WorldWideScience

Sample records for hurricane katrina flooded

  1. Risk to life due to flooding in post-Katrina New Orleans

    Science.gov (United States)

    Miller, A.; Jonkman, S. N.; Van Ledden, M.

    2015-01-01

    Since the catastrophic flooding of New Orleans due to Hurricane Katrina in 2005, the city's hurricane protection system has been improved to provide protection against a hurricane load with a 1/100 per year exceedance frequency. This paper investigates the risk to life in post-Katrina New Orleans. In a flood risk analysis the probabilities and consequences of various flood scenarios have been analyzed for the central area of the city (the metro bowl) to give a preliminary estimate of the risk to life in the post-Katrina situation. A two-dimensional hydrodynamic model has been used to simulate flood characteristics of various breaches. The model for estimation of fatality rates is based on the loss of life data for Hurricane Katrina. Results indicate that - depending on the flood scenario - the estimated loss of life in case of flooding ranges from about 100 to nearly 500, with the highest life loss due to breaching of the river levees leading to large flood depths. The probability and consequence estimates are combined to determine the individual risk and societal risk for New Orleans. When compared to risks of other large-scale engineering systems (e.g., other flood prone areas, dams and the nuclear sector) and acceptable risk criteria found in literature, the risks for the metro bowl are found to be relatively high. Thus, despite major improvements to the flood protection system, the flood risk to life of post-Katrina New Orleans is still expected to be significant. Indicative effects of reduction strategies on the risk level are discussed as a basis for further evaluation and discussion.

  2. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  3. ENVIRONMENTAL CONDITIONS IN NORTHERN GULF OF MEXICO COASTAL WATERS FOLLOWING HURRICANE KATRINA

    Science.gov (United States)

    On the morning of August 29, 2005 Hurricane Katrina struck the coast of Louisiana, between New Orleans and Biloxi, Mississippi, as a strong category three hurricane on the Saffir-Simpson scale. The massive winds and flooding had the potential for a tremendous environmental impac...

  4. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  5. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  6. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Science.gov (United States)

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  7. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    ; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof

  8. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  9. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  10. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  11. Hurricane Katrina as a "teachable moment"

    Directory of Open Access Journals (Sweden)

    M. H. Glantz

    2008-04-01

    Full Text Available By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time.

    Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region.

    The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1.

    Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on

  12. Hurricane Katrina as a "teachable moment"

    Science.gov (United States)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  13. A Qualitative Case Study of Hurricane Katrina and University Presidential Leadership

    Science.gov (United States)

    McNeely, Stanton Francis, III

    2013-01-01

    Leaders of many institutions of higher education are not equipped to manage a major crisis or disaster, and presidential leadership during a disaster is essential, as university presidents are ultimately accountable for the well-being of their institutions. Hurricane Katrina devastated New Orleans in 2005, flooding 80% of the city for many weeks…

  14. Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles

    OpenAIRE

    Bennett, Joan W.

    2015-01-01

    In the aftermath of Hurricane Katrina, the levees protecting New Orleans, Louisiana failed. Because approximately 80% of the city was under sea level, widespread flooding ensued. As a resident of New Orleans who had evacuated before the storm and a life-long researcher on filamentous fungi, I had known what to expect. After the hurricane I traveled home with a suitcase full of Petri dishes and sampling equipment so as to study the fungi that were “eating my house.” Not only were surfaces cove...

  15. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  16. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  17. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  18. Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery

    Science.gov (United States)

    Spruce, Joseph; McKellip, Rodney

    2006-01-01

    Hurricane Katrina hit southeastern Louisiana and the Mississippi Gulf Coast as a Category 3 hurricane with storm surges as high as 9 m. Katrina devastated several coastal towns by destroying or severely damaging hundreds of homes. Several Federal agencies are assessing storm impacts and assisting recovery using high-spatial-resolution remotely sensed data from satellite and airborne platforms. High-quality IKONOS satellite imagery was collected on September 2, 2005, over southwestern Mississippi. Pan-sharpened IKONOS multispectral data and ERDAS IMAGINE software were used to classify post-storm land cover for coastal Hancock and Harrison Counties. This classification included a storm debris category of interest to FEMA for disaster mitigation. The classification resulted from combining traditional unsupervised and supervised classification techniques. Higher spatial resolution aerial and handheld photography were used as reference data. Results suggest that traditional classification techniques and IKONOS data can map wood-dominated storm debris in open areas if relevant training areas are used to develop the unsupervised classification signatures. IKONOS data also enabled other hurricane damage assessment, such as flood-deposited mud on lawns and vegetation foliage loss from the storm. IKONOS data has also aided regional Katrina vegetation damage surveys from multidate Land Remote Sensing Satellite and Moderate Resolution Imaging Spectroradiometer data.

  19. Predictors of business return in New Orleans after Hurricane Katrina.

    Directory of Open Access Journals (Sweden)

    Nina S N Lam

    Full Text Available We analyzed the business reopening process in New Orleans after Hurricane Katrina, which hit the region on August 29, 2005, to better understand what the major predictors were and how their impacts changed through time. A telephone survey of businesses in New Orleans was conducted in October 2007, 26 months after Hurricane Katrina. The data were analyzed using a modified spatial probit regression model to evaluate the importance of each predictor variable through time. The results suggest that the two most important reopening predictors throughout all time periods were the flood depth at the business location and business size as represented by its wages in a logarithmic form. Flood depth was a significant negative predictor and had the largest marginal effects on the reopening probabilities. Smaller businesses had lower reopening probabilities than larger ones. However, the nonlinear response of business size to the reopening probability suggests that recovery aid would be most effective for smaller businesses than for larger ones. The spatial spillovers effect was a significant positive predictor but only for the first nine months. The findings show clearly that flood protection is the overarching issue for New Orleans. A flood protection plan that reduces the vulnerability and length of flooding would be the first and foremost step to mitigate the negative effects from climate-related hazards and enable speedy recovery. The findings cast doubt on the current coastal protection efforts and add to the current debate of whether coastal Louisiana will be sustainable or too costly to protect from further land loss and flooding given the threat of sea-level rise. Finally, a plan to help small businesses to return would also be an effective strategy for recovery, and the temporal window of opportunity that generates the greatest impacts would be the first 6∼9 months after the disaster.

  20. Predictors of business return in New Orleans after Hurricane Katrina.

    Science.gov (United States)

    Lam, Nina S N; Arenas, Helbert; Pace, Kelley; LeSage, James; Campanella, Richard

    2012-01-01

    We analyzed the business reopening process in New Orleans after Hurricane Katrina, which hit the region on August 29, 2005, to better understand what the major predictors were and how their impacts changed through time. A telephone survey of businesses in New Orleans was conducted in October 2007, 26 months after Hurricane Katrina. The data were analyzed using a modified spatial probit regression model to evaluate the importance of each predictor variable through time. The results suggest that the two most important reopening predictors throughout all time periods were the flood depth at the business location and business size as represented by its wages in a logarithmic form. Flood depth was a significant negative predictor and had the largest marginal effects on the reopening probabilities. Smaller businesses had lower reopening probabilities than larger ones. However, the nonlinear response of business size to the reopening probability suggests that recovery aid would be most effective for smaller businesses than for larger ones. The spatial spillovers effect was a significant positive predictor but only for the first nine months. The findings show clearly that flood protection is the overarching issue for New Orleans. A flood protection plan that reduces the vulnerability and length of flooding would be the first and foremost step to mitigate the negative effects from climate-related hazards and enable speedy recovery. The findings cast doubt on the current coastal protection efforts and add to the current debate of whether coastal Louisiana will be sustainable or too costly to protect from further land loss and flooding given the threat of sea-level rise. Finally, a plan to help small businesses to return would also be an effective strategy for recovery, and the temporal window of opportunity that generates the greatest impacts would be the first 6∼9 months after the disaster.

  1. Retention of Displaced Students after Hurricanes Katrina and Rita

    Science.gov (United States)

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  2. USGS environmental characterization of flood sediments left in the New Orleans area after Hurricanes Katrina and Rita, 2005--Progress Report

    Science.gov (United States)

    Plumlee, Geoffrey S.; Meeker, Gregory P.; Lovelace, John K.; Rosenbauer, Robert J.; Lamothe, Paul J.; Furlong, Edward T.; Demas, Charles R.

    2006-01-01

    Introduction: The flooding in the greater New Orleans area that resulted from Hurricanes Katrina and Rita in September, 2005, left behind accumulations of sediments up to many centimeters thick on streets, lawns, parking lots, and other flat surfaces. These flood sediment deposits have been the focus of extensive study by the US Environmental Protection Agency (EPA) and Louisiana Department of Environmental Quality (LDEQ) due to concerns that the sediments may contain elevated levels of heavy metals, organic contaminants, and microbes. The U.S. Geological Survey (USGS) is characterizing a limited number of flood sediment samples that were collected on September 15-16 and October 6-7, 2005, from the greater New Orleans area by personnel from the USGS Louisiana Water Science Center in Baton Rouge. Small samples (< 3 pints each) of wet to dry flood sediment were collected from 11 localities around downtown New Orleans on September 15, 2005, and two large samples (40 pints each) of wet flood sediment were collected from the Chalmette area on September 16. Twelve additional samples (8-10 pints each) were collected from New Orleans, Slidell, Rigolets, and Violet on October 6 and 7. The USGS characterization studies of these flood sediments are designed to produce data and interpretations regarding how the sediments and any contained contaminants may respond to environmental processes. This information will be of use to cleanup managers and DoI/USGS scientists assessing environmental impacts of the hurricanes and subsequent cleanup activities.

  3. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  4. Race differences in depression vulnerability following Hurricane Katrina.

    Science.gov (United States)

    Ali, Jeanelle S; Farrell, Amy S; Alexander, Adam C; Forde, David R; Stockton, Michelle; Ward, Kenneth D

    2017-05-01

    This study investigated whether racial disparities in depression were present after Hurricane Katrina. Data were gathered from 932 New Orleans residents who were present when Hurricane Katrina struck, and who returned to New Orleans the following year. Multiple logistic regression models evaluated racial differences in screening positive for depression (a score ≥16 on the Center for Epidemiologic Studies Depression Scale), and explored whether differential vulnerability (prehurricane physical and mental health functioning and education level), differential exposure to hurricane-related stressors, and loss of social support moderated and/or reduced the association of race with depression. A univariate logistic regression analysis showed the odds for screening positive for depression were 86% higher for African Americans than for Caucasians (odds ratio [OR] = 1.86 [1.28-2.71], p = .0012). However, after controlling simultaneously for sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors, race was no longer a significant correlate for screening positive for depression (OR = 1.54 [0.95-2.48], p = .0771). The racial disparity in postdisaster depression seems to be confounded by sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors. Nonetheless, even after adjusting for these factors, there was a nonsignificant trend effect for race, which could suggest race played an important role in depression outcomes following Hurricane Katrina. Future studies should examine these associations prospectively, using stronger assessments for depression, and incorporate measures for discrimination and segregation, to further understand possible racial disparities in depression after Hurricane Katrina. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Hurricane Katrina - Murphy Oil Spill Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  6. New Orleans After Hurricane Katrina: An Unnatural Disaster?

    Science.gov (United States)

    McNamara, D.; Werner, B.; Kelso, A.

    2005-12-01

    Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.

  7. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  8. Large-scale Vertical Motions, Intensity Change and Precipitation Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    Science.gov (United States)

    Reddy, S. R.; Kwembe, T.; Zhang, Z.

    2016-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data for Convective Available Potential Energy for water vapor (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorm, tornadoes, storm surge and floods Numerical model (WRF/ARW) with data assimilations have been used for this research to investigate the model's performances on hurricane tracks and intensities associated with the hurricane Katrina, which began to strengthen until reaching Category 5 on 28 August 2005. The model was run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 hr periods, from August 28th to August 30th. The model output was compared with the observations and is capable of simulating the surface features, intensity change and track associated with hurricane Katrina.

  9. Breakup of New Orleans Households after Hurricane Katrina

    Science.gov (United States)

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  10. Lessons Learnt From Hurricane Katrina.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  11. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  12. Just-in-Time Training: The Lessons of Hurricane Katrina, 10 Years Later

    Science.gov (United States)

    Boerner, Heather

    2016-01-01

    Hurricane Katrina reshaped college workforce development programs as thoroughly as it did the coastline--but in this case, the changes were for the good of students, employers and the community. This article discusses the effects and changes made by 4 community colleges who were effected by Hurricane Katrina: (1) Louisiana Community and Technical…

  13. Analyzing after-action reports from Hurricanes Andrew and Katrina: repeated, modified, and newly created recommendations.

    Science.gov (United States)

    Knox, Claire Connolly

    2013-01-01

    Thirteen years after Hurricane Andrew struck Homestead, FL, Hurricane Katrina devastated the Gulf Coast of Mississippi, Alabama, and southeastern Louisiana. Along with all its destruction, the term "catastrophic" was redefined. This article extends the literature on these hurricanes by providing a macrolevel analysis of The Governor's Disaster Planning and Response Review Committee Final Report from Hurricane Andrew and three federal after-action reports from Hurricane Katrina, as well as a cursory review of relevant literature. Results provide evidence that previous lessons have not been learned or institutionalized with many recommendations being repeated or modified. This article concludes with a discussion of these lessons, as well as new issues arising during Hurricane Katrina.

  14. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  15. A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005 Simulation

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2011-06-01

    Full Text Available The life cycle of Hurricane Katrina (2005 was simulated using three different modeling systems of Weather Research and Forecasting (WRF mesoscale model. These are, HWRF (Hurricane WRF designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW model and the Non-hydrostatic Mesoscale Model (NMM. The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR, incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina.

  16. Urban sprawl and body mass index among displaced Hurricane Katrina survivors.

    Science.gov (United States)

    Arcaya, Mariana; James, Peter; Rhodes, Jean E; Waters, Mary C; Subramanian, S V

    2014-08-01

    Existing research suggests that walkable environments are protective against weight gain, while sprawling neighborhoods may pose health risks. Using prospective data on displaced Hurricane Katrina survivors, we provide the first natural experimental data on sprawl and body mass index (BMI). The analysis uses prospectively collected pre- (2003-2005) and post-hurricane (2006-2007) data from the Resilience in Survivors of Katrina (RISK) project on 280 displaced Hurricane Katrina survivors who had little control over their neighborhood placement immediately after the disaster. The county sprawl index, a standardized measure of built environment, was used to predict BMI at follow-up, adjusted for baseline BMI and sprawl; hurricane-related trauma; and demographic and economic characteristics. Respondents from 8 New Orleans-area counties were dispersed to 76 counties post-Katrina. Sprawl increased by an average of 1.5 standard deviations (30 points) on the county sprawl index. Each one point increase in sprawl was associated with approximately .05kg/m(2) higher BMI in unadjusted models (95%CI: .01-.08), and the relationship was not attenuated after covariate adjustment. We find a robust association between residence in a sprawling county and higher BMI unlikely to be caused by self-selection into neighborhoods, suggesting that the built environment may foster changes in weight. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  18. The Repopulation of New Orleans After Hurricane Katrina

    National Research Council Canada - National Science Library

    McCarthy, Kevin; Peterson, D. J; Sastry, Narayan; Pollard, Michael

    2006-01-01

    What the future size and composition of the population of New Orleans will be in the aftermath of Hurricane Katrina is a topic of intense interest and discussion among current and displaced residents of the city...

