WorldWideScience

Sample records for hurricane response team

  1. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  2. Effects of Hurricane Hugo: Mental Health Workers and Community Members.

    Science.gov (United States)

    Muzekari, Louis H.; And Others

    This paper reports the effects of Hurricane Hugo on mental health workers and indigenous community members. The response and perceptions of mental health staff from the South Carolina Department of Mental Health (Go Teams) from areas unaffected by the hurricane were compared and contrasted with those of a subsequent Hugo Outreach Support Team…

  3. Impact of a Hurricane Shelter Viral Gastroenteritis Outbreak on a Responding Medical Team.

    Science.gov (United States)

    Gaither, Joshua B; Page, Rianne; Prather, Caren; Paavola, Fred; Garrett, Andrew L

    2015-08-01

    Introduction In late October of 2012, Hurricane Sandy struck the northeast United States and shelters were established throughout the impacted region. Numerous cases of infectious viral gastroenteritis occurred in several of these shelters. Such outbreaks are common and have been well described in the past. Early monitoring for, and recognition of, the outbreak allowed for implementation of aggressive infection control measures. However, these measures required intensive medical response team involvement. Little is known about how such outbreaks affect the medical teams responding to the incident. Hypothesis/Problem Describe the impact of an infectious viral gastroenteritis outbreak within a single shelter on a responding medical team. The number of individuals staying in the single shelter each night (as determined by shelter staff) and the number of patients treated for symptoms of viral gastroenteritis were recorded each day. On return from deployment, members of a single responding medical team were surveyed to determine how many team members became ill during, or immediately following, their deployment. The shelter population peaked on November 5, 2012 with 811 individuals sleeping in the shelter. The first patients presented to the shelter clinic with symptoms of viral gastroenteritis on November 4, 2012, and the last case was seen on November 21, 2012. A total of 64 patients were treated for nausea, vomiting, or diarrhea over the 17-day period. A post-deployment survey was sent to 66 deployed medical team members and 45 completed the survey. Twelve (26.7%) of the team members who responded to the survey experienced symptoms of probable viral gastroenteritis. Team members reported onset of symptoms during deployment as well as after returning home. Symptoms started on days 4-8, 8-14, on the trip home, and after returning home in four, four, two, and two team members, respectively. Medical teams providing shelter care during viral gastroenteritis outbreaks are

  4. An overview of the Environmental Response Team's air surveillance procedures at emergency response activities

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, R.D.; Campagna, P.R. (U.S. Environmental Protection Agency, Edison, NJ (USA))

    The Safety and Air Surveillance Section of the United States Environmental Protection Agency's Environmental Response Team responds to emergency air releases such as tire fires and explosions. The air surveillance equipment and procedures used by the organization are described, and case studies demonstrating the various emergency response activities are presented. Air response activities include emergency air responses, occupational and human health air responses and remedial air responses. Monitoring and sampling equipment includes photoionization detectors, combustible gas meters, real-time aerosol monitors, personal sampling pumps, and high flow pumps. Case histories presented include disposal of dioxane from a cotton plant, response to oil well fires in Kuwait, disposal of high pressure cylinders in American Samoa, and response to hurricane Hugo. 3 refs., 1 tab.

  5. Avifauna response to hurricanes: regional changes in community similarity

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Chengquan Huang; Jeffrey G. Masek; Volker C. Radeloff

    2010-01-01

    Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does...

  6. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    Science.gov (United States)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  7. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  8. Long-term response of Caribbean palm forests to hurricanes

    Science.gov (United States)

    Ariel Lugo; J.L. Frangi

    2016-01-01

    We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...

  9. Learning from Katrina: environmental health observations from the SWCPHP response team in Houston.

    Science.gov (United States)

    Elledge, Brenda L; Boatright, Daniel T; Woodson, Paul; Clinkenbeard, Rodney E; Brand, Michael W

    2007-09-01

    Hurricane Katrina provided an opportunity to observe the public health and medical care response system in practice and provided vital lessons about identifying and learning critical response measures as well as about ineffective investments of time and effort. The Southwest Center for Public Health Preparedness (SWCPHP) response team, while working among evacuees housed at Reliant Park in Houston, Texas, made a number of observations related to environmental public health. This summary reports firsthand observations which are, to a great extent, supported by the Federal Response to Hurricane Katrina: Lessons Learned report, and it provides a contextual backdrop for improvement in the areas of volunteer and citizen preparedness training and education. Katrina provided an opportunity to see public health in a highly stressed practice setting and to identify and reinforce the fundamental tenets of public health with which all individuals responding to an event should be familiar. Knowledge gained from Katrina should be integrated into future efforts related to disaster response planning; specifically, it is imperative that volunteers receive standardized training in the areas of incident command systems (ICS), basic hygiene, transmission of disease, and food and water safety principles.

  10. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  11. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  12. Vietnamese Hurricane Response Fact Sheets

    Science.gov (United States)

    Các tờ dữ kiện được cung cấp nơi đây mô tả vai trò của EPA trong việc đáp ứng với bão và cách các chương trình cụ thể cung cấp sự hỗ trợ. The Vietnamese fact sheets provided here describe EPA's role in a hurricane response.

  13. Team responsibility structure and team performance

    NARCIS (Netherlands)

    Doorewaard, J.A.C.M.; Hootegem, G. van; Huys, R.

    2002-01-01

    The purpose is to analyse the impact of team responsibility (the division of job regulation tasks between team leader and team members) on team performance. It bases an analysis on 36 case studies in The Netherlands which are known to have implemented team‐based work. The case studies were executed

  14. A team approach to preparing for hurricanes and other disasters.

    Science.gov (United States)

    Kendig, Jim

    2009-01-01

    Applying lessons learned in Hurricane Floyd in 1999, a three-hospital system located on Florida's exposed Space Coast was able to better deal with the devastation caused by hurricanes in 2004 and make changes in its plans to better prepare for the named storms which hit its area in 2008. Each new disaster, the author points out, brings with it new challenges which have to be considered in disaster planning.

  15. Morphological responses of the Wax Lake Delta, Louisiana, to Hurricanes Rita

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2017-12-01

    Full Text Available This study examines the morphodynamic response of a deltaic system to extreme weather events. The Wax Lake Delta (WLD in Louisiana, USA, is used to illustrate the impact of extreme events (hurricanes on a river-dominated deltaic system. Simulations using the open source Delft3D model reveal that Hurricane Rita, which made landfall 120 km to the west of WLD as a Category 3 storm in 2005, caused erosion on the right side and deposition on the left side of the hurricane eye track on the continental shelf line (water depth 10 m to 50 m. Erosion over a wide area occurred both on the continental shelf line and in coastal areas when the hurricane moved onshore, while deposition occurred along the Gulf coastline (water depth < 5 m when storm surge water moved back offshore. The numerical model estimated that Hurricane Rita’s storm surge reached 2.5 m, with maximum currents of 2.0 m s–1, and wave heights of 1.4 m on the WLD. The northwestern-directed flow and waves induced shear stresses, caused erosion on the eastern banks of the deltaic islands and deposition in channels located west of these islands. In total, Hurricane Rita eroded more than 500,000 m3 of sediments on the WLD area. Including waves in the analysis resulted in doubling the amount of erosion in the study area, comparing to the wave-excluding scenario. The exclusion of fluvial input caused minor changes in deltaic morphology during the event. Vegetation cover was represented as rigid rods in the model which add extra source terms for drag and turbulence to influence the momentum and turbulence equations. Vegetation slowed down the floodwater propagation and decreased flow velocity on the islands, leading to a 47% reduction in the total amount of erosion. Morphodynamic impact of the hurricane track relative to the delta was explored. Simulations indicate that the original track of Hurricane Rita (landfall 120 km west of the WLD produced twice as much erosion and deposition at the delta

  16. Lessons from Hurricane Sandy: a community response in Brooklyn, New York.

    Science.gov (United States)

    Schmeltz, Michael T; González, Sonia K; Fuentes, Liza; Kwan, Amy; Ortega-Williams, Anna; Cowan, Lisa Pilar

    2013-10-01

    The frequency and intensity of extreme weather events have increased in recent decades; one example is Hurricane Sandy. If the frequency and severity continue or increase, adaptation and mitigation efforts are needed to protect vulnerable populations and improve daily life under changed weather conditions. This field report examines the devastation due to Hurricane Sandy experienced in Red Hook, Brooklyn, New York, a neighborhood consisting of geographically isolated low-lying commercial and residential units, with a concentration of low-income housing, and disproportionate rates of poverty and poor health outcomes largely experienced by Black and Latino residents. Multiple sources of data were reviewed, including street canvasses, governmental reports, community flyers, and meeting transcripts, as well as firsthand observations by a local nonprofit Red Hook Initiative (RHI) and community members, and social media accounts of the effects of Sandy and the response to daily needs. These data are considered within existing theory, evidence, and practice on protecting public health during extreme weather events. Firsthand observations show that a community-based organization in Red Hook, RHI, was at the center of the response to disaster relief, despite the lack of staff training in response to events such as Hurricane Sandy. Review of these data underscores that adaptation and response to climate change and likely resultant extreme weather is a dynamic process requiring an official coordinated governmental response along with on-the-ground volunteer community responders.

  17. Subinertial response of the Gulf Stream System to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, Lian; Pietrafesa, Leonard J.; Zhang, Chen

    The evidence of subinertial-frequency (with periods from 2 days to 2 weeks) oceanic response to Hurricane Fran of 1996 is documented. Hurricane Fran traveled northward across the Gulf Stream and then over a cool-core trough, known as the Charleston Trough, due east of Charleston, SC and in the lee of the Charleston Bump during the period 4-5 September, 1996. During the passage of the storm, the trough closed into a gyre to form an intense cool-core cyclonic eddy. This cool-core eddy had an initial size of approximately 130 km by 170 km and drifted northeastward along the Gulf Stream front at a speed of 13 to 15 km/day as a subinertial baroclinic wave. Superimposed on this subinertial-frequency wave were near-inertial frequency, internal inertia-gravity waves formed in the stratified mixed-layer base after the passage of the storm. The results from a three-dimensional numerical ocean model confirm the existence of both near-inertial and subinertial-frequency waves in the Gulf Stream system during and after the passage of Hurricane Fran. Model results also showed that hurricane-forced oceanic response can modify Gulf Stream variability at both near-inertial and subinertial frequencies.

  18. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    Science.gov (United States)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  19. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    Science.gov (United States)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  20. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane

    Science.gov (United States)

    William H. McDowell; Daniel Liptzin

    2014-01-01

    Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...

  1. Florida Department of Health Workers’ Response to 2004 Hurricanes: A Qualitative Analysis

    Science.gov (United States)

    Herberman Mash, Holly B.; Fullerton, Carol S.; Kowalski-Trakofler, Kathleen; Reissman, Dori B.; Scharf, Ted; Shultz, James M.; Ursano, Robert J.

    2015-01-01

    Objective Examinations of the demands on public health workers after disaster exposure have been limited. Workers provide emergency care while simultaneously risking injury, damage to personal property, and threats to their own and their family’s safety. We examined the disaster management experiences of 4323 Florida Department of Health workers 9 months after their response to 4 hurricanes and 1 tropical storm during a 7-week period in August and September of 2004. Methods Participants completed a self-report questionnaire focused on work performance, mental and physical health, daily functioning, sleep disturbance, physiological arousal, and injury and work demand at the time of the hurricanes, and answered open-ended questions that described their experiences in more detail. Results A qualitative analysis conducted from the write-in data yielded 4 domains: (1) work/life balance; (2) training for disaster response role; (3) workplace support; and (4) recovery. Conclusions Study findings highlighted a number of concerns that are important to public health workers who provide emergency care after a disaster and, in particular, multiple disasters such as during the 2004 hurricane season. The findings also yielded important recommendations for emergency public health preparedness. PMID:24618166

  2. Florida Department of Health workers' response to 2004 hurricanes: a qualitative analysis.

    Science.gov (United States)

    Herberman Mash, Holly B; Fullerton, Carol S; Kowalski-Trakofler, Kathleen; Reissman, Dori B; Scharf, Ted; Shultz, James M; Ursano, Robert J

    2013-04-01

    Examinations of the demands on public health workers after disaster exposure have been limited. Workers provide emergency care while simultaneously risking injury, damage to personal property, and threats to their own and their family's safety. We examined the disaster management experiences of 4323 Florida Department of Health workers 9 months after their response to 4 hurricanes and 1 tropical storm during a 7-week period in August and September of 2004. Participants completed a self-report questionnaire focused on work performance, mental and physical health, daily functioning, sleep disturbance, physiological arousal, and injury and work demand at the time of the hurricanes, and answered open-ended questions that described their experiences in more detail. A qualitative analysis conducted from the write-in data yielded 4 domains: (1) work/life balance; (2) training for disaster response role; (3) workplace support; and (4) recovery. Study findings highlighted a number of concerns that are important to public health workers who provide emergency care after a disaster and, in particular, multiple disasters such as during the 2004 hurricane season. The findings also yielded important recommendations for emergency public health preparedness.

  3. National Response Team

    Science.gov (United States)

    Response planning and coordination (not direct response itself) is accomplished at the federal level through the U.S. National Response Team (NRT), an interagency group co-chaired by EPA and U.S. Coast Guard. NRT distributes information, plans, and trains.

  4. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  5. Hurricane Maria, 2017 Hydrographic Response for Puerto Rico and U.S. Virgin Islands by the NOAA Ship Thomas Jefferson

    Science.gov (United States)

    Gump, D.; Klemm, A.; van Westendorp, C.; Wood, D. A.; Doroba, J.

    2017-12-01

    After many coastal natural disasters, ports and harbors must be surveyed for navigation dangers, cleared, and opened as quickly as possible to facilitate recovery and reconstruction. The appropriate survey asset to use varies by location and condition. Routinely, hydrographic response to a natural disaster is conducted by survey teams with trailer-hitched vessels deployed quickly by land. This was the case for Hurricanes Harvey, Irma and Nate which struck mainland U.S. In the U.S. territories of Puerto Rico and the Virgin Islands post-Hurricane Maria, however, the devastation to the regional infrastructure resulted in a dearth of adequate accommodations, fuel, security and passable roads required to support a land-based response. On September 24th, 2017, NOAA Ship Thomas Jefferson (TJ), a 208-foot-long hydrographic survey vessel with a 38-person complement and two 28-foot-long survey launches, began an uninterrupted 20-day cruise to survey major ports around the islands. The ship's crew acquired high-resolution multibeam echo sounder (MBES) and concurrent object-detection side scan sonar (SSS) in and around 18 individual port facilities in 13 areas. The TJ is the appropriate platform for sustained remote response due to a self-contained infrastructure that supports deployment and recovery of survey launches, as well as 24/7 data processing facilities. The TJ crew produced digital terrain models and SSS mosaics, in addition to developing new reports on specific hazards overnight. These products quickly informed responders, stakeholders and responsible authorities about the efficacy of waterways.

  6. 40 CFR 300.110 - National Response Team.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false National Response Team. 300.110... PLAN Responsibility and Organization for Response § 300.110 National Response Team. National planning... agencies named in § 300.175(b). Each agency shall designate a member to the team and sufficient alternates...

  7. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  8. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  9. Rapid response teams: qualitative analysis of their effectiveness.

    Science.gov (United States)

    Leach, Linda Searle; Mayo, Ann M

    2013-05-01

    Multidisciplinary rapid response teams focus on patients' emergent needs and manage critical situations to prevent avoidable deaths. Although research has focused primarily on outcomes, studies of the actual team effectiveness within the teams from multiple perspectives have been limited. To describe effectiveness of rapid response teams in a large teaching hospital in California that had been using such teams for 5 years. The grounded-theory method was used to discover if substantive theory might emerge from interview and/or observational data. Purposeful sampling was used to conduct in-person semistructured interviews with 17 key informants. Convenience sampling was used for the 9 observed events that involved a rapid response team. Analysis involved use of a concept or indicator model to generate empirical results from the data. Data were coded, compared, and contrasted, and, when appropriate, relationships between concepts were formed. Results Dimensions of effective team performance included the concepts of organizational culture, team structure, expertise, communication, and teamwork. Professionals involved reported that rapid response teams functioned well in managing patients at risk or in crisis; however, unique challenges were identified. Teams were loosely coupled because of the inconsistency of team members from day to day. Team members had little opportunity to develop relationships or team skills. The need for team training may be greater than that among teams that work together regularly under less time pressure to perform. Communication between team members and managing a crisis were critical aspects of an effective response team.

  10. Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast

    Science.gov (United States)

    Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.

    2017-12-01

    As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour

  11. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  12. Geospatial Information Response Team

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  13. Hurricane Season Public Health Preparedness, Response, and Recovery Guidance for Health Care Providers, Response and Recovery Workers, and Affected Communities - CDC, 2017.

    Science.gov (United States)

    2017-09-22

    CDC and the Agency for Toxic Substances and Disease Registry (ATSDR) have guidance and technical materials available in both English and Spanish to help communities prepare for hurricanes and floods (Table 1). To help protect the health and safety of the public, responders, and clean-up workers during response and recovery operations from hurricanes and floods, CDC and ATSDR have developed public health guidance and other resources; many are available in both English and Spanish (Table 2).

  14. 78 FR 33467 - Second Allocation of Public Transportation Emergency Relief Funds in Response to Hurricane Sandy...

    Science.gov (United States)

    2013-06-04

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Second Allocation of Public Transportation Emergency Relief Funds in Response to Hurricane Sandy: Response, Recovery & Resiliency; Correction... allocation of $3.7 billion under the Public Transportation Emergency Relief Program to the four FTA...

  15. Computer incident response and forensics team management conducting a successful incident response

    CERN Document Server

    Johnson, Leighton

    2013-01-01

    Computer Incident Response and Forensics Team Management provides security professionals with a complete handbook of computer incident response from the perspective of forensics team management. This unique approach teaches readers the concepts and principles they need to conduct a successful incident response investigation, ensuring that proven policies and procedures are established and followed by all team members. Leighton R. Johnson III describes the processes within an incident response event and shows the crucial importance of skillful forensics team management, including when and where the transition to forensics investigation should occur during an incident response event. The book also provides discussions of key incident response components. Provides readers with a complete handbook on computer incident response from the perspective of forensics team management Identify the key steps to completing a successful computer incident response investigation Defines the qualities necessary to become a succ...

  16. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  17. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons

    Directory of Open Access Journals (Sweden)

    Kerry Milch

    2018-01-01

    Full Text Available Although the field has seen great advances in hurricane prediction and response, the economic toll from hurricanes on U.S. communities continues to rise. We present data from Hurricanes Earl (2010, Irene (2011, Isaac (2012, and Sandy (2012 to show that individual and household decisions contribute to this vulnerability. From phone surveys of residents in communities threatened by impending hurricanes, we identify five decision biases or obstacles that interfere with residents’ ability to protect themselves and minimize property damage: (1 temporal and spatial myopia, (2 poor mental models of storm risk, (3 gaps between objective and subjective probability estimates, (4 prior storm experience, and (5 social factors. We then discuss ways to encourage better decision making and reduce the economic and emotional impacts of hurricanes, using tools such as decision defaults (requiring residents to opt out of precautions rather than opt in and tailoring internet-based forecast information so that it is local, specific, and emphasizes impacts rather than probability.

  18. The Military and Domestic Disaster Response: Lead Role Revealed Through the Eye of Hurricane Katrina?

    National Research Council Canada - National Science Library

    Walker, Juliana M

    2006-01-01

    .... During and in the aftermath of Hurricane Katrina however the slow and perceived inept response to the massive disaster prompted a national debate on the appropriate role of the military in major domestic disasters...

  19. Sizing Up a Superstorm: Exploring the Role of Recalled Experience and Attribution of Responsibility in Judgments of Future Hurricane Risk.

    Science.gov (United States)

    Rickard, Laura N; Yang, Z Janet; Schuldt, Jonathon P; Eosco, Gina M; Scherer, Clifford W; Daziano, Ricardo A

    2017-12-01

    Research suggests that hurricane-related risk perception is a critical predictor of behavioral response, such as evacuation. Less is known, however, about the precursors of these subjective risk judgments, especially when time has elapsed from a focal event. Drawing broadly from the risk communication, social psychology, and natural hazards literature, and specifically from concepts adapted from the risk information seeking and processing model and the protective action decision model, we examine how individuals' distant recollections, including attribution of responsibility for the effects of a storm, attitude toward relevant information, and past hurricane experience, relate to risk judgment for a future, similar event. The present study reports on a survey involving U.S. residents in Connecticut, New Jersey, and New York (n = 619) impacted by Hurricane Sandy. While some results confirm past findings, such as that hurricane experience increases risk judgment, others suggest additional complexity, such as how various types of experience (e.g., having evacuated vs. having experienced losses) may heighten or attenuate individual-level judgments of responsibility. We suggest avenues for future research, as well as implications for federal agencies involved in severe weather/natural hazard forecasting and communication with public audiences. © 2017 Society for Risk Analysis.

  20. Nurses respond to Hurricane Hugo victims' disaster stress.

    Science.gov (United States)

    Weinrich, S; Hardin, S B; Johnson, M

    1990-06-01

    Hugo, a class IV hurricane, hit South Carolina September 22, 1989, and left behind a wake of terror and destruction. Sixty-one nursing students and five faculty were involved in disaster relief with families devastated by the hurricane. A review of the literature led these authors to propose a formulation of the concept of disaster stress, a synthesis of theories that explains response to disaster as a crisis response, a stress response, or as posttraumatic stress. With the concept of disaster stress serving as a theoretical foundation, the nurses observed, assessed, and intervened with one population of hurricane Hugo victims, noting their immediate psychosocial reactions and coping mechanisms. Victims' reactions to disaster stress included confusion, irritability, lethargy, withdrawal, and crying. The most frequently observed coping strategy of these hurricane Hugo victims was talking about their experiences; other coping tactics involved humor, religion, and altruism.

  1. Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico

    Science.gov (United States)

    Aaron B. Shiels; Jess K. Zimmerman; Diana C. García-Montiel; Inge Jonckheere; Jennifer Holm; David Horton; Nicholas. Brokaw

    2010-01-01

    1. We simulated two key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on woody plant recruitment and forest structure. 2. We increased canopy openness by trimming branches and added or subtracted canopy detritus in a factorial design. Plant responses were...

  2. External factors impacting hospital evacuations caused by Hurricane Rita: the role of situational awareness.

    Science.gov (United States)

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to

  3. Understory fern community structure, growth and spore production responses to a large-scale hurricane experiment in a Puerto Rico rainforest

    Science.gov (United States)

    Joanne M. Sharpe; Aaron B. Shiels

    2014-01-01

    Ferns are abundant in most rainforest understories yet their responses to hurricanes have not been well studied. Fern community structure, growth and spore production were monitored for two years before and five years after a large-scale experiment that simulated two key components of severe hurricane disturbance: canopy openness and debris deposition. The canopy was...

  4. The perfect storm of information: combining traditional and non-traditional data sources for public health situational awareness during hurricane response.

    Science.gov (United States)

    Bennett, Kelly J; Olsen, Jennifer M; Harris, Sara; Mekaru, Sumiko; Livinski, Alicia A; Brownstein, John S

    2013-12-16

    Hurricane Isaac made landfall in southeastern Louisiana in late August 2012, resulting in extensive storm surge and inland flooding. As the lead federal agency responsible for medical and public health response and recovery coordination, the Department of Health and Human Services (HHS) must have situational awareness to prepare for and address state and local requests for assistance following hurricanes. Both traditional and non-traditional data have been used to improve situational awareness in fields like disease surveillance and seismology. This study investigated whether non-traditional data (i.e., tweets and news reports) fill a void in traditional data reporting during hurricane response, as well as whether non-traditional data improve the timeliness for reporting identified HHS Essential Elements of Information (EEI). HHS EEIs provided the information collection guidance, and when the information indicated there was a potential public health threat, an event was identified and categorized within the larger scope of overall Hurricane Issac situational awareness. Tweets, news reports, press releases, and federal situation reports during Hurricane Isaac response were analyzed for information about EEIs. Data that pertained to the same EEI were linked together and given a unique event identification number to enable more detailed analysis of source content. Reports of sixteen unique events were examined for types of data sources reporting on the event and timeliness of the reports. Of these sixteen unique events identified, six were reported by only a single data source, four were reported by two data sources, four were reported by three data sources, and two were reported by four or more data sources. For five of the events where news tweets were one of multiple sources of information about an event, the tweet occurred prior to the news report, press release, local government\\emergency management tweet, and federal situation report. In all circumstances where

  5. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992

    International Nuclear Information System (INIS)

    Hebdon, F.J.

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility's actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities

  6. Reduction in Mortality Following Pediatric Rapid Response Team Implementation.

    Science.gov (United States)

    Kolovos, Nikoleta S; Gill, Jeff; Michelson, Peter H; Doctor, Allan; Hartman, Mary E

    2018-05-01

    To evaluate the effectiveness of a physician-led rapid response team program on morbidity and mortality following unplanned admission to the PICU. Before-after study. Single-center quaternary-referral PICU. All unplanned PICU admissions from the ward from 2005 to 2011. The dataset was divided into pre- and post-rapid response team groups for comparison. A Cox proportional hazards model was used to identify the patient characteristics associated with mortality following unplanned PICU admission. Following rapid response team implementation, Pediatric Risk of Mortality, version 3, illness severity was reduced (28.7%), PICU length of stay was less (19.0%), and mortality declined (22%). Relative risk of death following unplanned admission to the PICU after rapid response team implementation was 0.685. For children requiring unplanned admission to the PICU, rapid response team implementation is associated with reduced mortality, admission severity of illness, and length of stay. Rapid response team implementation led to more proximal capture and aggressive intervention in the trajectory of a decompensating pediatric ward patient.

  7. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  8. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  9. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  10. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    would encounter under hurricane strength winds. These flow fields can be used to estimate wind turbine loads and responses with AeroDyn (http://wind.nrel.gov/designcodes/simulators/aerodyn/) and FAST (http://wind.nrel.gov/designcodes/simulators/fast/) codes also developed by NREL.

  11. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  12. Deflecting Hurakan: Enhancing DOD and DOS Interagency Hurricane Response Operations in Central America

    Science.gov (United States)

    2010-04-01

    a large-scale, extended response disaster such as massive floods and landslides produced from hurricanes, it may be necessary for the USAID/OFDA...national power to synergistically leverage their independent capabilities to counter the devastating first, second, and third order effects produced by...humanitarian assistance abroad. The first disaster occurred in March when Costa Rica endured an eruption of the Irazú volcano resulting in

  13. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    2012-09-24

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.  Created: 9/24/2012 by Office of Public Health Preparedness and Response (OPHPR), National Center for Environmental Health (NCEH), and the Agency for Toxic Substances and Disease Registry (ATSDR).   Date Released: 9/24/2012.

  14. Initial Public Health Laboratory Response After Hurricane Maria - Puerto Rico, 2017.

    Science.gov (United States)

    Concepción-Acevedo, Jeniffer; Patel, Anita; Luna-Pinto, Carolina; Peña, Rafael González; Cuevas Ruiz, Rosa Ivette; Arbolay, Héctor Rivera; Toro, Mayra; Deseda, Carmen; De Jesus, Victor R; Ribot, Efrain; Gonzalez, Jennifer-Quiñones; Rao, Gouthami; De Leon Salazar, Alfonsina; Ansbro, Marisela; White, Brunilís B; Hardy, Margaret C; Georgi, Joaudimir Castro; Stinnett, Rita; Mercante, Alexandra M; Lowe, David; Martin, Haley; Starks, Angela; Metchock, Beverly; Johnston, Stephanie; Dalton, Tracy; Joglar, Olga; Stafford, Cortney; Youngblood, Monica; Klein, Katherine; Lindstrom, Stephen; Berman, LaShondra; Galloway, Renee; Schafer, Ilana J; Walke, Henry; Stoddard, Robyn; Connelly, Robin; McCaffery, Elaine; Rowlinson, Marie-Claire; Soroka, Stephen; Tranquillo, Darin T; Gaynor, Anne; Mangal, Chris; Wroblewski, Kelly; Muehlenbachs, Atis; Salerno, Reynolds M; Lozier, Matthew; Sunshine, Brittany; Shapiro, Craig; Rose, Dale; Funk, Renee; Pillai, Satish K; O'Neill, Eduardo

    2018-03-23

    Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.

  15. Notification: EPA's Preparedness and Response Efforts to the 2017 Hurricanes in EPA Regions 2, 4 and 6

    Science.gov (United States)

    Project #OPE-FY18-0005, December 13, 2017. The EPA OIG plans to begin preliminary research on the EPA’s preparedness and response efforts to the 2017 hurricanes that impacted EPA Regions 2, 4 and 6.

  16. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  17. Mapping the Distribution of Sand Live Oak (Quercus geminata) and Determining Growth Responses to Hurricane Katrina (2005) on Cat Island, Mississippi

    Science.gov (United States)

    Funderburk, W.; Carter, G. A.; Harley, G. L.

    2013-12-01

    William R. Funderburk, Gregory A. Carter, Grant Harley Gulf Coast Geospatial Center, University of Southern Mississippi Department of Geography and Geology Stennis Space Center, MS 39529 U.S.A. william.funderburk@usm.edu The Mississippi-Alabama barrier islands serve to buffer mainland coastal areas from the impacts of hurricanes and other extreme weather events. On August 29, 2005, they were impacted heavily by the wind, waves, and storm surges of Hurricane Katrina. The purpose of this study is to determine the growth responses of Quercus geminata, a dominant tree species on Cat Island, MS, in relation to the impact of Hurricane Katrina. Remotely sensed data was utilized in conjunction with ground data to assess growth response post Hurricane Katrina. The main objectives of this study were: 1) determine growth response of Q. geminata through tree ring analysis; 2) understand how Q. geminata adapted to intense weather and climatic phenomena on Cat Island. The hypotheses tested were: 1) growth rates of Q. geminata on Cat Island were decreased by the impact of Hurricane Katrina 2) trees at higher elevations survived or recovered while trees at lower elevations did not recover or died. Decadal scale stability is required for forest stand development on siliciclastic barrier islands. Thus, monitoring the distribution of forest climax community species is key to understanding siliciclastic, subsiding, barrier island geomorphic processes and their relationships to successional patterns and growth rates. Preliminary results indicate that Q. geminata produces a faint growth ring, survive for at least two to three hundred years and is well-adapted to frequent salt water flooding. Cat Island: False color Image

  18. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, F.J. [Institute of Nuclear Power Operations, Atlanta, GA (United States)

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility`s actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities.

  19. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    Science.gov (United States)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  20. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  1. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; David S. Nolan; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  2. Humanitarian power : Canadian electrical techies help hurricane relief in Honduras

    International Nuclear Information System (INIS)

    Mallett, N.

