency considerations do not constrain the power of such open systems. Our findings emphasize the incompletely understood role and importance of atmospheric moisture stocks and dynamics in the behavior of severe tropical cyclones.

  6. Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: case study

    Science.gov (United States)

    Liu, Yin; Zhang, Wei

    2016-12-01

    This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.

  7. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity.

    Science.gov (United States)

    Saunders, Mark A; Lea, Adam S

    2008-01-31

    Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.

  8. The effects of hurricanes on birds, with special reference to Caribbean islands

    Science.gov (United States)

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  9. A New Observational Strategy for Monitoring the Tropical Cyclone Outflow Layer and its Relationship to Intensity and Structure Change

    Science.gov (United States)

    2013-09-30

    Chieh Lien, Jan Morzel, Pearn P. Niiler, Luc Rainville, Thomas B. Sanford, and T. Y. Tang, 2013: Observations of the cold wake of Typhoon Fanapi...Biswas, C. S. Ruf, E. Uhlhorn, R. Atlas, P. G. Black, and C. M. Albers 7. 67th Interdepartmental Hurricane Conference: Outflow Layer Structure in

  10. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  11. Improvement of risk estimate on wind turbine tower buckled by hurricane

    CERN Document Server

    Li, Jingwei

    2013-01-01

    Wind is one of the important reasonable resources. However, wind turbine towers are sure to be threatened by hurricanes. In this paper, method to estimate the number of wind turbine towers that would be buckled by hurricanes is discussed. Monte Carlo simulations show that our method is much better than the previous one. Since in our method, the probability density function of the buckling probability of a single turbine tower in a single hurricane is obtained accurately but not from one approximated expression. The result in this paper may be useful to the design and maintenance of wind farms.

  12. Brief communication "Hurricane Irene: a wake-up call for New York City?"

    Directory of Open Access Journals (Sweden)

    J. C. J. H. Aerts

    2012-06-01

    Full Text Available The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit to the city from a hurricane may expose an enormous number of people to flooding. A major hurricane has the potential to cause large-scale damage in NYC. The city's resilience to flooding can be increased by improving and integrating flood insurance, flood zoning, and building code policies.

  13. Hurricane Sandy's flood frequency increasing from year 1800 to 2100

    Science.gov (United States)

    Lin, Ning; Kopp, Robert E.; Horton, Benjamin P.; Donnelly, Jeffrey P.

    2016-10-01

    Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City’s flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy’s flood height decreased by a factor of ˜3× from year 1800 to 2000 and is estimated to decrease by a further ˜4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy’s return period is estimated to decrease by ˜3× to 17× from 2000 to 2100.

  14. Hazards of neoliberalism: delayed electric power restoration after Hurricane Ike.

    Science.gov (United States)

    Miller, Lee M; Antonio, Robert J; Bonanno, Alessandro

    2011-09-01

    This case study explores how neoliberal policies shape the impacts of a natural disaster. We investigate the reactions to major damages to the electric power system and the restoration of power in the wake of Hurricane Ike, which devastated the Houston, Texas, metropolitan area in September 2008. We argue that the neoliberal policy agenda insured a minimalist approach to the crisis and generated dissatisfaction among many residents. The short-term profitability imperative shifted reconstruction costs to consumers, and prevented efforts to upgrade the electric power infrastructure to prepare for future disasters. We illustrate the serious obstacles for disaster mitigation and recovery posed by neoliberal policies that privatize public goods and socialize private costs. Neoliberalism neither addresses the needs of a highly stratified public nor their long-term interests and safety.

  15. Coastal-change impacts during hurricane katrina: an overview

    Science.gov (United States)

    Sallenger, Asbury; Wright, C. Wayne; Lillycrop, Jeff

    2007-01-01

    As part of an ongoing cooperative effort between USGS, NASA and USACE, the barrier islands within the right-front quadrant of Hurricane Katrina were surveyed with airborne lidar both before and after landfall. Dauphin Island, AL was located the farthest from landfall and wave runup intermittently overtopped its central and western sections. The Gulf-side of the island experienced severe erosion, leaving the first row of houses in the sea, while the bayside accreted. In contrast, the Chandeleur Islands, LA did not experience, this classic `rollover'. Rather, the island chain was completely stripped of sand, transforming a 40-km-long sandy island chain into a discontinuous series of muddy marsh islets. Models indicate that storm surge likely submerged the entire Chandeleur Island chain, at least during the latter part of the storm. The net result was destructive coastal change for the Chandeleur Islands, while Dauphin Island tended to maintain its form through landward migration.

  16. [Injuries following a hurricane in Nordmøre].

    Science.gov (United States)

    Ranhoff, A H; Naustdal, H; Skomsvoll, J F

    1992-12-10

    In this article we describe the efforts of local authorities to detect and treat casualties caused by a hurricane that struck the west coast of Norway January 1st, 1992 and prevent further injuries. Wind velocity exceeded 100 knots (117 mph), the strongest ever recorded in Norway. The damage to buildings, trees and power lines was so devastating that the Nordmøre area, with approximately 50,000 inhabitants, was left without electricity for five days. Altogether 56 casualties were reported by physicians and the local hospital (one death, caused by hypothermia and exhaustion, and six admissions to hospital) in the period 1-5 January. Nine old people suffered injuries by falling in the dark in their houses, and ten men were injured during repair work.