  19. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    Science.gov (United States)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    New Orleans endured flooding on a massive scale subsequent to Hurricane Katrina in August of 2005. Contaminant plumes were noticeable in satellite images of the city in the days following flooding. Many of these plumes were caused by oil, gasoline, and diesel that leaked from inundated vehicles, gas stations, and refineries. News reports also suggested that the flood waters were contaminated with sewage from breached pipes. Effluent plumes such as these pose a potential health hazard to humans and wildlife in the aftermath of hurricanes and potentially from other catastrophic events (e.g., earthquakes, shipping accidents, chemical spills, and terrorist attacks). While the extent of effluent plumes can be gauged with synthetic aperture radar and broad- band visible-infrared images (Rykhus, 2005) (e.g., Radarsat and Landsat ETM+) the composition of the plumes could not be determined. These instruments lack the spectral resolution necessary to do chemical identification. Imaging spectroscopy may help solve this problem. Over 60 flight lines of NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected over New Orleans, the Mississippi Delta, and the Gulf Coast from one to two weeks after Katrina while the contaminated water was being pumped out of flooded areas. These data provide a unique opportunity to test if imaging spectrometer data can be used to identify the chemistry of these flood-related plumes. Many chemicals have unique spectral signatures in the ultraviolet to near-infrared range (0.2 - 2.5 microns) that can be used as fingerprints for their identification. We are particularly interested in detecting thin films of oil, gasoline, diesel, and raw sewage suspended on or in water. If these materials can be successfully differentiated in the lab then we will use spectral-shape matching algorithms to look for their spectral signatures in the AVIRIS data collected over New Orleans and other areas impacted by Katrina. If imaging spectroscopy

  20. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    Science.gov (United States)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2007-01-01

    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.

  1. Mapping the Distribution of Sand Live Oak (Quercus geminata) and Determining Growth Responses to Hurricane Katrina (2005) on Cat Island, Mississippi

    Science.gov (United States)

    Funderburk, W.; Carter, G. A.; Harley, G. L.

    2013-12-01

    William R. Funderburk, Gregory A. Carter, Grant Harley Gulf Coast Geospatial Center, University of Southern Mississippi Department of Geography and Geology Stennis Space Center, MS 39529 U.S.A. william.funderburk@usm.edu The Mississippi-Alabama barrier islands serve to buffer mainland coastal areas from the impacts of hurricanes and other extreme weather events. On August 29, 2005, they were impacted heavily by the wind, waves, and storm surges of Hurricane Katrina. The purpose of this study is to determine the growth responses of Quercus geminata, a dominant tree species on Cat Island, MS, in relation to the impact of Hurricane Katrina. Remotely sensed data was utilized in conjunction with ground data to assess growth response post Hurricane Katrina. The main objectives of this study were: 1) determine growth response of Q. geminata through tree ring analysis; 2) understand how Q. geminata adapted to intense weather and climatic phenomena on Cat Island. The hypotheses tested were: 1) growth rates of Q. geminata on Cat Island were decreased by the impact of Hurricane Katrina 2) trees at higher elevations survived or recovered while trees at lower elevations did not recover or died. Decadal scale stability is required for forest stand development on siliciclastic barrier islands. Thus, monitoring the distribution of forest climax community species is key to understanding siliciclastic, subsiding, barrier island geomorphic processes and their relationships to successional patterns and growth rates. Preliminary results indicate that Q. geminata produces a faint growth ring, survive for at least two to three hundred years and is well-adapted to frequent salt water flooding. Cat Island: False color Image

  2. A comparison of the nursing home evacuation experience between hurricanes katrina (2005) and gustav (2008).

    Science.gov (United States)

    Blanchard, Gary; Dosa, David

    2009-11-01

    One of the tragic legacies of Hurricane Katrina was the loss of life among Louisiana (LA) nursing home (NH) residents. Katrina revealed a staggering lack of emergency preparation and understanding of how to safely evacuate frail populations. Three years later, LA braced for Hurricane Gustav, a storm heralded to rival Katrina's power. Although its magnitude of destruction ultimately paled to Katrina, the warnings and predicted path preceding Gustav yielded a process of NH evacuations similar to Katrina. The goal of this article was to ascertain whether NH administrative directors (ADs) felt more prepared to evacuate before Gustav. In 2006, Dosa et al(5) (J Am Med Dir Assoc, 3/07), interviewed 20 NH ADs by qualitative telephone survey to evaluate their lessons learned from Katrina. Administrators at these 20 participating nursing homes were contacted and asked to participate in a follow-up survey to compare hurricane preparedness between 2005 and 2008. Specifically, ADs were asked if they evacuated before Gustav, their destination, and about logistical issues with evacuation (eg, transportation, injuries). ADs were asked to rate their confidence with state assistance, hurricane transportation, and evacuation preparedness on a 10-point scale (10=most confident) and compare their preparedness to Katrina. Sixteen of the 20 NHs that participated in 2006 agreed to be surveyed-11 of whom held the same position before Katrina. Unlike Katrina, when only 45% evacuated before the storm, all 16 NHs evacuated before Gustav (56% to another NH and 46% to a church, gym, college, or other facility). Overall, ADs rated their confidence in preparedness for Gustav as a mean of 8.3 (range 5 to 10) compared with a mean of 5.4 (range 3 to 8) for Katrina, a 54% improvement. Of the 11 ADs employed pre-Katrina, 73% reported improved collaboration with the state and 55% noted improved transportation. Nevertheless, 7 ADs noted significant logistical problems during evacuation (mostly

  3. Revisiting the Gulf Coast after Katrina

    Science.gov (United States)

    Principal, 2009

    2009-01-01

    In August 2005, the world witnessed one of the most destructive natural disasters on America's mainland. Hurricane Katrina, followed a month later by Hurricane Rita, brought more than broken levees, flooded streets and homes, and destroyed businesses. It caused changes in the dynamics and the demographic and cultural makeup of the region. One of…

  4. Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area.

    Science.gov (United States)

    Sinigalliano, C D; Gidley, M L; Shibata, T; Whitman, D; Dixon, T H; Laws, E; Hou, A; Bachoon, D; Brand, L; Amaral-Zettler, L; Gast, R J; Steward, G F; Nigro, O D; Fujioka, R; Betancourt, W Q; Vithanage, G; Mathews, J; Fleming, L E; Solo-Gabriele, H M

    2007-05-22

    Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters.

  5. Illicit Drug Markets Among New Orleans Evacuees Before and Soon After Hurricane Katrina.

    Science.gov (United States)

    Dunlap, Eloise; Johnson, Bruce D; Morse, Edward

    2007-09-01

    This paper analyzes illicit drug markets in New Orleans before and after Hurricane Katrina and access to drug markets following evacuation at many locations and in Houston. Among New Orleans arrestees pre-Katrina, rates of crack and heroin use and market participation was comparable to New York and higher than in other southern cities. Both cities have vigorous outdoor drug markets. Over 100 New Orleans evacuees provide rich accounts describing the illicit markets in New Orleans and elsewhere. The flooding of New Orleans disrupted the city's flourishing drug markets, both during and immediately after the storm. Drug supplies, though limited, were never completely unavailable. Subjects reported that alcohol or drugs were not being used in the Houston Astrodome, and it was a supportive environment. Outside the Astrodome, they were often approached by or could easily locate middlemen and drug sellers. Evacuees could typically access illegal drug markets wherever they went. This paper analyzes the impact of a major disaster upon users of illegal drugs and the illegal drug markets in New Orleans and among the diaspora of New Orleans evacuees following Hurricane Katrina. This analysis includes data from criminal justice sources that specify what the drug markets were like before this disaster occurred. This analysis also includes some comparison cities where no disaster occurred, but which help inform the similarities and differences in drug markets in other cities. The data presented also include an initial analysis of ethnographic interview data from over 100 New Orleans Evacuees recruited in New Orleans and Houston.

  6. Price Increases in the Aftermath of Hurricane Katrina: Authority to Limit Price Gouging

    National Research Council Canada - National Science Library

    Welborn, Angie A; Flynn, Aaron M

    2005-01-01

    .... Specifically, questions have arisen regarding increased prices in the areas affected by Hurricane Katrina and the effect that the damage caused by the hurricane will have on prices, specifically...

  7. 44 CFR 206.209 - Arbitration for Public Assistance determinations related to Hurricanes Katrina and Rita (Major...

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Arbitration for Public Assistance determinations related to Hurricanes Katrina and Rita (Major disaster declarations DR-1603, DR... determinations related to Hurricanes Katrina and Rita (Major disaster declarations DR-1603, DR-1604, DR-1605, DR...

  8. How Schools Responded to Student Mental Health Needs Following Hurricanes Katrina and Rita. Fact Sheet

    Science.gov (United States)

    RAND Corporation, 2007

    2007-01-01

    This fact sheet summarizes a study that examined how schools in the U.S. Gulf Coast region perceived the mental health needs of students after Hurricanes Katrina and Rita and how schools responded. According to the report, despite strong initial efforts to support the mental health needs of students displaced by Hurricanes Katrina and Rita, many…

  9. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    Science.gov (United States)

    Barras, John A.

    2007-01-01

    Introduction Hurricane Katrina made landfall on the eastern coastline of Louisiana on August 29, 2005; Hurricane Rita made landfall on the western coastline of Louisiana on September 24, 2005. Comparison of Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Katrina and Rita and classified to identify land and water demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana as a result of the storms. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Hurricane Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, and Pearl River basin), whereas 99 mi2 (256 km2) were in areas primarily impacted by Hurricane Rita (Calcasieu/Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, and Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively, and the brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas represent land losses caused by direct removal of wetlands. They also indicate transitory changes in water area caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after the landfalls of both hurricanes (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery. The land

  10. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  11. Motivational Factors Underlying College Students' Decisions to Resume Their Educational Pursuits in the Aftermath of Hurricane Katrina

    Science.gov (United States)

    Phillips, Theresa M.; Herlihy, Barbara

    2009-01-01

    This study explored college student persistence at a historically Black university affected by Hurricane Katrina. Predictor variables including sex, residence status, Pell Grant status, campus housing status, college grade point average, attendance before Hurricane Katrina, and attendance at the university by parents or another close relative were…

  12. Katrina's Lessons in California: Social and Political Trajectories of Flood Management in the Sacramento River Watershed since 2005

    Science.gov (United States)

    Comby, E.; Le Lay, Y. F.; Piegay, H.

    2017-12-01

    Over the last decade, major changes have occurred in the way that environments are managed. They can be linked with external or internal events which may shape public perception. An external event can reveal a forgotten risk and create a social problem (Hilgartner et Bosk 1988). Following the Advocacy Coalition Framework (Sabatier 1988), we studied the role of Hurricane Katrina in flood management in California from 2005 to 2013. How do policies intend to increase the city's resilience? We compared different flood policies of the Sacramento River from 2005 to 2013, by combining field observations with a principal dataset of 340 regional newspaper items (Sacramento Bee). Media coverage was analyzed using content, quotation, and textometry as well as GIS. We underlined temporal variability in public perceptions towards floods. Some planning choices (such as levees) became controversial, while journalists praised weirs, bypasses, and dams. However, Katrina does not seem to have a real impact on urban sprawl strategies in three Sacramento neighborhoods (Fig.1). We analyzed also the limits of the comparison between New Orleans and Sacramento. Dialog between stakeholders existed in space and time between here (California) and elsewhere (Louisiana), present (post-2005) and past (Katrina catastrophe), and risk and disaster. Katrina was a national scandal with political announcements. However, flood policy was developed first at a regional and then local scales. After Katrina awareness, conflicts appear: some California residents refuse to have a policy linked to Katrina applied to them. We underlined that different stakeholders became prominent: it may be useless to tackle with only one institution. Some institutions had an integrated river management, while others kept a traditional risk management. We assessed the changes in river management while using discourse to understand the (potential) shift in human-river relationships from risk management to integrated river

  13. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  14. Break-up of New Orleans Households after Hurricane Katrina

    Science.gov (United States)

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household break-up due to Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads and non–household heads (N = 242), traced just over a year later, with a matched sample from a nationally representative survey over an equivalent period. One in three among all adult non–household heads, and one in two among adult children of household heads, had separated from the household head 1 year post-Katrina. These rates were, respectively, 2.2 and 2.7 times higher than national rates. A 50% higher prevalence of adult children living with parents in pre-Katrina New Orleans than nationally increased the hurricane’s impact on household break-up. Attention to living arrangements as a dimension of social vulnerability in disaster recovery is suggested. PMID:21709733

  15. The location of displaced New Orleans residents in the year after Hurricane Katrina.

    Science.gov (United States)

    Sastry, Narayan; Gregory, Jesse

    2014-06-01

    Using individual data from the restricted version of the American Community Survey, we examined the displacement locations of pre-Hurricane Katrina adult residents of New Orleans in the year after the hurricane. More than one-half (53 %) of adults had returned to-or remained in-the New Orleans metropolitan area, with just under one-third of the total returning to the dwelling in which they resided prior to Hurricane Katrina. Among the remainder, Texas was the leading location of displaced residents, with almost 40 % of those living away from the metropolitan area (18 % of the total), followed by other locations in Louisiana (12 %), the South region of the United States other than Louisiana and Texas (12 %), and elsewhere in the United States (5 %). Black adults were considerably more likely than nonblack adults to be living elsewhere in Louisiana, in Texas, and elsewhere in the South. The observed race disparity was not accounted for by any of the demographic or socioeconomic covariates in the multinomial logistic regression models. Consistent with hypothesized effects, we found that following Hurricane Katrina, young adults (aged 25-39) were more likely to move further away from New Orleans and that adults born outside Louisiana were substantially more likely to have relocated away from the state.