    1999-01-01

    A review of the emergency assistance provided to Honduras by Canada following Hurricane Mitch that struck the country with a ferocity not seen in 200 years, was described. Thousands of Hondurans were killed and three million were left homeless as vast regions of the country were literally washed away. The secondary effects of the storm - famine and disease - set in to claim even more lives. The Canadian Forces' Disaster Response Team (DART) was dispatched to conduct emergency relief operations for up to 40 days in order to bridge the gap until members of the international community arrive to provide long-term help. DART focused on providing medical care, clean drinking water, an engineering capability, and reliable communications. The medical team consisting of a small field hospital with a staff of 45 provided care for up to 500 outpatients and 30 inpatients daily, depending on the severity of injuries. The engineering team of about 40 provided a wide range of services, such as water purification, using a reverse osmosis water purification unit, fresh water distribution and power generation. The communications unit provided contact with headquarters in Honduras, and communicated with bases back in Canada. The operation was a great success, and well received by the Honduran people. This was the first deployment of DART, a team initially conceived after the Canadian Forces participated in relief efforts in Rwanda in 1994 and 1995

  3. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  4. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  5. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  6. Non-arborescent vegetation trajectories following repeated hurricane disturbance: ephemeral versus enduring responses

    Science.gov (United States)

    Alejandro A. Royo; Tamara Heartsill-Scalley; Samuel Moya; Fred N. Scatena

    2011-01-01

    Hurricanes strongly influence short-term patterns of plant community structure, composition, and abundance and are a major contributor to the maintenance of plant diversity in many forests. Although much research has focused on the immediate and long-term effects of hurricane disturbance on tree diversity, far less attention has been devoted to the non-arborescent...

  7. School Response to Violence: A Case Study in Developing Crisis Response Teams

    Science.gov (United States)

    Walsh, Ronald J.

    2010-01-01

    The purpose of this case study was to evaluate the perceptions of participants regarding their effectiveness in responding to defiant student violence as a crisis response team, following crisis response team training. The participants were a group of 10 volunteer PK-6 public school educators from western Wisconsin. The study took place during the…

  8. Revamping EAGLE-I and experiences during Hurricanes Harvey and Irma

    Science.gov (United States)

    Sanyal, J.; Chinthavali, S.; Myers, A.; Newby, S.; Redmon, D.

    2017-12-01

    EAGLE-I, the Environment for Analysis of Geo-Located Energy Information) is an operational system for the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE), Infrastructure Security and Energy Restoration (ISER) division to provide near real-time situational awareness of the nation's energy sector. The system geospatially maps energy assets and systems in electricity, oil and natural gas, petroleum, and coal, and tie together a variety of data sources into one visualization platform. The system serves the needs of the ESF#12 (Emergency Support Function - Energy) community and has users from FEMA, USDA, DHS, and other federal and state emergency response agencies. During the hurricane season, the EAGLE-I team improved the coverage of electric customers in areas where the hurricanes were expected to make landfall, provided custom reports for Puerto Rico using whatever data was available, and supported various requests for data during the events. Various attempts were also made to establish a direct contact with utilities. Acute shortage of information was felt as utility systems went down, particularly in the territories, which led to considerations of using indirect mechanisms such as processing night lights imagery. As the EAGLE-I system undergoes a significant modernization, these experiences have helped understand and guide priorities in the modernization.

  9. Aftermath of Hurricane Ike along Texas Coast

    Science.gov (United States)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and

  10. Ecohydrological Responses to Hurricane Harvey across South-Central Texas a Multidisciplinary Approach of the Texas Water Observatory

    Science.gov (United States)

    Jaimes, A.; Gaur, N.; Aparecido, L. M. T.; Everett, M. E.; Knappett, P.; Lawing, M.; Majumder, S.; Miller, G. R.; Moore, G. W.; Morgan, C.; Mitra, B.; Noormets, A.; Mohanty, B.

    2017-12-01

    The unprecedented destructive hurricane Harvey struck eastern Texas from August 25th to 29th, 2017. As the hurricane moved through the region, it dropped the equivalent of one year of precipitation within a five-day period, with peak accumulations near 165 cm. Rainfall intensity and distribution varied across the region but Harris County and portions of the lower Brazos River Basin experienced devastating flooding due to high run-off and water accumulation in the built-up area. In this study, we use a multidisciplinary approach to quantify the dynamics of carbon and water flux at different spatiotemporal resolution across land types both in and outside of the path of hurricane Harvey using a combination of remote sensing and fixed monitoring platforms of the Texas Water Observatory (TWO). We used LANDSAT imagery to compute Soil Adjusted Vegetation Index, Enhanced Vegetation Index, and Normalized Difference Moisture Index. MODIS ET, GPP, and sap flow data were used in combination with eddy covariance and meteorological data from seven sites of the TWO representative of biomes ranging from low tidal salt marsh of the Gulf Coastal Plain, Shrubland, Improved Pasture, Mixed and Native Prairies, and Crop sites. We hypothesize alteration in ecohydrological characteristics across land types, which were in the path of hurricane due to changes in vegetation structure. Specifically we used trend analysis to detect structural changes in temporal dynamics of sap flow, ET, and carbon to pulse response. In addition, we monitored trace metal concentration of soil and water pores before and immediately after the hurricane in order to predict the potential of any of the toxic metal (loid)s being mobilized in the natural water resources as a function of the changes in the redox gradient. Preliminary results indicated that tree water use was reduced on average 30% below normal days. Porewater concentration of some of the metal (loid) concentration increased (Fe, Mn, Co, As, Sb, Pb

  11. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    International Nuclear Information System (INIS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-01-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  12. Puerto Rico Seismic Network Operations During and After the Hurricane Maria: Response, Continuity of Operations, and Experiences

    Science.gov (United States)

    Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.

    2017-12-01

    The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.

  13. Studying and Improving Human Response to Natural Hazards: Lessons from the Virtual Hurricane Lab

    Science.gov (United States)

    Meyer, R.; Broad, K.; Orlove, B. S.

    2010-12-01

    One of the most critical challenges facing communities in areas prone to natural hazards is how to best encourage residents to invest in individual and collective actions that would reduce the damaging impact of low-probability, high-consequence, environmental events. Unfortunately, what makes this goal difficult to achieve is that the relative rarity natural hazards implies that many who face the risk of natural hazards have no previous experience to draw on when making preparation decisions, or have prior experience that provides misleading guidance on how best to prepare. For example, individuals who have experienced strings of minor earthquakes or near-misses from tropical cyclones may become overly complacent about the risks that extreme events actually pose. In this presentation we report the preliminary findings of a program of work that explores the use of realistic multi-media hazard simulations designed for two purposes: 1) to serve as a basic research tool for studying of how individuals make decisions to prepare for rare natural hazards in laboratory settings; and 2) to serve as an educational tool for giving people in hazard-prone areas virtual experience in hazard preparation. We demonstrate a prototype simulation in which participants experience the approach of a virtual hurricane, where they have the opportunity to invest in different kinds of action to protect their home from damage. As the hurricane approaches participants have access to an “information dashboard” in which they can gather information about the storm threat from a variety of natural sources, including mock television weather broadcasts, web sites, and conversations with neighbors. In response to this information they then have the opportunity to invest in different levels of protective actions. Some versions of the simulation are designed as games, where participants are rewarded based on their ability to make the optimal trade-off between under and over-preparing for the

  14. The One Plan Project: A cooperative effort of the National Response Team and the Region 6 Regional Response Team to simplify facility emergency response planning

    International Nuclear Information System (INIS)

    Staves, J.; McCormick, K.

    1997-01-01

    The National Response Team (NRT) in coordination with the Region 6 Response Team (RRT) have developed a facility contingency plan format which would integrate all existing regulatory requirements for contingency planning. This format was developed by a multi-agency team, chaired by the USEPA Region 6, in conjunction with various industry, labor, and public interest groups. The impetus for this project came through the USEPA Office of Chemical Emergency Preparedness and Prevention (CEPPO). The current national oil and hazardous material emergency preparedness and response system is an amalgam of federal, state, local, and industrial programs which are often poorly coordinated. In a cooperative effort with the NRT, the CEPPO conducted a Presidential Review of federal agency authorities and coordination responsibilities regarding release prevention, mitigation, and response. Review recommendations led to a Pilot Project in USEPA Region 6. The Region 6 Pilot Project targeted end users in the intensely industrialized Houston Ship Channel (HSC) area, which is comprised of petroleum and petrochemical companies

  15. Hurricane Val in American Samoa: A case study

    International Nuclear Information System (INIS)

    Weaver, D.A.; Henderson, H.

    1993-01-01

    On Monday, December 9, 1991, Hurricane Val hit American Samoa. Along with the many homes and buildings that had been destroyed, nine abandoned fishing vessels were torn from their mooring and washed up onto the reef in Pago Pago Harbor. Several hundred gallons of diesel fuel were released into the water; about 12,000 gallons remained onboard the vessels. The efforts of the US Coast Guard (USCG), Federal Emergency Management Agency (FEMA), Samoa Environmental Protection Agency (SEPA), and local contractors helped mitigate the damage. The USCG Pacific Strike Team (PST) was tasked with monitoring, removing, and disposing of the petroleum products that remained onboard the vessels. The strike team also investigated reports of chemical spills throughout the island

  16. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  17. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  18. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  19. Understanding household preferences for hurricane risk mitigation information: evidence from survey responses.

    Science.gov (United States)

    Chatterjee, Chiradip; Mozumder, Pallab

    2014-06-01

    Risk information is critical to adopting mitigation measures, and seeking risk information is influenced by a variety of factors. An essential component of the recently adopted My Safe Florida Home (MSFH) program by the State of Florida is to provide homeowners with pertinent risk information to facilitate hurricane risk mitigation activities. We develop an analytical framework to understand household preferences for hurricane risk mitigation information through allowing an intensive home inspection. An empirical analysis is used to identify major drivers of household preferences to receive personalized information regarding recommended hurricane risk mitigation measures. A variety of empirical specifications show that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow inspection to seek information. However, households with more members living in the home and households who live in manufactured/mobile homes are less likely to allow inspection. While findings imply MSFH program's ability to link incentives offered by private and public agencies in promoting mitigation, households that face a disproportionately higher level of risk can get priority to make the program more effective. © 2014 Society for Risk Analysis.

  20. Hurricane Katrina - Murphy Oil Spill Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  1. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  2. Rapid Response Team activation for pediatric patients on the acute pain service.

    Science.gov (United States)

    Teets, Maxwell; Tumin, Dmitry; Walia, Hina; Stevens, Jenna; Wrona, Sharon; Martin, David; Bhalla, Tarun; Tobias, Joseph D

    2017-11-01

    Untreated pain or overly aggressive pain management may lead to adverse physiologic consequences and activation of the hospital's Rapid Response Team. This study is a quality improvement initiative that attempts to identify patient demographics and patterns associated with Rapid Response Team consultations for patients on the acute pain service. A retrospective review of all patients on the acute pain service from February 2011 until June 2015 was cross-referenced with inpatients requiring consultation from the Rapid Response Team. Two independent practitioners reviewed electronic medical records to determine which events were likely associated with pain management interventions. Over a 4-year period, 4872 patients were admitted to the acute pain service of whom 135 unique patients required Rapid Response Team consults. There were 159 unique Rapid Response Team activations among 6538 unique acute pain service consults. A subset of 27 pain management-related Rapid Response Team consultations was identified. The largest percentage of patients on the acute pain service were adolescents aged 12-17 (36%). Compared to this age group, the odds of Rapid Response Team activation were higher among infants Team consultations may help to identify patients at risk for clinical decompensation. © 2017 John Wiley & Sons Ltd.

  3. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes

    Science.gov (United States)

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley

    2014-01-01

    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  4. Computer Security Incident Response Team Effectiveness: A Needs Assessment.

    Science.gov (United States)

    Van der Kleij, Rick; Kleinhuis, Geert; Young, Heather

    2017-01-01

    Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response.

  5. Computer Security Incident Response Team Effectiveness: A Needs Assessment

    Directory of Open Access Journals (Sweden)

    Rick Van der Kleij

    2017-12-01

    Full Text Available Computer security incident response teams (CSIRTs respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response.

  6. Divergent responses of leaf herbivory to simulated hurricane effects in a rainforest understory

    Science.gov (United States)

    Chelse Prather

    2014-01-01

    Hurricanes are major disturbances in many forests, but studies showing effects of natural hurricanes on herbivory rates have yielded mixed results. Forest managers could benefit from a better understanding of the effects of disturbances on herbivory to manage for particular recovery or restoration goals after anthropogenic or natural disturbances, such as logging and...

  7. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest.

    Science.gov (United States)

    Schowalter, T D; Willig, M R; Presley, S J

    2017-02-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  9. Computer security incident response team effectiveness : A needs assessment

    NARCIS (Netherlands)

    Kleij, R. van der; Kleinhuis, G.; Young, H.J.

    2017-01-01

    Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad-hoc basis, in close cooperation with other teams, and in

  10. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  11. Community Disaster and Sustainability Teams for Civil Protection

    Science.gov (United States)

    Kelman, I.; Cordonnier, B.

    2009-04-01

    Many examples of community-based teams for civil protection and disaster risk reduction exist. Turkey has a Community Disaster Volunteer Training Program while the USA has Community Emergency Response Teams which have been extended into secondary schools as Teen School Emergency Response Training. The principles and practices of these teams further apply directly to other development and sustainability endeavours, all of which are intricately linked to disaster risk reduction and civil protection. An example is keeping local water courses and storm drains clear from rubbish. That improves community health and cleanliness while assisting rainfall drainage to reduce flood risk. The "community teams" concept, as implemented for civil protection and disaster risk reduction, therefore connects with day-to-day living, such as ensuring that all community members have adequate access to water, food, waste management, shelter, health care, education, and energy. Community teams should be based on the best science and pedagogy available to ensure that concepts, training, skills, and implementation are effective and are maintained over the long-term. That entails going beyond the interest that is commonly generated by highlighting high-profile events, such as hurricanes and earthquakes, or high-profile concerns, such as climate change or terrorism. When community teams are focused on high-profile challenges, maintaining interest can be difficult without specific manifestations of the perceived "number one threat". Incorporating day-to-day concerns into civil protection can overcome that. For example, the community teams' talents and energy could be used for picking up rubbish, for educating about health and waste disposal, and for conducting vulnerability assessments in order to inspire action for continual vulnerability reduction. In addition to the examples given above, Japan's Jishu-bosai-soshiki community activities and Asia's "Townwatch" initiative adopt wider and deeper

  12. From the incident command center oil spills from Hurricanes Katrina and Rita

    Energy Technology Data Exchange (ETDEWEB)

    Guidry, R.J. [Lousiana Oil Spill Coordinator' s Office, Baton Rouge, LA (United States)

    2006-07-01

    Approximately 30.2 million litres of oil were discharged during Hurricanes Katrina and Rita. A total of 230 incidents were reported to the state's spill response community, including ruptured pipelines, damaged and moved storage tanks, refineries, and sunken vessels. By January 2006, industry had reported the recovery of 14.7 million litres of oil. After Hurricane Rita, a further 234 off- and onshore incidents were reported. This paper presented a chronology from August 26 2005 through to June 2006 of clean-up activities for both hurricanes, with specific reference to logistic and communications issues associated with working in environments that are difficult to access due to damaged transportation infrastructure. An outline of the Louisiana Oil Spill Coordinator's Office's role in the incidents was presented, as well as an overview of the Louisiana State Contingency Plan. It was noted that the lack of communications systems caused considerable difficulties for responders. It was concluded that responses to hurricanes can be made more effective by having all response communities incident command structure (ICS)-trained with a thorough knowledge of the National Response Plan as it relates to the National Contingency Plan. Ensuring that plans are operational, having clear lines of authority on all hurricane-related issues, and having a robust communications plan were recommended, as well as the ability to respond without communications.

  13. From the incident command center oil spills from Hurricanes Katrina and Rita

    International Nuclear Information System (INIS)

    Guidry, R.J.

    2006-01-01

    Approximately 30.2 million litres of oil were discharged during Hurricanes Katrina and Rita. A total of 230 incidents were reported to the state's spill response community, including ruptured pipelines, damaged and moved storage tanks, refineries, and sunken vessels. By January 2006, industry had reported the recovery of 14.7 million litres of oil. After Hurricane Rita, a further 234 off- and onshore incidents were reported. This paper presented a chronology from August 26 2005 through to June 2006 of clean-up activities for both hurricanes, with specific reference to logistic and communications issues associated with working in environments that are difficult to access due to damaged transportation infrastructure. An outline of the Louisiana Oil Spill Coordinator's Office's role in the incidents was presented, as well as an overview of the Louisiana State Contingency Plan. It was noted that the lack of communications systems caused considerable difficulties for responders. It was concluded that responses to hurricanes can be made more effective by having all response communities incident command structure (ICS)-trained with a thorough knowledge of the National Response Plan as it relates to the National Contingency Plan. Ensuring that plans are operational, having clear lines of authority on all hurricane-related issues, and having a robust communications plan were recommended, as well as the ability to respond without communications

  14. Collaborative, Rapid Mapping of Water Extents During Hurricane Harvey Using Optical and Radar Satellite Sensors

    Science.gov (United States)

    Muench, R.; Jones, M.; Herndon, K. E.; Bell, J. R.; Anderson, E. R.; Markert, K. N.; Molthan, A.; Adams, E. C.; Shultz, L.; Cherrington, E. A.; Flores, A.; Lucey, R.; Munroe, T.; Layne, G.; Pulla, S. T.; Weigel, A. M.; Tondapu, G.

    2017-12-01

    On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of images to

  15. Collaborative, Rapid Mapping of Water Extents During Hurricane Harvey Using Optical and Radar Satellite Sensors

    Science.gov (United States)

    Muench, Rebekke; Jones, Madeline; Herndon, Kelsey; Schultz, Lori; Bell, Jordan; Anderson, Eric; Markert, Kel; Molthan, Andrew; Adams, Emily; Cherrington, Emil; hide

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and record flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds and by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of

  16. Identifying and training non-technical skills of nuclear emergency response teams

    International Nuclear Information System (INIS)

    Crichton, M.T.; Flin, R.

    2004-01-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams

  17. Identifying and training non-technical skills of nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, M.T. E-mail: m.crichton@abdn.ac.uk; Flin, R

    2004-08-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams.

  18. Hurricane preparedness among elderly residents in South Florida.

    Science.gov (United States)

    Kleier, Jo Ann; Krause, Deirdre; Ogilby, Terry

    2018-01-01

    The purpose of this study was to describe factors associated with hurricane preparation and to test a theoretical model of hurricane preparation decision process among a group of elderly residents living in a high-risk geographical area. This is a descriptive, correlational study. A convenience sample consisted of 188 English-speaking individuals who were aged 55 years or older. In addition to demographic information, two survey instruments were used. Theoretical constructs were operationalized through Moon's Hurricane Preparation Questionnaire. Hurricane preparedness was measured by self-reported responses to FEMA's inventory checklist, which addresses the recommended basic steps of preparation. The theoretical model of hurricane preparation decision process was supported. Main barriers to preparation are the need for cooperation from others and cost of preparation. Participants reported having taken many preparatory steps to shelter-in-place, but too few are prepared if their home were storm-damaged or they should have to evacuate. Findings are consistent with previous studies of samples drawn from similar populations. This report provides guidance as to how public health nurses can become involved with the population and develop interventions based on the constructs of the theoretical model. © 2017 Wiley Periodicals, Inc.

  19. Conveying empathy to hospice family caregivers: team responses to caregiver empathic communication.

    Science.gov (United States)

    Wittenberg-Lyles, Elaine; Debra, Parker Oliver; Demiris, George; Rankin, Anna; Shaunfield, Sara; Kruse, Robin L

    2012-10-01

    The goal of this study was to explore empathic communication opportunities presented by family caregivers and responses from interdisciplinary hospice team members. Empathic opportunities and hospice team responses were analyzed from bi-weekly web-based videoconferences between family caregivers and hospice teams. The authors coded the data using the Empathic Communication Coding System (ECCS) and identified themes within and among the coded data. Data analysis identified 270 empathic opportunity-team response sequences. Caregivers expressed statements of emotion and decline most frequently. Two-thirds of the hospice team responses were implicit acknowledgements of caregiver statements and only one-third of the team responses were explicit recognitions of caregiver empathic opportunities. Although hospice team members frequently express emotional concerns with family caregivers during one-on-one visits, there is a need for more empathic communication during team meetings that involve caregivers. Hospice clinicians should devote more time to discussing emotional issues with patients and their families to enhance patient-centered hospice care. Further consideration should be given to training clinicians to empathize with patients and family caregivers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Team Learning Beliefs and Behaviours in Response Teams

    Science.gov (United States)

    Boon, Anne; Raes, Elisabeth; Kyndt, Eva; Dochy, Filip

    2013-01-01

    Purpose: Teams, teamwork and team learning have been the subject of many research studies over the last decades. This article aims at investigating and confirming the Team Learning Beliefs and Behaviours (TLB&B) model within a very specific population, i.e. police and firemen teams. Within this context, the paper asks whether the team's…

  1. Weathering the Superstorm: From Texts to Twitter--How Campus Communicators Overcame Hurricane Sandy

    Science.gov (United States)

    Towns, Gail

    2013-01-01

    By the time Superstorm Sandy struck New Jersey in late October 2012, Kathy Corbalis, executive director of communications and college relations at Atlantic Cape Community College, and her team were battle-tested. In the 15 months before the hurricane, the college experienced two bomb threats via Twitter, a lockdown due to gunfire, an on-campus…

  2. The effects of hurricanes on birds, with special reference to Caribbean islands

    Science.gov (United States)

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  3. Initial management of hospital evacuations caused by Hurricane Rita: a systematic investigation.

    Science.gov (United States)

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    Hurricanes remain a major threat to hospitals throughout the world. The authors attempted to identify the planning areas that impact hospital management of evacuations and the challenges faced when sheltering-in-place. This observational, retrospective cohort study examined acute care institutions from one hospital system impacted by Hurricane Rita in 2005. Investigators used a standardized survey instrument and interview process, previously used in the hospital evacuation context, to examine hospitals' initial internal situational awareness and subsequent decision making that resulted in evacuation due to Hurricane Rita. Participants from each hospital included representatives from senior leadership and clinical and nonclinical staff that comprised the Incident Management Team (IMT). The main measured outcomes were responses to 95 questions contained in the survey. Seven of ten eligible hospitals participated in the study. All facilities evacuated the sickest patients first. The most significant factors prompting evacuation were the issuing of mandatory evacuation orders, storm dynamics (category, projected path, storm surge), and loss of regional communications. Hospitals that sheltered-in-place experienced staff shortages, interruptions to electrical power, and loss of water supplies. Three fully-evacuated institutions experienced understaffing of 40%-60%, and four hospitals sustained depressed staffing levels for over four weeks. Five hospitals lost electricity for a mean of 4.8 days (range .5-11 days). All facilities continued to receive patients to their Emergency Departments (EDs) while conducting their own evacuation. Hospital EDs should plan for continuous patient arrival during evacuation. Emergency Operation Plans (EOPs) that anticipate challenges associated with evacuation will help to maximize initial decision making and management during a crisis situation. Hospitals that shelter-in-place face critical shortages and must provide independent patient

  4. How Investment in #GovTech Tools Helped with USGS Disaster Response During Hurricane Harvey

    Science.gov (United States)

    Shah, S.; Pearson, D. K.

    2017-12-01

    Hurricane Harvey was an unprecedented storm event that not only included a challenge to decision-makers, but also the scientific community to provide clear and rapid dissemination of changing streamflow conditions and potential flooding concerns. Of primary importance to the U.S. Geological Survey (USGS) Texas Water Science Center was to focus on the availability of accessible data and scientific communication of rapidly changing water conditions across Texas with regards to heavy rainfall rates, rising rivers, streams, and lake elevations where USGS has monitoring stations. Infrastructure modernization leading to advanced GovTech practices and data visualization was key to the USGS role in providing data during Hurricane Harvey. In the last two years, USGS has released two web applications, "Texas Water Dashboard" and "Water-On-The-Go", which were heavily utilized by partners, local media, and municipal government officials. These tools provided the backbone for data distribution through both desktop and mobile applications as decision support during flood events. The combination of Texas Water Science Center web tools and the USGS National Water Information System handled more than 5-million data requests over the course of the storm. On the ground local information near Buffalo Bayou and Addicks/Barker Dams, as well as statewide support of USGS real-time scientific data, were delivered to the National Weather Service, U.S. Army Corps of Engineers, FEMA, Harris County Flood Control District, the general public, and others. This presentation will provide an overview of GovTech solutions used during Hurricane Harvey, including the history of USGS tool development, discussion on the public response, and future applications for helping provide scientific communications to the public.

  5. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  6. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  7. Analyzing after-action reports from Hurricanes Andrew and Katrina: repeated, modified, and newly created recommendations.

    Science.gov (United States)

    Knox, Claire Connolly

    2013-01-01

    Thirteen years after Hurricane Andrew struck Homestead, FL, Hurricane Katrina devastated the Gulf Coast of Mississippi, Alabama, and southeastern Louisiana. Along with all its destruction, the term "catastrophic" was redefined. This article extends the literature on these hurricanes by providing a macrolevel analysis of The Governor's Disaster Planning and Response Review Committee Final Report from Hurricane Andrew and three federal after-action reports from Hurricane Katrina, as well as a cursory review of relevant literature. Results provide evidence that previous lessons have not been learned or institutionalized with many recommendations being repeated or modified. This article concludes with a discussion of these lessons, as well as new issues arising during Hurricane Katrina.

  8. The myth of self-managing teams: A reflection on the allocation of responsibilities between individuals, teams and the organisation

    NARCIS (Netherlands)

    de Leede, Jan; Nijhof, A.H.J.; Fisscher, O.A.M.

    1999-01-01

    Concepts that include the participation and empowerment of workers are becoming increasingly important nowadays. In many of these concepts, the formal responsibility is delegated to teams. Does this imply that the normative responsibility for the actions of teams is also delegated? In this article

  9. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  10. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    Science.gov (United States)

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  11. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  12. Cross-sectional Survey of Long-Term Care Facilities in the Rockaway Peninsula: Preparedness and Response During Hurricane Sandy.

    Science.gov (United States)

    Jiang, Lynn; Tedeschi, Christopher; Subaiya, Saleena

    2018-04-01

    Few studies have described the challenges experienced by long-term care facilities (LTCFs) following Hurricane Sandy. This study examined LTCF preparedness and experiences during and after the storm. A cross-sectional survey was conducted 2 years after Hurricane Sandy to assess LTCF demographics, preparation, and post-storm resources. Surveys were conducted at LTCFs located on the Rockaway Peninsula of New York City. All LTCFs located in a heavily affected area were approached. Of 29 facilities, 1 had closed, 5 did not respond, 9 declined to participate, and 14 participated, yielding a response rate of 50% for open facilities. Twenty-one percent of the facilities had preparations specifically for hurricanes. More than 70% of the facilities had lost electricity, heat, and telephone service, and one-half had evacuated. Twenty-one percent of the facilities reported not receiving any assistance and over one-half reported that relief resources did not meet their needs. Many LTCFs lacked plans specific to such a large-scale event. Since nearly all of the LTCFs in the region were affected, preexisting transportation and housing plans may have been inadequate. Future preparation could include hazard-specific planning and reliance on resources from a wider geographic area. Access to electricity emerged as a top priority. (Disaster Med Public Health Preparedness. 2018;12:194-200).

  13. Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

    2014-10-01

    Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

  14. Short-term impacts of Hurricanes Irma and Maria on tropical stream chemistry as measured by in-situ sensors

    Science.gov (United States)

    McDowell, W. H.; Potter, J.; López-Lloreda, C.

    2017-12-01

    High intensity hurricanes have been shown to alter topical forest productivity and stream chemistry for years to decades in the montane rain forest of Puerto Rico, but much less is known about the immediate ecosystem response to these extreme events. Here we report the short-term impacts of Hurricanes Irma and Maria on the chemistry of Quebrada Sonadora immediately before and after the storms. We place the results from our 15-minute sensor record in the context of long-term weekly sampling that spans 34 years and includes two earlier major hurricanes (Hugo and Geoges). As expected, turbidity during Maria was the highest in our sensor record (> 1000 NTU). Contrary to our expectations, we found that solute-flow behavior changed with the advent of the storms. Specific conductance showed a dilution response to flow before the storms, but then changed to an enrichment response during and after Maria. This switch in system behavior is likely due to the deposition of marine aerosols during the hurricane. Nitrate concentrations showed very little response to discharge prior to the recent hurricanes, but large increase in concentration occurred at high flow both during and after the hurricanes. Baseflow nitrate concentrations decreased immediately after Irma to below the long-term background concentrations, which we attribute to the immobilization of N on organic debris choking the stream channel. Within three weeks of Hurricane Maria, baseflow nitrate concentrations began to rise. This is likely due to mineralization of N from decomposing canopy vegetation on the forest floor, and reduced N uptake by hurricane-damaged vegetation. The high frequency sensors are providing new insights into the response of this ecosystem in the days and weeks following two major disturbance events. The flipping of nitrate response to storms, from source limited to transport limited, suggests that these two severe hurricanes have fundamentally altered the nitrogen cycle at the site in ways

  15. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  16. Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region

    International Nuclear Information System (INIS)

    Han, S.-R.; Guikema, Seth D.; Quiring, Steven M.; Lee, Kyung-Ho; Rosowsky, David; Davidson, Rachel A.

    2009-01-01

    Hurricanes have caused severe damage to the electric power system throughout the Gulf coast region of the US, and electric power is critical to post-hurricane disaster response as well as to long-term recovery for impacted areas. Managing power outage risk and preparing for post-storm recovery efforts requires accurate methods for estimating the number and location of power outages. This paper builds on past work on statistical power outage estimation models to develop, test, and demonstrate a statistical power outage risk estimation model for the Gulf Coast region of the US. Previous work used binary hurricane-indicator variables representing particular hurricanes in order to achieve a good fit to the past data. To use these models for predicting power outages during future hurricanes, one must implicitly assume that an approaching hurricane is similar to the average of the past hurricanes. The model developed in this paper replaces these indicator variables with physically measurable variables, enabling future predictions to be based on only well-understood characteristics of hurricanes. The models were developed using data about power outages during nine hurricanes in three states served by a large, investor-owned utility company in the Gulf Coast region

  17. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Science.gov (United States)

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  18. Estimation of Phytoplankton Responses to Hurricane Gonu over the Arabian Sea Based on Ocean Color Data

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2008-08-01

    Full Text Available In this study the authors investigated phytoplankton variations in the Arabian Sea associated with Hurricane Gonu using remote-sensing data of chlorophyll-a (Chl-a, sea surface temperature (SST and winds. Additional data sets used for the study included the hurricane and Conductivity-Temperature-Depth data. Hurricane Gonu, presenting extremely powerful wind intensity, originated over the central Arabian Sea (near 67.7ºE, 15.1ºN on June 2, 2007; it traveled along a northwestward direction and made landfall in Iran around June 7. Before Hurricane Gonu, Chl-a data indicated relatively low phytoplankton biomass (0.05-0.2 mg m-3, along with generally high SST (>28.5 ºC and weak wind (<10 m s-1 in the Arabian Sea. Shortly after Gonu’s passage, two phytoplankton blooms were observed northeast of Oman (Chl-a of 3.5 mg m-3 and in the eastern central Arabian Sea (Chl-a of 0.4 mg m-3, with up to 10-fold increase in surface Chl-a concentrations, respectively. The Chl-a in the two post-hurricane blooms were 46% and 42% larger than those in June of other years, respectively. The two blooms may be attributed to the storm-induced nutrient uptake, since hurricane can influence intensively both dynamical and biological processes through vertical mixing and Ekman Pumping.