  17. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast (version 2)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Mid-Atlantic...

  18. EAARL Coastal Topography—Cape Hatteras, North Carolina, Pre- and Post-Hurricane Isabel, 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ASCII XYZ data for Cape Hatteras, North Carolina, were produced from remotely sensed, geographically referenced elevation measurements collected post-Hurricane...

  19. Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Derived products of a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012...

  20. Life course transitions and natural disaster: marriage, birth, and divorce following Hurricane Hugo.

    Science.gov (United States)

    Cohan, Catherine L; Cole, Steve W

    2002-03-01

    Change in marriage, birth, and divorce rates following Hurricane Hugo in 1989 were examined prospectively from 1975 to 1997 for all counties in South Carolina. Stress research and research on economic circumstances suggested that marriages and births would decline and divorces would increase in affected counties after the hurricane. Attachment theory suggested that marriages and births would increase and divorces would decline after the hurricane. Time-series analysis indicated that the year following the hurricane, marriage, birth, and divorce rates increased in the 24 counties declared disaster areas compared with the 22 other counties in the state. Taken together, the results suggested that a life-threatening event motivated people to take significant action in their close relationships that altered their life course.

  1. Breton Island Transects with Shoreline Change Rates (Pre/Post Hurricane Katrina) (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Breton Island, Louisiana Transects with Shoreline Change Rates (Pre/Post Hurricane Katrina) (Geographic, NAD83) consists of vector transect data that were derived...

  2. Breton Island, Louisiana Transects with Shoreline Change Rates (Post Hurricane Katrina) (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Breton Island, Louisiana Transects with Shoreline Change Rates (Post Hurricane Katrina) (Geographic, NAD83) consists of vector transect data that was derived from...

  3. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast (version 2)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Mid-Atlantic...

  4. Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar-extracted dune features

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Dune crest and toe positions along a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October...

  5. 2012 U.S. Geological Survey Topographic Lidar: Northeast Atlantic Coast Post-Hurricane Sandy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an...

  6. Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012...

  7. 2012 U.S. Geological Survey Topographic Lidar: Northeast Atlantic Coast Post-Hurricane Sandy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an...

  8. Strongest Tropical cyclones: 1980-2009: A 30-year collage of Hurricane Satellite (HURSAT) data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within...

  9. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  10. Physical attributes of hurricane surges and their role in surge warning

    Science.gov (United States)

    Irish, J. L.

    2012-12-01

    In the last decade, the US has experienced some of its largest surges and hurricane-related damages on record. Effective evacuation in advance of a hurricane strike requires accurate estimation of the hurricane surge hazard that effectively conveys risk not only to government decision makers but also to the general public. Two primary challenges exist with the current structure for surge warning. First, existing computational methods for developing accurate, quantitative surge forecasts, namely surge height and inundation estimation, are limited by time and computational resources. Second, due primarily to the popularity and wide use of the Saffir-Simpson wind scale to convey the complete hurricane hazard, the public's perception of surge hazard is inaccurate. Here, we use dimensionless scaling and hydrodynamics arguments to quantify the influence of hurricane variables and regional geographic characteristics on the surge response. It will be shown that hurricane surge primarily scales with the hurricane's central pressure, and size and with continental shelf width at the landfall location (Irish et al. 2009, Nat. Haz.; Song et al. in press, Nat. Haz.). Secondary influences include the hurricane's forward speed and path. The developed physical scaling is applied in two ways: (1) as a means for expanding the utility of computational simulations for real-time surge height forecasting and (2) as a means to convey relative surge hazard via a readily evaluated algebraic surge scale. In the first application, the use of this physical scaling to develop surge response functions (SRF) enables instantaneous algebraic calculation of maximum surge height at any location of interest for any hurricane meteorological condition, without loss of accuracy gained via high-resolution computational simulation. When coupled with joint probability statistics, the use of SRFs enables rapid development of continuous probability density functions for probabilistic surge forecasting (Irish

  11. Hurricane wrack generates landscape-level heterogeneity in coastal pine savanna

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Wrack (vegetation debris) deposited by storm surges of major hurricanes along the northern Gulf of Mexico produces depressant eff ects that vary from partial to...

  12. Hurricane Ophelia Aerial Photography: High-Resolution Imagery of the North Carolina Coast After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the North Carolina coast after Hurricane Ophelia made landfall. The regions photographed range from Hubert, North Carolina to...

  13. EAARL Coastal Topography and Imagery--Western Louisiana, Post-Hurricane Rita, 2005: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the Louisiana coastline, post-Hurricane Rita (September 2005...

  14. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Update

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Gulf of Mexico...