  16. Metal concentrations in schoolyard soils from New Orleans, Louisiana before and after Hurricanes Katrina and Rita.

    Science.gov (United States)

    Presley, Steven M; Abel, Michael T; Austin, Galen P; Rainwater, Thomas R; Brown, Ray W; McDaniel, Les N; Marsland, Eric J; Fornerette, Ashley M; Dillard, Melvin L; Rigdon, Richard W; Kendall, Ronald J; Cobb, George P

    2010-06-01

    The long-term environmental impact and potential human health hazards resulting from Hurricanes Katrina and Rita throughout much of the United States Gulf Coast, particularly in the New Orleans, Louisiana, USA area are still being assessed and realized after more than four years. Numerous government agencies and private entities have collected environmental samples from throughout New Orleans and found concentrations of contaminants exceeding human health screening values as established by the United States Environmental Protection Agency (USEPA) for air, soil, and water. To further assess risks of exposure to toxic concentrations of soil contaminants for citizens, particularly children, returning to live in New Orleans following the storms, soils collected from schoolyards prior to Hurricane Katrina and after Hurricane Rita were screened for 26 metals. Concentrations exceeding USEPA Regional Screening Levels (USEPA-RSL), total exposure, non-cancer endpoints, for residential soils for arsenic (As), iron (Fe), lead (Pb), and thallium (Tl) were detected in soil samples collected from schoolyards both prior to Hurricane Katrina and after Hurricane Rita. Approximately 43% (9/21) of schoolyard soils collected prior to Hurricane Katrina contained Pb concentrations greater than 400mgkg(-1), and samples from four schoolyards collected after Hurricane Rita contained detectable Pb concentrations, with two exceeding 1700mgkg(-1). Thallium concentrations exceeded USEPA-RSL in samples collected from five schoolyards after Hurricane Rita. Based upon these findings and the known increased susceptibility of children to the effects of Pb exposure, a more extensive assessment of the soils in schoolyards, public parks and other residential areas of New Orleans for metal contaminants is warranted. 2010 Elsevier Ltd. All rights reserved.

  17. A Pilot Study of Post-Hurricane Katrina Floodwater Pumping on Marsh Infauna

    National Research Council Canada - National Science Library

    Ray, Gary L

    2006-01-01

    ... and consequences of structural failures to the New Orleans area following Hurricane Katrina. This evaluation includes determining environmental impacts to habitat and other biological resources...

  18. Initial estimates of hurricane Katrina impacts of Mississippi gulf coast forest resources

    Science.gov (United States)

    Patrick A. Glass; Sonja N. Oswalt

    2007-01-01

    Hurricane Katrina pummeled the Gulf Coast of Mississippi on August 29, 2005. The eye wall of the storm passed directly over Hancock and Pearl River Counties. Harrison, Jackson, Stone, and George Counties on the windward side of the hurricane's path sustained severe damage before the storm's strength dissipated as it moved farther inland (fig. 1).

  19. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    Science.gov (United States)

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  20. Traumatic Loss and Natural Disaster: A Case Study of a School-Based Response to Hurricanes Katrina and Rita

    Science.gov (United States)

    Clettenberg, Stacey; Gentry, Judy; Held, Matthew; Mock, Lou Ann

    2011-01-01

    This article tracks the trajectory and impact of Hurricanes Katrina and Rita on the communities of Houston/Harris County, Texas, USA, the schools, children, and families; along with the community partnerships that addressed the trauma and upheaval. Following the influx of individuals and families who were displaced by Hurricanes Katrina and Rita…

  1. The Impact of Hurricane Katrina on Students’ Behavioral Disorder: A Difference-in-Difference Analysis

    Science.gov (United States)

    Tian, Xian-Liang; Guan, Xian

    2015-01-01

    Objective: The objective of this paper is to examine the impact of Hurricane Katrina on displaced students’ behavioral disorder. Methods: First, we determine displaced students’ likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000–2008. Second, we investigate the impact of hurricane on evacuee students’ in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Results: Preliminary analysis demonstrates a sharp increase in displaced students’ relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students’ relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. Conclusion: When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior. PMID:26006127

  2. The Impact of Hurricane Katrina on Students' Behavioral Disorder: A Difference-in-Difference Analysis.

    Science.gov (United States)

    Tian, Xian-Liang; Guan, Xian

    2015-05-22

    The objective of this paper is to examine the impact of Hurricane Katrina on displaced students' behavioral disorder. First, we determine displaced students' likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000-2008. Second, we investigate the impact of hurricane on evacuee students' in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Preliminary analysis demonstrates a sharp increase in displaced students' relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students' relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior.

  3. Stress and Support in Family Relationships after Hurricane Katrina

    Science.gov (United States)

    Reid, Megan; Reczek, Corinne

    2011-01-01

    In this article, the authors merge the study of support, strain, and ambivalence in family relationships with the study of stress to explore the ways family members provide support or contribute to strain in the disaster recovery process. The authors analyze interviews with 71 displaced Hurricane Katrina survivors, and identify three family…

  4. Engineering education in the wake of hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Lima Marybeth

    2007-10-01

    Full Text Available Abstract Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1 we must practice radical (to the root engineering, (2 we must illustrate connections between engineering and public policy, and (3 we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world.

  5. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Science.gov (United States)

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  6. Employment and self-employment in the wake of Hurricane Katrina.

    Science.gov (United States)

    Zissimopoulos, Julie; Karoly, Lynn A

    2010-05-01

    We use data from the monthly Current Population Survey to examine the short- and longer-term effects of Hurricane Katrina on the labor market outcomes of prime-age individuals in the most affected states--Alabama, Florida, Louisiana, and Mississippi--and for evacuees in any state. We focus on rates of labor force participation, employment, and unemployment, and we extend prior research by also examining rates of self-employment. With the exception of Mississippi, employment and unemployment one year after the hurricane were at similar rates as the end of 2003. This aggregate pattern of labor market shock and recovery has been observed for other disasters but masks important differences among subgroups. Those evacuated from their residences, even temporarily, were a harder-hit group, and evacuees who had yet to return to their pre-Katrina state up to one year later were hit especially hard; these findings hold even after controlling for differences in observable characteristics. We also find evidence of an important role for self-employment as part of post-disaster labor market recovery, especially for evacuees who did not return. This may result from poor job prospects in the wage and salary sector or new opportunities for starting businesses in the wake of Katrina.

  7. Hurricane Katrina winds damaged longleaf pine less than loblolly pine

    Science.gov (United States)

    Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana. Nelson

    2009-01-01

    Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...

  8. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  9. Federal Emergency Management Policy Changes After Hurricane Katrina: A Summary of Statutory Provisions

    National Research Council Canada - National Science Library

    Bea, Keith; Halchin, Elaine; Hogue, Henry; Kaiser, Frederick; Love, Natalie; McCarthy, Francis X; Reese, Shawn; Schwemle, Barbara

    2006-01-01

    ...), among others, concluded that the losses caused by Hurricane Katrina and other disasters were due, in part, to deficiencies such as questionable leadership decisions and capabilities, organizational...

  10. Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita

    Science.gov (United States)

    Cruz, A. M.; Krausmann, E.

    2009-04-01

    The damage inflicted by hurricanes Katrina and Rita to the Gulf-of-Mexico's (GoM) oil and gas production, both onshore and offshore, has shown the proneness of industry to Natech accidents (natural hazard-triggered hazardous-materials releases). In order to contribute towards a better understanding of Natech events, we assessed the damage to and hazardous-materials releases from offshore oil and natural-gas platforms and pipelines induced by hurricanes Katrina and Rita. Data was obtained through a review of published literature and interviews with government officials and industry representatives from the affected region. We also reviewed over 60,000 records of reported hazardous-materials releases from the National Response Center's (NRC) database to identify and analyze the hazardous-materials releases directly attributed to offshore oil and gas platforms and pipelines affected by the two hurricanes. Our results show that hurricanes Katrina and Rita destroyed at least 113 platforms, and severely damaged at least 53 others. Sixty percent of the facilities destroyed were built 30 years ago or more prior to the adoption of the more stringent design standards that went into effect after 1977. The storms also destroyed 5 drilling rigs and severely damaged 19 mobile offshore drilling units (MODUs). Some 19 MODUs lost their moorings and became adrift during the storms which not only posed a danger to existing facilities but the dragging anchors also damaged pipelines and other infrastructure. Structural damage to platforms included toppling of sections, and tilting or leaning of platforms. Possible causes for failure of structural and non-structural components of platforms included loading caused by wave inundation of the deck. Failure of rigs attached to platforms was also observed resulting in significant damage to the platform or adjacent infrastructure, as well as damage to equipment, living quarters and helipads. The failures are attributable to tie-down components

  11. The Long Term Recovery of New Orleans' Population after Hurricane Katrina.

    Science.gov (United States)

    Fussell, Elizabeth

    2015-09-01

    Hurricane Katrina created a catastrophe in the city of New Orleans when the storm surge caused the levee system to fail on August 29, 2005. The destruction of housing displaced hundreds of thousands of residents for varying lengths of time, often permanently. It also revealed gaps in our knowledge of how population is recovered after a disaster causes widespread destruction of urban infrastructure, housing and workplaces, and how mechanisms driving housing recovery often produce unequal social, spatial and temporal population recovery. In this article, I assemble social, spatial and temporal explanatory frameworks for housing and population recovery and then review research on mobility - both evacuation and migration - after Hurricane Katrina. The review reveals a need for a comprehensive social, spatial and temporal framework for explaining inequality in population recovery and displacement. It also shows how little is known about in-migrants and permanent out-migrants after a disaster.

  12. Resiliency and Recovery: Lessons from the Asian Tsunami and Hurricane Katrina

    Science.gov (United States)

    Fernando, Delini M.; Hebert, Barbara B.

    2011-01-01

    Separated by continents and cultures, survivors of the Asian tsunami and Hurricane Katrina share a common bond in their extreme trauma and ensuing struggles. The authors discuss and illustrate core ideas based on the commonalities derived from the experiences of women survivors of these two disasters.

  13. Transformative experiences for Hurricanes Katrina and Rita disaster volunteers.

    Science.gov (United States)

    Clukey, Lory

    2010-07-01

    The massive destruction caused by Hurricanes Katrina and Rita in 2005 provided an opportunity for many volunteers to be involved with disaster relief work. Exposure to devastation and personal trauma can have long-lasting and sometimes detrimental effects on people providing help. This qualitative study explored the experience of volunteer relief workers who provided disaster relief services after the hurricanes. Three major themes emerged: emotional reactions that included feelings of shock, fatigue, anger and grief as well as sleep disturbances; frustration with leadership; and life-changing personal transformation. Stress reactions were noted but appeared to be mitigated by feelings of compassion for the victims and personal satisfaction in being able to provide assistance. Suggestions are provided for further research.

  14. Catholic Schools in New Orleans in the Aftermath of Hurricane Katrina

    Science.gov (United States)

    MacGregor, Carol Ann; Fitzpatrick, Brian

    2014-01-01

    Changes in the education system following Hurricane Katrina have received considerable attention from scholars in recent years. However, the role of Catholic schools is often overlooked in such discussions of school reform, which most often concentrate on the dramatic changes in the public school sector. This oversight is significant given that…

  15. Race, Income Inequality, and Impervious Surfaces in Relation to Flooding Associated with Hurricane Harvey

    Science.gov (United States)

    de Sherbinin, A. M.; Mills, J.; Borkovska, O.

    2017-12-01

    Differential vulnerability is a concept that suggests that certain demographic groups - the poor, less educated, or minorities - are likely to be more impacted by climate extremes such as floods owing to their higher sensitivity and lower adaptive capacity. Differential exposure represents the concept that these same groups may be more highly exposed to flood events by virtue of their residing in less desirable, low-lying neighborhoods with higher percentages of impervious surface cover. This paper tests the hypothesis that poor communities of color were differentially exposed to flood risks in the aftermath of Hurricane Harvey, which struck Houston, Texas in August 2017. We explore the spatial relationship among census tracts with high percentages of low income communities of color, those with high percentages of impervious surface, and those most impacted by floods. We incorporat datasets disseminated by the NASA Socioeconomic Data and Application Center (SEDAC) - the Global Man-made Impervious Surface (GMIS) data set and the U.S. Census Grids 2010 - together with the American Community Survey (ACS) 2011-2015 and flood extent and depth data from FEMA. Preliminary analysis suggests that predominantly non-white neighborhoods have higher percentages of impervious surface cover, but that impervious surface cover is negatively correlated with flood risk. This paper will situate these findings in the context of a larger body of research exploring differential exposure to flood risks during Hurricanes Katrina and Sandy, as well as differential exposure to extreme heat in urban environments in Houston and beyond.

  16. Racial Differences in Posttraumatic Stress Disorder Vulnerability Following Hurricane Katrina Among a Sample of Adult Cigarette Smokers from New Orleans.

    Science.gov (United States)

    Alexander, Adam C; Ali, Jeanelle; McDevitt-Murphy, Meghan E; Forde, David R; Stockton, Michelle; Read, Mary; Ward, Kenneth D

    2017-02-01

    Although blacks are more likely than whites to experience posttraumatic stress disorder (PTSD) after a natural disaster, the reasons for this disparity are unclear. This study explores whether race is associated with PTSD after adjusting for differences in preexisting vulnerabilities, exposure to stressors, and loss of social support due to Hurricane Katrina using a representative sample of 279 black and white adult current and past smokers who were present when Hurricane Katrina struck, and identified it as the most traumatic event in their lifetime. Multiple logistic regression models evaluated whether differential vulnerability (pre-hurricane physical and mental health functioning, and education level), differential exposure to hurricane-related stressors, and loss of social support deterioration reduced the association of race with PTSD. Blacks were more likely than whites to screen positive for PTSD (49 vs. 39 %, respectively, p = 0.030). Although blacks reported greater pre-hurricane vulnerability (worse mental health functioning and lower educational attainment) and hurricane-related stressor exposure and had less social support after the hurricane, only pre-hurricane mental health functioning attenuated the association of race with screening positive for PTSD. Thus, racial differences in pre-hurricane functioning, particularly poorer mental health, may partially explain racial disparities in PTSD after natural disasters, such as Hurricane Katrina. Future studies should examine these associations prospectively using representative cohorts of black and whites and include measures of residential segregation and discrimination, which may further our understanding of racial disparities in PTSD after a natural disaster.