  19. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  20. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  1. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  2. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  3. Hurricane Sandy beach response and recovery at Fire Island, New York: Shoreline and beach profile data, October 2012 to October 2014

    Science.gov (United States)

    Hehre Henderson, Rachel E.; Hapke, Cheryl J.; Brenner, Owen T.; Reynolds, Billy J.

    2015-04-30

    In response to the forecasted impact of Hurricane Sandy, which made landfall on October 29, 2012, the U.S. Geological Survey (USGS) began a substantial data-collection effort to assess the morphological impacts to the beach and dune system at Fire Island, New York. Global positioning system (GPS) field surveys of the beach and dunes were conducted just prior to and after landfall and these data were used to quantify change in several focus areas. In order to quantify morphologic change along the entire length of the island, pre-storm (May 2012) and post-storm (November 2012) lidar and aerial photography were used to assess changes to the shoreline and beach.As part of the USGS Hurricane Sandy Supplemental Fire Island Study, the beach is monitored periodically to enable better understanding of post-Sandy recovery. The alongshore state of the beach is recorded using a differential global positioning system (DGPS) to collect data around the mean high water (MHW; 0.46 meter North American Vertical Datum of 1988) to derive a shoreline, and the cross-shore response and recovery are measured along a series of 10 profiles.Overall, Hurricane Sandy substantially altered the morphology of Fire Island. However, the coastal system rapidly began to recover after the 2012­–13 winter storm season and continues to recover in the form of volume gains and shoreline adjustment.

  4. NCI at Frederick Ebola Response Team | Poster

    Science.gov (United States)

    Editor’s note: This article was adapted from the Employee Diversity Team’s display case exhibit “Recognizing the NCI at Frederick Ebola Response Team,” in the lobby of Building 549. The Poster staff recognizes that this article does not include everyone who was involved in the response to the Ebola crisis, both at NCI at Frederick and in Africa. When the Ebola crisis broke out

  5. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  6. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  7. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  8. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  9. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  10. 78 FR 52560 - Hurricane Sandy Rebuilding Task Force-Rebuild-by-Design; Announcement of Selection of Design Teams

    Science.gov (United States)

    2013-08-23

    ... Infrastructure Planning Program; TU Delft; Project Projects; RFA Investments; IMG Rebel; Center for Urban...; Hargreaves Associates; Alamo Architects; Urban Green Council; Ironstate Development; New City America. SCAPE... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5727-N-02] Hurricane Sandy Rebuilding...

  11. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    Science.gov (United States)

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2018-03-01

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (M age  = 9.19) before and 9 months after (M age  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  12. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    model was run to predict the effects of Sandy-like and Irene-like hurricanes with different storm tracks and wind intensities on wetland morphology in Jamaica Bay. Model results indicate that, in Jamaica Bay salt marshes, the morphological changes (greater than 5 millimeters [mm] determined by the long-term marsh accretion rate) caused by Hurricane Sandy were complex and spatially heterogeneous. Most of the erosion (5–40 mm) and deposition (5–30 mm) were mainly characterized by fine sand for channels and bay bottoms and by mud for marsh areas. Hurricane Sandy-generated deposition and erosion were generated locally. The storm-induced net sediment input through Rockaway Inlet was only about 1 percent of the total amount of the sediment reworked by the hurricane. Salt marshes inside the western part of the bay showed erosion overall while marshes inside the eastern part showed deposition from Hurricane Sandy. Model results indicated that most of the marshes could recover from Hurricane Sandy-induced erosion after 1 year and demonstrated continued marsh accretion after the hurricane over the course of long simulation periods although the effect (accretion) was diminished. Local waves and currents generated by Hurricane Sandy appeared to play a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Hypothetical hurricanes, depending on their track and intensity, cause variable responses in spatial patterns of sediment deposition and erosion compared to simulations without the hurricane. In general, hurricanes passing west of the Jamaica Bay estuary appear to be more destructive to the salt marshes than those passing the east. Consequently, marshes inside the western part of the bay were likely to be more vulnerable to hurricanes than marshes inside the eastern part of the bay. 

  13. Maternal exposure to hurricane destruction and fetal mortality.

    Science.gov (United States)

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Leveraging Social Media Data to Understand Disaster Resilience: A Case Study of Hurricane Isaac

    Science.gov (United States)

    Zou, L.; Lam, N.; Cai, H.

    2017-12-01

    Coastal communities are facing multiple threats from natural hazards, such as hurricanes, flooding, and storm surge, and show uneven response and recovery behaviors. To build a sustainable coast, it is critical to understand how coastal hazards affect humans and how to enhance disaster resilience. However, understanding community resilience remains challenging, due to the lack of real-time data describing community's response and recovery behaviors during disasters. Public discussion through social media platforms provides an opportunity to understand these behaviors by categorizing real-time social media data into three main phases of emergency management - preparedness, response, and recovery. This study analyzes the spatial-temporal patterns of Twitter use and content during Hurricane Isaac, which struck coastal Louisiana on August 29, 2012. The study area includes counties affected by Hurricane Isaac in Louisiana and Mississippi. The objectives are three-fold. First, we will compute a set of Twitter indices to quantify the Twitter activities during Hurricane Issac and the results will be compared with those of Hurricane Sandy to gain a better understanding of human response in extreme events. Second, county-level disaster resilience in the affected region will be computed and evaluated using the Resilience Inference Measurement (RIM) model. Third, we will examine the relationship between the geographical and social disparities in Twitter use and the disparities in disaster resilience and evaluate the role of Twitter use in disaster resilience. Knowledge gained from this study could provide valuable insights into strategies for utilizing social media data to increase resilience to disasters.

  15. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  16. 48 CFR 1852.236-73 - Hurricane plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Hurricane plan. 1852.236-73... Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all materials...

  17. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post

  18. Why near-miss events can decrease an individual's protective response to hurricanes.

    Science.gov (United States)

    Dillon, Robin L; Tinsley, Catherine H; Cronin, Matthew

    2011-03-01

    Prior research shows that when people perceive the risk of some hazardous event to be low, they are unlikely to engage in mitigation activities for the potential hazard. We believe one factor that can lower inappropriately (from a normative perspective) people's perception of the risk of a hazard is information about prior near-miss events. A near-miss occurs when an event (such as a hurricane), which had some nontrivial probability of ending in disaster (loss of life, property damage), does not because good fortune intervenes. People appear to mistake such good fortune as an indicator of resiliency. In our first study, people with near-miss information were less likely to purchase flood insurance, and this was shown for both participants from the general population and individuals with specific interests in risk and natural disasters. In our second study, we consider a different mitigation decision, that is, to evacuate from a hurricane, and vary the level of statistical probability of hurricane damage. We still found a strong effect for near-miss information. Our research thus shows how people who have experienced a similar situation but escape damage because of chance will make decisions consistent with a perception that the situation is less risky than those without the past experience. We end by discussing the implications for risk communication. © 2010 Society for Risk Analysis.

  19. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    Science.gov (United States)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We

  20. Effects of Hurricane Georges on habitat use by captive-reared Hispaniolan Parrots (Amazona ventralis) released in the Dominican Republic

    Science.gov (United States)

    White, T.H.; Collazo, J.A.; Vilella, F.J.; Guerrero, S.A.

    2005-01-01

    We radio-tagged and released 49 captive-reared Hispaniolan Parrots (Amazona ventralis) in Parque Nacional del Este (PNE), Dominican Republic, during 1997 and 1998. Our primary objective was to develop a restoration program centered on using aviary-reared birds to further the recovery of the critically endangered Puerto Rican Parrot (A. vittata). Hurricane Georges made landfall over the release area on 22 September 1998 with sustained winds of 224 km/h, providing us with a unique opportunity to quantify responses of parrots to such disturbances. Quantitative data on such responses by any avian species are scarce, particularly for Amazona species, many of which are in peril and occur in hurricane-prone areas throughout the Caribbean. Mean home ranges of 18 parrots monitored both before and after the hurricane increased (P = 0.08) from 864 ha (CI = 689-1039 ha) pre-hurricane to 1690 ha (CI = 1003-2377 ha) post-hurricane. The total area traversed by all parrots increased > 300%, from 4884 ha pre-hurricane to 15,490 ha post-hurricane. Before Hurricane Georges, parrot activity was concentrated in coastal scrub, tall broadleaf forest, and abandoned agriculture (conucos). After the hurricane, parrots concentrated their activities in areas of tall broadleaf forest and abandoned conucos. Topographic relief, primarily in the form of large sinkholes, resulted in "resource refugia" where parrots and other frugivores foraged after the hurricane. Habitat use and movement patterns exhibited by released birds highlight the importance of carefully considering effects of season, topography, and overall size of release areas when planning psittacine restorations in hurricane-prone areas. ?? The Neotropical Ornithological Society.

  1. Multivariate Analysis of MODerate Resolution Imaging Spectroradiometer (MODIS Aerosol Retrievals and the Statistical Hurricane Intensity Prediction Scheme (SHIPS Parameters for Atlantic Hurricanes

    Directory of Open Access Journals (Sweden)

    Mohammed M. Kamal

    2012-09-01

    Full Text Available MODerate Resolution Imaging Spectroradiometer (MODIS aerosol retrievals over the North Atlantic spanning seven hurricane seasons are combined with the Statistical Hurricane Intensity Prediction Scheme (SHIPS parameters. The difference between the current and future intensity changes were selected as response variables. For 24 major hurricanes (category 3, 4 and 5 between 2003 and 2009, eight lead time response variables were determined to be between 6 and 48 h. By combining MODIS and SHIPS data, 56 variables were compiled and selected as predictors for this study. Variable reduction from 56 to 31 was performed in two steps; the first step was via correlation coefficients (cc followed by Principal Component Analysis (PCA extraction techniques. The PCA reduced 31 variables to 20. Five categories were established based on the PCA group variables exhibiting similar physical phenomena. Average aerosol retrievals from MODIS Level 2 data in the vicinity of UTC 1,200 and 1,800 h were mapped to the SHIPS parameters to perform Multiple Linear Regression (MLR between each response variable against six sets of predictors of 31, 30, 28, 27, 23 and 20 variables. The deviation among the predictors Root Mean Square Error (RMSE varied between 0.01 through 0.05 and, therefore, implied that reducing the number of variables did not change the core physical information. Even when the parameters are reduced from 56 to 20, the correlation values exhibit a stronger relationship between the response and predictors. Therefore, the same phenomena can be explained by the reduction of variables.

  2. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  3. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  4. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  5. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  6. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    Science.gov (United States)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  7. Communication and relationship skills for rapid response teams at hamilton health sciences.

    Science.gov (United States)

    Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan

    2008-01-01

    Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation.

  8. The Simulation-Based Assessment of Pediatric Rapid Response Teams.

    Science.gov (United States)

    Fehr, James J; McBride, Mary E; Boulet, John R; Murray, David J

    2017-09-01

    To create scenarios of simulated decompensating pediatric patients to train pediatric rapid response teams (RRTs) and to determine whether the scenario scores provide a valid assessment of RRT performance with the hypothesis that RRTs led by intensivists-in-training would be better prepared to manage the scenarios than teams led by nurse practitioners. A set of 10 simulated scenarios was designed for the training and assessment of pediatric RRTs. Pediatric RRTs, comprising a pediatric intensive care unit (PICU) registered nurse and respiratory therapist, led by a PICU intensivist-in-training or a pediatric nurse practitioner, managed 7 simulated acutely decompensating patients. Two raters evaluated the scenario performances and psychometric analyses of the scenarios were performed. The teams readily managed scenarios such as supraventricular tachycardia and opioid overdose but had difficulty with more complicated scenarios such as aortic coarctation or head injury. The management of any particular scenario was reasonably predictive of overall team performance. The teams led by the PICU intensivists-in-training outperformed the teams led by the pediatric nurse practitioners. Simulation provides a method for RRTs to develop decision-making skills in managing decompensating pediatric patients. The multiple scenario assessment provided a moderately reliable team score. The greater scores achieved by PICU intensivist-in-training-led teams provides some evidence to support the validity of the assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  10. 7 CFR 701.50 - 2005 hurricanes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  11. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  12. Genesis of tornadoes associated with hurricanes

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  13. Hurricane Hugo: Emergency Preparedness Planning and Response for Mental Health Services.

    Science.gov (United States)

    Carter, Nancy C.; And Others

    This report describes how, in the aftermath of Hurricane Hugo, the South Carolina Department of Mental Health activated its Emergency Preparedness Plan to assist mental health centers and their staff in providing crisis counseling services to the general public. The first section explains the history and structure of the involvement by the…

  14. Safety and design impact of hurricane Andrew

    International Nuclear Information System (INIS)

    Guey, Ching N.

    2004-01-01

    Turkey Point completed the IPE in June of 1991. Hurricane Andrew landed at Turkey Point on August 24, 1992. Although the safety related systems, components and structures were not damaged by the Hurricane Andrew, certain nonsafety related components and the neighboring fossil plant sustained noticeable damage. Among the major components that were nonsafety related but would affect the PRA of the plant included the service water pumps and the high tower. This paper discusses the safety and design impact of Hurricane Andrew on Turkey Point Nuclear Power Plant. The risk of hurricanes on the interim and evolving plant configurations are briefly described. The risk of the plant from internal events as a result of damage incurred during Hurricane Andrew are discussed. The design change as the result of Hurricane Andrew and its impact on the PRA are presented. (author)

  15. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  16. Performance of social network sensors during Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Yury Kryvasheyeu

    Full Text Available Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the "friendship paradox", is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users' network centrality effectively translate into moderate awareness advantage (up to 26 hours; and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple "sentiment sensing" technique that can detect and locate disasters.

  17. Performance of Social Network Sensors during Hurricane Sandy

    Science.gov (United States)

    Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel

    2015-01-01

    Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the “friendship paradox”, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users’ network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple “sentiment sensing” technique that can detect and locate disasters. PMID:25692690

  18. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Science.gov (United States)

    2010-09-09

    .... This series was developed to describe and make available to the public such information as methods that... maximum hurricane windspeeds for hurricanes that originate in the Atlantic and make landfall along the... connected and provides an aerodynamic sail area on which the wind can act. An automobile hurricane missile...

  19. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Yearwood, D.D.

    1988-01-01

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs

  20. Identification of Caribbean basin hurricanes from Spanish documentary sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herrera, R. [Depto. Fisica de la Tierra II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gimeno, L. [Universidad de Vigo, Ourense (Spain); Ribera, P.; Gonzalez, E.; Fernandez, G. [Universidad Pablo de Olavide, Sevilla (Spain); Hernandez, E. [Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-15

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurricane activity. The documents provide detailed descriptions of a hurricane's impacts and allow us to identify previously unreported hurricanes, obtain more precise dates for hurricanes previously identified, better define the area affected by a given hurricane and, finally, better assess a hurricane's intensity.

  1. Predicting hurricane wind damage by claim payout based on Hurricane Ike in Texas

    Directory of Open Access Journals (Sweden)

    Ji-Myong Kim

    2016-09-01

    Full Text Available The increasing occurrence of natural disasters and their related damage have led to a growing demand for models that predict financial loss. Although considerable research on the financial losses related to natural disasters has found significant predictors, there has been a lack of comprehensive study that addresses the relationship among vulnerabilities, natural disasters, and the economic losses of individual buildings. This study identifies the vulnerability indicators for hurricanes to establish a metric to predict the related financial loss. We classify hurricane-prone areas by highlighting the spatial distribution of losses and vulnerabilities. This study used a Geographical Information System (GIS to combine and produce spatial data and a multiple regression method to establish a wind damage prediction model. As the dependent variable, we used the value of the Texas Windstorm Insurance Association (TWIA claim payout divided by the appraised values of the buildings to predict real economic loss. As independent variables, we selected a hurricane indicator and built environment vulnerability indicators. The model we developed can be used by government agencies and insurance companies to predict hurricane wind damage.

  2. The regional response team (RRT): Dynamite or Dinosaur?

    International Nuclear Information System (INIS)

    Reed, J.C.; Schultz, H.E.; Athayde, W.P.

    1993-01-01

    The U.S. Government has in place a national oil and hazardous substance spill response system as required under the Federal Water Pollution Control Act (FWPCA) of 1972, as amended, and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980. The National Contingency Plan (NCP) establishes the National Response Team (NRT), Regional Response Teams (RRTS) and the National Response Center (NRC). This system has been in place since 1971, with NRT and RRT membership including 15 federal agencies having environmental responsibilities, and associated states in thirteen specific regional areas. Initially, when CERCLA-funded support positions were staffed in 1987, the RRT membership interaction proved to be dynamic and highly productive. However, as the organizations matured work emphasis shifted from new initiatives to refinement of existing policies documented. Examination of some of the existing organizational interactions demonstrates shortfalls that must be overcome before any RRT can be rejuvenated. These barriers in high productivity include skewed distribution of CERCLA-funded positions, accountability of CERCLA positions, parochial interests versus cooperation, adequacy of working level resources, duplication of efforts, lack of state funding support, and lack of continuity due to the constant personnel turnover and shortages. Also, in light of the Oil Pollution Act of 1990 (OPA 90) mandates, in order to better determine if increased RRT productivity is possible, two major questions must be examined: what exactly is the nature of the NRT/RRT relationship and appropriate interaction; and, how should area committees (ACs) and the RRTs interact?

  3. Recent improvements in Hurricane Imaging Radiometer’s brightness temperature image reconstruction

    Directory of Open Access Journals (Sweden)

    Sayak K. Biswas

    Full Text Available NASA MSFCs airborne Hurricane Imaging Radiometer (HIRAD uses interferometric aperture synthesis to produce high resolution wide swath images of scene brightness temperature (Tb distribution at four discrete C-band microwave frequencies (4.0, 5.0, 6.0 and 6.6 GHz. Images of ocean surface wind speed under heavy precipitation such as in tropical cyclones, is inferred from these measurements. The baseline HIRAD Tb reconstruction algorithm had produced prominent along-track streaks in the Tb images. Particularly the 4.0 GHz channel had been so dominated by the streaks as to be unusable.The loss of a frequency channel had compromised the final wind speed retrievals. During 2016, the HIRAD team made substantial progress in developing a quality controlled signal processing technique for the HIRAD data collected in 2015’s Tropical Cyclone Intensity (TCI experiment and reduced the effect of streaks in all channels including 4.0 GHz. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Microwave radiometry, Aperture synthesis, Image reconstruction, Hurricane winds

  4. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    Science.gov (United States)

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  5. Hurricane Gustav Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Gustav made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  6. Hurricane Ike Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Ike made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  7. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.

  8. Hurricane Humberto Aerial Photography: Rapid Response Imagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regions after Hurricane Humberto made landfall. The aerial photography missions were conducted by the NOAA...

  9. Logistics: Use of DoD Resources Supporting Hurricane Katrina Disaster

    National Research Council Canada - National Science Library

    Scott, Wanda A; Bloomer, Donald A; Owens, Keith M; Bryant, Leon D; Matthews, Takia A; Chavez, Bryan M; Torres, Anthony M; Woolard, Alan J; Pugh, Jacqueline N

    2006-01-01

    We performed the audit in response to a September 2005 request by the Principal Deputy Inspector General, DoD to assess the use of DoD resources in providing relief efforts in support of the Hurricane...

  10. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas.

    Science.gov (United States)

    Ruckart, Perri Zeitz; Orr, Maureen F; Lanier, Kenneth; Koehler, Allison

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  11. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas

    International Nuclear Information System (INIS)

    Ruckart, Perri Zeitz; Orr, Maureen F.; Lanier, Kenneth; Koehler, Allison

    2008-01-01

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews

  12. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas

    Energy Technology Data Exchange (ETDEWEB)

    Ruckart, Perri Zeitz [Division of Health Studies, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)], E-mail: afp4@cdc.gov; Orr, Maureen F. [Division of Health Studies, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States); Lanier, Kenneth; Koehler, Allison [Louisiana Department of Health and Hospitals, Office of Public Health, New Orleans, LA (United States)

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  13. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    Science.gov (United States)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  14. Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of Water Level

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2001-01-01

    Full Text Available In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S., the Governing Board of the South Florida Water Management District (SFWMD authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000 of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms. Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the

  15. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    Science.gov (United States)

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-04

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  16. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  17. Traumatic Loss and Natural Disaster: A Case Study of a School-Based Response to Hurricanes Katrina and Rita

    Science.gov (United States)

    Clettenberg, Stacey; Gentry, Judy; Held, Matthew; Mock, Lou Ann

    2011-01-01

    This article tracks the trajectory and impact of Hurricanes Katrina and Rita on the communities of Houston/Harris County, Texas, USA, the schools, children, and families; along with the community partnerships that addressed the trauma and upheaval. Following the influx of individuals and families who were displaced by Hurricanes Katrina and Rita…

  18. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    Science.gov (United States)

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  19. A diary of hurricane Hugo.

    Science.gov (United States)

    Counts, C S

    1989-12-01

    Charleston, South Carolina was the recent victim of Hurricane Hugo. This article recalls the events that occurred before, during, and after the hurricane struck. The focus is on four outpatient dialysis units in that area. It is a story from which others may learn more about emergency preparedness.

  20. Non-Critical-Care Nurses' Perceptions of Facilitators and Barriers to Rapid Response Team Activation.

    Science.gov (United States)

    Jenkins, Sheryl Henry; Astroth, Kim Schafer; Woith, Wendy Mann

    2015-01-01

    Rapid response teams can save lives but are only effective when activated. We surveyed 50 nurses for their perceptions of facilitators and barriers to activation. Findings showed that participants need more education on their role and when to activate the rapid response team. Nurses who comprise the team need help building their communication skills. We recommend nursing professional development specialists increase the frequency of offerings and expand the focus on roles, activation criteria, and communication skills.

  1. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  2. Examining Hurricane Track Length and Stage Duration Since 1980

    Science.gov (United States)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  3. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  4. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  5. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  6. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  7. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  8. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  9. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  10. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  11. Hurricane feedback research may improve intensity forecasts

    Science.gov (United States)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  12. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    Science.gov (United States)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane

  13. Seeking safety: predictors of hurricane evacuation of community-dwelling families affected by Alzheimer's disease or a related disorder in South Florida.

    Science.gov (United States)

    Christensen, Janelle J; Richey, Elizabeth Danforth; Castañeda, Heide

    2013-11-01

    This article explores how dyads of 186 community-dwelling individuals with a diagnosis of Alzheimer's disease or a related disorder (ADRD) and their caregivers (dyads) plan to respond to hurricane evacuation warnings in South Florida. Predictors of dyad evacuation for a category 1-3 storm include (1) a younger age of the person with an ADRD diagnosis, (2) the caregiver living in a different residence than the person with ADRD, (3) lack of hurricane shutters, and (4) lower income. A dyad is more likely to evacuate in a category 4 or 5 hurricane if there is (1) a younger age person with an ADRD diagnosis, (2) a more recent diagnosis of ADRD, (3) a residence in an evacuation zone, and if (4) they report needing a shelter. Emergency management teams, especially those who assist with special needs shelters or other outreach programs for people with cognitive disabilities, can use these guidelines to estimate service usage and needs.

  14. Optimization of Evacuation Warnings Prior to a Hurricane Disaster

    Directory of Open Access Journals (Sweden)

    Dian Sun

    2017-11-01

    Full Text Available The key purpose of this paper is to demonstrate that optimization of evacuation warnings by time period and impacted zone is crucial for efficient evacuation of an area impacted by a hurricane. We assume that people behave in a manner consistent with the warnings they receive. By optimizing the issuance of hurricane evacuation warnings, one can control the number of evacuees at different time intervals to avoid congestion in the process of evacuation. The warning optimization model is applied to a case study of Hurricane Sandy using the study region of Brooklyn. We first develop a model for shelter assignment and then use this outcome to model hurricane evacuation warning optimization, which prescribes an evacuation plan that maximizes the number of evacuees. A significant technical contribution is the development of an iterative greedy heuristic procedure for the nonlinear formulation, which is shown to be optimal for the case of a single evacuation zone with a single evacuee type case, while it does not guarantee optimality for multiple zones under unusual circumstances. A significant applied contribution is the demonstration of an interface of the evacuation warning method with a public transportation scheme to facilitate evacuation of a car-less population. This heuristic we employ can be readily adapted to the case where response rate is a function of evacuation number in prior periods and other variable factors. This element is also explored in the context of our experiment.

  15. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  16. Does Geology Matter? Post-Hurricane Maria Landslide Distribution Across the Mountainous Regions of Puerto Rico, USA

    Science.gov (United States)

    Cerovski-Darriau, C.; Bessette-Kirton, E.; Schulz, W. H.; Kean, J. W.; Godt, J.; Coe, J. A.

    2017-12-01

    Heavy rainfall from Hurricane Maria—category 4 hurricane that made landfall Sept 20, 2017 on Puerto Rico and produced >500 mm of rain—caused widespread landsliding in mountainous regions throughout the territory. Landslides impacted roads, bridges, and reservoirs—cutting off communities, hindering recovery efforts, and affecting water quality and storage capacity. FEMA tasked the USGS with determining the level of imminent threat posed by landslides to life and property, and helping inform recovery efforts. The USGS landslide response team remotely quantified the spatial density of landslides, then deployed to Puerto Rico to assess damage in the field. These are our initial findings from work currently underway. We used post-hurricane satellite (WorldView 0.5 m resolution) and aerial (Sanborn and QuantumSpatial at 0.15 m resolution) imagery collected Sept 26-Oct 8, 2017 to visually estimate landslide concentration and determine the heaviest hit regions. We divided the territory into 2 x 2 km grids and classified each cell as no visible landslides, 25 LS/km2. Hurricane-induced defoliation made landslides readily visible in the imagery as areas of exposed soil or rock with morphology typical of landslides. This method proved to be a rapid way to visualize the spatial distribution of landslides to direct our field efforts. In the field, we found it was a conservative estimate. Landslides occurred in steep areas along the storm track, but high-density pockets occurred in the municipalities of Barranquitos, Jayuya, Lares, Naranjito, Utuado. Assuming Maria produced sufficient rainfall to trigger landslides in all mountainous regions, what controls the density and failure style? We found the highest slide densities disproportionately occurred in the Utuado granodiorite (60% of the unit was >25 LS/km2). Most of the landslides failed as shallow, translational slides. Bedrock slope failures were scarce. Some geologic units, with sufficient topographic relief, generated

  17. Spatial grids for hurricane climate research

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, James B.; Hodges, Robert E.; Jagger, Thomas H. [Florida State University, Tallahassee, FL (United States)

    2012-07-15

    The authors demonstrate a spatial framework for studying hurricane climatology. The framework consists of a spatial tessellation of the hurricane basin using equal-area hexagons. The hexagons are efficient at covering hurricane tracks and provide a scaffolding to combine attribute data from tropical cyclones with spatial climate data. The framework's utility is demonstrated using examples from recent hurricane seasons. Seasons that have similar tracks are quantitatively assessed and grouped. Regional cyclone frequency and intensity variations are mapped. A geographically-weighted regression of cyclone intensity on sea-surface temperature emphasizes the importance of a warm ocean in the intensification of cyclones over regions where the heat content is greatest. The largest differences between model predictions and observations occur near the coast. The authors suggest the framework is ideally suited for comparing tropical cyclones generated from different numerical simulations. (orig.)

  18. Perceptions of psychological first aid among providers responding to Hurricanes Gustav and Ike.

    Science.gov (United States)

    Allen, Brian; Brymer, Melissa J; Steinberg, Alan M; Vernberg, Eric M; Jacobs, Anne; Speier, Anthony H; Pynoos, Robert S

    2010-08-01

    Psychological First Aid (PFA), developed by the National Child Traumatic Stress Network and the Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, has been widely disseminated both nationally and internationally, and adopted and used by a number of disaster response organizations and agencies after major catastrophic events across the United States. This study represents a first examination of the perceptions of providers who utilized PFA in response to a disaster. Study participants included 50 individuals who utilized PFA in their response to Hurricane Gustav or Ike. Findings indicated that participation in PFA training was perceived to increase confidence in working with adults and children. PFA was not seen as harmful to survivors, and was perceived as an appropriate intervention for responding in the aftermath of hurricanes.

  19. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  20. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  1. Fueling the public health workforce pipeline through student surge capacity response teams.

    Science.gov (United States)

    Horney, J A; Davis, M K; Ricchetti-Masterson, K L; MacDonald, P D M

    2014-02-01

    In January 2003, the University of North Carolina Center for Public Health Preparedness established Team Epi-Aid to match graduate student volunteers with state and local health departments to assist with outbreaks and other applied public health projects. This study assessed whether Team Epi-Aid participation by full-time graduate students impacted post-graduation employment, particularly by influencing students to work in governmental public health upon graduation. In September 2010, 223 program alumni were contacted for an online survey and 10 selected for follow-up interviews. Eighty-three Team Epi-Aid alumni answered the survey (response rate = 37 %). Forty-one (49 %) reported participating in at least one activity, with 12/41 (29 %) indicating participation in Team Epi-Aid influenced their job choice following graduation. In 6 months prior to enrolling at UNC, 30 (36 %) reported employment in public health, with 16/30 (53 %) employed in governmental public health. In 6 months following graduation, 34 (41 %) reported employment in public health, with 27 (80 %) employed in governmental public health. Eight alumni completed telephone interviews (response rate = 80 %). Five credited Team Epi-Aid with influencing their post-graduation career. Experience in applied public health through a group such as Team Epi-Aid may influence job choice for public health graduates.

  2. ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2005-01-01

    The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue

  3. A Space-Based Perspective of the 2017 Hurricane Season from the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick Jackson, G.; Petersen, W. A.; Huffman, G. J.; Kirschbaum, D.; Wolff, D. B.; Tan, J.; Zavodsky, B.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission collected unique, near real time 3-D satellite-based views of hurricanes in 2017 together with estimated precipitation accumulation using merged satellite data for scientific studies and societal applications. Central to GPM is the NASA-JAXA GPM Core Observatory (CO). The GPM-CO carries an advanced dual-frequency precipitation radar (DPR) and a well-calibrated, multi-frequency passive microwave radiometer that together serve as an on orbit reference for precipitation measurements made by the international GPM satellite constellation. GPM-CO overpasses of major Hurricanes such as Harvey, Irma, Maria, and Ophelia revealed intense convective structures in DPR radar reflectivity together with deep ice-phase microphysics in both the eyewalls and outer rain bands. Of considerable scientific interest, and yet to be determined, will be DPR-diagnosed characteristics of the rain drop size distribution as a function of convective structure, intensity and microphysics. The GPM-CO active/passive suite also provided important decision support information. For example, the National Hurricane Center used GPM-CO observations as a tool to inform track and intensity estimates in their forecast briefings. Near-real-time rainfall accumulation from the Integrated Multi-satellitE Retrievals for GPM (IMERG) was also provided via the NASA SPoRT team to Puerto Rico following Hurricane Maria when ground-based radar systems on the island failed. Comparisons between IMERG, NOAA Multi-Radar Multi-Sensor data, and rain gauge rainfall accumulations near Houston, Texas during Hurricane Harvey revealed spatial biases between ground and IMERG satellite estimates, and a general underestimation of IMERG rain accumulations associated with infrared observations, collectively illustrating the difficulty of measuring rainfall in hurricanes.GPM data continue to advance scientific research on tropical cyclone intensification and structure, and contribute to

  4. Physical aspects of Hurricane Hugo in Puerto Rico

    Science.gov (United States)

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  5. On the Influence of Global Warming on Atlantic Hurricane Frequency

    Science.gov (United States)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  6. Gulf of Mexico hurricane wave simulations using SWAN : Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate

  7. Isentropic Analysis of a Simulated Hurricane

    Science.gov (United States)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  8. NOAA predicts active 2013 Atlantic hurricane season

    Science.gov (United States)

    (discussion) El Niño/Southern Oscillation (ENSO) Diagnostic Discussion National Hurricane Preparedness Week in both English and Spanish, featuring NOAA hurricane experts and the FEMA administrator at

  9. [Rapid Response obstetrics Team at Instituto Mexicano del Seguro Social,enabling factors].