  15. Breton Island Transects with Shoreline Change Rates (Pre/Post Hurricane Katrina) (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Breton Island, Louisiana Transects with Shoreline Change Rates (Pre/Post Hurricane Katrina) (Geographic, NAD83) consists of vector transect data that were derived...

  16. Breton Island, Louisiana Transects with Shoreline Change Rates (Post Hurricane Katrina) (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Breton Island, Louisiana Transects with Shoreline Change Rates (Post Hurricane Katrina) (Geographic, NAD83) consists of vector transect data that was derived from...

  17. EAARL Coastal Topography and Imagery--Western Louisiana, Post-Hurricane Rita, 2005: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the Louisiana coastline, post-Hurricane Rita (September 2005...

  18. Hurricane Gustav Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Gustav made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  19. Hurricane and Tsunami Inundation Areas, Evacuation Zones, Published in unknown, Manatee County Information Services Dept..

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Hurricane and Tsunami Inundation Areas dataset, was produced all or in part from Other information as of unknown. It is described as 'Evacuation Zones'. Data...

  20. EAARL Coastal Topography—Cape Hatteras, North Carolina, Pre- and Post-Hurricane Isabel, 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ASCII XYZ data for Cape Hatteras, North Carolina, were produced from remotely sensed, geographically referenced elevation measurements collected post-Hurricane...

  1. 78 FR 19357 - Allocation of Public Transportation Emergency Relief Funds in Response to Hurricane Sandy

    Science.gov (United States)

    2013-03-29

    ... significant spending cuts known as sequestration and is unavailable for Hurricane Sandy disaster relief. The... January 29, 2013. FTA announced individual allocations on a rolling basis beginning March 6, 2013. Table...

  2. NOAA/National Hurricane Center Tropical Cyclone Forecasts WMS/WFS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prototype Web Map Service and Web Feature Service containing NOAA National Hurricane Center tropical cyclone forecast information for Atlantic and Pacific basins....

  3. NOAA/National Hurricane Center Preliminary Best Track Tropical Cyclone Tracks WMS/WFS (Dynamic Filtering)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prototype Web Map Service and Web Feature Service containing NOAA National Hurricane Center preliminary 'best track' information for past storms for the Atlantic and...

  4. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Mid-Atlantic...

  5. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Science.gov (United States)

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  6. Hurricane Wilma Aerial Photography: High-Resolution Imagery of the Florida Coast After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the Florida coast after Hurricane Wilma made landfall. The regions photographed range from Key West to Sixmile Bend, Florida....

  7. Hurricane Dennis Aerial Photography: Draft Image Mosaics of the Florida Panhandle and Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the Florida panhandle and surrounding regions after Hurricane Dennis made landfall. The regions photographed range from...

  8. EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: Seamless (Bare Earth and Submerged)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless (bare-earth and submerged) elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was...

  9. EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely...

  10. 2005 United States Army Corps of Engineers (USACE) Post-Hurricane Katrina Levee Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These topographic data were collected for the U.S. Army Corps of Engineers by a helicopter-mounted LiDAR sensor over the New Orleans Hurricane Protection Levee...

  11. Hurricane Jeanne Aerial Photography: High-Resolution Imagery of the Atlantic Coast of Florida After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the Atlantic coast of Florida after Hurricane Jeanne made landfall. The regions photographed range along a 100-mile stretch...

  12. 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.35m GSD created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in Hurricane Sandy coastal...

  13. EAARL Coastal Topography—Cape Hatteras, North Carolina, Pre- and Post-Hurricane Isabel, 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ASCII XYZ data for Cape Hatteras, North Carolina, were produced from remotely sensed, geographically referenced elevation measurements collected pre-Hurricane Isabel...

  14. The post-disaster negative health legacy: pregnancy outcomes in Louisiana after Hurricane Andrew.

    Science.gov (United States)

    Antipova, Anzhelika; Curtis, Andrew

    2015-10-01

    Disasters and displacement increasingly affect and challenge urban settings. How do pregnant women fare in the aftermath of a major disaster? This paper investigates the effect of pregnancies in disaster situations. The study tests a hypothesis that pregnant women residing in hurricane-prone areas suffer higher health risks. The setting is Louisiana in the Gulf Coast, United States, a state that continually experiences hurricane impacts. The time period for the analysis is three years following the landfall of Hurricane Andrew in 1992. We analysed low birth weight and preterm deliveries before and after landfall, as a whole and by race. Findings support an association between hazards and health of a community and indicate that pregnant women in the affected area, irrespective of race, are more likely to experience preterm deliveries compared to pre-event births. Results suggest there is a negative health legacy impact in Louisiana as a result of hurricane landfall.

  15. EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: Seamless (Bare Earth and Submerged)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless (bare-earth and submerged) elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was...

  16. EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely...

  17. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Gulf of...

  18. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Mid-Atlantic...

  19. The Conservation of Helicity in Hurricane Andrew (1992) and the Formation of the Spiral Rainband

    Institute of Scientific and Technical Information of China (English)

    徐亚梅; 伍荣生

    2003-01-01

    The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.

  20. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Northeast...