  17. Mother and Child Reports of Hurricane Related Stressors: Data from a Sample of Families Exposed to Hurricane Katrina

    Science.gov (United States)

    Lai, Betty S.; Beaulieu, Brooke; Ogokeh, Constance E.; Self-Brown, Shannon; Kelley, Mary Lou

    2015-01-01

    Background: Families exposed to disasters such as Hurricane Katrina are at risk for numerous adverse outcomes. While previous literature suggests that the degree of disaster exposure corresponds with experiencing negative outcomes, it is unclear if parents and children report similar levels of disaster exposure. Objective: The purpose of this…

  18. Quantities of arsenic-treated wood in demolition debris generated by Hurricane Katrina.

    Science.gov (United States)

    Dubey, Brajesh; Solo-Gabriele, Helena M; Townsendt, Timothy G

    2007-03-01

    The disaster debris from Hurricane Katrina is one of the largest in terms of volume and economic loss in American history. One of the major components of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures such as electrical poles, fences, decks, and homes a considerable amount of treated wood and consequently arsenic will be disposed as disaster debris. In this study an effort was made to estimate the quantity of arsenic disposed through demolition debris generated in the Louisiana and Mississippi area through Hurricane Katrina. Of the 72 million cubic meters of disaster debris generated, roughly 12 million cubic meters were in the form of construction and demolition wood resulting in an estimated 1740 metric tons of arsenic disposed. Management of disaster debris should consider the relatively large quantities of arsenic associated with pressure-treated wood.

  19. The Psychological Impact from Hurricane Katrina: Effects of Displacement and Trauma Exposure on University Students

    Science.gov (United States)

    Davis, Thompson E., III; Grills-Taquechel, Amie E.; Ollendick, Thomas H.

    2010-01-01

    The following study examined the reactions of university students to Hurricane Katrina. A group of 68 New Orleans area students who were displaced from their home universities as a result of the hurricane were matched on race, gender, and age to a sample of 68 students who had been enrolled at Louisiana State University (LSU) prior to the…

  20. The Impact of Hurricanes Katrina and Rita on Louisiana School Nurses

    Science.gov (United States)

    Broussard, Lisa; Myers, Rachel; Meaux, Julie

    2008-01-01

    In the fall of 2005, the coast of Louisiana was devastated by two hurricanes, Katrina and Rita. Not only did these natural disasters have detrimental effects for those directly in their path, the storms had an impact on the lives of everyone in Louisiana. The professional practice of many Louisiana school nurses was affected by several factors,…

  1. Examining the Aftereffects of Hurricane Katrina in New Orleans: A Qualitative Study of Faculty and Staff Perceptions

    Directory of Open Access Journals (Sweden)

    Joy J. Burnham

    2012-01-01

    Full Text Available Researchers have reported how Hurricane Katrina has affected teachers who work with Kindergarten to Grade 12 (K-12, yet little is known about how the natural disaster has affected other important K-12 faculty and staff (e.g., coaches, librarians, school counselors, and cafeteria workers. Missing from the literature is the impact that this natural disaster has had on these formal (school counselors and informal (coaches, librarians helpers of K-12 students. Using a focus group methodology, the authors examined the aftereffects of Hurricane Katrina on 12 school employees in New Orleans, Louisiana, 18 months after the hurricane. Informed by qualitative content analysis, three emergent themes were identified: emotion-focused aftereffects, positive coping, and worry and fear. The implications for future research and promoting hope in mental health counseling are discussed.

  2. Examining the Aftereffects of Hurricane Katrina in New Orleans: A Qualitative Study of Faculty and Staff Perceptions

    Science.gov (United States)

    Burnham, Joy J.; Hooper, Lisa M.

    2012-01-01

    Researchers have reported how Hurricane Katrina has affected teachers who work with Kindergarten to Grade 12 (K-12), yet little is known about how the natural disaster has affected other important K-12 faculty and staff (e.g., coaches, librarians, school counselors, and cafeteria workers). Missing from the literature is the impact that this natural disaster has had on these formal (school counselors) and informal (coaches, librarians) helpers of K-12 students. Using a focus group methodology, the authors examined the aftereffects of Hurricane Katrina on 12 school employees in New Orleans, Louisiana, 18 months after the hurricane. Informed by qualitative content analysis, three emergent themes were identified: emotion-focused aftereffects, positive coping, and worry and fear. The implications for future research and promoting hope in mental health counseling are discussed. PMID:22629217

  3. Elevated in-home sediment contaminant concentrations - the consequence of a particle settling-winnowing process from Hurricane Katrina floodwaters.

    Science.gov (United States)

    Ashley, Nicholas A; Valsaraj, Kalliat T; Thibodeaux, Louis J

    2008-01-01

    Sediment samples were collected from two homes which were flooded in the wake of Hurricane Katrina in August 2005. The samples were analyzed for trace metals and semi-volatile organic compounds using techniques based on established EPA methods. The data showed higher concentrations of some metals and semi-volatile organic pollutants than reported in previous outdoor sampling events of soils and sediments. The Lake Pontchartrain sediments became resuspended during the hurricane, and this material subsequently was found in the residential areas of New Orleans following levee breaches. The clay and silt particles appear to be selectively deposited inside homes, and sediment contaminant concentrations are usually greatest within this fraction. Re-entry advisories based on outdoor sample concentration results may have under-predicted the exposure levels to homeowners and first responders. All contaminants found in the sediment sampled in this study have their origin in the sediments of Lake Pontchartrain and other localized sources.

  4. Information Technology Management: Hurricane Katrina Disaster Recovery Efforts Related to Army Information Technology Resources

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Wicecarver, Jacqueline L; Kince, Therese M; Ryan, Susan R; Price, Matthew J; Cleveland, Karma J; N. Pugh, Jacqueline; Milner, Jillisa H; Johnson, Meredith H

    2006-01-01

    ... of Louisiana, Mississippi, Alabama, and Florida with Category 3 winds and torrential rain. This audit report is the first in a planned series of audits on the effects of Hurricane Katrina on DoD information technology resources...

  5. A Tsunami Ball Approach to Storm Surge and Inundation: Application to Hurricane Katrina, 2005

    Directory of Open Access Journals (Sweden)

    Steven N. Ward

    2009-01-01

    Full Text Available Most analyses of storm surge and inundation solve equations of continuity and momentum on fixed finite-difference/finite-element meshes. I develop a completely new approach that uses a momentum equation to accelerate bits or balls of water over variable depth topography. The thickness of the water column at any point equals the volume density of balls there. In addition to being more intuitive than traditional methods, the tsunami ball approach has several advantages. (a By tracking water balls of fixed volume, the continuity equation is satisfied automatically and the advection term in the momentum equation becomes unnecessary. (b The procedure is meshless in the finite-difference/finite-element sense. (c Tsunami balls care little if they find themselves in the ocean or inundating land. (d Tsunami ball calculations of storm surge can be done on a laptop computer. I demonstrate and calibrate the method by simulating storm surge and inundation around New Orleans, Louisiana caused by Hurricane Katrina in 2005 and by comparing model predictions with field observations. To illustrate the flexibility of the tsunami ball technique, I run two “What If” hurricane scenarios—Katrina over Savannah, Georgia and Katrina over Cape Cod, Massachusetts.

  6. Assessment and control of an invasive aquaculture species: An update on Nile tilapia (Oreochromis niloticus) in coastal Mississippi after Hurricane Katrina

    Science.gov (United States)

    Schofield, Pamela J.; Slack, W. Todd; Peterson, Mark S.; Gregoire, Denise R.

    2007-01-01

    We provide information about the effects of Hurricane Katrina on populations of an invasive fish, the Nile tilapia (Oreochromis niloticus) in southern Mississippi. By resampling areas surveyed before the storm, we attempted to determine whether the species expanded its range by moving with storm-related floods. Additionally, we used rotenone to eradicate individuals of this species at a hurricane-damaged aquaculture facility on the Mississippi coast. Although our survey was limited geographically, we did not find the species to occur beyond the aquaculture facility, other than in an adjacent bayou. Our rotenone treatment of the facility appeared effective with only a single O. niloticus being collected six weeks after the treatment. To reduce the spread of O. niloticus in the southeastern U.S., it is important to continue to control feral populations, work to eliminate vectors for dispersal, and continue monitoring their distribution.

  7. Disaster Hits Home: A Model of Displaced Family Adjustment after Hurricane Katrina

    Science.gov (United States)

    Peek, Lori; Morrissey, Bridget; Marlatt, Holly

    2011-01-01

    The authors explored individual and family adjustment processes among parents (n = 30) and children (n = 55) who were displaced to Colorado after Hurricane Katrina. Drawing on in-depth interviews with 23 families, this article offers an inductive model of displaced family adjustment. Four stages of family adjustment are presented in the model: (a)…

  8. A Pilot Study of the Effects of Post-Hurricane Katrina Floodwater Pumping on the Chemistry and Toxicity of Violet Marsh Sediments

    National Research Council Canada - National Science Library

    Suedel, Burton C; Steevens, Jeffery A; Splichal, David E

    2006-01-01

    The Interagency Performance Evaluation Task Force (IPET) is investigating the environmental impacts of the future of the hurricane protection system around New Orleans, Louisiana, during Hurricane Katrina...

  9. REMOTE SENSING DAMAGE ASSESSMENT OF CHEMICAL PLANTS AND REFINERIES FOLLOWING HURRICANES KATRINA AND RITA

    Science.gov (United States)

    The massive destruction brought by Hurricanes Katrina and Rita also impacted the many chemical plants and refineries in the region. The achievement of this rapid analysis capability highlights the advancement of this technology for air quality assessment and monitoring. Case st...

  10. The Military and Domestic Disaster Response: Lead Role Revealed Through the Eye of Hurricane Katrina?

    National Research Council Canada - National Science Library

    Walker, Juliana M

    2006-01-01

    .... During and in the aftermath of Hurricane Katrina however the slow and perceived inept response to the massive disaster prompted a national debate on the appropriate role of the military in major domestic disasters...

  11. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    Science.gov (United States)

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  12. The Impact of Child-Related Stressors on the Psychological Functioning of Lower-Income Mothers after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Chan, Christian S.; Rhodes, Jean E.

    2011-01-01

    In the present study, the authors examined the role of child-related stressors in the psychological adjustment of lower-income, primarily unmarried and African American, mothers (N = 386). All participants lived in areas affected by Hurricane Katrina, and about a third were also exposed to Hurricane Rita (30.3%, n = 117). Lacking knowledge of a…

  13. Flood Hazards - A National Threat

    Science.gov (United States)

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  14. Emergency Supplemental Appropriations for DoD Needs Arising from Hurricane Katrina at Selected DoD Components

    National Research Council Canada - National Science Library

    Granetto, Paul J; Marsh, Patricia A; Pfeil, Lorin T; Adu, Henry Y; Appiah, Emmanuel A; Lawrence, Charlisa D; Loftin, Sharon A; Straw, Richard W; Davis, Sonya T; Hart, Erin S

    2007-01-01

    .... The Inspector General (IG), DoD, performed this audit to determine if the emergency supplemental appropriations for DoD needs arising from Hurricane Katrina and others were used for their intended purposes...

  15. Application of a Theoretical Model Toward Understanding Continued Food Insecurity Post Hurricane Katrina.

    Science.gov (United States)

    Clay, Lauren A; Papas, Mia A; Gill, Kimberly; Abramson, David M

    2018-02-01

    Disaster recovery efforts focus on restoring basic needs to survivors, such as food, water, and shelter. However, long after the immediate recovery phase is over, some individuals will continue to experience unmet needs. Ongoing food insecurity has been identified as a post-disaster problem. There is a paucity of information regarding the factors that might place an individual at risk for continued food insecurity post disaster. Using data from a sample (n=737) of households severely impacted by Hurricane Katrina, we estimated the associations between food insecurity and structural, physical and mental health, and psychosocial factors 5 years after Hurricane Katrina. Logistic regression models were fit and odds ratios (OR) and 95% CI estimated. Nearly one-quarter of respondents (23%) reported food insecurity 5 years post Katrina. Marital/partner status (OR: 0.7, CI: 0.42, 0.99), self-efficacy (OR: 0.56, CI: 0.37, 0.84), sense of community (OR: 0.7, CI: 0.44, 0.98), and social support (OR: 0.59, CI: 0.39, 0.89) lowered the odds of food insecurity and explained most of the effects of mental health distress on food insecurity. Social support, self-efficacy, and being partnered were protective against food insecurity. Recovery efforts should focus on fostering social-support networks and increased self-efficacy to improve food insecurity post disaster. (Disaster Med Public Health Preparedness. 2018;12:47-56).

  16. Lessons learned from the deadly sisters: drug and alcohol treatment disruption, and consequences from Hurricanes Katrina and Rita.

    Science.gov (United States)

    Maxwell, Jane Carlisle; Podus, Deborah; Walsh, David

    2009-01-01

    This paper reports on the effects of Hurricanes Katrina and Rita on drug and alcohol treatment in Texas in 2005-2006. Findings are based on a secondary analysis of administrative data on 567 hurricane-related admissions and on interview data from a sample of 20 staff in 11 treatment programs. Katrina evacuees differed from Rita clients in terms of demographics and primary problem substances and treatment needs, while the experiences of program staff and needed changes to improve disaster readiness were more similar. Additional systematic research is needed to document the intermediate and long-term impacts of the storms in these and other affected areas.

  17. Correlates of Long-Term Posttraumatic Stress Symptoms in Children Following Hurricane Katrina

    Science.gov (United States)

    Moore, Kathryn W.; Varela, R. Enrique

    2010-01-01

    The present study examined the roles of loss and disruption, major life events, and social support in the relationship between exposure and PTSD symptoms in a group of children 33 months after Hurricane Katrina. One hundred fifty-six 4th, 5th, and 6th graders were surveyed in the New Orleans area. Results indicated that 46% of the children…

  18. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  19. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008.