    Science.gov (United States)

    Dávila-Torres, Javier; González-Izquierdo, José de Jesús; Ruíz-Rosas, Roberto Aguli; Cruz-Cruz, Polita Del Rocío; Hernández-Valencia, Marcelino

    2015-01-01

    There are barriers and enablers for the implementation of Rapid Response Teams in obstetric hospitals. The enabling factors were determined at Instituto Mexicano del Seguro Social (IMSS) MATERIAL AND METHODS: An observational, retrospective study was conducted by analysing the emergency obstetric reports sent by mobile technology and e-mail to the Medical Care Unit of the IMSS in 2013. Frequency and mean was obtained using the Excel 2010 program for descriptive statistics. A total of 164,250 emergency obstetric cases were reported, and there was a mean of 425 messages per day, of which 32.2% were true obstetric emergencies and required the Rapid Response team. By e-mail, there were 73,452 life threatening cases (a mean of 6 cases per day). A monthly simulation was performed in hospitals (480 in total). Enabling factors were messagés synchronisation among the participating personnel,the accurate record of the obstetrics, as well as the simulations performed by the operational staff. The most common emergency was pre-eclampsia-eclampsia with 3,351 reports, followed by obstetric haemorrhage with 2,982 cases. The enabling factors for the implementation of a rapid response team at IMSS were properly timed communication between the central delegation teams, as they allowed faster medical and administrative management and participation of hospital medical teams in the process. Mobile technology has increased the speed of medical and administrative management in emergency obstetric care. However, comparative studies are needed to determine the statistical significance. Published by Masson Doyma México S.A.

  10. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  11. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast

    Science.gov (United States)

    Reja, Md Y.; Brody, Samuel D.; Highfield, Wesley E.; Newman, Galen D.

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  12. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  13. What Happened to Our Environment and Mental Health as a Result of Hurricane Sandy?

    Science.gov (United States)

    Lin, Shao; Lu, Yi; Justino, John; Dong, Guanghui; Lauper, Ursula

    2016-06-01

    This study describes findings of the impacts of Hurricane Sandy on environmental factors including power outages, air quality, water quality, and weather factors and how these affected mental health during the hurricane. An ecological study was conducted at the county level to describe changes in environmental factors-especially power outages-and their relationships to emergency department (ED) visits for mental health problems by use of a Poisson regression model. We found that many environmental hazards occurred as co-exposures during Hurricane Sandy in addition to flooding. Mental health ED visits corresponded with the peak of maximum daily power blackouts, with a 3-day lag, and were positively associated with power blackouts in Bronx (prevalence ratio [PR]: 8.82, 95% confidence interval [CI]: 1.27-61.42) and Queens (PR: 2.47, 95% CI: 1.05-5.82) counties. A possible dose-response relationship was found between the quantile of maximum blackout percentage and the risk of mental health in the Bronx. We found that multiple co-environmental hazards occurred during Hurricane Sandy, especially power blackouts that mediated this disaster's impacts. The effects of power outage on mental health had large geographic variations and were substantial, especially in communities with low sociodemographic status. These findings may provide new insights for future disaster response and preparedness efforts. (Disaster Med Public Health Preparedness. 2016;10:314-319).

  14. Characterization of Landslide Sites in Puerto Rico after Hurricanes Irma and María

    Science.gov (United States)

    Hughes, K. S.; Morales Vélez, A. C.

    2017-12-01

    Thousands of landslides in Puerto Rico and the U.S. Virgin Islands were triggered by the passage of Hurricanes Irma (Sep. 6) and María (Sep. 20) in 2017. Both were classified as Category 5 hurricanes on the Saffir-Simpson scale before making landfall. Most of the mass wasting occurred in the rugged mountainous regions of Puerto Rico and—along with bridge collapse, flooding, and the threat of dam failure—left many communities isolated for up to a month or longer. Aerial photography collected by FEMA and the Civil Air Patrol have allowed for the rapid inventory of landslide sites across the archipelago by the USGS and other groups. Using this dataset and other local information, we identified a list of priority sites that were documented in detail as part of a NSF-GEER (Geotechnical Extreme Event Reconnaissance) mission. The juvenile landscape and short-wavelength topography in most of Puerto Rico present considerable landslide risk that is exaggerated during heavy rainfall events like Hurricane María. Our preliminary work shows that natural escarpments, de-vegetated pastureland in mountainous areas, and road cuts along incised river valleys were areas of concentrated failures during these storms. Notably, the northern karst area suffered fewer failures than the arc basement rocks exposed elsewhere in the island. In addition to previously active landslides at specific sites on the island, new landslides along PR-143 in the municipality of Barranquitas, PR-431 in the municipality of Lares, and PR-109 in the municipality of Añasco are among important mass wasting events that were a focus of the GEER team and remain important in our ongoing research. A team of undergraduate and graduate students led by faculty at the University of Puerto Rico in Mayagüez are working to characterize the complete inventory of landslides in terms of underlying geology, soil type, slope, curvature, rain fall amounts during both atmospheric events, and other local geomorphic and

  15. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  16. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  17. Landscape and regional impacts of hurricanes in Puerto Rico

    OpenAIRE

    Boose, Emery Robert; Serrano, Mayra I.; Foster, David Russell

    2004-01-01

    Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurr...

  18. Improving Cybersecurity Incident Response Team (CSIRT) Skills, Dynamics and Effectiveness

    Science.gov (United States)

    2017-03-01

    Analysts. Cognitive prompts can reduce overconfidence and information bias. One such strategy is the “Five-Why Analysis,” developed by Toyota and used...building trust among CSIRTs and MTS members (including those from other CSIRTs and agencies), as well as developing an environment of psychological safety...recommendations for optimal CSIRT performance. 15. SUBJECT TERMS Cyber Incident Response, Response Teams, Cognitive Task Analysis 16. SECURITY

  19. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  20. Monitoring storm tide and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016

    Science.gov (United States)

    Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.

    2017-11-02

    IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-tide sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Matthew. Storm tide, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-tide sensors in USGS history and was completed as part of a coordinated Federal emergency response as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-tide models for maximum and incremental water level and flood extent, and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  1. The Role of Peers in the Relation between Hurricane Exposure and Ataques de Nervios among Puerto Rican Adolescents.

    Science.gov (United States)

    Rubens, Sonia L; Felix, Erika D; Vernberg, Eric M; Canino, Glorisa

    2014-11-01

    Although a relation between disaster exposure and ataques de nervios ( ataques ) has been established in adult samples, little is known about this among youth, including factors that may moderate this relation. This study examined the role of the peer context in the relation between exposure to Hurricane Georges and experiencing a past year and lifetime ataques among a representative community sample of 905 youth (N = 476 boys and 429 girls; ages 11-18) residing in Puerto Rico. Data were gathered from 1999-2000 in Puerto Rico, 12-27 months following Hurricane Georges. Logistic regression analyses found that peer violence significantly predicted experiencing an ataque in the past year. Hurricane exposure and peer violence were both significant predictors of a lifetime experience of an ataque . An interaction was found between hurricane exposure and peer violence, indicating that hurricane exposure was significantly related to a lifetime experience of an ataque among adolescents who do not report associating with violent peers. For participants reporting high levels of peer violence, hurricane exposure did not add additional risk for a lifetime experience of an ataque . Understanding the influence of peers in the relation between hurricane exposure and experiencing an ataque may assist in planning developmentally and culturally sensitive response plans.

  2. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    International Nuclear Information System (INIS)

    1991-01-01

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems

  3. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  4. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  5. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  6. Exposure to Hurricane Sandy, neighborhood collective efficacy, and post-traumatic stress symptoms in older adults.

    Science.gov (United States)

    Heid, Allison R; Pruchno, Rachel; Cartwright, Francine P; Wilson-Genderson, Maureen

    2017-07-01

    Older adults exposed to natural disasters are at risk for negative psychological outcomes such as post-traumatic stress disorder (PTSD). Neighborhood social capital can act as a resource that supports individual-level coping with stressors. This study explores the ability of perceived neighborhood collective efficacy, a form of social capital, to moderate the association between exposure to Hurricane Sandy and PTSD symptoms in older adults. Data from 2205 older individuals aged 54-80 residing in New Jersey who self-reported exposure to Hurricane Sandy in October of 2012 were identified and extracted from the ORANJ BOWL™ research panel. Participants completed baseline assessments of demographic and individual-level characteristics in 2006-2008 and follow-up assessments about storm exposure, perceived neighborhood collective efficacy (social cohesion and social control), and PTSD symptoms 8-33 months following the storm. Zero-inflated Poisson regression models were tested to examine the association between exposure, neighborhood collective efficacy, and PTSD symptoms. After accounting for known demographic and individual-level covariates, greater storm exposure was linked to higher levels of PTSD symptoms. Social cohesion, but not social control, was linked to lower reports of PTSD symptoms and moderated the association between exposure and PTSD. The impact of storm exposure on PTSD symptoms was less for individuals reporting higher levels of social cohesion. Mental health service providers and disaster preparedness and response teams should consider the larger social network of individuals served. Building social connections in older adults' neighborhoods that promote cohesion can reduce the negative psychological impact of a disaster.

  7. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  8. Hurricane Havoc - Mapping the Mayhem with NOAA's National Water Model

    Science.gov (United States)

    Aggett, G. R.; Stone, M.

    2017-12-01

    With Hurricane Irene as an example, this work demonstrates the versatility of NOAA's new National Water Model (NWM) as a tool for analyzing hydrologic hazards before, during, and after events. Hurricane Irene made landfall on the coast of North Carolina on August 27, 2011, and made its way up the East Coast over the next 3 days. This storm caused widespread flooding across the Northeast, where rain totals over 20" and wind speeds of 100mph were recorded, causing loss of life and significant damage to infrastructure. Large portions of New York and Vermont were some of the hardest hit areas. This poster will present a suite of post-processed products, derived from NWM output, that are currently being developed at NOAA's National Water Center in Tuscaloosa, AL. The National Water Model is allowing NOAA to expand its water prediction services to the approximately 2.7 million stream reaches across the U.S. The series of forecasted and real-time analysis products presented in this poster will demonstrate the strides NOAA is taking to increase preparedness and aid response to severe hydrologic events, like Hurricane Irene.

  9. DIFFERENCES OF THE ROLE AMBIGUITY IN OFFENSE RESPONSIBILITIES OF TEAM SPORTS

    Directory of Open Access Journals (Sweden)

    Karamousalidis, G.

    2009-10-01

    Full Text Available The purpose of this research was to investigate the differences of the role ambiguity in offense responsibilitiesfor athletes of team sports. As sample were used 421 athletes of basketball (n=125, handball (n=106, volleyball(n=78 and soccer (n=112. We used the role ambiguity questionnaire (Role Ambiguity Scale, Beauchamp et al.,2002 and referred to the athletes’ responsibilities in offense.The correlations of items were high and ranged from .57 to .75, p <.01 whereas from the one way analysis (oneway, Anova appeared some statistically serious differences in one factor of role ambiguity (ambiguity inrelation to the scope of responsibilities in offense, F (3,415 = 4,416, p <.005. The volleyball and the handballathletes had more well defined roles regardless the scope of their responsibilities in offense, in relation to thoseof soccer. On the whole we come to the conclusion that among team sports there are not any differences in roleambiguity in offense responsibilities, except in one factor. More researches are necessary in connection to othervariables.

  10. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    OpenAIRE

    A. D. Jayakaran; T. M. Williams; H. Ssegane; D. M. Amatya; B. Song; C. C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a rev...

  11. ON THE INFLUENCE OF GLOBAL WARMING ON ATLANTIC HURRICANE FREQUENCY

    Directory of Open Access Journals (Sweden)

    S. R. Hosseini

    2018-04-01

    Full Text Available In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane’s intensity and Sea Surface Temperature (SST has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR. The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82. In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  12. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    Science.gov (United States)

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  13. Home care during the aftermath of Hurricane Hugo.

    Science.gov (United States)

    Chubon, S J

    1992-06-01

    During the course of field observations for an ethnographic study of home care nurses' job stress, Hurricane Hugo struck the community, causing extensive damage. The nurses' office building was heavily damaged by wind and water, and their office was not habitable for almost a week. The author had observed the nurses' work practices over 10 weeks before the hurricane. In the aftermath of the storm, the nurses were simultaneously disaster victims and caregivers for other victims. They experienced grief, anger, and frustration about their losses, as well as conflict between their family- and work-related responsibilities. Their experiences and behaviors were consistent with those described in prior disaster research literature, lending further support to the earlier studies. A major asset for these nurses was their open, supportive work environment. They were able to accept and affirm one another's negative feelings and to provide support to each other as they dealt with their losses.

  14. UAVs Use for the Support of Emergency Response Teams Specific Missions

    Directory of Open Access Journals (Sweden)

    Sorin-Gabriel CONSTANTINESCU

    2013-03-01

    Full Text Available This article presents various methods of implementation for a new technology concerning the assessment and coordination of emergency situations, which is based upon the usage of Unmanned Aerial Vehicles (UAVs. The UAV platform is equipped with optical electronic sensors and other types of sensors, being an aerial surveillance device as efficient as any other classically piloted platform. While currently being in service as military operations support for various operation theaters, they can also be used for assisting emergency response teams, providing full national coverage. For these special response teams, the ability to carry out overview, surveillance or information gathering activities and locating fixed or mobile targets are key components for the successful accomplishment of their missions, which have the purpose of saving lives and properties and of limiting the damage done to the surrounding environment. More concretely, the presented scenarios are: response in emergency situations, extinguishing of large-scale fires, testing of chemically, biologically or radioactively polluted areas and assessment of natural disasters.

  15. Weathering the storm: hurricanes and birth outcomes.

    Science.gov (United States)

    Currie, Janet; Rossin-Slater, Maya

    2013-05-01

    A growing literature suggests that stressful events in pregnancy can have negative effects on birth outcomes. Some of the estimates in this literature may be affected by small samples, omitted variables, endogenous mobility in response to disasters, and errors in the measurement of gestation, as well as by a mechanical correlation between longer gestation and the probability of having been exposed. We use millions of individual birth records to examine the effects of exposure to hurricanes during pregnancy, and the sensitivity of the estimates to these econometric problems. We find that exposure to a hurricane during pregnancy increases the probability of abnormal conditions of the newborn such as being on a ventilator more than 30min and meconium aspiration syndrome (MAS). Although we are able to reproduce previous estimates of effects on birth weight and gestation, our results suggest that measured effects of stressful events on these outcomes are sensitive to specification and it is preferable to use more sensitive indicators of newborn health. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A Community-Led Medical Response Effort in the Wake of Hurricane Sandy.

    Science.gov (United States)

    Kraushar, Matthew L; Rosenberg, Rebecca E

    2015-08-01

    On October 29, 2012, Hurricane Sandy made landfall in the neighborhood of Red Hook in Brooklyn, New York. The massive tidal surge generated by the storm submerged the coastal area, home to a population over 11,000 individuals, including the largest public housing development in Brooklyn. The infrastructure devastation was profound: the storm rendered electricity, heat, water, Internet, and phone services inoperative, whereas local ambulatory medical services including clinics, pharmacies, home health agencies, and other resources were damaged beyond functionality. Lacking these services or lines of communication, medically fragile individuals became isolated from the hospital and 911-emergency systems without a preexisting mechanism to identify or treat them. Medically fragile individuals primarily included those with chronic medical conditions dependent on frequent and consistent monitoring and treatments. In response, the Red Hook community established an ad hoc volunteer medical relief effort in the wake of the storm, filling a major gap that continues to exist in disaster medicine for low-income urban environments. Here we describe this effort, including an analysis of the medically vulnerable in this community, and recommend disaster risk reduction strategies and resilience measures for future disaster events.

  17. Rapid Response Teams: Is it Time to Reframe the Questions of Rapid Response Team Measurement?

    Science.gov (United States)

    Salvatierra, Gail G; Bindler, Ruth C; Daratha, Kenn B

    2016-11-01

    The purpose of this article is to present an overview of rapid response team (RRT) history in the United States, provide a review of prior RRT effectiveness research, and propose the reframing of four new questions of RRT measurement that are designed to better understand RRTs in the context of contemporary nursing practice as well as patient outcomes. RRTs were adopted in the United States because of their intuitive appeal, and despite a lack of evidence for their effectiveness. Subsequent studies used mortality and cardiac arrest rates to measure whether or not RRTs "work." Few studies have thoroughly examined the effect of RRTs on nurses and on nursing practice. An extensive literature review provided the background. Suppositions and four critical, unanswered questions arising from the literature are suggested. The results of RRT effectiveness, which have focused on patient-oriented outcomes, have been ambiguous, contradictory, and difficult to interpret. Additionally, they have not taken into account the multiple ways in which these teams have impacted nurses and nursing practice as well as patient outcomes. What happens in terms of RRT process and utilization is likely to have a major impact on nurses and nursing care on general medical and surgical wards. What that impact will be depends on what we can learn from measuring with an expanded yardstick, in order to answer the question, "Do RRTs work?" Evidence for the benefits of RRTs depends on proper framing of questions relating to their effectiveness, including the multiple ways RRTs contribute to nursing efficacy. © 2016 Sigma Theta Tau International.

  18. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  19. Geologic record of Hurricane impacts on the New Jersey coast

    Science.gov (United States)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  20. Study on team evaluation. Team process model for team evaluation

    International Nuclear Information System (INIS)

    Sasou Kunihide; Ebisu, Mitsuhiro; Hirose, Ayako

    2004-01-01

    Several studies have been done to evaluate or improve team performance in nuclear and aviation industries. Crew resource management is the typical example. In addition, team evaluation recently gathers interests in other teams of lawyers, medical staff, accountants, psychiatrics, executive, etc. However, the most evaluation methods focus on the results of team behavior that can be observed through training or actual business situations. What is expected team is not only resolving problems but also training younger members being destined to lead the next generation. Therefore, the authors set the final goal of this study establishing a series of methods to evaluate and improve teams inclusively such as decision making, motivation, staffing, etc. As the first step, this study develops team process model describing viewpoints for the evaluation. The team process is defined as some kinds of power that activate or inactivate competency of individuals that is the components of team's competency. To find the team process, the authors discussed the merits of team behavior with the experienced training instructors and shift supervisors of nuclear/thermal power plants. The discussion finds four team merits and many components to realize those team merits. Classifying those components into eight groups of team processes such as 'Orientation', 'Decision Making', 'Power and Responsibility', 'Workload Management', 'Professional Trust', 'Motivation', 'Training' and 'staffing', the authors propose Team Process Model with two to four sub processes in each team process. In the future, the authors will develop methods to evaluate some of the team processes for nuclear/thermal power plant operation teams. (author)

  1. Geospatial Information is the Cornerstone of Effective Hazards Response

    Science.gov (United States)

    Newell, Mark

    2008-01-01

    Every day there are hundreds of natural disasters world-wide. Some are dramatic, whereas others are barely noticeable. A natural disaster is commonly defined as a natural event with catastrophic consequences for living things in the vicinity. Those events include earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, and wildfires. Man-made disasters are events that are caused by man either intentionally or by accident, and that directly or indirectly threaten public health and well-being. These occurrences span the spectrum from terrorist attacks to accidental oil spills. To assist in responding to natural and potential man-made disasters, the U.S. Geological Survey (USGS) has established the Geospatial Information Response Team (GIRT) (http://www.usgs.gov/emergency/). The primary purpose of the GIRT is to ensure rapid coordination and availability of geospatial information for effective response by emergency responders, and land and resource managers, and for scientific analysis. The GIRT is responsible for establishing monitoring procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing relevant geospatial products and services. The GIRT is focused on supporting programs, offices, other agencies, and the public in mission response to hazards. The GIRT will leverage the USGS Geospatial Liaison Network and partnerships with the Department of Homeland Security (DHS), National Geospatial-Intelligence Agency (NGA), and Northern Command (NORTHCOM) to coordinate the provisioning and deployment of USGS geospatial data, products, services, and equipment. The USGS geospatial liaisons will coordinate geospatial information sharing with State, local, and tribal governments, and ensure geospatial liaison back-up support procedures are in place. The GIRT will coordinate disposition of USGS staff in support of DHS response center activities as requested by DHS. The GIRT

  2. Rapid Response Command and Control (R2C2): a systems engineering analysis of scaleable communications for Regional Combatant Commanders

    OpenAIRE

    Sullivan, Lisa; Cannon, Lennard; Reyes, Ronel; Bae, Kitan; Colgary, James; Minerowicz, Nick; Leong, Chris; Lim, Harry; Lim, Hang Sheng; Ng, Chin Chin; Neo, Tiong Tien; Tan, Guan Chye; Ng, Yu Loon; Wong, Eric; Wong, Heng Yue

    2006-01-01

    Includes supplementary material. Disaster relief operations, such as the 2005 Tsunami and Hurricane Katrina, and wartime operations, such as Operation Enduring Freedom and Operation Iraqi Freedom, have identified the need for a standardized command and control system interoperable among Joint, Coalition, and Interagency entities. The Systems Engineering Analysis Cohort 9 (SEA-9) Rapid Response Command and Control (R2C2) integrated project team completed a systems engineering (SE) ...

  3. Hurricane Katrina as a "teachable moment"

    Directory of Open Access Journals (Sweden)

    M. H. Glantz

    2008-04-01

    Full Text Available By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time.

    Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region.

    The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1.

    Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on

  4. Hurricane Katrina as a "teachable moment"

    Science.gov (United States)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  5. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  6. The Role of the Pulmonary Embolism Response Team: How to Build One, Who to Include, Scenarios, Organization, and Algorithms.

    Science.gov (United States)

    Galmer, Andrew; Weinberg, Ido; Giri, Jay; Jaff, Michael; Weinberg, Mitchell

    2017-09-01

    Pulmonary embolism response teams (PERTs) are multidisciplinary response teams aimed at delivering a range of diagnostic and therapeutic modalities to patients with pulmonary embolism. These teams have gained traction on a national scale. However, despite sharing a common goal, individual PERT programs are quite individualized-varying in their methods of operation, team structures, and practice patterns. The tendency of such response teams is to become intensely structured, algorithmic, and inflexible. However, in their current form, PERT programs are quite the opposite. They are being creatively customized to meet the needs of the individual institution based on available resources, skills, personnel, and institutional goals. After a review of the essential core elements needed to create and operate a PERT team in any form, this article will discuss the more flexible feature development of the nascent PERT team. These include team planning, member composition, operational structure, benchmarking, market analysis, and rudimentary financial operations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Worldwide historical hurricane tracks from 1848 through the previous hurricane season

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and...

  8. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  9. The role of the primary care team in the rapid response system.

    Science.gov (United States)

    O'Horo, John C; Sevilla Berrios, Ronaldo A; Elmer, Jennifer L; Velagapudi, Venu; Caples, Sean M; Kashyap, Rahul; Jensen, Jeffrey B

    2015-04-01

    The purpose of the study is to evaluate the impact of primary service involvement on rapid response team (RRT) evaluations. The study is a combination of retrospective chart review and prospective survey-based evaluation. Data included when and where the activations occurred and the patient's code status, primary service, and ultimate disposition. These data were correlated with survey data from each event. A prospective survey evaluated the primary team's involvement in decision making and the overall subjective quality of the interaction with primary service through a visual analog scale. We analyzed 4408 RRTs retrospectively and an additional 135 prospectively. The primary team's involvement by telephone or in person was associated with significantly more transfers to higher care levels in retrospective (P team involvement, with more frequent changes seen in the retrospective analysis (P = .01). Subjective ratings of communication by the RRT leader were significantly higher when the primary service was involved (P team involvement influences RRT activation processes of care. The RRT role should be an adjunct to, but not a substitute for, an engaged and present primary care team. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Hurricane Harvey Report : A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    NARCIS (Netherlands)

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall

  11. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest

    International Nuclear Information System (INIS)

    Vargas, Rodrigo

    2012-01-01

    A current challenge is to understand what are the legacies left by disturbances on ecosystems for predicting response patterns and trajectories. This work focuses on the ecological implications of a major hurricane and analyzes its influence on forest gross primary productivity (GPP; derived from the moderate-resolution imaging spectroradiometer, MODIS) and soil CO 2 efflux. Following the hurricane, there was a reduction of nearly 0.5 kgC m −2 yr −1 , equivalent to ∼15% of the long-term mean GPP (∼3.0 ± 0.2 kgC m −2 yr −1 ; years 2003–8). Annual soil CO 2 emissions for the year following the hurricane were > 3.9 ± 0.5 kgC m −2 yr −1 , whereas for the second year emissions were 1.7 ± 0.4 kgC m −2 yr −1 . Higher annual emissions were associated with higher probabilities of days with extreme soil CO 2 efflux rates ( > 9.7 μmol CO 2 m −2 s −1 ). The variance of GPP was highly variable across years and was substantially increased following the hurricane. Extreme soil CO 2 efflux after the hurricane was associated with deposition of nitrogen-rich fresh organic matter, higher basal soil CO 2 efflux rates and changes in variance of the soil temperature. These results show that CO 2 dynamics are highly variable following hurricanes, but also demonstrate the strong resilience of tropical forests following these events. (letter)

  12. Evaluation of long-term community recovery from Hurricane Andrew: sources of assistance received by population sub-groups.

    Science.gov (United States)

    McDonnell, S; Troiano, R P; Barker, N; Noji, E; Hlady, W G; Hopkins, R

    1995-12-01

    Two three-stage cluster surveys were conducted in South Dade County, Florida, 14 months apart, to assess recovery following Hurricane Andrew. Response rates were 75 per cent and 84 per cent. Sources of assistance used in recovery from Hurricane Andrew differed according to race, per capita income, ethnicity, and education. Reports of improved living situation post-hurricane were not associated with receiving relief assistance, but reports of a worse situation were associated with loss of income, being exploited, or job loss. The number of households reporting problems with crime and community violence doubled between the two surveys. Disaster relief efforts had less impact on subjective long-term recovery than did job or income loss or housing repair difficulties. Existing sources of assistance were used more often than specific post-hurricane relief resources. The demographic make-up of a community may determine which are the most effective means to inform them after a disaster and what sources of assistance may be useful.

  13. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  14. Hurricanes accelerated the Florida-Bahamas lionfish invasion.

    Science.gov (United States)

    Johnston, Matthew W; Purkis, Sam J

    2015-06-01

    In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport. © 2015 John Wiley & Sons Ltd.

  15. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  16. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  17. "Just-in-Time" Personal Preparedness: Downloads and Usage Patterns of the American Red Cross Hurricane Application During Hurricane Sandy.

    Science.gov (United States)

    Kirsch, Thomas D; Circh, Ryan; Bissell, Richard A; Goldfeder, Matthew

    2016-10-01

    Personal preparedness is a core activity but has been found to be frequently inadequate. Smart phone applications have many uses for the public, including preparedness. In 2012 the American Red Cross began releasing "disaster" apps for family preparedness and recovery. The Hurricane App was widely used during Hurricane Sandy in 2012. Patterns of download of the application were analyzed by using a download tracking tool by the American Red Cross and Google Analytics. Specific variables included date, time, and location of individual downloads; number of page visits and views; and average time spent on pages. As Hurricane Sandy approached in late October, daily downloads peaked at 152,258 on the day of landfall and by mid-November reached 697,585. Total page views began increasing on October 25 with over 4,000,000 page views during landfall compared to 3.7 million the first 3 weeks of October with a 43,980% increase in views of the "Right Before" page and a 76,275% increase in views of the "During" page. The Hurricane App offered a new type of "just-in-time" training that reached tens of thousands of families in areas affected by Hurricane Sandy. The app allowed these families to access real-time information before and after the storm to help them prepare and recover. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  18. An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

    Science.gov (United States)

    2012-08-01

    of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane ...An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey, California, and... Hurricane Research Division, Miami, Florida WEN-CHAU LEE National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 23 June 2011, in

  19. Hurricane Sandy science plan: impacts of environmental quality and persisting contaminant exposure

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  20. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  1. Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes.

    Science.gov (United States)

    Saporta, Diego; Hurst, David

    2017-01-01

    Objective . To report on changes in sensitivity to mold allergens determined by changes in intradermal skin testing reactivity, after exposure to two severe hurricanes. Methods . A random, retrospective allergy charts review divided into 2 groups of 100 patients each: Group A, patients tested between 2003 and 2010 prior to hurricanes, and Group B, patients tested in 2014 and 2015 following hurricanes. Reactivity to eighteen molds was determined by intradermal skin testing. Test results, age, and respiratory symptoms were recorded. Chi-square test determined reactivity/sensitivity differences between groups. Results . Posthurricane patients had 34.6 times more positive results ( p hurricanes ( p hurricanes ( p hurricanes. This supports climatologists' hypothesis that environmental changes resulting from hurricanes can be a health risk as reflected in increased allergic sensitivities and symptoms and has significant implications for physicians treating patients from affected areas.

  2. A Simulation Tool for Hurricane Evacuation Planning

    Directory of Open Access Journals (Sweden)

    Daniel J. Fonseca

    2009-01-01

    Full Text Available Atlantic hurricanes and severe tropical storms are a serious threat for the communities in the Gulf of Mexico region. Such storms are violent and destructive. In response to these dangers, coastal evacuation may be ordered. This paper describes the development of a simulation model to analyze the movement of vehicles through I-65, a major US Interstate highway that runs north off the coastal City of Mobile, Alabama, towards the State of Tennessee, during a massive evacuation originated by a disastrous event such a hurricane. The constructed simulation platform consists of a primary and two secondary models. The primary model is based on the entry of vehicles from the 20 on-ramps to I-65. The two secondary models assist the primary model with related traffic events such as car breakdowns and accidents, traffic control measures, interarrival signaling, and unforeseen emergency incidents, among others. Statistical testing was performed on the data generated by the simulation model to indentify variation in relevant traffic variables affecting the timely flow of vehicles travelling north. The performed statistical analysis focused on the closing of alternative on-ramps throughout the Interstate.