    Science.gov (United States)

    Kleinpeter, Myra A

    2009-01-01

    Hurricanes Katrina and Rita resulted in massive devastation of the Gulf Coast at Mississippi, Louisiana, and Texas during 2005. Because of those disasters, dialysis providers, nephrologists, and dialysis patients used disaster planning activities to work to mitigate the morbidity and mortality associated with the 2005 hurricane season for future events affecting dialysis patients. As Hurricane Gustav approached, anniversary events for Hurricane Katrina were postponed because of evacuation orders for nearly the entire Louisiana Gulf Coast. As part of the hurricane preparation, dialysis units reviewed the disaster plans of patients, and patients made preparation for evacuation. Upon evacuation, many patients returned to the dialysis units that had provided services during their exile from Hurricane Katrina; other patients went to other locations as part of their evacuation plan. Patients uniformly reported positive experiences with dialysis providers in their temporary evacuation communities, provided that those communities did not experience the effects of Hurricane Gustav. With the exception of evacuees to Baton Rouge, patients continued to receive their treatments uninterrupted. Because of extensive damage in the Baton Rouge area, resulting in widespread power losses and delayed restoration of power to hospitals and other health care facilities, some patients missed one treatment. However, as a result of compliance with disaster fluid and dietary recommendations, no adverse outcomes occurred. In most instances, patients were able to return to their home dialysis unit or a nearby unit to continue dialysis treatments within 4 - 5 days of Hurricane Gustav. Hurricane Ike struck the Texas Gulf Coast near Galveston, resulting in devastation of that area similar to the devastation seen in New Orleans after Katrina. The storm surge along the Louisiana Gulf Coast resulted in flooding that temporarily closed coastal dialysis units. Patients were prepared and experienced

  20. Hurricane Katrina-linked environmental injustice: race, class, and place differentials in attitudes.

    Science.gov (United States)

    Adeola, Francis O; Picou, J Steven

    2017-04-01

    Claims of environmental injustice, human neglect, and racism dominated the popular and academic literature after Hurricane Katrina struck the United States in August 2005. A systematic analysis of environmental injustice from the perspective of the survivors remains scanty or nonexistent. This paper presents, therefore, a systematic empirical analysis of the key determinants of Katrina-induced environmental injustice attitudes among survivors in severely affected parishes (counties) in Louisiana and Mississippi three years into the recovery process. Statistical models based on a random sample of survivors were estimated, with the results revealing significant predictors such as age, children in household under 18, education, homeownership, and race. The results further indicate that African-Americans were more likely to perceive environmental injustice following Katrina than their white counterparts. Indeed, the investigation reveals that there are substantial racial gaps in measures of environmental injustice. The theoretical, methodological, and applied policy implications of these findings are discussed. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  1. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    OpenAIRE

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS A...

  2. Bacteriological water quality in the Lake Pontchartrain basin Louisiana following Hurricanes Katrina and Rita, September 2005

    Science.gov (United States)

    Stoeckel, Donald M.; Bushon, Rebecca N.; Demcheck, Dennis K.; Skrobialowski, Stanley C.; Kephart, Christopher M.; Bertke, Erin E.; Mailot, Brian E.; Mize, Scott V.; Fendick, Robert B.

    2005-01-01

    The U.S. Geological Survey (USGS), in collaboration with the Louisiana Department of Environmental Quality, monitored bacteriological quality of water at 22 sites in and around Lake Pontchartrain, La., for three consecutive weeks beginning September 13, 2005, following hurricanes Katrina and Rita and the associated flooding. Samples were collected and analyzed by USGS personnel from the USGS Louisiana Water Science Center and the USGS Ohio Water Microbiology Laboratory. Fecal-indicator bacteria (Escherichia coli, enterococci, and fecal coliform) concentrations ranged from the detection limit to 36,000 colony-forming units per 100 milliliters. Data are presented in tabular form and as plots of data in the context of available historical data and water-quality standards and criteria for each site sampled. Quality-control data were reviewed to ensure that methods performed as expected in a mobile laboratory setting.

  3. Effects of hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake Pontchartrain, Louisiana, USA

    Science.gov (United States)

    Van Metre, P.C.; Horowitz, A.J.; Mahler, B.J.; Foreman, W.T.; Fuller, C.C.; Burkhardt, M.R.; Elrick, K.A.; Furlong, E.T.; Skrobialowski, S.C.; Smith, J.J.; Wilson, J.T.; Zaugg, S.D.

    2006-01-01

    The effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana, on the sediment chemistry of Lake Pontchartrain were evaluated by chemical analysis of samples of street mud and suspended and bottom sediments. The highest concentrations of urban-related elements and compounds (e.g., Pb, Zn, polycyclic aromatic hydrocarbons, and chlordane) in bottom sediments exceeded median concentrations in U.S. urban lakes and sediment-quality guidelines. The extent of the elevated concentrations was limited, however, to within a few hundred meters of the mouth of the 17th Street Canal, similar to results of historical assessments. Chemical and radionuclide analysis of pre- and post-Hurricane Rita samples indicates that remobilization of near-shore sediment by lake currents and storms is an ongoing process. The effects of Hurricanes Katrina and Rita on the sediment chemistry of Lake Pontchartrain are limited spatially and are most likely transitory. ?? 2006 American Chemical Society.

  4. EFFECTS OF HURRICANE KATRINA ON BENTHIC MACROINVERTEBRATE COMMUNITIES ALONG THE NORTHERN GULF OF MEXICO COAST

    Science.gov (United States)

    A study was initiated in fall 2005 to assess potential effects on benthic fauna and habitat quality in coastal waters of Louisiana, Mississippi, and Alabama following Hurricane Katrina, which struck the coast of Louisiana, between New Orleans and Bioloxi, Mississippi on August 29...

  5. Counseling in New Orleans 10 Years after Hurricane Katrina: A Commentary on the Aftermath, Recovery and the Future

    Science.gov (United States)

    Remley, Theodore P., Jr.

    2015-01-01

    Ten years after Hurricane Katrina, the counseling profession in New Orleans has changed. The author, along with a group of counseling and other mental health professionals who were providing services at the time of the hurricane and still working in the city 10 years later, provided their impressions of counseling in New Orleans a decade after the…

  6. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  7. Report: EPA Provided Quality and Timely Information on Hurricane Katrina Hazardous Material Releases and Debris Management

    Science.gov (United States)

    Report #2006-P-00023, May 2, 2006. After Hurricane Katrina, EPA was the agency with lead responsibility to prevent, minimize, or mitigate threats to public health and the environment caused by hazardous materials and oil spills in inland zones.

  8. Effect of Hurricane Katrina on the incidence of acute coronary syndrome at a primary angioplasty center in New Orleans.

    Science.gov (United States)

    Gautam, Sandeep; Menachem, Jonathan; Srivastav, Sudesh K; Delafontaine, Patrice; Irimpen, Anand

    2009-10-01

    In August 2005, New Orleans was hit by Hurricane Katrina, the costliest natural disaster in US history. Previous studies have shown an increase in acute myocardial infarction (AMI) in the immediate hours to weeks after natural disasters. The goals of our study were to detect any long-term increase in the incidence of AMI after Katrina and to investigate any pertinent contributing factors. This was a single-center retrospective cohort observational study. Patients admitted with AMI to Tulane Health Sciences Center hospital in the 2 years before Katrina and in the 2 years after the hospital reopened (5 months after Katrina) were identified from hospital records. The 2 groups (pre- and post-Katrina) were compared for prespecified demographic and clinical data. In the post-Katrina group, there were 246 admissions for AMI, out of a total census of 11,282 patients (2.18%), as compared with 150 AMI admissions out of a total of 21,229 patients (0.71%) in the pre-Katrina group (P affected (P housing (P = 0.003). The role of chronic stress in the pathogenesis of AMI is poorly understood, especially in the aftermath of natural disasters. Our data suggest that Katrina was associated with prolonged loss of employment and insurance, decreased access to preventive health services, and an increased incidence of AMI. In addition, it appears that chronic stress after a natural disaster can be associated with tobacco abuse and medication and therapeutic noncompliance. We found a 3-fold increased incidence of AMI more than 2 years after Hurricane Katrina. Even allowing for the loss of some local hospitals after the disaster, this represents a significant change in overall health of the study population and supports the need for further study into the health effects of chronic stress.

  9. The effect of Hurricane Katrina on the prevalence of health impairments and disability among adults in New Orleans: differences by age, race, and sex.

    Science.gov (United States)

    Sastry, Narayan; Gregory, Jesse

    2013-03-01

    We examined the effects of Hurricane Katrina on disability-related measures of health among adults from New Orleans, U.S.A., in the year after the hurricane, with a focus on differences by age, race, and sex. Our analysis used data from the American Community Survey to compare disability rates between the pre-Katrina population of New Orleans with the same population in the year after Katrina (individuals were interviewed for the study even if they relocated away from the city). The comparability between the pre- and post-Katrina samples was enhanced by using propensity weights. We found a significant decline in health for the adult population from New Orleans in the year after the hurricane, with the disability rate rising from 20.6% to 24.6%. This increase in disability reflected a large rise in mental impairments and, to a lesser extent, in physical impairments. These increases were, in turn, concentrated among young and middle-aged black females. Stress-related factors likely explain why young and middle-aged black women experienced worse health outcomes, including living in dwellings and communities that suffered the most damage from the hurricane, household breakup, adverse outcomes for their children, and higher susceptibility. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The effect of Hurricane Katrina on the prevalence of health impairments and disability among adults in New Orleans: Differences by age, race, and sex

    Science.gov (United States)

    Sastry, Narayan; Gregory, Jesse

    2012-01-01

    We examined the effects of Hurricane Katrina on disability-related measures of health among adults from New Orleans, U.S.A., in the year after the hurricane, with a focus on differences by age, race, and sex. Our analysis used data from the American Community Survey to compare disability rates between the pre-Katrina population of New Orleans with the same population in the year after Katrina (individuals were interviewed for the study even if they relocated away from the city). The comparability between the pre-and post-Katrina samples was enhanced by using propensity weights. We found a significant decline in health for the adult population from New Orleans in the year after the hurricane, with the disability rate rising from 20.6% to 24.6%. This increase in disability reflected a large rise in mental impairments and, to a lesser extent, in physical impairments. These increases were, in turn, concentrated among young and middle-aged black females. Stress-related factors likely explain why young and middle-aged black women experienced worse health outcomes, including living in dwellings and communities that suffered the most damage from the hurricane, household breakup, adverse outcomes for their children, and higher susceptibility. PMID:23321678

  11. Classroom-Community Consultation (C [superscript 3]) 10 Years after Hurricane Katrina: A Retrospective Look at a Collaborative, School-Based Referral Model

    Science.gov (United States)

    Lee, Madeline Y.; Danna, Laura; Walker, Douglas W.

    2017-01-01

    The long-term nature of mental health needs after disasters, such as Hurricane Katrina, continues to require attention. Research that emerged during the anniversaries of the storm has shown Katrina and its aftermath to be associated with posttraumatic stress, depression, anxiety, disruptive behavior, and somatic complaints in children and…

  12. Katrina in Historical Context: Environment and Migration in the U.S.

    Science.gov (United States)

    Gutmann, Myron P; Field, Vincenzo

    2010-01-01

    The massive publicity surrounding the exodus of residents from New Orleans spurred by Hurricane Katrina has encouraged interest in the ways that past migration in the U.S. has been shaped by environmental factors. So has Timothy Egan's exciting book, The Worst Hard Time: The Untold Story of those who survived the Great American Dust Bowl. This paper places those dramatic stories into a much less exciting context, demonstrating that the kinds of environmental factors exemplified by Katrina and the Dust Bowl are dwarfed in importance and frequency by the other ways that environment has both impeded and assisted the forces of migration. We accomplish this goal by enumerating four types of environmental influence on migration in the U.S.: 1) environmental calamities, including floods, hurricanes, earthquakes, and tornadoes, 2) environmental hardships and their obverse, short-term environmental benefits, including both drought and short periods of favorable weather, 3) environmental amenities, including warmth, sun, and proximity to water or mountains, and 4) environmental barriers and their management, including heat, air conditioning, flood control, drainage, and irrigation. In U.S. history, all four of these have driven migration flows in one direction or another. Placing Katrina into this historical context is an important task, both because the environmental calamities of which Katrina is an example are relatively rare and have not had a wide impact, and because focusing on them defers interest from the other kinds of environmental impacts, whose effect on migration may have been stronger and more persistent, though less dramatic.

  13. "Making Lemonade from Lemons:" Early Childhood Teacher Educators' Programmatic Responses to Hurricanes Katrina and Rita

    Science.gov (United States)

    DiCarlo, Cynthia F.; Burts, Diane C.; Buchanan, Teresa K.; Aghayan, Carol; Benedict, Joan

    2007-01-01

    This article describes how early childhood teacher education faculty at one university responded in the aftermath of hurricanes Katrina and Rita and used the disaster to enhance their undergraduate and graduate programs. They explain how they modeled developmentally appropriate practices while responding to community needs. Four companion articles…

  14. Five Years Later: Recovery from Post Traumatic Stress and Psychological Distress Among Low-Income Mothers Affected by Hurricane Katrina

    OpenAIRE

    Paxson, Christina; Fussell, Elizabeth; Rhodes, Jean; Waters, Mary

    2011-01-01

    Hurricane Katrina, which struck the Gulf Coast of the United States in August 2005, exposed area residents to trauma and extensive property loss. However, little is known about the long-run effects of the hurricane on the mental health of those who were exposed. This study documents long-run changes in mental health among a particularly vulnerable group—low income mothers—from before to after the hurricane, and identifies factors that are associated with different recovery trajectories. Longi...

  15. Family and Individual Factors Associated with Substance Involvement and PTS Symptoms among Adolescents in Greater New Orleans after Hurricane Katrina

    Science.gov (United States)

    Rowe, Cynthia L.; La Greca, Annette M.; Alexandersson, Anders

    2010-01-01

    Objective: This study examined the influence of hurricane impact as well as family and individual risk factors on posttraumatic stress (PTS) symptoms and substance involvement among clinically referred adolescents affected by Hurricane Katrina. Method: A total of 80 adolescents (87% male; 13-17 years old; mean age = 15.6 years; 38% minorities) and…

  16. Positive Traits versus Previous Trauma: Racially Different Correlates with PTSD Symptoms among Hurricane Katrina-Rita Volunteers

    Science.gov (United States)

    Ai, Amy L.; Plummer, Carol; Kanno, Hanae; Heo, Grace; Appel, Hoa B.; Simon, Cassandra E.; Spigner, Clarence

    2011-01-01

    This study compared risks and protective factors for acquiring symptoms of posttraumatic stress disorder (PTSD) between African-American (n = 299) and European-American (n = 206) student volunteers 3 months after Hurricanes Katrina and Rita (H-KR). Respondents retrospectively provided information on peritraumatic emotional reactions and previous…

  17. Hurricane Katrina Aerial Photography: High-Resolution Imagery of the Gulf Coast of Louisiana, Mississippi and Alabama After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the Gulf Coast of Louisiana, Mississippi and Alabama after Hurricane Katrina made landfall. The regions photographed range from...

  18. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  19. Lessons from Hurricane Katrina: The Employment Effects of The Mass Dismissal of New Orleans Teachers

    Science.gov (United States)

    Lincove, Jane Arnold; Barrett, Nathan; Strunk, Katharine O.

    2018-01-01

    In the aftermath of Hurricane Katrina, the Orleans Parish school district fired over 4,000 public school teachers as the city underwent a transition to a market-based system of charter schools. Using administrative data, we examine whether and how these teachers returned to public school employment and teaching. We estimate that school reform and…

  20. Missed by the Mass Media: The Houma, Pointe-au-Chien, and Hurricanes Katrina and Rita

    Science.gov (United States)

    Collins, Robert Keith

    2008-01-01

    This case study investigates the media discourse from Houma and Pointe-au-Chien tribal leaders in Louisiana on their experiences with Hurricanes Katrina and Rita. One section briefly engages the discourse as discernable from the reports found in Native American and non-Native American news media. Included is a brief yet close examination of these…

  1. An exploration of post-traumatic stress disorder in emergency nurses following Hurricane Katrina.

    Science.gov (United States)

    Battles, Elizabeth D

    2007-08-01

    As a result of Hurricane Katrina on August 29, 2005, ED nurses were faced with chaos during and after the storm. The purpose of this pilot study was to determine if emergency nurses have experienced signs and symptoms of post-traumatic stress disorder (PTSD) as a result of working in an emergency department of the New Orleans metropolitan area during and immediately after Hurricane Katrina. The research identifies if the nurses perceived satisfaction with measures administrators took to provide Critical Incident Stress Management (CISM). To combat burnout, absenteeism, emotional difficulties, and health problems in nurses, administration must offer adequate crisis management for those affected by a traumatic event in the workplace. Data were captured through a cross-sectional research design using self-reporting questionnaires. A questionnaire captured demographic information as well as information regarding satisfaction with CISM offered by management. The Post Traumatic Checklist (PCL) was utilized to assess PTSD symptoms in the nurse. An emergency department located approximately 40 miles north of downtown New Orleans, Louisiana, served as the setting for this study. The sample included 21 registered nurses who worked in the emergency department. Twenty percent of the nurses has symptoms of PTSD. In addition, 100% of the nurses reported that administrators did not offer CISM. To combat consequences of long-term effects of PTSD, hospital administrators must offer adequate treatment to employees. Further research is needed to expand the sample and gain a wider perspective on PTSD symptoms in nurses who worked during the Hurricane.

  2. Longitudinal Impact of Attachment-Related Risk and Exposure to Trauma among Young Children after Hurricane Katrina

    Science.gov (United States)

    Osofsky, Joy; Kronenberg, Mindy; Bocknek, Erika; Hansel, Tonya Cross

    2015-01-01

    Background: Research suggests that young childhood is a dynamic developmental phase during which risks to attachment figures as well as traumatic events may be particularly important. The loss and disruption associated with Hurricane Katrina highlighted the vulnerabilities and special needs of young children exposed to natural disaster. Objective:…

  3. Trend Analysis of Substance Abuse Treatment Admissions in New Orleans From 2000-2012: A Population-Based Comparison Pre- and Post-Hurricane Katrina.

    Science.gov (United States)

    Shuler, Monique N; Wallington, Sherrie F; Qualls-Hampton, Raquel Y; Podesta, Arwen E; Suzuki, Sumihiro

    2016-10-14

    Substance abuse treatment following a natural disaster is often met with challenges. If treatment is available, facilities may be unequipped to service an influx of patients or provide specialized care for unique populations. This paper seeks to evaluate trends in substance abuse treatment over time and assess changes pre- and post-Hurricane Katrina. Substance abuse treatment admission data (N = 42,678) from New Orleans, Louisiana, for years 2000 through 2012 were obtained from the Treatment Episode Data Set. Admissions were examined to evaluate demographic, socioeconomic, psychiatric, and criminality trends in substance abuse treatment and assess changes following Hurricane Katrina. Treatment admissions have decreased from 2000 to 2012. About one in five admissions had a psychiatric illness in addition to a substance abuse problem. A staggering 76% of admissions with a psychiatric illness were referred by the criminal justice system post-Katrina as compared to pre-Katrina. Rates of alcohol and marijuana admissions have remained stable from 2000 to 2012. Cocaine/crack admissions have declined and admissions who abused heroin have increased over time. Treatment admissions stabilized following Hurricane Katrina; however, since 2009, they have begun to decline. Targeted exploration of factors affecting admission to treatment in New Orleans with populations such as the homeless, those with a psychiatric illness in addition to a substance abuse problem, and those referred by the criminal justice system is essential. The results of this study assist in identifying variations in substance abuse treatment characteristics for those admitted to treatment in New Orleans.

  4. Resource Loss and Depressive Symptoms Following Hurricane Katrina: A Principal Component Regression Study

    OpenAIRE

    Liang L; Hayashi K; Bennett P; Johnson T. J; Aten J. D

    2015-01-01

    To understand the relationship between the structure of resource loss and depression after disaster exposure, the components of resource loss and the impact of these resource loss components on depression was examined among college students (N=654) at two universities who were affected by Hurricane Katrina. The component of resource loss was analyzed by principal component analysis first. Gender, social relationship loss, and financial loss were then examined with the regression model on depr...

  5. From the incident command center oil spills from Hurricanes Katrina and Rita

    Energy Technology Data Exchange (ETDEWEB)

    Guidry, R.J. [Lousiana Oil Spill Coordinator' s Office, Baton Rouge, LA (United States)

    2006-07-01

    Approximately 30.2 million litres of oil were discharged during Hurricanes Katrina and Rita. A total of 230 incidents were reported to the state's spill response community, including ruptured pipelines, damaged and moved storage tanks, refineries, and sunken vessels. By January 2006, industry had reported the recovery of 14.7 million litres of oil. After Hurricane Rita, a further 234 off- and onshore incidents were reported. This paper presented a chronology from August 26 2005 through to June 2006 of clean-up activities for both hurricanes, with specific reference to logistic and communications issues associated with working in environments that are difficult to access due to damaged transportation infrastructure. An outline of the Louisiana Oil Spill Coordinator's Office's role in the incidents was presented, as well as an overview of the Louisiana State Contingency Plan. It was noted that the lack of communications systems caused considerable difficulties for responders. It was concluded that responses to hurricanes can be made more effective by having all response communities incident command structure (ICS)-trained with a thorough knowledge of the National Response Plan as it relates to the National Contingency Plan. Ensuring that plans are operational, having clear lines of authority on all hurricane-related issues, and having a robust communications plan were recommended, as well as the ability to respond without communications.

  6. From the incident command center oil spills from Hurricanes Katrina and Rita

    International Nuclear Information System (INIS)

    Guidry, R.J.

    2006-01-01

    Approximately 30.2 million litres of oil were discharged during Hurricanes Katrina and Rita. A total of 230 incidents were reported to the state's spill response community, including ruptured pipelines, damaged and moved storage tanks, refineries, and sunken vessels. By January 2006, industry had reported the recovery of 14.7 million litres of oil. After Hurricane Rita, a further 234 off- and onshore incidents were reported. This paper presented a chronology from August 26 2005 through to June 2006 of clean-up activities for both hurricanes, with specific reference to logistic and communications issues associated with working in environments that are difficult to access due to damaged transportation infrastructure. An outline of the Louisiana Oil Spill Coordinator's Office's role in the incidents was presented, as well as an overview of the Louisiana State Contingency Plan. It was noted that the lack of communications systems caused considerable difficulties for responders. It was concluded that responses to hurricanes can be made more effective by having all response communities incident command structure (ICS)-trained with a thorough knowledge of the National Response Plan as it relates to the National Contingency Plan. Ensuring that plans are operational, having clear lines of authority on all hurricane-related issues, and having a robust communications plan were recommended, as well as the ability to respond without communications

  7. Relationships between common forest metrics and realized impacts of Hurricane Katrina on forest resources in Mississippi

    Science.gov (United States)

    Sonja N. Oswalt; Christopher M. Oswalt

    2008-01-01

    This paper compares and contrasts hurricane-related damage recorded across the Mississippi landscape in the 2 years following Katrina with initial damage assessments based on modeled parameters by the USDA Forest Service. Logistic and multiple regressions are used to evaluate the influence of stand characteristics on tree damage probability. Specifically, this paper...

  8. Respiratory health effects associated with restoration work in post-Hurricane Katrina New Orleans.

    Science.gov (United States)

    Rando, Roy J; Lefante, John J; Freyder, Laurie M; Jones, Robert N

    2012-01-01

    This study examines prevalence of respiratory conditions in New Orleans-area restoration workers after Hurricane Katrina. Between 2007 and 2010, spirometry and respiratory health and occupational questionnaire were administered to 791 New Orleans-area adults who mostly worked in the building construction and maintenance trades or custodial services. The associations between restoration work hours and lung function and prevalence of respiratory symptoms were examined by multiple linear regression, χ², or multiple logistic regression. 74% of participants performed post-Katrina restoration work (median time: 620 hours). Symptoms reported include episodes of transient fever/cough (29%), sinus symptoms (48%), pneumonia (3.7%), and new onset asthma (4.5%). Prevalence rate ratios for post-Katrina sinus symptoms (PRR = 1.3; CI: 1.1, 1.7) and fever and cough (PRR = 1.7; CI: 1.3, 2.4) were significantly elevated overall for those who did restoration work and prevalence increased with restoration work hours. Prevalence rate ratios with restoration work were also elevated for new onset asthma (PRR = 2.2; CI: 0.8, 6.2) and pneumonia (PRR = 1.3; CI: 0.5, 3.2) but were not statistically significant. Overall, lung function was slightly depressed but was not significantly different between those with and without restoration work exposure. Post-Katrina restoration work is associated with moderate adverse effects on respiratory health, including sinusitis and toxic pneumonitis.

  9. Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005)

    Science.gov (United States)

    Abarca, Sergio F.; Corbosiero, Kristen L.

    2011-04-01

    An analysis is presented of two high-resolution hurricane simulations of Katrina and Rita (2005) that exhibited secondary eyewall formation (SEF). The results support the notion of vortex Rossby waves (VRWs) having an important role in SEF and suggest that VRW activity is a defining aspect of the moat. SEF occurs at a radius of ˜65 (80) km in Katrina (Rita), close to the hypothesized stagnation radius of VRWs. VRW activity appears to be the result of eye-eyewall mixing events, themselves a product of the release of barotropic instability. The convection in the radial region that becomes the moat is mainly in the form of VRWs propagating radially outward from the primary eyewall until the negative radial gradient of potential vorticity is no longer conducive for their propagation. These convectively coupled waves, originating and being expelled from the eyewall, are rotation dominated and have the coherency necessary to survive their passage through the strain-dominated region outside the eyewall.

  10. Vulnerability and social resilience: comparison of two neighborhoods in New Orleans after Hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Leroy Jeanne

    2016-01-01

    Full Text Available On August 29th of 2005, Hurricane Katrina hit the gulf coast of the United States leading to one of the most powerful disasters in history. Damage costs reached more than 100 billion dollars, as well as 150,000 flooded houses and 1,330 deaths. 10 years later, the damage remains visible in the city of New Orleans, and the rate of recovery is highly varied throughout different neighborhoods in the city. A popular idea is to associate this to the neighborhood social class, i.e. the poorer an area is, the more difficult the recovery process is. However the reality is more complex. This study looks at two economically similar and highly damaged neighborhoods, with two deeply different recoveries. The Lower 9th Ward, an isolated, and poor neighborhood surrounded by water with the Mississippi River and the industrial canal, has experienced an extremely slow recovery. However, in the isolated and relatively poor neighborhood known as Village de l’Est, located on former marshes at the edge of the city between Lake Pontchartrain and the Bayou Bienvenue, the Vietnamese community ties and cohesion have brought the neighborhood back to fruition faster than anyone would have expected. Despite many common features weakening their technical resilience, such as relatively modern and fast urbanization on former natural and low lands protected mostly by levees, their radically different reaction following Katrina points out the key role of social resilience. This communication will aim to present decisive social aspects of resilience aside from geophysical and physical features such as risk awareness, social link and community culture.

  11. Impact of hurricanes katrina and rita on the anesthesiology workforce.

    Science.gov (United States)

    Hutson, Larry R; Vega, Jorge; Schubert, Armin

    2011-01-01

    Hurricanes Katrina and Rita impacted a large portion of the medical community in Louisiana. We attempt to determine their impact on the anesthesiology workforce in Louisiana. In May 2006, a survey was mailed to 368 Louisiana anesthesiologists, collecting demographic data, retirement plans, impact of Hurricanes Katrina and Rita, position vacancies, practice conditions, and the general state of healthcare in their area. All 3 anesthesiology residency programs in the state were contacted regarding their recent graduates. The 2010 RAND survey of the anesthesiology workforce was reviewed with respect to findings relevant to the state and region. One hundred seventy surveys were returned, yielding a 46.2% response rate. Among the respondents, 13.9% intended to retire within 5 years and another 24% in 5 to 10 years. Since 2005, 63.9% had seen an increase in their daily caseload, 46.9% saw an increase in work hours, and 36.8% stated that their practices were trying to hire new anesthesiologists and were having difficulty filling these positions. Since 2005, the number of anesthesiology residents in Louisiana had declined by almost 50%, and the number of graduates remaining to practice in Louisiana had decreased by 43% from 7 to 4 annually. Our 2006 survey provided qualitative evidence for a shortage of anesthesiologists in the state of Louisiana after the natural disasters in 2005 that was likely to worsen as residency output plummeted, fewer residents stayed in the state, and projected retirement increased. The regional data from the RAND survey a year later confirmed the impressions from our survey, with an estimate of an anesthesiologist shortage as high as 39% of the workforce. State membership surveys may serve as accurate barometers in the wake of major environmental upheavals affecting regional anesthesiology workforce conditions.

  12. The Effects of Hurricane Katrina on Food Access Disparities in New Orleans

    Science.gov (United States)

    Bodor, J. Nicholas; Rice, Janet C.; Swalm, Chris M.; Hutchinson, Paul L.

    2011-01-01

    Disparities in neighborhood food access are well documented, but little research exists on how shocks influence such disparities. We examined neighborhood food access in New Orleans at 3 time points: before Hurricane Katrina (2004–2005), in 2007, and in 2009. We combined existing directories with on-the-ground verification and geographic information system mapping to assess supermarket counts in the entire city. Existing disparities for African American neighborhoods worsened after the storm. Although improvements have been made, by 2009 disparities were no better than prestorm levels. PMID:21233432

  13. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas.