  3. Sediment deposition from Hurricane Rita on Hackberry Beach chenier in southwestern Louisiana: Chapter 6E in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Faulkner, Stephen; Barrow, Wylie; Doyle, Thomas; Baldwin, Michael; Michot, Thomas; Wells, Christopher; Jeske, Clint

    2007-01-01

    Hurricane Rita significantly impacted the chenier forests of southwestern Louisiana, an important habitat for Neotropical migratory birds. Sediment deposition was measured along transects at Hackberry Beach chenier, and Rita's effects on chenier structure and morphology were determined.

  4. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  5. Team development and team performance. Responsibilities, responsiveness and results : A longitudinal study of teamwork at Volvo Trucks Umeå

    NARCIS (Netherlands)

    Kuipers, B.

    2005-01-01

    A three-year longitudinal study of more than 150 self-managing work teams was carried out at Volvo Trucks Umea, Sweden. Data obtained by this study were used to test a model about the performance effects of team development, answering the following research questions: (1) how can the team

  6. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    Science.gov (United States)

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  7. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008.

    Science.gov (United States)

    Kleinpeter, Myra A

    2009-01-01

    Hurricanes Katrina and Rita resulted in massive devastation of the Gulf Coast at Mississippi, Louisiana, and Texas during 2005. Because of those disasters, dialysis providers, nephrologists, and dialysis patients used disaster planning activities to work to mitigate the morbidity and mortality associated with the 2005 hurricane season for future events affecting dialysis patients. As Hurricane Gustav approached, anniversary events for Hurricane Katrina were postponed because of evacuation orders for nearly the entire Louisiana Gulf Coast. As part of the hurricane preparation, dialysis units reviewed the disaster plans of patients, and patients made preparation for evacuation. Upon evacuation, many patients returned to the dialysis units that had provided services during their exile from Hurricane Katrina; other patients went to other locations as part of their evacuation plan. Patients uniformly reported positive experiences with dialysis providers in their temporary evacuation communities, provided that those communities did not experience the effects of Hurricane Gustav. With the exception of evacuees to Baton Rouge, patients continued to receive their treatments uninterrupted. Because of extensive damage in the Baton Rouge area, resulting in widespread power losses and delayed restoration of power to hospitals and other health care facilities, some patients missed one treatment. However, as a result of compliance with disaster fluid and dietary recommendations, no adverse outcomes occurred. In most instances, patients were able to return to their home dialysis unit or a nearby unit to continue dialysis treatments within 4 - 5 days of Hurricane Gustav. Hurricane Ike struck the Texas Gulf Coast near Galveston, resulting in devastation of that area similar to the devastation seen in New Orleans after Katrina. The storm surge along the Louisiana Gulf Coast resulted in flooding that temporarily closed coastal dialysis units. Patients were prepared and experienced

  8. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Science.gov (United States)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  9. Petroleum and hazardous material releases from industrial facilities associated with Hurricane Katrina.

    Science.gov (United States)

    Santella, Nicholas; Steinberg, Laura J; Sengul, Hatice

    2010-04-01

    Hurricane Katrina struck an area dense with industry, causing numerous releases of petroleum and hazardous materials. This study integrates information from a number of sources to describe the frequency, causes, and effects of these releases in order to inform analysis of risk from future hurricanes. Over 200 onshore releases of hazardous chemicals, petroleum, or natural gas were reported. Storm surge was responsible for the majority of petroleum releases and failure of storage tanks was the most common mechanism of release. Of the smaller number of hazardous chemical releases reported, many were associated with flaring from plant startup, shutdown, or process upset. In areas impacted by storm surge, 10% of the facilities within the Risk Management Plan (RMP) and Toxic Release Inventory (TRI) databases and 28% of SIC 1311 facilities experienced accidental releases. In areas subject only to hurricane strength winds, a lower fraction (1% of RMP and TRI and 10% of SIC 1311 facilities) experienced a release while 1% of all facility types reported a release in areas that experienced tropical storm strength winds. Of industrial facilities surveyed, more experienced indirect disruptions such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations or reconstruction (55%), than experienced releases. To reduce the risk of hazardous material releases and speed the return to normal operations under these difficult conditions, greater attention should be devoted to risk-based facility design and improved prevention and response planning.

  10. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  11. "Making Lemonade from Lemons:" Early Childhood Teacher Educators' Programmatic Responses to Hurricanes Katrina and Rita

    Science.gov (United States)

    DiCarlo, Cynthia F.; Burts, Diane C.; Buchanan, Teresa K.; Aghayan, Carol; Benedict, Joan

    2007-01-01

    This article describes how early childhood teacher education faculty at one university responded in the aftermath of hurricanes Katrina and Rita and used the disaster to enhance their undergraduate and graduate programs. They explain how they modeled developmentally appropriate practices while responding to community needs. Four companion articles…

  12. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  13. Not so close but still extremely loud: recollection of the World Trade Center terror attack and previous hurricanes moderates the association between exposure to hurricane Sandy and posttraumatic stress symptoms.

    Science.gov (United States)

    Palgi, Yuval; Shrira, Amit; Hamama-Raz, Yaira; Palgi, Sharon; Goodwin, Robin; Ben-Ezra, Menachem

    2014-05-01

    The present study examined whether recollections of the World Trade Center (WTC) terror attack and previous hurricanes moderated the relationship between exposure to Hurricane Sandy and related posttraumatic stress disorder (PTSD) symptoms. An online sample of 1000 participants from affected areas completed self-report questionnaires a month after Hurricane Sandy hit the East Coast of the United States. Participants reported their exposure to Hurricane Sandy, their PTSD symptoms, and recollections of the WTC terror attack and previous hurricanes elicited due to Hurricane Sandy. Exposure to Hurricane Sandy was related to PTSD symptoms among those with high level of recollections of the WTC terror attack and past hurricanes, but not among those with low level of recollections. The aftermath of exposure to Hurricane Sandy is related not only to exposure, but also to its interaction with recollections of past traumas. These findings have theoretical and practical implications for practitioners and health policy makers in evaluating and interpreting the impact of past memories on future natural disasters. This may help in intervention plans of social and psychological services. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A new role for the ACNP: the rapid response team leader.

    Science.gov (United States)

    Morse, Kate J; Warshawsky, Deborah; Moore, Jacqueline M; Pecora, Denise C

    2006-01-01

    The implementation of a rapid response team or medical emergency team is 1 of the 6 initiatives of the Institute for Healthcare Improvement's 100,000 Lives Campaign with the goal to reduce the number of cardiopulmonary arrests outside the intensive care unit and inpatient mortality rates. The concept of RRT was pioneered in Australia and is now being implemented in many hospitals across the United States. This article reviews the current literature and describes the implementation of an RRT in a community hospital. The first-quarter data after implementation are described. The unique role of the acute care nurse practitioner in this hospital's model is described.

  15. The Relationship Between Team Psychological Safety and Team Effectiveness in Management Teams: The Mediating Effect of Dialogue.

    OpenAIRE

    Bilstad, Julie Brat

    2016-01-01

    This study is a response to the research and request presented by Bang and Midelfart (2010), to further investigate the effect dialogue can have on management team s effectiveness. The purpose of the study was to investigate and explain the effect of team psychological safety on task performance and team member satisfaction, with dialogue as a mediator in this relationship. 215 Norwegian and Danish management teams in the private and public sector were studied. As expected, team psychological...

  16. The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)

    Science.gov (United States)

    Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.

    2017-12-01

    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast

  17. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.; Morzel, J.

    2009-01-01

    with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using

  18. Hurricane-related emergency department visits in an inland area: an analysis of the public health impact of Hurricane Hugo in North Carolina.

    Science.gov (United States)

    Brewer, R D; Morris, P D; Cole, T B

    1994-04-01

    To evaluate the public health impact of a hurricane on an inland area. Descriptive study. Seven hospital emergency departments. Patients who were treated from September 22 to October 6, 1989, for an injury or illness related to Hurricane Hugo. None. Over the two-week study period, 2,090 patients were treated for injuries or illnesses related to the hurricane. Of these, 1,833 (88%) were treated for injuries. Insect stings and wounds accounted for almost half of the total cases. A substantial proportion (26%) of the patients suffering from stings had a generalized reaction (eg, hives, wheezing, or both). Nearly one-third of the wounds were caused by chain saws. Hurricanes can lead to substantial morbidity in an inland area. Disaster plans should address risks associated with stinging insects and hazardous equipment and should address ways to improve case reporting.

  19. Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico

    Science.gov (United States)

    Jess K. Zimmerman; James Aaron Hogan; Aaron B. Shiels; John E. Bithorn; Samuel Matta Carmona; Nicholas Brokaw

    2014-01-01

    We experimentally manipulated key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on tree recruitment, forest structure, and diversity in a wet tropical forest in the Luquillo Experimental Forest, Puerto Rico. Canopy openness was increased by trimming branches...

  20. Evaluation of Coordination of Emergency Response Team through the Social Network Analysis. Case Study: Oil and Gas Refinery.

    Science.gov (United States)

    Mohammadfam, Iraj; Bastani, Susan; Esaghi, Mahbobeh; Golmohamadi, Rostam; Saee, Ali

    2015-03-01

    The purpose of this study was to examine the cohesions status of the coordination within response teams in the emergency response team (ERT) in a refinery. For this study, cohesion indicators of social network analysis (SNA; density, degree centrality, reciprocity, and transitivity) were utilized to examine the coordination of the response teams as a whole network. The ERT of this research, which was a case study, included seven teams consisting of 152 members. The required data were collected through structured interviews and were analyzed using the UCINET 6.0 Social Network Analysis Program. The results reported a relatively low number of triple connections, poor coordination with key members, and a high level of mutual relations in the network with low density, all implying that there were low cohesions of coordination in the ERT. The results showed that SNA provided a quantitative and logical approach for the examination of the coordination status among response teams and it also provided a main opportunity for managers and planners to have a clear understanding of the presented status. The research concluded that fundamental efforts were needed to improve the presented situations.

  1. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  2. Hurricane Sandy science plan: impacts to coastal ecosystems, habitats, and fish and wildlife

    Science.gov (United States)

    Campbell, Warren H.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  3. Morphological Modeling of a Low-Dune Barrier Headland System's Response to Hurricane Forcing Before and After a Large Scale Restoration

    Science.gov (United States)

    Johnson, C.; Chen, Q. J.

    2017-12-01

    Coastal barrier landforms serve as the first line of defense against oceanic and meteorological forcing. Widespread recognition of this function has prompted coastal managers to adopt systematic restoration programs. The state of Louisiana has, in response to its critically eroding shorelines (Byrnes et al., 2017), implemented 30 barrier island and headland restoration projects over the past three decades. The Caminada Headlands Beach and Dune Restoration Project, completed in 2016, restored 22.5 kilometers of Louisiana's coastline by elevating the cross-shore profile and placing approximately 250,000 m3 of sediment within the back- and foreshore. Interventions of this magnitude are significant perturbations to the local sediment budget and geomorphodynamic equilibrium. In Louisiana, an important question is the immediate fate of placed sediment transported during the passage of a hurricane, as the potential to ultimately retain this sediment is influenced by the location of its deposition. The direction of net sediment transport (on- or offshore) depends mainly on the elevation of the storm surge relative to the dune crest, but also on the evolution of the cross-shore water surface gradient and the spatial configuration of biogeophysical properties and hard-structures (Sherwood et al., 2014; Smallegan et al., 2016) . Prior to its restoration, the Caminada headlands were generally of low elevation with the majority of dune crest extending less than 50 cm above MHW and several active breaches. Hurricanes Gustav (2008) and Isaac (2012) made landfall directly on the headlands with inundating storm surges that resulted in observed overwash deposition (Doran et al, 2009; Guy et al, 2013), i.e. landward directed sediment transport and deposition. An open-source process-based morphological model (XBeach) is used to study hurricane induced sediment transport for both pre- and post-restoration of the Caminada headlands. Hindcast pre-restoration simulations of Gustav's and

  4. Measuring Responsibility and Cooperation in Learning Teams in the University Setting: Validation of a Questionnaire.

    Science.gov (United States)

    León-Del-Barco, Benito; Mendo-Lázaro, Santiago; Felipe-Castaño, Elena; Fajardo-Bullón, Fernando; Iglesias-Gallego, Damián

    2018-01-01

    Cooperative learning are being used increasingly in the university classroom, in order to promote teamwork among students, improve performance and develop interpersonal competences. Responsibility and cooperation are two fundamental pillars of cooperative learning. Team members' responsibility is a necessary condition for the team's success in the assigned tasks. Students must be aware that they depend on each other and should make their maximum effort. On the other hand, in efficient groups, the members cooperate and pool their efforts to achieve the proposed goals. In this research, we propose to create a Questionnaire of Group Responsibility and Cooperation in Learning Teams (CRCG) . Participants in this work were 375 students from the Faculty of Teacher Training of the University of Extremadura (Spain). The CRCG has very acceptable psychometric characteristics, good internal consistency, and temporal reliability. Moreover, structural equation analysis allowed us to verify that the latent variables in the two factors found are well defined and, therefore, their assessment is adequate. Besides, we found high significant correlations between the Learning Team Potency Questionnaire (CPEA) and the total score and the factors of the CRCG. This tool will evaluate cooperative skills and offer faculty information in order to prepare students for teamwork and conflict resolution.

  5. Numerical study of sediment dynamics during hurricane Gustav

    Science.gov (United States)

    Zang, Zhengchen; Xue, Z. George; Bao, Shaowu; Chen, Qin; Walker, Nan D.; Haag, Alaric S.; Ge, Qian; Yao, Zhigang

    2018-06-01

    In this study, the coupled ocean-atmosphere-wave-and-sediment transport (COAWST) modeling system was employed to explore sediment dynamics in the northern Gulf of Mexico during hurricane Gustav in 2008. The performance of the model was evaluated quantitatively and qualitatively against in-situ and remote sensing measurements, respectively. After Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 8 m offshore and they decreased quickly as it moved toward the inner shelf, where the vertical stratification was largely destroyed. Alongshore currents were dominant westward on the eastern sector of the hurricane track, and offshoreward currents prevailed on the western sector. High suspended sediment concentrations (>1000 mg/l) were confined to the inner shelf at surface layers and the simulated high concentrations at the bottom layer extended to the 200 m isobaths. The stratification was restored one week after landfall, although not fully. The asymmetric hurricane winds induced stronger hydrodynamics in the eastern sector, which led to severe erosion. The calculated suspended sediment flux (SSF) was convergent to the hurricane center and the maximum SSF was simulated near the south and southeast of the Mississippi river delta. The averaged post-hurricane deposition over the Louisiana shelf was 4.0 cm, which was 3.2-26 times higher than the annual accumulation rate under normal weather conditions.

  6. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  7. Disaster imminent--Hurricane Hugo.

    Science.gov (United States)

    Guynn, J B

    1990-04-01

    Response to a disaster situation depends upon the type of circumstances presented. In situations where the disaster is the type that affects the hospital as well as a wide surrounding area directly, the hospital and pharmacy itself may be called upon to continue functioning for some period of time without outside assistance. The ability to function for prolonged periods of time requires the staff to focus on the job at hand and the administrative staff to provide security, compassion, and flexibility. Plans for a disaster of the nature of a hurricane require that attention be paid to staffing, medication inventories, supplies, and services being rendered. Recognition of the singular position occupied by a hospital in the community and the expectations of the local population require that hospitals and the pharmacy department have the ability to respond appropriately.

  8. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    Science.gov (United States)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  9. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    International Nuclear Information System (INIS)

    Balaguru, Karthik; Ruby Leung, L; Yoon, Jin-ho

    2013-01-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north–south demarcation are considered rather than the basin as a whole. (letter)

  10. The Impact of “Hurricane Hugo” on the Purchase of Indirect Loss Coverage

    OpenAIRE

    Joe H. Murrey, Jr.; Robert L. Taylor; R. Keith Tudor; Kenneth W. Hollman

    1994-01-01

    This study examines the business community of Charleston, South Carolina following Hurricane Hugo. The objectives of this study are (1) to determine if, after experiencing an actual catastrophe, a significant number of firms either purchased or increased Business Interruption and/or Extra Expense insurance limits, and (2) to compare generally the responses from Charleston, South Carolina, with the earlier responses from previous studies of areas which experienced catastrophes such as tornados...

  11. Sleep disturbance and its relationship to psychiatric morbidity after Hurricane Andrew.

    Science.gov (United States)

    Mellman, T A; David, D; Kulick-Bell, R; Hebding, J; Nolan, B

    1995-11-01

    Sleep disturbance is an important dimension of posttraumatic stress disorder (PTSD), but most of the limited available data were obtained years after the original traumatic event. This study provides information on sleep disturbance and its relationship to posttraumatic morbidity from evaluations done within a year after the trauma. Sleep and psychiatric symptoms of 54 victims (12 men and 42 women) of Hurricane Andrew who had no psychiatric illness in the 6 months before the hurricane were evaluated. A subset of hurricane victims with active psychiatric morbidity (N = 10) and nine comparison subjects who were unaffected by the hurricane were examined in a sleep laboratory. A broad range of sleep-related complaints were rated as being greater after the hurricane, and psychiatric morbidity (which was most commonly PTSD, followed by depression) had a significant effect on most of the subjective sleep measures. In addition, subjects with active morbidity endorsed greater frequencies of "bad dreams" and general sleep disturbances before the hurricane. Polysomnographic results for the hurricane victims revealed a greater number of arousals and entries into stage 1 sleep. REM density correlated positively with both the PTSD symptom of reexperiencing trauma and global distress. Subjects affected by Hurricane Andrew reported sleep disturbances, particularly those subjects with psychiatric morbidity. Tendencies to experience bad dreams and interrupted sleep before a trauma appear to mark vulnerability to posttraumatic morbidity. Results of sleep laboratory evaluations suggested brief shifts toward higher arousal levels during sleep for PTSD subjects and a relationship of REM phasic activity and symptom severity.

  12. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  13. Low ionospheric reactions on tropical depressions prior hurricanes

    Science.gov (United States)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  14. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    International Nuclear Information System (INIS)

    1991-01-01

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs

  15. Effects of track and threat information on judgments of hurricane strike probability.

    Science.gov (United States)

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  16. Cultural Resources Survey and Testing of the Mandeville Hurricane Protection Project, Mandeville, St. Tammany Parish, Louisiana

    National Research Council Canada - National Science Library

    Williams, Luis

    1996-01-01

    ...). The survey was conducted for the U.S. Army Corps of Engineers, New Orleans District, in response to planned construction activities associated with a hurricane protection project that would enclose Mandeville at Causeway Boulevard, Lake...

  17. Teacher Guidelines for Helping Students after a Hurricane

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  18. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  19. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  20. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  1. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Energy Technology Data Exchange (ETDEWEB)

    Makarieva, A.M., E-mail: ammakarieva@gmail.co [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Gorshkov, V.G. [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    2011-02-14

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  2. Study on dynamic team performance evaluation methodology based on team situation awareness model

    International Nuclear Information System (INIS)

    Kim, Suk Chul

    2005-02-01

    The purpose of this thesis is to provide a theoretical framework and its evaluation methodology of team dynamic task performance of operating team at nuclear power plant under the dynamic and tactical environment such as radiological accident. This thesis suggested a team dynamic task performance evaluation model so called team crystallization model stemmed from Endsely's situation awareness model being comprised of four elements: state, information, organization, and orientation and its quantification methods using system dynamics approach and a communication process model based on a receding horizon control approach. The team crystallization model is a holistic approach for evaluating the team dynamic task performance in conjunction with team situation awareness considering physical system dynamics and team behavioral dynamics for a tactical and dynamic task at nuclear power plant. This model provides a systematic measure to evaluate time-dependent team effectiveness or performance affected by multi-agents such as plant states, communication quality in terms of transferring situation-specific information and strategies for achieving the team task goal at given time, and organizational factors. To demonstrate the applicability of the proposed model and its quantification method, the case study was carried out using the data obtained from a full-scope power plant simulator for 1,000MWe pressurized water reactors with four on-the-job operating groups and one expert group who knows accident sequences. Simulated results team dynamic task performance with reference key plant parameters behavior and team-specific organizational center of gravity and cue-and-response matrix illustrated good symmetry with observed value. The team crystallization model will be useful and effective tool for evaluating team effectiveness in terms of recruiting new operating team for new plant as cost-benefit manner. Also, this model can be utilized as a systematic analysis tool for

  3. Study on dynamic team performance evaluation methodology based on team situation awareness model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Chul

    2005-02-15

    The purpose of this thesis is to provide a theoretical framework and its evaluation methodology of team dynamic task performance of operating team at nuclear power plant under the dynamic and tactical environment such as radiological accident. This thesis suggested a team dynamic task performance evaluation model so called team crystallization model stemmed from Endsely's situation awareness model being comprised of four elements: state, information, organization, and orientation and its quantification methods using system dynamics approach and a communication process model based on a receding horizon control approach. The team crystallization model is a holistic approach for evaluating the team dynamic task performance in conjunction with team situation awareness considering physical system dynamics and team behavioral dynamics for a tactical and dynamic task at nuclear power plant. This model provides a systematic measure to evaluate time-dependent team effectiveness or performance affected by multi-agents such as plant states, communication quality in terms of transferring situation-specific information and strategies for achieving the team task goal at given time, and organizational factors. To demonstrate the applicability of the proposed model and its quantification method, the case study was carried out using the data obtained from a full-scope power plant simulator for 1,000MWe pressurized water reactors with four on-the-job operating groups and one expert group who knows accident sequences. Simulated results team dynamic task performance with reference key plant parameters behavior and team-specific organizational center of gravity and cue-and-response matrix illustrated good symmetry with observed value. The team crystallization model will be useful and effective tool for evaluating team effectiveness in terms of recruiting new operating team for new plant as cost-benefit manner. Also, this model can be utilized as a systematic analysis tool for

  4. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    Science.gov (United States)

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  6. Developing Local Scale, High Resolution, Data to Interface with Numerical Hurricane Models

    Science.gov (United States)

    Witkop, R.; Becker, A.

    2017-12-01

    In 2017, the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) developed hurricane models that specify wind speed, inundation, and erosion around Rhode Island with enough precision to incorporate impacts on individual facilities. At the same time, URI's Marine Affairs Visualization Lab (MAVL) developed a way to realistically visualize these impacts in 3-D. Since climate change visualizations and water resource simulations have been shown to promote resiliency action (Sheppard, 2015) and increase credibility (White et al., 2010) when local knowledge is incorporated, URI's hurricane models and visualizations may also more effectively enable hurricane resilience actions if they include Facility Manager (FM) and Emergency Manager (EM) perceived hurricane impacts. This study determines how FM's and EM's perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale while exploring methods to elicit this information from FMs and EMs in a format usable for incorporation into URI GSO's hurricane models.

  7. Adolescent Survivors of Hurricane Katrina: A Pilot Study of Hypothalamic-Pituitary-Adrenal Axis Functioning

    Science.gov (United States)

    Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal

    2015-01-01

    Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…

  8. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  9. Hurricane Sandy science plan: impacts of storm surge, including disturbed estuarine and bay hydrology

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers

  10. Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data

    Science.gov (United States)

    Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.

    2017-12-01

    The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane

  11. Post-hurricane forest damage assessment using satellite remote sensing

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  12. A Climatological Study of Hurricane Force Extratropical Cyclones

    Science.gov (United States)

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  13. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  14. Psychological distress of adolescents exposed to Hurricane Hugo.

    Science.gov (United States)

    Hardin, S B; Weinrich, M; Weinrich, S; Hardin, T L; Garrison, C

    1994-07-01

    To ascertain the effects of a natural disaster on adolescents, 1482 South Carolina high school students who were exposed to Hurricane Hugo were surveyed 1 year after the disaster. Subjects completed a self-administered questionnaire measuring Hugo exposure, nonviolent and violent life events, social support, self-efficacy, and psychological distress. Results showed that the students reported minimal exposure to the hurricane and psychological distress variables approximated national norms. As exposure increased, adolescents reported increased symptoms of psychological distress; i.e., anger, depression, anxiety, and global mental distress. Females and white students experienced higher levels of distress. In most cases, other stressful life events were at least as strong a predictor of psychological distress as was exposure to the hurricane. Self-efficacy and social support were protective.

  15. The Coast Guard Proceedings of the Marine Safety and Security Council. Volume 72, Number 1, Spring 2015

    Science.gov (United States)

    2015-01-01

    1991 Gulf War oil spills, Persian Gulf 1995 Hurricane Opal , Florida panhandle 2 0 0 0 s 2000 Alaska Airlines crash, California 2000 Pepco oil spill...difficult or impossible to deter- mine the responsible party, or if the “responsible party” is a hurricane or other natural disaster? Additionally...there are two separate uni- fied command organizations, but linked through liaison teams, we add one more twist — responders have deter- mined a

  16. Regional-scale impact of storm surges on groundwaters of Texas, Florida and Puerto Rico after 2017 hurricanes Harvey, Irma, Jose, Maria

    Science.gov (United States)

    Sellier, W. H.; Dürr, H. H.

    2017-12-01

    Hurricanes and related storm surges have devastating effects on near-shore infrastructure and above-ground installations. They also heavily impact groundwater resources, with potentially millions of people dependant on these resources as a freshwater source. Destructions of casings and direct incursions of saline and/or polluted waters have been widely observed. It is uncertain how extensive the effects are on underground water systems, especially in limestone karst areas such as Florida and Puerto Rico. Here, we report regional-scale water level changes in groundwater systems of Texas, Florida and Puerto Rico for the 2017 Hurricanes Harvey, Irma, Jose and Maria. We collected regional scale data from the USGS Waterdata portal. Puerto Rico shows the strongest increase in groundwater levels in wells during Hurricane Maria, with less reaction for the preceding storms Irma and Jose. Increases in water levels range from 0.5 to 11m, with maximum storm surges in Puerto Rico around 3m. These wells are located throughout Puerto Rico, on the coast and inland. In Florida, most wells that show a response during Hurricane Irma are located in the Miami region. Wells located on the west coast show smaller responses with the exception of one well located directly on Hurricane Irma's track. These wells show an increase of 0.2 to 1.7m. In Texas, wells located in proximity to Hurricane Harvey's track show an increase in water level. The effect of groundwater level increases is not limited to the Texas coast, but inland as well. An increase between 0.03 and 2.9m is seen. Storm surges for both Florida and Texas have ranged from 1.8-3.7m maximum. We discuss the findings in the context of local and regional geology and hydrogeology (presence of connected aquifer systems, faulting, presence of carbonate/karst systems etc.).

  17. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    Science.gov (United States)

    2011-12-01

    Marks et al. (2008) flight level and radar observations from Hurricane Hugo shown in Figure 9 (their Figure 3) and Hurricane Isabel (Montgomery et al...Figure 3c and Figure 6c) and Persing and Montgomery (2003, their Figures 8, 9, and 12). For the case of Hurricane Hugo , a cross-section of the... Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina

  18. Performance assessment of topologically diverse power systems subjected to hurricane events

    International Nuclear Information System (INIS)

    Winkler, James; Duenas-Osorio, Leonardo; Stein, Robert; Subramanian, Devika

    2010-01-01

    Large tropical cyclones cause severe damage to major cities along the United States Gulf Coast annually. A diverse collection of engineering and statistical models are currently used to estimate the geographical distribution of power outage probabilities stemming from these hurricanes to aid in storm preparedness and recovery efforts. Graph theoretic studies of power networks have separately attempted to link abstract network topology to transmission and distribution system reliability. However, few works have employed both techniques to unravel the intimate connection between network damage arising from storms, topology, and system reliability. This investigation presents a new methodology combining hurricane damage predictions and topological assessment to characterize the impact of hurricanes upon power system reliability. Component fragility models are applied to predict failure probability for individual transmission and distribution power network elements simultaneously. The damage model is calibrated using power network component failure data for Harris County, TX, USA caused by Hurricane Ike in September of 2008, resulting in a mean outage prediction error of 15.59% and low standard deviation. Simulated hurricane events are then applied to measure the hurricane reliability of three topologically distinct transmission networks. The rate of system performance decline is shown to depend on their topological structure. Reliability is found to correlate directly with topological features, such as network meshedness, centrality, and clustering, and the compact irregular ring mesh topology is identified as particularly favorable, which can influence regional lifeline policy for retrofit and hardening activities to withstand hurricane events.

  19. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    Science.gov (United States)

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  20. Retention of Displaced Students after Hurricanes Katrina and Rita

    Science.gov (United States)

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  1. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  2. A tale of two storms: Surges and sediment deposition from Hurricanes Andrew and Wilma in Florida’s southwest coast mangrove forests: Chapter 6G in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Smith, Thomas J.; Anderson, Gordon H.; Tiling, Ginger

    2007-01-01

    Hurricanes can be very different from each other. Here we examine the impacts that two hurricanes, Andrew and Wilma, had in terms of storm surge and sediment deposition on the southwest coast of Florida. Although Wilma was the weaker storm, it had the greater impact. Wilma had the higher storm surge over a larger area and deposited more sediment than did Andrew. This effect was most likely due to the size of Wilma's eye, which was four times larger than that of Andrew.

  3. Litterfall Production Prior to and during Hurricanes Irma and Maria in Four Puerto Rican Forests

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2018-06-01

    Full Text Available Hurricanes Irma and Maria struck Puerto Rico on the 6th and 20th of September 2017, respectively. These two powerful Cat 5 hurricanes severely defoliated forest canopy and deposited massive amounts of litterfall in the forests across the island. We established a 1-ha research plot in each of four forests (Guánica State Forest, Río Abajo State Forest, Guayama Research Area and Luquillo Experiment Forest before September 2016, and had collected one full year data of litterfall production prior to the arrival of Hurricanes Irma and Maria. Hurricane-induced litterfall was collected within one week after Hurricane Irma, and within two weeks after Hurricane Maria. Each litterfall sample was sorted into leaves, wood (branches and barks, reproductive organs (flowers, fruits and seeds and miscellaneous materials (mostly dead animal bodies or feces after oven-drying to constant weight. Annual litterfall production prior to the arrival of Hurricanes Irma and Maria varied from 4.68 to 25.41 Mg/ha/year among the four forests, and annual litterfall consisted of 50–81% leaffall, 16–44% woodfall and 3–6% fallen reproductive organs. Hurricane Irma severely defoliated the Luquillo Experimental Forest, but had little effect on the other three forests, whereas Hurricane Maria defoliated all four forests. Total hurricane-induced litterfall from Hurricanes Irma and Maria amounted to 95–171% of the annual litterfall production, with leaffall and woodfall from hurricanes amounting to 63–88% and 122–763% of their corresponding annual leaffall and woodfall, respectively. Hurricane-induced litterfall consisted of 30–45% leaves and 55–70% wood. Our data showed that Hurricanes Irma and Maria deposited a pulse of litter deposition equivalent to or more than the total annual litterfall input with at least a doubled fraction of woody materials. This pulse of hurricane-induced debris and elevated proportion of woody component may trigger changes in

  4. Calculations of the hurricane eye motion based on singularity propagation theory

    Directory of Open Access Journals (Sweden)

    Vladimir Danilov

    2002-02-01

    Full Text Available We discuss the possibility of using calculating singularities to forecast the dynamics of hurricanes. Our basic model is the shallow-water system. By treating the hurricane eye as a vortex type singularity and truncating the corresponding sequence of Hugoniot type conditions, we carry out many numerical experiments. The comparison of our results with the tracks of three actual hurricanes shows that our approach is rather fruitful.