    Science.gov (United States)

    Ruckart, Perri Zeitz; Orr, Maureen F; Lanier, Kenneth; Koehler, Allison

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  14. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas

    International Nuclear Information System (INIS)

    Ruckart, Perri Zeitz; Orr, Maureen F.; Lanier, Kenneth; Koehler, Allison

    2008-01-01

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews

  15. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas

    Energy Technology Data Exchange (ETDEWEB)

    Ruckart, Perri Zeitz [Division of Health Studies, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)], E-mail: afp4@cdc.gov; Orr, Maureen F. [Division of Health Studies, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States); Lanier, Kenneth; Koehler, Allison [Louisiana Department of Health and Hospitals, Office of Public Health, New Orleans, LA (United States)

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  16. New Orleans before and after Hurricanes Katrina/Rita: a quasi-experiment of the association between soil lead and children's blood lead.

    Science.gov (United States)

    Zahran, Sammy; Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Weiler, Stephan

    2010-06-15

    Prior to Hurricanes Katrina and Rita (HKR), significant associations were noted between soil lead (SL) and blood lead (BL) in New Orleans. Engineering failure of New Orleans levees and canal walls after HKR set the stage for a quasi-experiment to evaluate BL responses by 13 306 children to reductions in SL. High density soil surveying conducted in 46 census tracts before HKR was repeated after the flood. Paired t test results show that SL decreased from 328.54 to 203.33 mg/kg post-HKR (t = 3.296, p or =50% decrease in SL. Also individual BL in children was predicted as a function of SL, adjusting for age, year of observation, and depth of flood waters. At the individual scale, BL decreased significantly in post-HKR as a function of SL, with BL decreases ranging from b = -1.20 to -1.65 microg/dL, depending on the decline of SL and whether children were born in the post-HKR period. Our results support policy to improve soil conditions for children.

  17. The contribution of pre- and postdisaster social support to short- and long-term mental health after Hurricanes Katrina: A longitudinal study of low-income survivors.

    Science.gov (United States)

    Chan, Christian S; Lowe, Sarah R; Weber, Elyssa; Rhodes, Jean E

    2015-08-01

    A previous study of Hurricane Katrina survivors found that higher levels of predisaster social support were associated with lower psychological distress one year after the storm, and that this pathway was mediated by lower exposure to hurricane-related stressors. As a follow-up, we examined the impact of pre- and postdisaster social support on longer-term of mental health-both psychological distress and posttraumatic stress. In this three-wave longitudinal study, 492 residents in the region affected by Hurricane Katrina reported levels of perceived social support and symptoms of psychological distress prior to the storm (Wave 1). Subsequently, one year after Hurricane Katrina (Wave 2), they reported levels of exposure, perceived social support, and symptoms of psychological distress and posttraumatic stress. The latter three variables were assessed again four years after the hurricane (Wave 3). Results of mediation analysis indicated that levels of exposure to hurricane-related stressors mediated the relationship between Wave 1 perceived social support and Wave 3 psychological distress as well as postdisaster posttraumatic stress. Results of regression analyses indicated that, controlling for Wave 1 psychological distress and disaster exposure, Wave 2 perceived social support was associated with Wave 2 and Wave 3 psychological distress but not posttraumatic stress. Our results confirmed the social causation processes of social support and suggest that posttraumatic stress might not stem directly from the lack of social support. Rather, preexisting deficits in social resources might indirectly affect longer-term posttraumatic stress and general psychological distress by increasing risk for disaster-related stressors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  19. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita.

    Science.gov (United States)

    Lohrenz, Steven E; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-07-10

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and

  20. The psychosocial impact of Hurricane Katrina on persons with disabilities and independent living center staff living on the American Gulf Coast.

    Science.gov (United States)

    Fox, Michael H; White, Glen W; Rooney, Catherine; Cahill, Anthony

    2010-08-01

    To determine the impact of Hurricane Katrina on the psychosocial health of people with disabilities and on the ability of people with disabilities in the affected area to live independently. Transcribed conversations were analyzed for 56 survivors of Hurricane Katrina on the American Gulf Coast, all of whom were persons with disabilities or persons working with them. Semi-structured interviews were conducted either individually or in focus groups with participants. Qualitative analysis was undertaken using hermeneutic techniques. Six major themes emerged: faith, incredulousness, blaming others or oneself, family adaptation and resiliency, and work and professional responsibility. The resiliency of persons with disabilities to adapt to disasters can be better understood through factors such as these, providing an effective barometer of social capital that can help societies prepare for future disasters among those most vulnerable.

  1. Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-03-01

    Full Text Available In the aftermath of Hurricane Katrina, the levees protecting New Orleans, Louisiana failed. Because approximately 80% of the city was under sea level, widespread flooding ensued. As a resident of New Orleans who had evacuated before the storm, and a life-long researcher on filamentous fungi, I had known what to expect. After the hurricane I traveled home with a suitcase full of Petri dishes and sampling equipment so as to study the fungi that were eating my house. Not only were surfaces covered with fungal growth, the air itself was full of concentrated mold odor, a smell that was orders of magnitude more funky than any damp, musty basement I had ever encountered. The smell made me feel bad and I had to take regular breaks as I sampled. Being a mycotoxin expert, I knew a fair amount about sick building syndrome but believed that it was difficult to get enough respiratory exposure to toxins to cause the array of symptoms associated with the syndrome. So why was I feeling sick? Some Scandinavian experts had hypothesized that mold volatile organic compounds (VOCs might be the fungal metabolites to blame for sick building syndrome and the time in my smelly, mold infested home made me think they might be right. After securing a new job and establishing a new laboratory, I endeavored to test the hypothesis that some volatile mold metabolites might be toxic. My laboratory at Rutgers University has interrogated the role of VOCs in possible interkingdom toxicity by developing controlled microcosms for exposing simple genetic model organisms to the vapor phase of growing fungi. Both Arabidopsis thaliana and Drosophila melanogaster exhibit a range of toxic symptoms that vary with the species of fungus, the duration of exposure, and other experimental parameters. Moreover, low concentrations of chemical standards of individual fungal VOCs such as 1-octen-3-ol also exhibit varying toxicity and cause neurotoxicity in a Drosophila model.

  2. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    Science.gov (United States)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  3. A Prospective Study of Religiousness and Psychological Distress Among Female Survivors of Hurricanes Katrina and Rita

    Science.gov (United States)

    Rhodes, Jean E.; Pérez, John E.

    2013-01-01

    This prospective study examined the pathways by which religious involvement affected the post-disaster psychological functioning of women who survived Hurricanes Katrina and Rita. The participants were 386 low-income, predominantly Black, single mothers. The women were enrolled in the study before the hurricane, providing a rare opportunity to document changes in mental health from before to after the storm, and to assess the protective role of religious involvement over time. Results of structural equation modeling indicated that, controlling for level of exposure to the hurricanes, pre-disaster physical health, age, and number of children, pre-disaster religiousness predicted higher levels of post-disaster (1) social resources and (2) optimism and sense of purpose. The latter, but not the former, was associated with better post-disaster psychological outcome. Mediation analysis confirmed the mediating role of optimism and sense of purpose. PMID:21626083

  4. A prospective study of religiousness and psychological distress among female survivors of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Chan, Christian S; Rhodes, Jean E; Pérez, John E

    2012-03-01

    This prospective study examined the pathways by which religious involvement affected the post-disaster psychological functioning of women who survived Hurricanes Katrina and Rita. The participants were 386 low-income, predominantly Black, single mothers. The women were enrolled in the study before the hurricane, providing a rare opportunity to document changes in mental health from before to after the storm, and to assess the protective role of religious involvement over time. Results of structural equation modeling indicated that, controlling for level of exposure to the hurricanes, pre-disaster physical health, age, and number of children, pre-disaster religiousness predicted higher levels of post-disaster (1) social resources and (2) optimism and sense of purpose. The latter, but not the former, was associated with better post-disaster psychological outcome. Mediation analysis confirmed the mediating role of optimism and sense of purpose.

  5. First-year growth for two oak species and three planting stocks planted on areas disturbed by Hurricane Katrina

    Science.gov (United States)

    Andrew Dowdy; Andrew W. Ezell; Emily B. Schultz; John D. Hodges; Andrew B. Self

    2014-01-01

    Bottomland hardwood forests were damaged by Hurricane Katrina in 2005 when it made landfall along the Gulf Coast. Regenerating these areas, which can be difficult without planning and artificial regeneration, has often been problematic when using 1-0 bare-root seedlings because of inconsistencies with the seedling quality. Some growers have begun producing...

  6. Support for harmful treatment and reduction of empathy toward blacks: "Remnants" of stereotype activation involving Hurricane Katrina and "Lil' Kim"

    NARCIS (Netherlands)

    Johnson, J.D.; Bushman, B.J.

    2008-01-01

    Two experiments involving White participants tested the influence of media-based Black stereotypes on subsequent responses to Black and White persons-in-need. Experiment 1 showed that priming the "Black criminal" stereotype through exposure to photographs of Blacks looting after Hurricane Katrina

  7. Postpartum mental health after Hurricane Katrina: A cohort study

    Directory of Open Access Journals (Sweden)

    Harville Emily W

    2009-06-01

    Full Text Available Abstract Background Natural disaster is often a cause of psychopathology, and women are vulnerable to post-traumatic stress disorder (PTSD and depression. Depression is also common after a woman gives birth. However, no research has addressed postpartum women's mental health after natural disaster. Methods Interviews were conducted in 2006–2007 with women who had been pregnant during or shortly after Hurricane Katrina. 292 New Orleans and Baton Rouge women were interviewed at delivery and 2 months postpartum. Depression was assessed using the Edinburgh Depression Scale and PTSD using the Post-Traumatic Stress Checklist. Women were asked about their experience of the hurricane with questions addressing threat, illness, loss, and damage. Chi-square tests and log-binomial/Poisson models were used to calculate associations and relative risks (RR. Results Black women and women with less education were more likely to have had a serious experience of the hurricane. 18% of the sample met the criteria for depression and 13% for PTSD at two months postpartum. Feeling that one's life was in danger was associated with depression and PTSD, as were injury to a family member and severe impact on property. Overall, two or more severe experiences of the storm was associated with an increased risk for both depression (relative risk (RR 1.77, 95% confidence interval (CI 1.08–2.89 and PTSD (RR 3.68, 95% CI 1.80–7.52. Conclusion Postpartum women who experience natural disaster severely are at increased risk for mental health problems, but overall rates of depression and PTSD do not seem to be higher than in studies of the general population.

  8. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    Science.gov (United States)

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  9. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    Science.gov (United States)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  10. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Directory of Open Access Journals (Sweden)

    Merritt Tuel

    2008-07-01

    Full Text Available The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490 and chlorophyll (chlor_a from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies identified on the basis of sea surface height anomaly (SSHA. Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels

  11. Toward Transformative Learning: An Inquiry into the Work and Subsequent Learning Experiences of Individuals Who Assisted Hurricane Katrina Evacuees

    Science.gov (United States)

    Ficks, David B., II.

    2010-01-01

    The purpose of this multi-case study was to examine in depth the personal and learning experiences of helping professionals and volunteer helpers when challenged to assist adult Hurricane Katrina evacuees and victims in the aftermath of the disaster. The study contributes theoretically, practically and substantively to the adult education field.…

  12. Challenges to older women's sense of self in the aftermath of Hurricane Katrina.

    Science.gov (United States)

    Roberto, Karen A; Henderson, Tammy L; Kamo, Yoshinori; McCann, Brandy Renee

    2010-11-01

    We examined the personal challenges older women faced as they began to rebuild their sense of self after Hurricane Katrina. In-depth interviews with 74 older women approximately 6 months after the disaster revealed challenges in four domains: maintaining social connections, family connections but loss of independence, reestablishing a sense of place, and managing their own health or the health of a loved one. Follow-up data gathered several months after the initial interviews from 21 of the older women indicated that feelings of displacement persisted as they dealt with health concerns, found a place to live, and managed family roles.

  13. Challenges in estimating the health impact of Hurricane Sandy using macro-level flood data.

    Science.gov (United States)

    Lieberman-Cribbin, W.; Liu, B.; Schneider, S.; Schwartz, R.; Taioli, E.

    2016-12-01

    Background: Hurricane Sandy caused extensive physical and economic damage but the long-term health impacts are unknown. Flooding is a central component of hurricane exposure, influencing health through multiple pathways that unfold over months after flooding recedes. This study assesses concordance in Federal Emergency Management (FEMA) and self-reported flood exposure after Hurricane Sandy to elucidate discrepancies in flood exposure assessments. Methods: Three meter resolution New York State flood data was obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. FEMA data was compared to self-reported flood data obtained through validated questionnaires from New York City and Long Island residents following Sandy. Flooding was defined as both dichotomous and continuous variables and analyses were performed in SAS v9.4 and ArcGIS 10.3.1. Results: There was a moderate agreement between FEMA and self-reported flooding (Kappa statistic 0.46) and continuous (Spearman's correlation coefficient 0.50) measures of flood exposure. Flooding was self-reported and recorded by FEMA in 23.6% of cases, while agreement between the two measures on no flooding was 51.1%. Flooding was self-reported but not recorded by FEMA in 8.5% of cases, while flooding was not self-reported but indicated by FEMA in 16.8% of cases. In this last instance, 84% of people (173/207; 83.6%) resided in an apartment (no flooding reported). Spatially, the most concordance resided in the interior of New York City / Long Island, while the greatest areas of discordance were concentrated in the Rockaway Peninsula and Long Beach, especially among those living in apartments. Conclusions: There were significant discrepancies between FEMA and self-reported flood data. While macro-level FEMA flood data is a relatively less expensive and faster way to provide exposure estimates spanning larger geographic areas affected by Hurricane Sandy than micro-level estimates from cohort studies, macro

  14. Mental Health, Substance Use, and Adaptive Coping among Social Work Students in the Aftermath of Hurricanes Katrina and Rita

    Science.gov (United States)

    Lemieux, Catherine M.; Plummer, Carol A.; Richardson, Roslyn; Simon, Cassandra E.; Ai, Amy L.

    2010-01-01

    The current study examined mental health symptomology, substance use, and adaptive coping among 416 social work students following Hurricanes Katrina and Rita. Among participants, 47% scored at or above the clinical level for depression, with 6% of students showing clinical PTSD-like symptoms, and 16.9% reporting substance use. Two thirds (66.9%)…

  15. Disaster mythology and fact: Hurricane Katrina and social attachment.

    Science.gov (United States)

    Jacob, Binu; Mawson, Anthony R; Payton, Marinelle; Guignard, John C

    2008-01-01

    Misconceptions about disasters and their social and health consequences remain prevalent despite considerable research evidence to the contrary. Eight such myths and their factual counterparts were reviewed in a classic report on the public health impact of disasters by Claude de Ville de Goyet entitled, The Role of WHO in Disaster Management: Relief, Rehabilitation, and Reconstruction (Geneva, World Health Organization, 1991), and two additional myths and facts were added by Pan American Health Organization. In this article, we reconsider these myths and facts in relation to Hurricane Katrina, with particular emphasis on psychosocial needs and behaviors, based on data gleaned from scientific sources as well as printed and electronic media reports. The review suggests that preparedness plans for disasters involving forced mass evacuation and resettlement should place a high priority on keeping families together--and even entire neighborhoods, where possible--so as to preserve the familiar and thereby minimize the adverse effects of separation and major dislocation on mental and physical health.