  5. Race differences in depression vulnerability following Hurricane Katrina.

    Science.gov (United States)

    Ali, Jeanelle S; Farrell, Amy S; Alexander, Adam C; Forde, David R; Stockton, Michelle; Ward, Kenneth D

    2017-05-01

    This study investigated whether racial disparities in depression were present after Hurricane Katrina. Data were gathered from 932 New Orleans residents who were present when Hurricane Katrina struck, and who returned to New Orleans the following year. Multiple logistic regression models evaluated racial differences in screening positive for depression (a score ≥16 on the Center for Epidemiologic Studies Depression Scale), and explored whether differential vulnerability (prehurricane physical and mental health functioning and education level), differential exposure to hurricane-related stressors, and loss of social support moderated and/or reduced the association of race with depression. A univariate logistic regression analysis showed the odds for screening positive for depression were 86% higher for African Americans than for Caucasians (odds ratio [OR] = 1.86 [1.28-2.71], p = .0012). However, after controlling simultaneously for sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors, race was no longer a significant correlate for screening positive for depression (OR = 1.54 [0.95-2.48], p = .0771). The racial disparity in postdisaster depression seems to be confounded by sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors. Nonetheless, even after adjusting for these factors, there was a nonsignificant trend effect for race, which could suggest race played an important role in depression outcomes following Hurricane Katrina. Future studies should examine these associations prospectively, using stronger assessments for depression, and incorporate measures for discrimination and segregation, to further understand possible racial disparities in depression after Hurricane Katrina. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Report: EPA Provided Quality and Timely Information on Hurricane Katrina Hazardous Material Releases and Debris Management

    Science.gov (United States)

    Report #2006-P-00023, May 2, 2006. After Hurricane Katrina, EPA was the agency with lead responsibility to prevent, minimize, or mitigate threats to public health and the environment caused by hazardous materials and oil spills in inland zones.

  7. Vegetation response to large scale disturbance in a southern Appalachian forest: Hurricane Opal and salvage logging

    Science.gov (United States)

    Katherine J. Elliott; Stephanie L. Hitchcock; Lisa Krueger

    2002-01-01

    Disturbance such as catastrophic windthrow can play a major role in the structure and composition of southern Appalachian forests. We report effects of Hurricane Opal followed by salvage logging on vegetation dynamics (regeneration, composition, and diversity) the first three years after disturbance at the Coweeta Hydrologic Laboratory in western North Carolina. The...

  8. On the molecular dynamics in the hurricane interactions with its environment

    Science.gov (United States)

    Meyer, Gabriel; Vitiello, Giuseppe

    2018-06-01

    By resorting to the Burgers model for hurricanes, we study the molecular motion involved in the hurricane dynamics. We show that the Lagrangian canonical formalism requires the inclusion of the environment degrees of freedom. This also allows the description of the motion of charged particles. In view of the role played by moist convection, cumulus and cloud water droplets in the hurricane dynamics, we discuss on the basis of symmetry considerations the role played by the molecular electrical dipoles and the formation of topologically non-trivial structures. The mechanism of energy storage and dissipation, the non-stationary time dependent Ginzburg-Landau equation and the vortex equation are studied. Finally, we discuss the fractal self-similarity properties of hurricanes.

  9. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  10. Hurricane Harvey Report: A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    OpenAIRE

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall totals and flood-related damages. Across large portions of southeast Texas, rainfall totals during the six-day period between August 25 and 31, 2017 were amongst the highest ever recorded, causing flo...

  11. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    Science.gov (United States)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  12. New Orleans After Hurricane Katrina: An Unnatural Disaster?

    Science.gov (United States)

    McNamara, D.; Werner, B.; Kelso, A.

    2005-12-01

    Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.

  13. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  14. Contrasting Hydrodynamic and Environmental Effects of Hurricanes Harvey and Ike in a Highly Industrialized Estuary

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    It is commonly believed that storm surge is the most destructive aspect of hurricanes. However, massive rainfall with a return period of 100 years or more induced by hurricanes can cause more catastrophic damage than losses caused by storm surge as demonstrated recently by hurricanes Harvey, Irma and Maria. In this study the hydrodynamics and environmental effects of hurricanes Ike and Harvey were compared and contrasted by linking hydrodynamic flow models with water quality models to simulate spills from storage tanks located in the Houston Ship Channel (HSC). Hurricane Ike with a maximum surge of 5.3 meters in Galveston Bay and Harvey with a maximum rainfall of 1.25 meters both struck the HSC region in Texas in 2008 and 2017, respectively. Both events resulted in numerous spills from municipal and industrial facilities, hazardous waste sites, superfund sites, and landfills. The Environmental Fluid Dynamic Code (EFDC) was coupled with the SWAN+ADCIRC hurricane simulation model to simulate Hurricane Ike and EFDC was coupled with USGS flow boundary conditions to model Hurricane Harvey. A conservative dye release was used to simulate a chemical release during each event. The results showed Hurricane Harvey caused higher water surface elevations within the HSC accompanied by longer and wider-spread land inundation. In contrast, higher water surface elevations were observed within the shallow side bays during Hurricane Ike that caused sediment resuspension and repartitioning of pollutants. Rapid spill mass transportation was observed for both hurricanes; 50% of total spill mass reached Galveston Bay in 20 and 22 hours after a spill event for Hurricane Harvey and Ike, respectively, and more than 90% of the spill mass reached the bay in 36 and 48 hours, respectively. Unlike Hurricane Harvey, the conservative tracer was spread almost 2.5 km upstream of the releasing point for Hurricane Ike due to surge. However, during Harvey, 35% more land was affected by the spilled

  15. The Regional Environmental Emergency Team (REET)

    International Nuclear Information System (INIS)

    Maddock, M.

    2001-01-01

    This paper outlined the approach taken in Ontario to set up the Regional Environmental Emergency Team (REET) teams and the progress made in developing partnerships and coordination in response to environmental emergencies in Ontario. Environment Canada has been involved with the Ontario Regional Environmental Emergency Team (REET) Program for the past decade in order to review emergency response roles and responsibilities. REET is designed to enhance communication between emergency response agencies, foster recognition of the various responsibilities involved in an environmental emergency response and to increase the basic understanding of emergency response techniques and procedures within the emergency response community. During emergency response situations REET operates as a flexible and expandable multi-disciplinary and multi-agency team that provides comprehensive and coordinated environmental advice, information and assistance. The Ontario REET program currently consists of 18 area teams throughout the province with informal partnerships with Environment Canada, the Canadian Coast Guard, the Ontario Ministry of the Environment, Emergency Measures Ontario and the Ontario Ministry of Natural Resources. The program was inspired in 1970 and continues to provide an appropriate forum for environmental emergency planning and response. 6 refs., 1 fig

  16. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    Science.gov (United States)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-08-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  17. Lessons Learnt From Hurricane Katrina.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  18. Near real-time forecasting for cholera decision making in Haiti after Hurricane Matthew.

    Science.gov (United States)

    Pasetto, Damiano; Finger, Flavio; Camacho, Anton; Grandesso, Francesco; Cohuet, Sandra; Lemaitre, Joseph C; Azman, Andrew S; Luquero, Francisco J; Bertuzzo, Enrico; Rinaldo, Andrea

    2018-05-01

    Computational models of cholera transmission can provide objective insights into the course of an ongoing epidemic and aid decision making on allocation of health care resources. However, models are typically designed, calibrated and interpreted post-hoc. Here, we report the efforts of a team from academia, field research and humanitarian organizations to model in near real-time the Haitian cholera outbreak after Hurricane Matthew in October 2016, to assess risk and to quantitatively estimate the efficacy of a then ongoing vaccination campaign. A rainfall-driven, spatially-explicit meta-community model of cholera transmission was coupled to a data assimilation scheme for computing short-term projections of the epidemic in near real-time. The model was used to forecast cholera incidence for the months after the passage of the hurricane (October-December 2016) and to predict the impact of a planned oral cholera vaccination campaign. Our first projection, from October 29 to December 31, predicted the highest incidence in the departments of Grande Anse and Sud, accounting for about 45% of the total cases in Haiti. The projection included a second peak in cholera incidence in early December largely driven by heavy rainfall forecasts, confirming the urgency for rapid intervention. A second projection (from November 12 to December 31) used updated rainfall forecasts to estimate that 835 cases would be averted by vaccinations in Grande Anse (90% Prediction Interval [PI] 476-1284) and 995 in Sud (90% PI 508-2043). The experience gained by this modeling effort shows that state-of-the-art computational modeling and data-assimilation methods can produce informative near real-time projections of cholera incidence. Collaboration among modelers and field epidemiologists is indispensable to gain fast access to field data and to translate model results into operational recommendations for emergency management during an outbreak. Future efforts should thus draw together multi

  19. Hurricane disturbance benefits nesting American Oystercatchers (Haematopus palliatus)

    Science.gov (United States)

    Simons, Theodore R.; Schulte, Shiloh A.

    2016-01-01

    Coastal ecosystems are under increasing pressure from human activity, introduced species, sea level rise, and storm activity. Hurricanes are a powerful destructive force, but can also renew coastal habitats. In 2003, Hurricane Isabel altered the barrier islands of North Carolina, flattening dunes and creating sand flats. American Oystercatchers (Haematopus palliatus) are large shorebirds that inhabit the coastal zone throughout the year. Alternative survival models were evaluated for 699 American Oystercatcher nests on North Core Banks and South Core Banks, North Carolina, USA, from 1999–2007. Nest survival on North Core Banks increased from 0.170 (SE = 0.002) to 0.772 (SE = 0.090) after the hurricane, with a carry-over effect lasting 2 years. A simple year effects model described nest survival on South Core Banks. Habitat had no effect on survival except when the overall rate of nest survival was at intermediate levels (0.300–0.600), when nests on open flats survived at a higher rate (0.600; SE = 0.112) than nests in dune habitat (0.243; SE = 0.094). Predator activity declined on North Core Banks after the hurricane and corresponded with an increase in nest survival. Periodic years with elevated nest survival may offset low annual productivity and contribute to the stability of American Oystercatcher populations.

  20. Mass Media Use by College Students during Hurricane Threat

    Science.gov (United States)

    Piotrowski, Chris

    2015-01-01

    There is a dearth of studies on how college students prepare for the threat of natural disasters. This study surveyed college students' preferences in mass media use prior to an approaching hurricane. The convenience sample (n = 76) were from a university located in the hurricane-prone area of the central Gulf of Mexico coast. Interestingly,…

  1. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas....... Especially in the initial phase of floating foundation concept development, site specific metocean data are usually not available. As the areas of interest are furthermore not covered by any design standard, in terms of design sea states, generic and in engineering terms applicable environmental background...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...

  2. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Directory of Open Access Journals (Sweden)

    B. Rojo-Garibaldi

    2018-04-01

    Full Text Available Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT and the published historical information. The hurricane time series provides a unique historical record on information about ocean–atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  3. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Science.gov (United States)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Adela Monreal-Gómez, María; Sánchez-Santillán, Norma Leticia; Salas-Monreal, David

    2018-04-01

    Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean-atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  4. Using data envelopment analysis to evaluate the performance of post-hurricane electric power restoration activities

    International Nuclear Information System (INIS)

    Reilly, Allison C.; Davidson, Rachel A.; Nozick, Linda K.; Chen, Thomas; Guikema, Seth D.

    2016-01-01

    Post-hurricane restoration of electric power is attracting increasing scrutiny as customers’ tolerance for even short power interruptions decreases. At the peak, 8.5 million customers were without power after Hurricane Sandy and over 1 million customers were without power more than a week after the storm made landfall. Currently, restoration processes are typically evaluated on a case-by-case basis by a regional public service commission or similar body and lack systematic comparisons to other restoration experiences. This paper introduces a framework using data envelopment analysis to help evaluate post-hurricane restorations through comparison with the experiences of other companies in similar storms. The method accounts for the variable severity of the hurricanes themselves, so that companies are not penalized for outages that are long only because the hurricane that caused them was particularly severe. The analysis is illustrated through an application comparing 27 recent post-hurricane restoration experiences across 13 different electric power companies in the United States. The results of the study show some consistency in performance among individual utilities after the hurricanes they experience. The method could be applied to other types of infrastructure systems and other extreme events as well. - Highlights: • A Data Envelopment Analysis (DEA) framework is developed to compare post- hurricane power-outage restoration performance. • Hurricane severity is considered, so that utilities are not penalized for long outages caused by severe storms. • A case study using real data compares 27 recent post-hurricane restoration experiences. • The results of the study show utilities tend to perform consistently after the hurricanes they experience.

  5. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NARCIS (Netherlands)

    Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-01-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at

  6. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment. Volume 1, Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  7. Near-inertial motions in the DeSoto Canyon during Hurricane Georges

    Science.gov (United States)

    Jordi, Antoni; Wang, Dong-Ping; Hamilton, Peter

    2016-09-01

    Hurricane Georges passed directly over an array of 13 moorings deployed in the DeSoto Canyon in the northern Gulf of Mexico on 27-28 September 1998. Current velocity data from the mooring array were analyzed together with a primitive-equation model simulation with realistic hurricane forcing, to characterize the generation and propagation of the hurricane-generated near-inertial waves. The model successfully reproduces the observed mean (sub-inertial) and near-inertial motions. The upper ocean response is strongly impacted by the canyon 'wall': a strong jet is formed along the slope, and the near-inertial motions on the shelf are rapidly suppressed. The model results moreover suggest that strong near-inertial waves in the mixed layer are mostly trapped in an energy flux recirculating gyre around the canyon. This gyre retains the near-inertial energy in the canyon region and enhances the transfer of near-inertial energy below the mixed layer. Additional simulations with idealized topographies show that the presence of a steep slope rather than the canyon is fundamental for the generation of this recirculating gyre. The near-inertial wave energy budget shows that during the study period the wind generated an input of 6.79 × 10-2 Wm-2 of which about 1/3, or 2.43 × 10-2 Wm-2, was transferred below the mixed layer. The horizontal energy flux into and out of the canyon region, in contrast, was relatively weak.

  8. Hurricane Loss Analysis Based on the Population-Weighted Index

    Directory of Open Access Journals (Sweden)

    Grzegorz Kakareko

    2017-08-01

    Full Text Available This paper discusses different measures for quantifying regional hurricane loss. The main measures used in the past are normalized percentage loss and dollar value loss. In this research, we show that these measures are useful but may not properly reflect the size of the population influenced by hurricanes. A new loss measure is proposed that reflects the hurricane impact on people occupying the structure. For demonstrating the differences among these metrics, regional loss analysis was conducted for Florida. The regional analysis was composed of three modules: the hazard module stochastically modeled the wind occurrence in the region; the vulnerability module utilized vulnerability functions developed in this research to calculate the loss; and the financial module quantified the hurricane loss. In the financial module, we calculated three loss metrics for certain region. The first metric is the average annual loss (AAL which represents the expected loss per year in percentage. The second is the average annual dollar loss which represents the expected dollar amount loss per year. The third is the average annual population-weighted loss (AAPL—a new measure proposed in this research. Compared with the AAL, the AAPL reflects the number of people influenced by the hurricane. The advantages of the AAPL are illustrated using three different analysis examples: (1 conventional regional loss analysis, (2 mitigation potential analysis, and (3 forecasted future loss analysis due to the change in population.

  9. Characterization of Carbon Monoxide Exposure During Hurricane Sandy and Subsequent Nor'easter.

    Science.gov (United States)

    Schnall, Amy; Law, Royal; Heinzerling, Amy; Sircar, Kanta; Damon, Scott; Yip, Fuyuen; Schier, Josh; Bayleyegn, Tesfaye; Wolkin, Amy

    2017-10-01

    Carbon monoxide (CO) is an odorless, colorless gas produced by fossil fuel combustion. On October 29, 2012, Hurricane Sandy moved ashore near Atlantic City, New Jersey, causing widespread morbidity and mortality, $30 to $50 billion in economic damage, and 8.5 million households to be without power. The combination of power outages and unusually low temperatures led people to use alternate power sources, placing many at risk for CO exposure. We examined Hurricane Sandy-related CO exposures from multiple perspectives to help identify risk factors and develop strategies to prevent future exposures. This report combined data from 3 separate sources (health departments, poison centers via the National Poison Data System, and state and local public information officers). Results indicated that the number of CO exposures in the wake of Hurricane Sandy was significantly greater than in previous years. The persons affected were mostly females and those in younger age categories and, despite messaging, most CO exposures occurred from improper generator use. Our findings emphasize the continued importance of CO-related communication and ongoing surveillance of CO exposures to support public health response and prevention during and after disasters. Additionally, regional poison centers can be a critical resource for potential on-site management, public health promotion, and disaster-related CO exposure surveillance. (Disaster Med Public Health Preparedness. 2017;11:562-567).

  10. HURRICANE AND SEVERE STORM SENTINEL (HS3) FLIGHT REPORTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Flight Reports provide information about flights flown by the WB-57 and Global Hawk aircrafts during the Hurricane and...

  11. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  12. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    Science.gov (United States)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  13. Using realist evaluation to assess primary healthcare teams' responses to intimate partner violence in Spain.

    Science.gov (United States)

    Goicolea, Isabel; Hurtig, Anna-Karin; San Sebastian, Miguel; Marchal, Bruno; Vives-Cases, Carmen

    2015-01-01

    Few evaluations have assessed the factors triggering an adequate health care response to intimate partner violence. This article aimed to: 1) describe a realist evaluation carried out in Spain to ascertain why, how and under what circumstances primary health care teams respond to intimate partner violence, and 2) discuss the strengths and challenges of its application. We carried out a series of case studies in four steps. First, we developed an initial programme theory (PT1), based on interviews with managers. Second, we refined PT1 into PT2 by testing it in a primary healthcare team that was actively responding to violence. Third, we tested the refined PT2 by incorporating three other cases located in the same region. Qualitative and quantitative data were collected and thick descriptions were produced and analysed using a retroduction approach. Fourth, we analysed a total of 15 cases, and identified combinations of contextual factors and mechanisms that triggered an adequate response to violence by using qualitative comparative analysis. There were several key mechanisms -the teams' self-efficacy, perceived preparation, women-centred care-, and contextual factors -an enabling team environment and managerial style, the presence of motivated professionals, the use of the protocol and accumulated experience in primary health care- that should be considered to develop adequate primary health-care responses to violence. The full application of this realist evaluation was demanding, but also well suited to explore a complex intervention reflecting the situation in natural settings. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  14. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.

    Science.gov (United States)

    Martín, Yago; Li, Zhenlong; Cutter, Susan L

    2017-01-01

    Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th) and post-evacuation (October 7th-9th)-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.

  15. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.

    Directory of Open Access Journals (Sweden)

    Yago Martín

    Full Text Available Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th and post-evacuation (October 7th-9th-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.

  16. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    Science.gov (United States)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  17. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  18. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  19. Measuring Responsibility and Cooperation in Learning Teams in the University Setting: Validation of a Questionnaire

    Science.gov (United States)

    León-del-Barco, Benito; Mendo-Lázaro, Santiago; Felipe-Castaño, Elena; Fajardo-Bullón, Fernando; Iglesias-Gallego, Damián

    2018-01-01

    Cooperative learning are being used increasingly in the university classroom, in order to promote teamwork among students, improve performance and develop interpersonal competences. Responsibility and cooperation are two fundamental pillars of cooperative learning. Team members’ responsibility is a necessary condition for the team’s success in the assigned tasks. Students must be aware that they depend on each other and should make their maximum effort. On the other hand, in efficient groups, the members cooperate and pool their efforts to achieve the proposed goals. In this research, we propose to create a Questionnaire of Group Responsibility and Cooperation in Learning Teams (CRCG). Participants in this work were 375 students from the Faculty of Teacher Training of the University of Extremadura (Spain). The CRCG has very acceptable psychometric characteristics, good internal consistency, and temporal reliability. Moreover, structural equation analysis allowed us to verify that the latent variables in the two factors found are well defined and, therefore, their assessment is adequate. Besides, we found high significant correlations between the Learning Team Potency Questionnaire (CPEA) and the total score and the factors of the CRCG. This tool will evaluate cooperative skills and offer faculty information in order to prepare students for teamwork and conflict resolution. PMID:29593622

  20. Measuring Responsibility and Cooperation in Learning Teams in the University Setting: Validation of a Questionnaire

    Directory of Open Access Journals (Sweden)

    Benito León-del-Barco

    2018-03-01

    Full Text Available Cooperative learning are being used increasingly in the university classroom, in order to promote teamwork among students, improve performance and develop interpersonal competences. Responsibility and cooperation are two fundamental pillars of cooperative learning. Team members’ responsibility is a necessary condition for the team’s success in the assigned tasks. Students must be aware that they depend on each other and should make their maximum effort. On the other hand, in efficient groups, the members cooperate and pool their efforts to achieve the proposed goals. In this research, we propose to create a Questionnaire of Group Responsibility and Cooperation in Learning Teams (CRCG. Participants in this work were 375 students from the Faculty of Teacher Training of the University of Extremadura (Spain. The CRCG has very acceptable psychometric characteristics, good internal consistency, and temporal reliability. Moreover, structural equation analysis allowed us to verify that the latent variables in the two factors found are well defined and, therefore, their assessment is adequate. Besides, we found high significant correlations between the Learning Team Potency Questionnaire (CPEA and the total score and the factors of the CRCG. This tool will evaluate cooperative skills and offer faculty information in order to prepare students for teamwork and conflict resolution.

  1. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  2. Designing, developing, and deploying systems to support human-robot teams in disaster response

    NARCIS (Netherlands)

    Kruijff, G.J.M.; Kruijff-Korbayová, I.; Keshavdas, S.; Larochelle, B.; Janíček, M.; Colas, F.; Liu, M.; Pomerleau, F.; Siegwart, R.; Neerincx, M.A.; Looije, R.; Smets, N.J.J.M.; Mioch, T.; Diggelen, J. van; Pirri, F.; Gianni, M.; Ferri, F.; Menna, M.; Worst, R.; Linder, T.; Tretyakov, V.; Surmann, H.; Svoboda, T.; Reinštein, M.; Zimmermann, K.; Petříček, T.; Hlaváč, V.

    2014-01-01

    This paper describes our experience in designing, developing and deploying systems for supporting human-robot teams during disaster response. It is based on R&D performed in the EU-funded project NIFTi. NIFTi aimed at building intelligent, collaborative robots that could work together with humans in

  3. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  4. [Hurricane Paloma's effects on seagrasses along Jardines de la Reina Archipelago, Cuba].

    Science.gov (United States)

    Guimarais, Mayrene; Zúñiga, Adán; Pina, Fabián; Matos, Felipe

    2013-09-01

    effects. To the North of the affected area there is an opening among the keys where the generation ofwaves, currents and turbulence could have occurred. Three years after the hurricane event, both vegetation cover loss and silt re-colonization by macroalgae species were observed within the affected area, by showing a patchily-vegetated landscape. This site is currently undergoing a temporal succession whose assessment demands a monitoring scheme, that will provide interesting information to document its future evolution and responsiveness against upcoming natural or anthropogenic events.

  5. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  6. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  7. Corrective Action Plan in response to the March 1992 Tiger Team Assessment of the Ames Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    On March 5, 1992, a Department of Energy (DOE) Tiger Team completed an assessment of the Ames Laboratory, located in Ames, Iowa. The purpose of the assessment was to provide the Secretary of Energy with a report on the status and performance of Environment, Safety and Health (ES ampersand H) programs at Ames Laboratory. Detailed findings of the assessment are presented in the report, DOE/EH-0237, Tiger Team Assessment of the Ames Laboratory. This document, the Ames Laboratory Corrective Action Plan (ALCAP), presents corrective actions to overcome deficiencies cited in the Tiger Team Assessment. The Tiger Team identified 53 Environmental findings, from which the Team derived four key findings. In the Safety and Health (S ampersand H) area, 126 concerns were identified, eight of which were designated Category 11 (there were no Category I concerns). Seven key concerns were derived from the 126 concerns. The Management Subteam developed 19 findings which have been summarized in four key findings. The eight S ampersand H Category 11 concerns identified in the Tiger Team Assessment were given prompt management attention. Actions to address these deficiencies have been described in individual corrective action plans, which were submitted to DOE Headquarters on March 20, 1992. The ALCAP includes actions described in this early response, as well as a long term strategy and framework for correcting all remaining deficiencies. Accordingly, the ALCAP presents the organizational structure, management systems, and specific responses that are being developed to implement corrective actions and to resolve root causes identified in the Tiger Team Assessment. The Chicago Field Office (CH), IowaState University (ISU), the Institute for Physical Research and Technology (IPRT), and Ames Laboratory prepared the ALCAP with input from the DOE Headquarters, Office of Energy Research (ER)

  8. The weight of a storm: what observations of Earth surface deformation can tell us about Hurricane Harvey

    Science.gov (United States)

    Borsa, A. A.; Mencin, D.; van Dam, T. M.

    2017-12-01

    Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to

  9. Hurricane Risk Variability along the Gulf of Mexico Coastline

    Science.gov (United States)

    Trepanier, Jill C.; Ellis, Kelsey N.; Tucker, Clay S.

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran’s I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs. PMID:25767885

  10. Hurricane risk variability along the Gulf of Mexico coastline.

    Science.gov (United States)

    Trepanier, Jill C; Ellis, Kelsey N; Tucker, Clay S

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran's I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs.

  11. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  12. Resilience and Brittleness in a Nuclear Emergency Response Simulation: Focusing on Team Coordination Activity

    International Nuclear Information System (INIS)

    Costa, Wagner Schenkel; Buarque, Lia; Voshell, Martin; Branlat, Matthieu; Woods, David D.; Gomes, Jose Orlando

    2008-01-01

    The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response System in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation training. (authors)

  13. Biogeochemical Impact of Hurricane Harvey on Texas Coastal Lagoons

    Science.gov (United States)

    Montagna, P.; Hu, X.; Walker, L.; Wetz, M.

    2017-12-01

    Hurricane Harvey made landfall Friday 25 August 2017 as a Category 4 hurricane, which is the strongest hurricane to hit the middle Texas coast since Carla in 1961. After the wind storm and storm surge, coastal flooding occurred due to the storm lingering over Texas for four more days, dumping as much as 50" of rain near Houston, producing 1:1000 year flood event. The Texas coast is characterized by lagoons behind barrier islands, and their ecology and biogeochemistry are strongly influenced by coastal hydrology. The ensuing inflow event replaced brackish water with fresh water that was high in inorganic an organic matter, significantly enhancing respiration of coastal blue carbon, and dissolved oxygen went to zero for a long period of time. Recovery will likely take months or nearly one year.

  14. Using High-Resolution Imagery to Characterize Disturbance from Hurricane Irma in South Florida Wetlands

    Science.gov (United States)

    Lagomasino, D.; Cook, B.; Fatoyinbo, T.; Morton, D. C.; Montesano, P.; Neigh, C. S. R.; Wooten, M.; Gaiser, E.; Troxler, T.

    2017-12-01

    following Hurricane Irma. The synergies between these unique field, airborne, and satellite observations help to capture both the legacy and immediate ecosystem responses following catastrophic storms and will ultimately be used to improve storm surge models and provide predictions for future vulnerability and degradation.

  15. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes

    Science.gov (United States)

    Barbara A. Richardson; Michael J. Richardson; Grizelle Gonzalez; Aaron B. Shiels; Diane S. Srivastava

    2010-01-01

    Hurricanes cause canopy removal and deposition of pulses of litter to the forest floor. A Canopy Trimming Experiment (CTE) was designed to decouple these two factors, and to investigate the separate abiotic and biotic consequences of hurricane-type damage and monitor recovery processes. As part of this experiment, effects on forest floor invertebrate communities were...

  16. Hurricane Harvey Building Damage Assessment Using UAV Data

    Science.gov (United States)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  17. NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season

    Science.gov (United States)

    Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.

    2010-12-01

    The Hurricane Ensemble Data Assimilation System (HEDAS) was developed at the Hurricane Research Division (HRD) of NOAA, in conjunction with an experimental version of the Hurricane Weather and Research Forecast model (HWRFx), in an effort to improve the initial representation of the hurricane vortex by utilizing high resolution in-situ data collected during NOAA’s Hurricane Field Program. HEDAS implements the “ensemble square root “ filter of Whitaker and Hamill (2002) using a 30 member ensemble obtained from NOAA/ESRL’s ensemble Kalman filter (EnKF) system and the assimilation is performed on a 3-km nest centered on the hurricane vortex. As part of NOAA’s Hurricane Forecast Improvement Program (HFIP), HEDAS will be run in a semi-operational mode for the first time during the 2010 Atlantic hurricane season and will assimilate airborne Doppler radar winds, dropwindsonde and flight level wind, temperature, pressure and relative humidity, and Stepped Frequency Microwave Radiometer surface wind observations as they become available. HEDAS has been implemented in an experimental mode for the cases of Hurricane Bill, 2009 and Paloma, 2008 to confirm functionality and determine the optimal configuration of the system. This test case demonstrates the importance of assimilating thermodynamic data in addition to wind observations and the benefit of increasing the quantity and distribution of observations. Applying HEDAS to a larger sample of storm forecasts would provide further insight into the behavior of the model when inner core aircraft observations are assimilated. The main focus of this talk will be to present a summary of HEDAS performance in the HWRFx model for the inaugural season. The HEDAS analyses and the resulting HWRFx forecasts will be compared with HWRFx analyses and forecasts produced concurrently using the HRD modeling group’s vortex initialization which does not employ data assimilation. The initial vortex and subsequent forecasts will be

  18. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  19. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NARCIS (Netherlands)

    Lammers, J. M.; van Soelen, E.; Liebrand, D.; Donders, T.; Reichart, G. J.

    2009-01-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the

  20. Data and Geocomputation: Time Critical Mission Support for the 2017 Hurricane Season

    Science.gov (United States)

    Bhaduri, B. L.; Tuttle, M.; Rose, A.; Sanyal, J.; Thakur, G.; White, D.; Yang, H. H.; Laverdiere, M.; Whitehead, M.; Taylor, H.; Jacob, M.

    2017-12-01

    A strong spatial data infrastructure and geospatial analysis capabilities are nucleus to the decision-making process during emergency preparedness, response, and recovery operations. For over a decade, the U.S. Department of Energy's Oak Ridge National Laboratory has been developing critical data and analytical capabilities that provide the Federal Emergency Management Agency (FEMA) and the rest of the federal response community assess and evaluate impacts of natural hazards on population and critical infrastructures including the status of the national electricity and oil and natural gas networks. These capabilities range from identifying structures or buildings from very high-resolution satellite imagery, utilizing machine learning and high-performance computing, to daily assessment of electricity restoration highlighting changes in nighttime lights for the impacted region based on the analysis of NOAA JPSS VIIRS Day/Night Band (DNB) imagery. This presentation will highlight our time critical mission support efforts for the 2017 hurricane season that witnessed unprecedented devastation from hurricanes Harvey, Irma, and Maria. ORNL provided 90m resolution LandScan USA population distribution data for identifying vulnerable population as well as structure (buildings) data extracted from 1m imagery for damage assessment. Spatially accurate data for solid waste facilities were developed and delivered to the response community. Human activity signatures were assessed from large scale collection of open source social media data around points of interests (POI) to ascertain level of destruction. The electricity transmission system was monitored in real time from data integration from hundreds of utilities and electricity outage information were provided back to the response community via standardized web-services.

  1. Mental health outcomes among adults in Galveston and Chambers counties after Hurricane Ike.

    Science.gov (United States)

    Ruggiero, Kenneth J; Gros, Kirstin; McCauley, Jenna L; Resnick, Heidi S; Morgan, Mark; Kilpatrick, Dean G; Muzzy, Wendy; Acierno, Ron

    2012-03-01

      To examine the mental health effects of Hurricane Ike, the third costliest hurricane in US history, which devastated the upper Texas coast in September 2008.   Structured telephone interviews assessing immediate effects of Hurricane Ike (damage, loss, displacement) and mental health diagnoses were administered via random digit-dial methods to a household probability sample of 255 Hurricane Ike-affected adults in Galveston and Chambers counties.   Three-fourths of respondents evacuated the area because of Hurricane Ike and nearly 40% were displaced for at least one week. Postdisaster mental health prevalence estimates were 5.9% for posttraumatic stress disorder, 4.5% for major depressive episode, and 9.3% for generalized anxiety disorder. Bivariate analyses suggested that peritraumatic indicators of hurricane exposure severity-such as lack of adequate clean clothing, electricity, food, money, transportation, or water for at least one week-were most consistently associated with mental health problems.   The significant contribution of factors such as loss of housing, financial means, clothing, food, and water to the development and/or maintenance of negative mental health consequences highlights the importance of systemic postdisaster intervention resources targeted to meet basic needs in the postdisaster period.

  2. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    Science.gov (United States)

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  3. Validation of a probabilistic model for hurricane insurance loss projections in Florida

    International Nuclear Information System (INIS)

    Pinelli, J.-P.; Gurley, K.R.; Subramanian, C.S.; Hamid, S.S.; Pita, G.L.

    2008-01-01

    The Florida Public Hurricane Loss Model is one of the first public models accessible for scrutiny to the scientific community, incorporating state of the art techniques in hurricane and vulnerability modeling. The model was developed for Florida, and is applicable to other hurricane-prone regions where construction practice is similar. The 2004 hurricane season produced substantial losses in Florida, and provided the means to validate and calibrate this model against actual claim data. This paper presents the predicted losses for several insurance portfolios corresponding to hurricanes Andrew, Charley, and Frances. The predictions are validated against the actual claim data. Physical damage predictions for external building components are also compared to observed damage. The analyses show that the predictive capabilities of the model were substantially improved after the calibration against the 2004 data. The methodology also shows that the predictive capabilities of the model could be enhanced if insurance companies report more detailed information about the structures they insure and the types of damage they suffer. This model can be a powerful tool for the study of risk reduction strategies

  4. A look into hurricane Maria rapid intensification using Meteo-France's Arome-Antilles model.

    Science.gov (United States)

    Pilon, R.; Faure, G.; Dupont, T.; Chauvin, F.

    2017-12-01

    Category 5 Hurricane Maria created a string of humanitarian crises. It caused billions of dollars of damage over the Caribbean but is also one of the worst natural disaster in Dominica.The hurricane took approximately 29 hours to strengthen from a tropical storm to a major category 5 hurricane. Here we present real-time forecasts of high resolution (2.5 km) Arome-Antilles regional model forced by real-time ECMWF's Integrated Forecasting System. The model was able to relatively represent well the rapid intensification of the hurricane whether it was in timing or in location of the eye and strength of its eye wall.We will present an outline of results.

  5. Hydrologic aspects of Hurricane Hugo in South Carolina, September 1989

    Science.gov (United States)

    Schuck-Kolben, R. E.; Cherry, R.N.

    1995-01-01

    Hurricane Hugo, with winds in excess of 135 miles per hour(mi/h), made landfall near Charleston, S.C., early on the morning of September 22, 1989. It was the most destructive hurricane ever experienced in South Carolina. The storm caused 35 deaths and $7 billion in property damage in South Carolina (Purvis, 1990).This report documents some hydrologic effects of Hurricane Hugo along the South Carolina coast. The report includes maps showing storm-tide stage and profiles of the maximum storm-tide stages along the outer coast. Storm-tide stage frequency information is presented and changes in beach morphology and water quality of coastal streams resulting from the storm are described.

  6. Spectral Growth of Hurricane Generated Seas

    National Research Council Canada - National Science Library

    Finlayson, William

    1997-01-01

    The characteristics of a growing sea during hurricanes are significantly different from those observed in ordinary storms since the source of energy generating waves is moving and the rate of change...

  7. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  8. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  9. Improving Resident Performance Through a Simulated Rapid Response Team: A Pilot Study.

    Science.gov (United States)

    Burke, Peter A; Vest, Michael T; Kher, Hemant; Deutsch, Joseph; Daya, Sneha

    2015-07-01

    The Joint Commission requires hospitals to develop systems in which a team of clinicians can rapidly recognize and respond to changes in a patient's condition. The rapid response team (RRT) concept has been widely adopted as the solution to this mandate. The role of house staff in RRTs and the impact on resident education has been controversial. At Christiana Care Health System, eligible residents in their second through final years lead the RRTs. To evaluate the use of a team-based, interdisciplinary RRT training program for educating and training first-year residents in an effort to improve global RRT performance before residents start their second year. This pilot study was administered in 3 phases. Phase 1 provided residents with classroom-based didactic sessions using case-based RRT scenarios. Multiple choice examinations were administered, as well as a confidence survey based on a Likert scale before and after phase 1 of the program. Phase 2 involved experiential training in which residents engaged as mentored participants in actual RRT calls. A qualitative survey was used to measure perceived program effectiveness after phase 2. In phase 3, led by senior residents, simulated RRTs using medical mannequins were conducted. Participants were divided into 5 teams, in which each resident would rotate in the roles of leader, nurse, and respiratory therapist. This phase measured resident performance with regard to medical decision making, data gathering, and team behaviors during the simulated RRT scenarios. Performance was scored by an attending and a senior resident. A total of 18 residents were eligible (N=18) for participation. The average multiple choice test score improved by 20% after didactic training. The average confidence survey score before training was 3.44 out of 5 (69%) and after training was 4.13 (83%), indicating a 14% improvement. High-quality team behaviors correlated with medical decision making (0.92) more closely than did high-quality data

  10. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  11. Vulnerable Family Meetings: A Way of Promoting Team Working in GPs’ Everyday Responses to Child Maltreatment?

    Directory of Open Access Journals (Sweden)

    Jenny Woodman

    2014-08-01

    Full Text Available This study uses observations of team meetings and interviews with 17 primary care professionals in four GP practices in England to generate hypotheses about how “vulnerable family” team meetings might support responses by GPs to maltreatment-related concerns and joint working with other professionals. These meetings are also called “safeguarding meetings”. The study found that vulnerable family meetings were used as a way of monitoring children or young people and their families and supporting risk assessment by information gathering. Four factors facilitated the meetings: meaningful information flow into the meetings from other agencies, systematic ways of identifying cases for discussion, limiting attendance to core members of the primary care team and locating the meeting as part of routine clinical practice. Our results generate hypotheses about a model of care that can be tested for effectiveness in terms of service measures, child and family outcomes, and as a potential mechanism for other professionals to engage and support GPs in their everyday responses to vulnerable and maltreated children. The potential for adverse as well as beneficial effects should be considered from involving professionals outside the core primary care team (e.g., police, children’s social care, education and mental health services.

  12. Performance of Oil Infrastructure during Hurricane Harvey

    Science.gov (United States)

    Bernier, C.; Kameshwar, S.; Padgett, J.

    2017-12-01

    Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.

  13. Retrograde Accretion of a Caribbean Fringing Reef Controlled by Hurricanes and Sea-level Rise

    Directory of Open Access Journals (Sweden)

    Paul Blanchon

    2017-10-01

    Full Text Available Predicting the impact of sea-level (SL rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry (SDB shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230Th ages shows the reef is composed of an ~2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and transport clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.

  14. Tropical Atlantic Hurricanes, Easterly Waves, and West African Mesoscale Convective Systems

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2010-01-01

    Full Text Available The relationship between tropical Atlantic hurricanes (Hs, atmospheric easterly waves (AEWs, and West African mesoscale convective systems (MCSs is investigated. It points out atmospheric conditions over West Africa before hurricane formation. The analysis was performed for two periods, June–November in 2004 and 2005, during which 12 hurricanes (seven in 2004, five in 2005 were selected. Using the AEW signature in the 700 hPa vorticity, a backward trajectory was performed to the African coast, starting from the date and position of each hurricane, when and where it was catalogued as a tropical depression. At this step, using the Meteosat-7 satellite dataset, we selected all the MCSs around this time and region, and tracked them from their initiation until their dissipation. This procedure allowed us to relate each of the selected Hs with AEWs and a succession of MCSs that occurred a few times over West Africa before initiation of the hurricane. Finally, a dipole in sea surface temperature (SST was observed with a positive SST anomaly within the region of H generation and a negative SST anomaly within the Gulf of Guinea. This SST anomaly dipole could contribute to enhance the continental convergence associated with the monsoon that impacts on the West African MCSs formation.

  15. RAA (Responsibility-Authority-Accountability): A transformation to teams

    International Nuclear Information System (INIS)

    Edwards, D.

    1998-01-01

    The paper describes the self-directed team management concept and its implementation at the Amax Coal West company. This management style resulted in 93% improved productivity, 86% decreased operating costs, 86% improved quality, and 70% better employee attitudes. Team benefits and their impact on human resources are summarized

  16. NOAA predicts near-normal or below-normal 2014 Atlantic hurricane season

    Science.gov (United States)

    Related link: Atlantic Basin Hurricane Season Outlook Discussion El Niño/Southern Oscillation (ENSO ) Diagnostic Discussion National Hurricane Preparedness Week FEMA Media Contact Maureen O'Leary 301-427-9000 tips, along with video and audio public service announcements in both English and Spanish, featuring

  17. Bottom Scour Observed Under Hurricane Ivan

    National Research Council Canada - National Science Library

    Teague, William J; Jarosz, Eva; Keen, Timothy R; Wang, David W; Hulbert, Mark S

    2006-01-01

    Observations that extensive bottom scour along the outer continental shelf under Hurricane Ivan resulted in the displacement of more than 100 million cubic meters of sediment from a 35x15 km region...

  18. A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005 Simulation

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2011-06-01

    Full Text Available The life cycle of Hurricane Katrina (2005 was simulated using three different modeling systems of Weather Research and Forecasting (WRF mesoscale model. These are, HWRF (Hurricane WRF designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW model and the Non-hydrostatic Mesoscale Model (NMM. The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR, incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina.

  19. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  20. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  1. Lepidoptera outbreaks in response to successional changes after the passage of Hurricane Hugo in Puerto Rico Rico

    Science.gov (United States)

    J.A. Torres

    1992-01-01

    Fifteen species of Lepidoptera occurred in large numbers in spring and early summer after the passage of Hurricane Hugo over the north-east of Puerto Rico. Spodoptera eridania (Noctuidae) was the most common of the larvae and fed on 56 plant species belonging to 31 families. All the Lepidoptera fed on early successional vegetation. Some of the plants represent new host...

  2. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  3. Hurricane Irene Poster (August 27, 2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Irene poster. Color composite GOES image shows Irene moving through the North Carolina Outer Banks on August 27, 2011. Poster size is 36"x27"

  4. Identification of Caribbean basin hurricanes from Spanish documentary sources

    OpenAIRE

    García Herrera, Ricardo; Gimeno, Luis; Ribera, Pedro; Hernández, Emiliano; González, Ester; Fernández, Guadalupe

    2007-01-01

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurric...

  5. Homeland Security is Hometown Security: Comparison and Case Studies of Vertically Synchronized Catastrophe Response Plans

    Science.gov (United States)

    2015-09-01

    Hurricanes Andrew, Hugo , and Katrina resonate as failures where there was little, if any, federal response in the initial hours, which left the depleted...was also initiated by several large scale incidents, including the Three Mile Island Disaster and Hurricanes Hugo and Andrew.67 This evolved at the...persist during large scale disasters, as was demonstrated during Hurricane Katrina and Super Storm Sandy. Catastrophe response planning at the

  6. Price Increases in the Aftermath of Hurricane Katrina: Authority to Limit Price Gouging

    National Research Council Canada - National Science Library

    Welborn, Angie A; Flynn, Aaron M

    2005-01-01

    .... Specifically, questions have arisen regarding increased prices in the areas affected by Hurricane Katrina and the effect that the damage caused by the hurricane will have on prices, specifically...

  7. Life course transitions and natural disaster: marriage, birth, and divorce following Hurricane Hugo.

    Science.gov (United States)

    Cohan, Catherine L; Cole, Steve W

    2002-03-01

    Change in marriage, birth, and divorce rates following Hurricane Hugo in 1989 were examined prospectively from 1975 to 1997 for all counties in South Carolina. Stress research and research on economic circumstances suggested that marriages and births would decline and divorces would increase in affected counties after the hurricane. Attachment theory suggested that marriages and births would increase and divorces would decline after the hurricane. Time-series analysis indicated that the year following the hurricane, marriage, birth, and divorce rates increased in the 24 counties declared disaster areas compared with the 22 other counties in the state. Taken together, the results suggested that a life-threatening event motivated people to take significant action in their close relationships that altered their life course.

  8. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Science.gov (United States)

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  9. Quantifying the hurricane catastrophe risk to offshore wind power.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  10. Are recent hurricane (Harvey, Irma, Maria) disasters natural?

    Science.gov (United States)

    Trenberth, K. E.; Lijing, C.; Jacobs, P.; Abraham, J. P.

    2017-12-01

    Yes and no! Hurricanes are certainly natural, but human-caused climate change is supersizing them, and unbridled growth is exacerbating risk of major damages. The addition of heat-trapping gases to the atmosphere has led to observed increases in upper ocean heat content (OHC). This human-caused increase in OHC supports higher sea surface temperatures (SSTs) and atmospheric moisture. These elevated temperatures and increased moisture availability fuel tropical storms, allowing them to grow larger, longer lasting, and more intense, and with widespread heavy rainfalls. Our preliminary analysis of OHC through the August of 2017 shows not only was it by far the highest on record globally, but it was also the highest on record in the Gulf of Mexico prior to hurricane Harvey occurring. The human influence on the climate is also evident in rising sea levels, which increases risks from storm surges. These climatic changes are taking place against a background of growing habitation along coasts, which further increases the risk storms pose to life and property. This combination of planning choice and climatic change illustrates the tragedy of global warming, as evidenced by Harvey in Houston, Irma in the Caribbean and Florida, and Maria in Puerto Rico. However, future damages and loss of life can be mitigated, by stopping or slowing human-caused climate change, and through proactive planning (e.g., better building codes, increased-capacity drainage systems, shelters, and evacuation plans). We discuss the climatic and planning contexts of the unnatural disasters of the 2017 Atlantic Hurricane season, including novel indices of climate-hurricane influence.

  11. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    Science.gov (United States)

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  12. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  13. Practice effects on intra-team synergies in football teams.

    Science.gov (United States)

    Silva, Pedro; Chung, Dante; Carvalho, Thiago; Cardoso, Tiago; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-04-01

    Developing synchronised player movements for fluent competitive match play is a common goal for coaches of team games. An ecological dynamics approach advocates that intra-team synchronization is governed by locally created information, which specifies shared affordances responsible for synergy formation. To verify this claim we evaluated coordination tendencies in two newly-formed teams of recreational players during association football practice games, weekly, for fifteen weeks (thirteen matches). We investigated practice effects on two central features of synergies in sports teams - dimensional compression and reciprocal compensation here captured through near in-phase modes of coordination and time delays between coupled players during forward and backwards movements on field while attacking and defending. Results verified that synergies were formed and dissolved rapidly as a result of the dynamic creation of informational properties, perceived as shared affordances among performers. Practising once a week led to small improvements in the readjustment delays between co-positioning team members, enabling faster regulation of coordinated team actions. Mean values of the number of player and team synergies displayed only limited improvements, possibly due to the timescales of practice. No relationship between improvements in dimensional compression and reciprocal compensation were found for number of shots, amount of ball possession and number of ball recoveries made. Findings open up new perspectives for monitoring team coordination processes in sport. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    Science.gov (United States)

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  15. Region 8 radiological assistance program team response manual

    International Nuclear Information System (INIS)

    Webb, D.E.

    1997-01-01

    The purpose of this manual is to provide guidance so that a request for radiological assistance is responded to in an effective and consistent manner. These procedures are specific to the trained and qualified members of the Region 8 Radiological Assistance Program (RAP) team. Procedures provide steps for responding to the request, notification and activation of the team members, position descriptions, and checklists

  16. Influence of hurricane wind field in the structure of directional wave spectra

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-04-01

    Extensive field measurements of wind waves in deep waters in the Gulf of Mexico and Caribbean Sea, have been analyzed to describe the spatial structure of directional wave spectra during hurricane conditions. Following Esquivel-Trava et al. (2015) this analysis was made for minor hurricanes (categories 1 and 2) and major hurricanes (categories 3, 4 and 5). In both cases the directionality of the energy wave spectrum is similar in all quadrants. Some differences are observed however, and they are associated with the presence and the shape of swell energy in each quadrant. Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. The aim of the experiments is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. This work has been supported by CONACYT scholarship 164510 and projects RugDisMar (155793), CB-2011-01-168173 and the Department of Physical Oceanography of CICESE. References Esquivel-Trava, B., Ocampo-Torres, F. J., & Osuna, P. (2015). Spatial structure of directional wave spectra in hurricanes. Ocean Dynam., 65(1), 65-76. doi:10.1007/s10236-014-0791-9 Van der

  17. Observational Estimates of the Horizontal Eddy Diffusivity and Mixing Length in the Low-Level Region of Intense Hurricanes

    Science.gov (United States)

    2011-11-01

    flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989), Category 4 Hurricane Allen (1980) and...data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo 42 (1989), Category 4 Hurricane Allen (1980) and Category...understood. 87 Using the data from the periods of eyewall penetrations in the intense Hurricanes Hugo 88 (1989) and Allen (1980), Zhang et al. (2011a

  18. Microseisms from Hurricane "Hilda".

    Science.gov (United States)

    De Bremaecker, J C

    1965-06-25

    As hurricane "Hilda" crossed the Gulf of Mexico the dominant period of the microseisms shifted from about 8 to 5 seconds as the eye reached water about 150 to 200 meters deep. The conversion of wind energy to microseismic energy is most efficient in water depths from 20 to 200 meters. There is no evidence that two periods, one twice the other, are present.

  19. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  20. 2012-2013 Post-Hurricane Sandy EAARL-B Submerged Topography - Barnegat Bay, New Jersey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically...

  1. Mangrove forest recovery in the Everglades following Hurricane Wilma

    Science.gov (United States)

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  2. Has Anthropogenic Forcing Caused a Discernible Change in Atlantic Hurricane Activity?

    Science.gov (United States)

    Knutson, T. R.; Vecchi, G. A.

    2007-12-01

    There is currently evidence both for and against the existence of a discernible anthropogenic impact on Atlantic hurricane activity. Emanuel's (pers. comm. 2007) Power Dissipation Index shows unprecedented high values in recent decades in the context of the past 60 yr, and correlates remarkably well with low-frequency tropical Atlantic SST variations. The limited record length, partial basin coverage by aircraft in the pre-satellite era, and lack of reconciliation with models limit the usefulness of this result for identifying possible anthropogenic influences. Landsea (EOS, 2007) uses landfalling storm statistics to infer no significant increase in basin-wide tropical storm counts since 1900. Landsea's critical assumption of a constant landfalling fraction over time limits confidence in this assessment. Nonetheless, an important finding is that U.S. landfalling hurricane activity (frequency and PDI) show no increasing trend over the past century or so. Holland and Webster (Phil. Trans. R. Soc. A 2007) conclude that basin-wide tropical cyclone and hurricane counts have increased dramatically during the past century, related to the rise in tropical Atlantic SSTs. Their key assumption is that the existing HURDAT data reliably portrays basin-wide statistics for tropical storms, hurricanes and major hurricanes, at least back to ~1900, which requires further substantiation. We use historical Atlantic ship track and storm track data to estimate the expected number of missing tropical storms each year in the pre-satellite era (1878-1965). After adjustment, the storm counts covary with tropical SSTs on multi-decadal time scales, but their long-term trend (1878-2006) is weaker than the trend in similarly normalized SSTs (though both are nominally positive). The linear trend in adjusted storm counts for 1900-2006 is strongly positive (+4.2 storms/century) and highly significant even after accounting for serial correlation. However, this trend begins near a local minimum in

  3. Improving supervision: a team approach.

    Science.gov (United States)

    1993-01-01

    This issue of "The Family Planning Manager" outlines an interactive team supervision strategy as a means of improving family planning service quality and enabling staff to perform to their maximum potential. Such an approach to supervision requires a shift from a monitoring to a facilitative role. Because supervisory visits to the field are infrequent, the regional supervisor, clinic manager, and staff should form a team to share ongoing supervisory responsibilities. The team approach removes individual blame and builds consensus. An effective team is characterized by shared leadership roles, concrete work problems, mutual accountability, an emphasis on achieving team objectives, and problem resolution within the group. The team supervision process includes the following steps: prepare a visit plan and schedule; meet with the clinic manager and staff to explain how the visit will be conducted; supervise key activity areas (clinical, management, and personnel); conduct a problem-solving team meeting; conduct a debriefing meeting with the clinic manager; and prepare a report on the visit, including recommendations and follow-up plans. In Guatemala's Family Planning Unit, teams identify problem areas on the basis of agreement that a problem exists, belief that the problem can be solved with available resources, and individual willingness to accept responsibility for the specific actions identified to correct the problem.

  4. Online Media Use and Adoption by Hurricane Sandy Affected Fire and Police Departments

    OpenAIRE

    Chauhan, Apoorva

    2014-01-01

    In this thesis work, I examine the use and adoption of online communication media by 840 fire and police departments that were affected by the 2012 Hurricane Sandy. I began by exploring how and why these fire and police departments used (or did not use) online media to communicate with the public during Hurricane Sandy. Results show that fire and police departments used online media during Hurricane Sandy to give timely and relevant information to the public about things such as evacuations, ...

  5. Water and erosion damage to coastal structures: South Carolina Coast, Hurricane Hugo, 1989

    OpenAIRE

    Wang, Hsiang

    1990-01-01

    Hurricane Hugo hit U.S. Mainland on September 21, 1989 just north of Charleston, South Carolina. It was billed as the most costly hurricane on record. The loss on the mainland alone exceeded 7 billion dollars, more than 15,000 homes were destroyed and the loss of lives exceeded forty. This article documents one aspect of the multi-destructions caused by the hurricane - the water and erosion damage on water front or near water front properties. A general damage surve...

  6. ENVIRONMENTAL CONDITIONS IN NORTHERN GULF OF MEXICO COASTAL WATERS FOLLOWING HURRICANE KATRINA

    Science.gov (United States)

    On the morning of August 29, 2005 Hurricane Katrina struck the coast of Louisiana, between New Orleans and Biloxi, Mississippi, as a strong category three hurricane on the Saffir-Simpson scale. The massive winds and flooding had the potential for a tremendous environmental impac...

  7. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  8. Better Data Help Make Better Decisions: Disseminating Information During Hurricane Harvey

    Science.gov (United States)

    Conner, K.; Lindner, J.; Moore, M.

    2017-12-01

    During large scale natural disasters, like hurricane Harvey, time-critical decisions are made on a constant basis. From evacuation orders, allocation of emergency resources, or allowing people to return home, decisions are only as good as the information upon which they are based. Better real-time data lead to better decisions which ultimately leads to improved disaster response and recovery. In 2015 Harris County Flood Control District (HCFCD) in Houston, TX began upgrading their automatic flood warning system (FWS) that dates back to the 1980s. The HCFCD network consists of 154 remote stations that report precipitation intensities and stream levels in near real time. Since the upgrades were completed in 2016 the Houston area has experienced multiple 100+ rain events, the most recent being Hurricane Harvey. The FWS generated accurate, reliable, real-time data throughout the entirety of the record breaking, four-day event. This information was disseminated to state, local and federal agencies, news outlets and the public via web sites and social media. Without this quality of data, disaster management decisions could not have been made effectively, ultimately leading to greater destruction of property and loss of life.

  9. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    Science.gov (United States)

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  10. Preparing for a Hurricane: Prescription Medications

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    What you should do to protect yourself and your family from a hurricane. As you evacuate, remember to take your prescription medicines with you.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 7/17/2008.

  11. Transportation during and after Hurricane Sandy.

    Science.gov (United States)

    2012-11-01

    "Hurricane Sandy demonstrated the strengths and limits of the transportation infrastructure in New York City and the surrounding region. As a result of the timely and thorough preparations by New York City and the MTA, along with the actions of city ...

  12. Frequent Disasters in Mexico: hurricanes Pauline and Manuel in Acapulco, Guerrero

    Directory of Open Access Journals (Sweden)

    Juan Manuel Rodríguez Esteves

    2017-06-01

    Full Text Available Hurricanes and other tropical storms are natural phenomena that attract the interest of people all over the world, especially when they affect coastal communities. Each year, especially during the hurricane season, it is common to read or see in the different media damage caused by tropical storms in several countries, especially in Latin America and Asia. In Mexico total economic losses associated with natural phenomena has been increasing. During the year 2000 were allocated 230 million US dollars for the reconstruction of the infrastructure affected by hydrometeorological phenomena, while in 2013 damage amounted to $ 4,476 million, peaking during 2010 were recorded when 7,208 million dollars in losses. On the other hand, the total of damage caused by natural phenomena, 92 % were associated with hydrometeorological phenomena, which include hurricanes and other phenomena (SEGOB, 2014. The aim of this paper is to analyze the impacts caused by disasters associated with the influence of hurricanes from a comparative perspective between two phenomena in particular, hurricane Pauline in 1997 and Manuel storm in 2013 events hydrometeorological which affected the Mexican state of Guerrero, but especially to the port of Acapulco. one of the main conclusions of this study refers to that no matter only the intensity of the natural phenomenon to generate damage on society, but the total of damages also refers to the contexts of vulnerability generated by a society with the course of the years.

  13. Estimating the human influence on Hurricanes Harvey, Irma and Maria

    Science.gov (United States)

    Wehner, M. F.; Patricola, C. M.; Risser, M. D.

    2017-12-01

    Attribution of the human-induced climate change influence on the physical characteristics of individual extreme weather events has become an advanced science over the past decade. However, it is only recently that such quantification of anthropogenic influences on event magnitudes and probability of occurrence could be applied to very extreme storms such as hurricanes. We present results from two different classes of attribution studies for the impactful Atlantic hurricanes of 2017. The first is an analysis of the record rainfall amounts during Hurricane Harvey in the Houston, Texas area. We analyzed observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of ENSO. We found that human-induced climate change likely increased Hurricane Harvey's total rainfall by at least 19%, and likely increased the chances of the observed rainfall by a factor of at least 3.5. This suggests that changes exceeded Clausius-Clapeyron scaling, motivating attribution studies using dynamical climate models. The second analysis consists of two sets of hindcast simulations of Hurricanes Harvey, Irma, and Maria using the Weather Research and Forecasting model (WRF) at 4.5 km resolution. The first uses realistic boundary and initial conditions and present-day greenhouse gas forcings while the second uses perturbed conditions and pre-industrial greenhouse has forcings to simulate counterfactual storms without anthropogenic influences. These simulations quantify the fraction of Harvey's precipitation attributable to human activities and test the super Clausius-Clapeyron scaling suggested by the observational analysis. We will further quantify the human influence on intensity for Harvey, Irma, and Maria.

  14. Caribbean Brain coral tracks the Atlantic Multidecadal Oscillation and Past Hurricane Intensity

    NARCIS (Netherlands)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-C.; Keenlyside, N.; Latif, M.; Zinke, J.

    2008-01-01

    It is highly debated whether global warming contributed to the strong hurricane activity observed during the last decade. The crux of the recent debate is the limited length of the reliable instrumental record that exacerbates the detection of possible long-term changes in hurricane activity, which

  15. Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970–2005

    Science.gov (United States)

    Logan, John R.; Issar, Sukriti; Xu, Zengwang

    2016-01-01

    Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970–2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal—a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm’s way while socially vulnerable groups have fewer choices. PMID:27531504

  16. Team Learning Ditinjau dari Team Diversity dan Team Efficacy

    OpenAIRE

    Pohan, Vivi Gusrini Rahmadani; Ancok, Djamaludin

    2010-01-01

    This research attempted to observe team learning from the level of team diversity and team efficacy of work teams. This research used an individual level of analysis rather than the group level. The team members measured the level of team diversity, team efficacy and team learning of the teams through three scales, namely team learning scale, team diversity scale, and team efficacy scale. Respondents in this research were the active team members in a company, PT. Alkindo Mitraraya. The total ...

  17. Team Learning Ditinjau dari Team Diversity dan Team Efficacy

    OpenAIRE

    Vivi Gusrini Rahmadani Pohan; Djamaludin Ancok

    2015-01-01

    This research attempted to observe team learning from the level of team diversity and team efficacy of work teams. This research used an individual level of analysis rather than the group level. The team members measured the level of team diversity, team efficacy and team learning of the teams through three scales, namely team learning scale, team diversity scale, and team efficacy scale. Respondents in this research were the active team members in a company, PT. Alkindo Mitraraya. The total ...

  18. Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2009-01-01

    A universal equation is obtained for air pressure and wind velocity in cyclones, hurricanes and tornadoes as dependent on the distance from the center of the considered wind pattern driven by water vapor condensation. The obtained theoretical estimates of the horizontal profiles of air pressure and wind velocity, eye and wind wall radius in hurricanes and tornadoes and maximum values of the radial, tangential and vertical velocity components are in good agreement with empirical evidence.

  19. Simulations of the Ocean Response to a Hurricane: Nonlinear Processes

    KAUST Repository

    Zedler, Sarah E.

    2009-10-01

    Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the

  20. Hurricane shuts down gulf activity

    International Nuclear Information System (INIS)

    Koen, A.D.

    1992-01-01

    This paper reports that producers in the Gulf of Mexico and plant operators in South Louisiana last week were checking for damage wrought by Hurricane Andrew. In its wake Andrew left evacuated rigs and platforms in the gulf and shuttered plants across a wide swath of the Gulf Coast. Operations were beginning to return to normal late last week. Not all gulf operators, especially in the central gulf, expected to return to offshore facilities. And even producers able to book helicopters did not expect to be able to fully assess damage to all offshore installations before the weekend. MMS officials in Washington estimated that 37,500 offshore workers were evacuated from 700 oil and gas installations on the gulf's Outer Continental Shelf. Gulf oil and gas wells account for about 800,000 b/d of oil and one fourth of total U.S. gas production. MMS was awaiting an assessment of hurricane damage before estimating how soon and how much gulf oil and gas production would be restored

  1. EFFECTS OF HURRICANE IVAN ON WATER QUALITY IN PENSACOLA BAY, FL USA

    Science.gov (United States)

    Pensacola Bay was in the strong NE quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, ...

  2. Application of a regional hurricane wind risk forecasting model for wood-frame houses.

    Science.gov (United States)

    Jain, Vineet Kumar; Davidson, Rachel Ann

    2007-02-01

    Hurricane wind risk in a region changes over time due to changes in the number, type, locations, vulnerability, and value of buildings. A model was developed to quantitatively estimate changes over time in hurricane wind risk to wood-frame houses (defined in terms of potential for direct economic loss), and to estimate how different factors, such as building code changes and population growth, contribute to that change. The model, which is implemented in a simulation, produces a probability distribution of direct economic losses for each census tract in the study region at each time step in the specified time horizon. By changing parameter values and rerunning the analysis, the effects of different changes in the built environment on the hurricane risk trends can be estimated and the relative effectiveness of hypothetical mitigation strategies can be evaluated. Using a case study application for wood-frame houses in selected counties in North Carolina from 2000 to 2020, this article demonstrates how the hurricane wind risk forecasting model can be used: (1) to provide insight into the dynamics of regional hurricane wind risk-the total change in risk over time and the relative contribution of different factors to that change, and (2) to support mitigation planning. Insights from the case study include, for example, that the many factors contributing to hurricane wind risk for wood-frame houses interact in a way that is difficult to predict a priori, and that in the case study, the reduction in hurricane losses due to vulnerability changes (e.g., building code changes) is approximately equal to the increase in losses due to building inventory growth. The potential for the model to support risk communication is also discussed.

  3. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  4. Rebuilding Emergency Care After Hurricane Sandy.

    Science.gov (United States)

    Lee, David C; Smith, Silas W; McStay, Christopher M; Portelli, Ian; Goldfrank, Lewis R; Husk, Gregg; Shah, Nirav R

    2014-04-09

    A freestanding, 911-receiving emergency department was implemented at Bellevue Hospital Center during the recovery efforts after Hurricane Sandy to compensate for the increased volume experienced at nearby hospitals. Because inpatient services at several hospitals remained closed for months, emergency volume increased significantly. Thus, in collaboration with the New York State Department of Health and other partners, the Health and Hospitals Corporation and Bellevue Hospital Center opened a freestanding emergency department without on-site inpatient care. The successful operation of this facility hinged on key partnerships with emergency medical services and nearby hospitals. Also essential was the establishment of an emergency critical care ward and a system to monitor emergency department utilization at affected hospitals. The results of this experience, we believe, can provide a model for future efforts to rebuild emergency care capacity after a natural disaster such as Hurricane Sandy. (Disaster Med Public Health Preparedness. 2014;0:1-4).

  5. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    Science.gov (United States)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  6. Responses of Two Litter-Based Invertebrate Communities to Changes in Canopy Cover in a Forest Subject to Hurricanes

    Science.gov (United States)

    Barbara Richardson; Michael Richardson; Grizelle González

    2018-01-01

    Tropical forests are subject to seasonal hurricanes resulting in cycles of canopy opening and deposition of litter, followed by periods of recovery and canopy closure. Herein, we review two studies of litter-based communities in Puerto Rico; (i) a survey of bromeliad invertebrates in three montane forest types along an elevational gradient in 1993–1997, during a period...

  7. Brief communication "Hurricane Irene: a wake-up call for New York City?"

    Directory of Open Access Journals (Sweden)

    J. C. J. H. Aerts

    2012-06-01

    Full Text Available The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit to the city from a hurricane may expose an enormous number of people to flooding. A major hurricane has the potential to cause large-scale damage in NYC. The city's resilience to flooding can be increased by improving and integrating flood insurance, flood zoning, and building code policies.

  8. Conceptualizing Interprofessional Teams as Multi-Team Systems-Implications for Assessment and Training.

    Science.gov (United States)

    West, Courtney; Landry, Karen; Graham, Anna; Graham, Lori; Cianciolo, Anna T; Kalet, Adina; Rosen, Michael; Sherman, Deborah Witt

    2015-01-01

    SGEA 2015 CONFERENCE ABSTRACT (EDITED). Evaluating Interprofessional Teamwork During a Large-Scale Simulation. Courtney West, Karen Landry, Anna Graham, and Lori Graham. CONSTRUCT: This study investigated the multidimensional measurement of interprofessional (IPE) teamwork as part of large-scale simulation training. Healthcare team function has a direct impact on patient safety and quality of care. However, IPE team training has not been the norm. Recognizing the importance of developing team-based collaborative care, our College of Nursing implemented an IPE simulation activity called Disaster Day and invited other professions to participate. The exercise consists of two sessions: one in the morning and another in the afternoon. The disaster scenario is announced just prior to each session, which consists of team building, a 90-minute simulation, and debriefing. Approximately 300 Nursing, Medicine, Pharmacy, Emergency Medical Technicians, and Radiology students and over 500 standardized and volunteer patients participated in the Disaster Day event. To improve student learning outcomes, we created 3 competency-based instruments to evaluate collaborative practice in multidimensional fashion during this exercise. A 20-item IPE Team Observation Instrument designed to assess interprofessional team's attainment of Interprofessional Education Collaborative (IPEC) competencies was completed by 20 faculty and staff observing the Disaster Day simulation. One hundred sixty-six standardized patients completed a 10-item Standardized Patient IPE Team Evaluation Instrument developed from the IPEC competencies and adapted items from the 2014 Henry et al. PIVOT Questionnaire. This instrument assessed the standardized or volunteer patient's perception of the team's collaborative performance. A 29-item IPE Team's Perception of Collaborative Care Questionnaire, also created from the IPEC competencies and divided into 5 categories of Values/Ethics, Roles and Responsibilities

  9. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  10. Utility and assessment of non-technical skills for rapid response systems and medical emergency teams.

    Science.gov (United States)

    Chalwin, R P; Flabouris, A

    2013-09-01

    Efforts are ongoing to improve outcomes from cardiac arrest and medical emergencies. A promising quality improvement modality is use of non-technical skills (NTS) that aim to address human factors through improvements in performance of leadership, communication, situational awareness and decision-making. Originating in the airline industry, NTS training has been successfully introduced into anaesthesia, surgery, emergency medicine and other acute medical specialities. Some aspects of NTS have already achieved acceptance for cardiac arrest teams. Leadership skills are emphasised in advanced life support training and have shown favourable results when employed in simulated and clinical resuscitation scenarios. The application of NTS in medical emergency teams as part of a rapid response system attending medical emergencies is less certain; however, observations of simulations have also shown promise. This review highlights the potential benefits of NTS competency for cardiac arrest teams and, more importantly, medical emergency teams because of the diversity of clinical scenarios encountered. Discussion covers methods to assess and refine NTS and NTS training to optimise performance in the clinical environment. Increasing attention should be applied to yielding meaningful patient and organisational outcomes from use of NTS. Similarly, implementation of any training course should receive appropriate scrutiny to refine team and institutional performance. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  11. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    Science.gov (United States)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  12. Support for harmful treatment and reduction of empathy toward blacks: "Remnants" of stereotype activation involving Hurricane Katrina and "Lil' Kim"

    NARCIS (Netherlands)

    Johnson, J.D.; Bushman, B.J.

    2008-01-01

    Two experiments involving White participants tested the influence of media-based Black stereotypes on subsequent responses to Black and White persons-in-need. Experiment 1 showed that priming the "Black criminal" stereotype through exposure to photographs of Blacks looting after Hurricane Katrina

  13. Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989

    Science.gov (United States)

    Larsen, Matthew C.; Torres-Sanchez, Angel J.

    1992-01-01

    On the morning of September 18, 1989, a category-four hurricane struck eastern Puerto Rico with a sustained wind speed in excess of 46 m/s. The 24-h rainfall accumulation from the hurricane ranged from 100 to 339 mm. Average rainfall intensities ranging from 34 to 39 mm/h were calculated for 4 and 6 h periods, respectively, at a rain gage equipped with satellite telemetry, and at an observer station. The hurricane rainfall triggered more than 400 landslides in the steeply sloping, highly dissected mountains of eastern Puerto Rico. Of these landslides, 285 were mapped from aerial photography which covered 6474 ha. Many of the mapped landslides were on northeast- and northwest-facing slopes at the eastern terminus of the mountains, nearest the hurricane path. The surface area of individual landslides ranged from 18 m2 to 4500 m2, with a median size of 148 m2. The 285 landslides disturbed 0.11% of the land surface in the area covered by aerial photographs. An approximate denudation rate of 164 mm/1000 y was calculated from the volume of material eroded by landsliding and the 10-y rainfall recurrence interval.

  14. Information needs for the rapid response team electronic clinical tool.

    Science.gov (United States)

    Barwise, Amelia; Caples, Sean; Jensen, Jeffrey; Pickering, Brian; Herasevich, Vitaly

    2017-10-02

    Information overload in healthcare is dangerous. It can lead to critical errors and delays. During Rapid Response Team (RRT) activations providers must make decisions quickly to rescue patients from physiological deterioration. In order to understand the clinical data required and how best to present that information in electronic systems we aimed to better assess the data needs of providers on the RRT when they respond to an event. A web based survey to evaluate clinical data requirements was created and distributed to all RRT providers at our institution. Participants were asked to rate the importance of each data item in guiding clinical decisions during a RRT event response. There were 96 surveys completed (24.5% response rate) with fairly even distribution throughout all clinical roles on the RRT. Physiological data including heart rate, respiratory rate, and blood pressure were ranked by more than 80% of responders as being critical information. Resuscitation status was also considered critically useful by more than 85% of providers. There is a limited dataset that is considered important during an RRT. The data is widely available in EMR. The findings from this study could be used to improve user-centered EMR interfaces.

  15. We will be champions: Leaders' confidence in 'us' inspires team members' team confidence and performance.

    Science.gov (United States)

    Fransen, K; Steffens, N K; Haslam, S A; Vanbeselaere, N; Vande Broek, G; Boen, F

    2016-12-01

    The present research examines the impact of leaders' confidence in their team on the team confidence and performance of their teammates. In an experiment involving newly assembled soccer teams, we manipulated the team confidence expressed by the team leader (high vs neutral vs low) and assessed team members' responses and performance as they unfolded during a competition (i.e., in a first baseline session and a second test session). Our findings pointed to team confidence contagion such that when the leader had expressed high (rather than neutral or low) team confidence, team members perceived their team to be more efficacious and were more confident in the team's ability to win. Moreover, leaders' team confidence affected individual and team performance such that teams led by a highly confident leader performed better than those led by a less confident leader. Finally, the results supported a hypothesized mediational model in showing that the effect of leaders' confidence on team members' team confidence and performance was mediated by the leader's perceived identity leadership and members' team identification. In conclusion, the findings of this experiment suggest that leaders' team confidence can enhance members' team confidence and performance by fostering members' identification with the team. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: Implications for barrier-estuary connectivity

    Science.gov (United States)

    Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil K.; Navoy, Anthony S.

    2016-01-01

    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.

  17. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    Science.gov (United States)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  18. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  19. How Disasters Affect Local Labor Markets: The Effects of Hurricanes in Florida

    Science.gov (United States)

    Belasen, Ariel R.; Polachek, Solomon W.

    2009-01-01

    This study improves upon the Difference in Difference approach by examining exogenous shocks using a Generalized Difference in Difference (GDD) technique that identifies economic effects of hurricanes. Based on the Quarterly Census of Employment and Wages data, worker earnings in Florida counties hit by a hurricane increase up to 4 percent,…

  20. Just-in-Time Training: The Lessons of Hurricane Katrina, 10 Years Later

    Science.gov (United States)

    Boerner, Heather

    2016-01-01

    Hurricane Katrina reshaped college workforce development programs as thoroughly as it did the coastline--but in this case, the changes were for the good of students, employers and the community. This article discusses the effects and changes made by 4 community colleges who were effected by Hurricane Katrina: (1) Louisiana Community and Technical…

  1. Factors influencing mine rescue team behaviors.

    Science.gov (United States)

    Jansky, Jacqueline H; Kowalski-Trakofler, K M; Brnich, M J; Vaught, C

    2016-01-01

    A focus group study of the first moments in an underground mine emergency response was conducted by the National Institute for Occupational Safety and Health (NIOSH), Office for Mine Safety and Health Research. Participants in the study included mine rescue team members, team trainers, mine officials, state mining personnel, and individual mine managers. A subset of the data consists of responses from participants with mine rescue backgrounds. These responses were noticeably different from those given by on-site emergency personnel who were at the mine and involved with decisions made during the first moments of an event. As a result, mine rescue team behavior data were separated in the analysis and are reported in this article. By considering the responses from mine rescue team members and trainers, it was possible to sort the data and identify seven key areas of importance to them. On the basis of the responses from the focus group participants with a mine rescue background, the authors concluded that accurate and complete information and a unity of purpose among all command center personnel are two of the key conditions needed for an effective mine rescue operation.

  2. The impact of Hurricane Sandy on the mental health of New York area residents.

    Science.gov (United States)

    Schwartz, Rebecca M; Sison, Cristina; Kerath, Samantha M; Murphy, Lisa; Breil, Trista; Sikavi, Daniel; Taioli, Emanuela

    2015-01-01

    To evaluate the long-term psychological impact of Hurricane Sandy on New York residents. Prospective, cross-sectional study. Community-based study. From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure). Depression, anxiety, and post-traumatic stress disorder (PTSD). Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues. Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.

  3. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    Science.gov (United States)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  4. Satellite and Aerial Remote Sensing in Support of Disaster Response Operations Conducted by the Texas Division of Emergency Management

    Science.gov (United States)

    Wells, G. L.; Tapley, B. D.; Bettadpur, S. V.; Howard, T.; Porter, B.; Smith, S.; Teng, L.; Tapley, C.

    2014-12-01

    The effective use of remote sensing products as guidance to emergency managers and first responders during field operations requires close coordination and communication with state-level decision makers, incident commanders and the leaders of individual strike teams. Information must be tailored to meet the needs of different emergency support functions and must contain current (ideally near real-time) data delivered in standard formats in time to influence decisions made under rapidly changing conditions. Since 2003, a representative of the University of Texas Center for Space Research (CSR) has served as a member of the Governor's Emergency Management Council and has directed the flow of information from remote sensing observations and high performance computing modeling and simulations to the Texas Division of Emergency Management in the State Operations Center. The CSR team has supported response and recovery missions resulting from hurricanes, tornadoes, flash floods, wildfires, oil spills and other natural and man-made disasters in Texas and surrounding states. Through web mapping services, state emergency managers and field teams have received threat model forecasts, real-time vehicle tracking displays and imagery to support search-and-clear operations before hurricane landfall, search-and-rescue missions following floods, tactical wildfire suppression, pollution monitoring and hazardous materials detection. Data servers provide near real-time satellite imagery collected by CSR's direct broadcast receiving system and post data products delivered during activations of the United Nations International Charter on Space and Major Disasters. In the aftermath of large-scale events, CSR is charged with tasking state aviation resources, including the Air National Guard and Texas Civil Air Patrol, to acquire geolocated aerial photography of the affected region for wide area damage assessment. A data archive for each disaster is available online for years following

  5. Investigation of long-term hurricane activity

    NARCIS (Netherlands)

    Nguyen, B.M.; Van Gelder, P.H.A.J.M.

    2012-01-01

    This paper presents a new approach of applying numerical methods to model storm processes. A storm empirical track technique is utilized to simulate the full tracks of hurricanes, starting with their initial points over the sea and ending with their landfall locations or final dissipations. The

  6. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    Science.gov (United States)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  7. Initial estimates of hurricane Katrina impacts of Mississippi gulf coast forest resources

    Science.gov (United States)

    Patrick A. Glass; Sonja N. Oswalt

    2007-01-01

    Hurricane Katrina pummeled the Gulf Coast of Mississippi on August 29, 2005. The eye wall of the storm passed directly over Hancock and Pearl River Counties. Harrison, Jackson, Stone, and George Counties on the windward side of the hurricane's path sustained severe damage before the storm's strength dissipated as it moved farther inland (fig. 1).

  8. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  9. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  10. Petroleum industry assists hurricane relief

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas

  11. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  12. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    Science.gov (United States)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.

    2017-10-01

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1}). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.

  13. Question of uncertainty : Transitioning from hurricanes to the BP Deepwater Horizon oil spill in coastal Louisiana

    Science.gov (United States)

    Cheong, S.

    2013-12-01

    Uncertainty is highlighted in the case of the oil spill. Hurricane is considered a known factor that people are used to and know how to handle. This uncertainty is primarily attributed to the magnitude of the spill. As the largest spill in the U.S., the long-term effects of the spill are difficult to assess. Uncertainty, however, has more to do with the novelty of the disaster and the accompanying regulatory change than the specific characteristics of this spill such as the size and longevity of the spill. The unfamiliarity with the Oil Pollution Act results in a lack of knowledge and uncertainty about local and state responses to the spill. The unpreparedness and unfamiliarity of this spill accompanied by different regulations underlie people's sense of uncertainty. This paper examines coastal Louisiana's shift from frequent hurricanes to the BP Deepwater Horizon oil spill in 2010, particularly focusing on the effects of changed regulations from the Stafford Act to the Oil Pollution Act. It documents how the federal, state, and local governments adjust, and discusses the shifting emphasis to the environment with the activation of the Oil Pollution Act and the Clean Water Act. One assumption is that people's established ways of behavior are commonly shaped by their previous experience of disasters, but this can paradoxically hinder their timely adaptation to new or different, high- impact environmental change. This leads to testing the hypothesis whether greater vulnerabilities result from adaptations to previous and well-known disasters. Results: The structural differences in regulations dictate the way governments and communities respond and adapt to the oil spill. The new set of regulations during the BP Deepwater Horizon oil spill unlike the ones during hurricanes served as barriers to adaptation. Governments at federal, state, and local levels had difficulties adjusting to new rules and changed authorities, and they, in turn, generated uncertainty and

  14. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    Science.gov (United States)

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  15. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    Science.gov (United States)

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  16. Assessment of Risk of Cholera in Haiti following Hurricane Matthew.

    Science.gov (United States)

    Khan, Rakib; Anwar, Rifat; Akanda, Shafqat; McDonald, Michael D; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita

    2017-09-01

    Damage to the inferior and fragile water and sanitation infrastructure of Haiti after Hurricane Matthew has created an urgent public health emergency in terms of likelihood of cholera occurring in the human population. Using satellite-derived data on precipitation, gridded air temperature, and hurricane path and with information on water and sanitation (WASH) infrastructure, we tracked changing environmental conditions conducive for growth of pathogenic vibrios. Based on these data, we predicted and validated the likelihood of cholera cases occurring past hurricane. The risk of cholera in the southwestern part of Haiti remained relatively high since November 2016 to the present. Findings of this study provide a contemporary process for monitoring ground conditions that can guide public health intervention to control cholera in human population by providing access to vaccines, safe WASH facilities. Assuming current social and behavioral patterns remain constant, it is recommended that WASH infrastructure should be improved and considered a priority especially before 2017 rainy season.

  17. From Leaders, For Leaders: Advice From the Lived Experience of Leaders in Community Health Sector Disaster Recovery After Hurricanes Irene and Sandy.

    Science.gov (United States)

    Craddock, Hillary A; Walsh, Lauren; Strauss-Riggs, Kandra; Schor, Kenneth

    2016-08-01

    Hurricanes Sandy and Irene damaged and destroyed homes, businesses, and infrastructure, and recovery after these storms took years. The goal of this article was to learn from the lived experience of local-level decision-makers actively involved in the long-term disaster recovery process after Hurricanes Irene and Sandy. Respondents provided professional recommendations, based on their experience, to assist other organizations in preparing for, responding to, and recovering from disasters. Semi-structured interviews were conducted with professionals actively involved in recovery from Hurricane Irene or Hurricane Sandy in 5 different communities. Transcripts were qualitatively analyzed. Respondents' advice fell into 5 main categories: planning and evaluation, education and training, fundraising and donations management, building relationships, and disaster behavioral health. The lived experience of those in disaster recovery can provide guidance for planning, education, and training both within and outside their communities in order to better respond to and recover from future disasters. These data help to facilitate a community of practice by compiling and sharing the lived experience of leaders who experienced large-scale disasters, and the outcomes of this analysis help to show what areas of planning require special attention in the phases of preparedness, response, and recovery. (Disaster Med Public Health Preparedness. 2016;10:623-630).

  18. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  19. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  20. Evacuating the Area of a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If a hurricane warning is issued for your area, or authorities tell you to evacuate, take only essential items. If you have time, turn off gas, electricity, and water and disconnect appliances.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/10/2007.

  1. Longwave emission trends over Africa and implications for Atlantic hurricanes

    Science.gov (United States)

    Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.

    2017-09-01

    The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.

  2. MEASURING PRODUCTIVITY OF SOFTWARE DEVELOPMENT TEAMS

    Directory of Open Access Journals (Sweden)

    Goparaju Purna Sudhakar

    2012-02-01

    Full Text Available This paper gives an exhaustive literature review of the techniques and models available tomeasure the productivity of software development teams. Definition of productivity, measuringindividual programmer’s productivity, and measuring software development team productivity arediscussed. Based on the literature review it was found that software productivity measurement canbe done using SLOC (Source Lines of Code, function points, use case points, object points, andfeature points. Secondary research findings indicate that the team size, response time, taskcomplexity, team climate and team cohesion have an impact on software development teamproductivity. List of factors affecting the software development team productivity are studied andreviewed.

  3. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    Science.gov (United States)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  4. JLAB Hurricane recovery

    International Nuclear Information System (INIS)

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-01-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail

  5. Forecasting Hurricane Tracks Using a Complex Adaptive System

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  6. Use of outpatient mental health services by homeless veterans after hurricanes.

    Science.gov (United States)

    Brown, Lisa M; Barnett, Scott; Hickling, Edward; Frahm, Kathryn; Campbell, Robert R; Olney, Ronald; Schinka, John A; Casey, Roger

    2013-05-01

    Little is known about the impact of hurricanes on people who are homeless at the time a disaster occurs. Although researchers have extensively studied the psychosocial consequences of disaster produced homelessness on the general population, efforts focused on understanding how homeless people fare have been limited to a few media reports and the gray literature. In the event of a hurricane, homeless veterans may be at increased risk for negative outcomes because of their cumulative vulnerabilities. Health care statistics consistently document that homeless veterans experience higher rates of medical, emotional, substance abuse, legal, and financial problems compared with the general population. This study used the 2004 to 2006 Veterans Health Administration (VHA) Outpatient Medical Dataset to examine the effects of hurricanes on use of outpatient mental health services by homeless veterans. Homeless veterans residing in hurricane-affected counties were significantly more likely to participate in group psychotherapy (32.4% vs. 13.4%, p < .002), but less likely to participate in individual 30-40-min sessions with medical evaluations (3.5% vs. 17.3%, p < .001). The study findings have implications for homeless programs and the provision of VHA mental health services to homeless veterans postdisaster. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Science.gov (United States)

    The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The EPA Office of Research & Development (ORD) modified the original model from NOAA to fit the model parameters for the Buzzards Bay region. The models show storm surge extent for the Mattapoisett area and therefore the flooding area was reduced to the study area. Areas of flooding that were not connected to the main water body were removed. The files in the geodatabase are:Cat2_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 2 hurricane with 0 ft sea level riseCat4_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 4 hurricane with 0 ft sea level riseCat4_SLR4_Int_Feet_dissolve_Mattapoisett: Future Category 4 hurricane with 4 feet sea level riseThe features support the Weather Ready Mattapoisett story map, which can be accessed via the following link:https://epa.maps.arcgis.com/apps/MapJournal/index.html?appid=1ff4f1d28a254cb689334799d94b74e2

  8. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    Science.gov (United States)

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  9. Impacts of cloud flare-ups on hurricane intensity resulting from departures from balance laws

    Directory of Open Access Journals (Sweden)

    T. N. Krishnamurti

    2012-05-01

    Full Text Available Cloud flare-ups along the inner eye wall of a hurricane lead to enhancement of cloud scale divergence, which in turn leads to a large local enhancement of the departure from balance laws and can lead to local supergradient winds. This scenario is tested using the results from a mesoscale microphysical model at horizontal resolution of 1.33 km for the simulation of hurricane Katrina. Rainwater mixing ratio tags growing cloud elements. The departure from balance laws includes terms such as the local, horizontal and vertical advections of divergence, divergence square and a term invoking the gradient of vertical velocity. It is noted that these terms collectively contribute to a substantial local enhancement of the departure from balance laws. Departures from balance laws are related to the radial gradient wind imbalances in a storm-centred coordinate. In this study, several examples, from the hurricane Katrina simulations, that display this scenario of rapid intensification are illustrated. Organisation of convection in the azimuthal direction seems important for the hurricane scale; cloud flare-ups away from such regions of azimuthal organisation fail to contribute to this scenario for the overall intensification of the hurricane.

  10. Modelling dune erosion, overwash and breaching at Fire Island (NY) during hurricane Sandy

    NARCIS (Netherlands)

    De Vet, P.L.M.; McCall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M.

    2015-01-01

    In 2012, Hurricane Sandy caused a breach at Fire Island (NY, USA), near Pelican Island. This paper aims at modelling dune erosion, overwash and breaching processes that occured during the hurricane event at this stretch of coast with the numerical model XBeach. By using the default settings, the

  11. Risk Perceptions on Hurricanes: Evidence from the U.S. Stock Market.

    Science.gov (United States)

    Feria-Domínguez, José Manuel; Paneque, Pilar; Gil-Hurtado, María

    2017-06-05

    This article examines the market reaction of the main Property and Casualty (P & C) insurance companies listed in the New York Stock Exchange (NYSE) to seven most recent hurricanes that hit the East Coast of the United States from 2005 to 2012. For this purpose, we run a standard short horizon event study in order to test the existence of abnormal returns around the landfalls. P & C companies are one of the most affected sectors by such events because of the huge losses to rebuild, help and compensate the inhabitants of the affected areas. From the financial investors' perception, this kind of events implies severe losses, which could influence the expected returns. Our research highlights the existence of significant cumulative abnormal returns around the landfall event window in most of the hurricanes analyzed, except for the Katrina and Sandy Hurricanes.

  12. Metal concentrations in schoolyard soils from New Orleans, Louisiana before and after Hurricanes Katrina and Rita.

    Science.gov (United States)

    Presley, Steven M; Abel, Michael T; Austin, Galen P; Rainwater, Thomas R; Brown, Ray W; McDaniel, Les N; Marsland, Eric J; Fornerette, Ashley M; Dillard, Melvin L; Rigdon, Richard W; Kendall, Ronald J; Cobb, George P

    2010-06-01

    The long-term environmental impact and potential human health hazards resulting from Hurricanes Katrina and Rita throughout much of the United States Gulf Coast, particularly in the New Orleans, Louisiana, USA area are still being assessed and realized after more than four years. Numerous government agencies and private entities have collected environmental samples from throughout New Orleans and found concentrations of contaminants exceeding human health screening values as established by the United States Environmental Protection Agency (USEPA) for air, soil, and water. To further assess risks of exposure to toxic concentrations of soil contaminants for citizens, particularly children, returning to live in New Orleans following the storms, soils collected from schoolyards prior to Hurricane Katrina and after Hurricane Rita were screened for 26 metals. Concentrations exceeding USEPA Regional Screening Levels (USEPA-RSL), total exposure, non-cancer endpoints, for residential soils for arsenic (As), iron (Fe), lead (Pb), and thallium (Tl) were detected in soil samples collected from schoolyards both prior to Hurricane Katrina and after Hurricane Rita. Approximately 43% (9/21) of schoolyard soils collected prior to Hurricane Katrina contained Pb concentrations greater than 400mgkg(-1), and samples from four schoolyards collected after Hurricane Rita contained detectable Pb concentrations, with two exceeding 1700mgkg(-1). Thallium concentrations exceeded USEPA-RSL in samples collected from five schoolyards after Hurricane Rita. Based upon these findings and the known increased susceptibility of children to the effects of Pb exposure, a more extensive assessment of the soils in schoolyards, public parks and other residential areas of New Orleans for metal contaminants is warranted. 2010 Elsevier Ltd. All rights reserved.

  13. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  14. Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita

    Science.gov (United States)

    Cruz, A. M.; Krausmann, E.

    2009-04-01

    The damage inflicted by hurricanes Katrina and Rita to the Gulf-of-Mexico's (GoM) oil and gas production, both onshore and offshore, has shown the proneness of industry to Natech accidents (natural hazard-triggered hazardous-materials releases). In order to contribute towards a better understanding of Natech events, we assessed the damage to and hazardous-materials releases from offshore oil and natural-gas platforms and pipelines induced by hurricanes Katrina and Rita. Data was obtained through a review of published literature and interviews with government officials and industry representatives from the affected region. We also reviewed over 60,000 records of reported hazardous-materials releases from the National Response Center's (NRC) database to identify and analyze the hazardous-materials releases directly attributed to offshore oil and gas platforms and pipelines affected by the two hurricanes. Our results show that hurricanes Katrina and Rita destroyed at least 113 platforms, and severely damaged at least 53 others. Sixty percent of the facilities destroyed were built 30 years ago or more prior to the adoption of the more stringent design standards that went into effect after 1977. The storms also destroyed 5 drilling rigs and severely damaged 19 mobile offshore drilling units (MODUs). Some 19 MODUs lost their moorings and became adrift during the storms which not only posed a danger to existing facilities but the dragging anchors also damaged pipelines and other infrastructure. Structural damage to platforms included toppling of sections, and tilting or leaning of platforms. Possible causes for failure of structural and non-structural components of platforms included loading caused by wave inundation of the deck. Failure of rigs attached to platforms was also observed resulting in significant damage to the platform or adjacent infrastructure, as well as damage to equipment, living quarters and helipads. The failures are attributable to tie-down components

  15. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    ... evacuation decision-making. To accomplish this, the study provides information on the extent and severity of potential flooding from hurricanes, the associated vulnerable population, capacities of existing public shelters...

  16. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    .... The purpose of the study is to provide the Rhode Island Emergency Management Agency and Rhode Island coastal communities with realistic data quantifying the major factors involved in hurricane...

  17. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  18. Assessing the present and future probability of Hurricane Harvey’s rainfall

    OpenAIRE

    Emanuel, Kerry

    2017-01-01

    Significance Natural disasters such as the recent Hurricanes Harvey, Irma, and Maria highlight the need for quantitative estimates of the risk of such disasters. Statistically based risk assessment suffers from short records of often poor quality, and in the case of meteorological hazards, from the fact that the underlying climate is changing. This study shows how a recently developed physics-based risk assessment method can be applied to assessing the probabilities of extreme hurricane rainf...

  19. Environmental chemical data for perishable sediments and soils collected in New Orleans, Louisiana, and along the Louisiana Delta following Hurricanes Katrina and Rita, 2005

    Science.gov (United States)

    Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.

    2008-01-01

    In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg

  20. From Loose Groups to Effective Teams: The Nine Key Factors of the Team Landscape.

    Science.gov (United States)

    Sheard, A. G.; Kakabadse, A. P.

    2002-01-01

    A loose group of individuals working on a task differs from an effective team on nine factors: clearly defined goals, priorities, roles and responsibilities, self-awareness, leadership, group dynamics, communications, content, and infrastructure. Ways to eliminate barriers and speed formation of effective teams could be based on those factors.…