  16. The Impact of Teacher Qualifications on Student Achievement: An Examination of Schools in New Orleans Pre- and Post-Hurricane Katrina

    Science.gov (United States)

    Stewart, Jennifer Michelle

    2012-01-01

    One important outcome of the restructuring of the New Orleans school system post-Hurricane Katrina, and the subsequent performance of students, was an awareness that some fundamental premises in No Child Left Behind (NCLB) should be revisited. An examination of student performance in the restructured school system, for example, raised questions…

  17. Terrestrial Lidar Datasets of New Orleans, Louisiana, Levee Failures from Hurricane Katrina, August 29, 2005

    Science.gov (United States)

    Collins, Brian D.; Kayen, Robert; Minasian, Diane L.; Reiss, Thomas

    2009-01-01

    Hurricane Katrina made landfall with the northern Gulf Coast on August 29, 2005, as one of the strongest hurricanes on record. The storm damage incurred in Louisiana included a number of levee failures that led to the inundation of approximately 85 percent of the metropolitan New Orleans area. Whereas extreme levels of storm damage were expected from such an event, the catastrophic failure of the New Orleans levees prompted a quick mobilization of engineering experts to assess why and how particular levees failed. As part of this mobilization, civil engineering members of the United States Geological Survey (USGS) performed terrestrial lidar topographic surveys at major levee failures in the New Orleans area. The focus of the terrestrial lidar effort was to obtain precise measurements of the ground surface to map soil displacements at each levee site, the nonuniformity of levee height freeboard, depth of erosion where scour occurred, and distress in structures at incipient failure. In total, we investigated eight sites in the New Orleans region, including both earth and concrete floodwall levee breaks. The datasets extend from the 17th Street Canal in the Orleans East Bank area to the intersection of the Gulf Intracoastal Waterway (GIWW) with the Mississippi River Gulf Outlet (MRGO) in the New Orleans East area. The lidar scan data consists of electronic files containing millions of surveyed points. These points characterize the topography of each levee's postfailure or incipient condition and are available for download through online hyperlinks. The data serve as a permanent archive of the catastrophic damage of Hurricane Katrina on the levee systems of New Orleans. Complete details of the data collection, processing, and georeferencing methodologies are provided in this report to assist in the visualization and analysis of the data by future users.

  18. Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This fact sheet describes the technical assistance that the U.S. Department of Energy, through its National Renewable Energy Laboratory, provided to New Orleans, Louisiana, which helped the city incorporate energy efficiency into its rebuilding efforts for K-12 schools and homes following Hurricanes Katrina and Rita. NREL also provided support and analysis on energy policy efforts.

  19. Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles.

    Science.gov (United States)

    Bennett, Joan W

    2015-01-01

    In the aftermath of Hurricane Katrina, the levees protecting New Orleans, Louisiana failed. Because approximately 80% of the city was under sea level, widespread flooding ensued. As a resident of New Orleans who had evacuated before the storm and a life-long researcher on filamentous fungi, I had known what to expect. After the hurricane I traveled home with a suitcase full of Petri dishes and sampling equipment so as to study the fungi that were "eating my house." Not only were surfaces covered with fungal growth, the air itself was full of concentrated mold odor, a smell that was orders of magnitude more funky than any damp, musty basement I had ever encountered. The smell made me feel bad and I had to take regular breaks as I sampled. Being a mycotoxin expert, I knew a fair amount about "sick building syndrome" but believed that it was difficult to get enough respiratory exposure to toxins to cause the array of symptoms associated with the syndrome. So why was I feeling sick? Some Scandinavian experts had hypothesized that mold volatile organic compounds (VOCs) might be the fungal metabolites to blame for sick building syndrome and the time in my smelly, mold infested home made me think they might be right. After securing a new job and establishing a new laboratory, I endeavored to test the hypothesis that some volatile mold metabolites might be toxic. My laboratory at Rutgers University has interrogated the role of VOCs in possible interkingdom toxicity by developing controlled microcosms for exposing simple genetic model organisms to the vapor phase of growing fungi. Both Arabidopsis thaliana and Drosophila melanogaster exhibit a range of toxic symptoms that vary with the species of fungus, the duration of exposure, and other experimental parameters. Moreover, low concentrations of chemical standards of individual fungal VOCs such as 1-octen-3-ol also exhibit varying toxicity and cause neurotoxicity in a Drosophila model. Collectively, these data suggest that

  20. A comparative evaluation of semen parameters in pre- and post-Hurricane Katrina human population

    Directory of Open Access Journals (Sweden)

    Caner Baran

    2015-01-01

    Full Text Available A natural disaster leading to accumulation of environmental contaminants may have substantial effects on the male reproductive system. Our aim was to compare and assess semen parameters in a normospermic population residing in the Southern Louisiana, USA area pre- and post-Hurricane Katrina. We retrospectively evaluated semen analyses data (n = 3452 of 1855 patients who attended the Tulane University Andrology/Fertility Clinic between 1999 and 2013. The study inclusion criteria were men whose semen analyses showed ≥ 1.5 ml volume; ≥15 million ml -1 sperm concentration; ≥39 million total sperm count; ≥40% motility; >30% morphology, with an abstinence interval of 2-7 days. After the inclusion criteria applied to the population, 367 normospermic patients were included in the study. Descriptive statistics and group-based analyses were performed to interpret the differences between the pre-Katrina (Group 1, 1999-2005 and the post-Katrina (Group 2, 2006-2013 populations. There were significant differences in motility, morphology, number of white blood cell, immature germ cell count, pH and presence of sperm agglutination, but surprisingly there were no significant differences in sperm count between the two populations. This long-term comparative analysis further documents that a major natural disaster with its accompanied environmental issues can influence certain semen parameters (e.g., motility and morphology and, by extension, fertility potential of the population of such areas.

  1. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  2. Self-Reported and FEMA Flood Exposure Assessment after Hurricane Sandy: Association with Mental Health Outcomes.

    Directory of Open Access Journals (Sweden)

    Wil Lieberman-Cribbin

    Full Text Available Hurricane Sandy caused extensive physical and economic damage; the long-term mental health consequences are unknown. Flooding is a central component of hurricane exposure, influencing mental health through multiple pathways that unfold over months after flooding recedes. Here we assess the concordance in self-reported and Federal Emergency Management (FEMA flood exposure after Hurricane Sandy and determine the associations between flooding and anxiety, depression, and post-traumatic stress disorder (PTSD. Self-reported flood data and mental health symptoms were obtained through validated questionnaires from New York City and Long Island residents (N = 1231 following Sandy. Self-reported flood data was compared to FEMA data obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. Multivariable logistic regressions were performed to determine the relationship between flooding exposure and mental health outcomes. There were significant discrepancies between self-reported and FEMA flood exposure data. Self-reported dichotomous flooding was positively associated with anxiety (ORadj: 1.5 [95% CI: 1.1-1.9], depression (ORadj: 1.7 [1.3-2.2], and PTSD (ORadj: 2.5 [1.8-3.4], while self-reported continuous flooding was associated with depression (ORadj: 1.1 [1.01-1.12] and PTSD (ORadj: 1.2 [1.1-1.2]. Models with FEMA dichotomous flooding (ORadj: 2.1 [1.5-2.8] or FEMA continuous flooding (ORadj: 1.1 [1.1-1.2] were only significantly associated with PTSD. Associations between mental health and flooding vary according to type of flood exposure measure utilized. Future hurricane preparedness and recovery efforts must integrate micro and macro-level flood exposures in order to accurately determine flood exposure risk during storms and realize the long-term importance of flooding on these three mental health symptoms.

  3. A developmental approach to understanding drawings and narratives from children displaced by Hurricane Katrina.

    Science.gov (United States)

    Looman, Wendy Sue

    2006-01-01

    Using art as a process to help children externalize complex feelings can add another layer of assessment in the primary care setting. In the face of trauma, drawing may help children gain symbolic control over events that are confusing and frightening. Through examples of children who were affected by Hurricane Katrina, this article describes the use of drawings and narratives to understand children's experiences related to traumatic displacement. Recommendations include using a developmental lens to understanding children's art, asking children to talk about their drawings, and considering the significance of place for children who have been traumatically displaced.

  4. Through Hell and High Water: A Librarian’s Autoethnography of Community Resilience after Hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Beth Patin

    2016-02-01

    Full Text Available This autoethnographic essay presents a critical reflection on personal experiences of the process of rebuilding and working in a library in the Lower Ninth Ward in New Orleans, Louisiana following Hurricane Katrina. I examine meaningful moments during this process in the context of information science and community resiliency. The framework of community resilience is used to help structure the reflection and analysis in a systematic way. I share examples of the adaptive capacities of the school library as evidence of how the community adjusted to demonstrate resiliency.

  5. A Test of the Family Stress Model on Toddler-Aged Children's Adjustment among Hurricane Katrina Impacted and Nonimpacted Low-Income Families

    Science.gov (United States)

    Scaramella, Laura V.; Sohr-Preston, Sara L.; Callahan, Kristin L.; Mirabile, Scott P.

    2008-01-01

    Hurricane Katrina dramatically altered the level of social and environmental stressors for the residents of the New Orleans area. The Family Stress Model describes a process whereby felt financial strain undermines parents' mental health, the quality of family relationships, and child adjustment. Our study considered the extent to which the Family…

  6. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    Science.gov (United States)

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in

  7. Petroleum and hazardous material releases from industrial facilities associated with Hurricane Katrina.

    Science.gov (United States)

    Santella, Nicholas; Steinberg, Laura J; Sengul, Hatice

    2010-04-01

    Hurricane Katrina struck an area dense with industry, causing numerous releases of petroleum and hazardous materials. This study integrates information from a number of sources to describe the frequency, causes, and effects of these releases in order to inform analysis of risk from future hurricanes. Over 200 onshore releases of hazardous chemicals, petroleum, or natural gas were reported. Storm surge was responsible for the majority of petroleum releases and failure of storage tanks was the most common mechanism of release. Of the smaller number of hazardous chemical releases reported, many were associated with flaring from plant startup, shutdown, or process upset. In areas impacted by storm surge, 10% of the facilities within the Risk Management Plan (RMP) and Toxic Release Inventory (TRI) databases and 28% of SIC 1311 facilities experienced accidental releases. In areas subject only to hurricane strength winds, a lower fraction (1% of RMP and TRI and 10% of SIC 1311 facilities) experienced a release while 1% of all facility types reported a release in areas that experienced tropical storm strength winds. Of industrial facilities surveyed, more experienced indirect disruptions such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations or reconstruction (55%), than experienced releases. To reduce the risk of hazardous material releases and speed the return to normal operations under these difficult conditions, greater attention should be devoted to risk-based facility design and improved prevention and response planning.

  8. Dissolved and colloidal trace elements in the Mississippi River delta outflow after Hurricanes Katrina and Rita

    Science.gov (United States)

    Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.

    2012-07-01

    The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02-0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity

  9. 2005 Mississippi Merged LiDAR Data (2005 LiDAR data merged with 2005 Post-Katrina LiDAR data to create a bare-earth product for flood plain mapping in coastal Mississippi).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pre- and post-hurricane Katrina LiDAR datasets of Hancock, Harrison, and Jackson Counties, MS, were merged into a seamless coverage by URS. The pre-Katrina LiDAR...

  10. Hurricanes Katrina and Rita: Temporary Emergency Impact Aid Provided Education Support for Displaced Students. Report to the Congressional Requesters. GAO-11-839

    Science.gov (United States)

    Scott, George A.

    2011-01-01

    In August and September 2005, Hurricanes Katrina and Rita devastated large portions of the U.S. Gulf Coast, resulting in nearly 2,000 deaths and severe damage to 305,000 houses and apartments. Thousands of families relocated to communities throughout the United States and enrolled their children in local public or private schools. Some families…

  11. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  12. Hazard Experience, Geophysical Vulnerability, and Flood Risk Perceptions in a Postdisaster City, the Case of New Orleans.

    Science.gov (United States)

    Gotham, Kevin Fox; Campanella, Richard; Lauve-Moon, Katie; Powers, Bradford

    2018-02-01

    This article investigates the determinants of flood risk perceptions in New Orleans, Louisiana (United States), a deltaic coastal city highly vulnerable to seasonal nuisance flooding and hurricane-induced deluges and storm surges. Few studies have investigated the influence of hazard experience, geophysical vulnerability (hazard proximity), and risk perceptions in cities undergoing postdisaster recovery and rebuilding. We use ordinal logistic regression techniques to analyze experiential, geophysical, and sociodemographic variables derived from a survey of 384 residents in seven neighborhoods. We find that residents living in neighborhoods that flooded during Hurricane Katrina exhibit higher levels of perceived risk than those residents living in neighborhoods that did not flood. In addition, findings suggest that flood risk perception is positively associated with female gender, lower income, and direct flood experiences. In conclusion, we discuss the implications of these findings for theoretical and empirical research on environmental risk, flood risk communication strategies, and flood hazards planning. © 2017 Society for Risk Analysis.

  13. Using integrated modeling for generating watershed-scale dynamic flood maps for Hurricane Harvey

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P. J.

    2017-12-01

    Hurricane Harvey, which was categorized as a 1000-year return period event, produced unprecedented rainfall and flooding in Houston. Although the expected rainfall was forecasted much before the event, there was no way to identify which regions were at higher risk of flooding, the magnitude of flooding, and when the impacts of rainfall would be highest. The inability to predict the location, duration, and depth of flooding created uncertainty over evacuation planning and preparation. This catastrophic event highlighted that the conventional approach to managing flood risk using 100-year static flood inundation maps is inadequate because of its inability to predict flood duration and extents for 500-year or 1000-year return period events in real-time. The purpose of this study is to create models that can dynamically predict the impacts of rainfall and subsequent flooding, so that necessary evacuation and rescue efforts can be planned in advance. This study uses a 2D integrated surface water-groundwater model called ICPR (Interconnected Channel and Pond Routing) to simulate both the hydrology and hydrodynamics for Hurricane Harvey. The methodology involves using the NHD stream network to create a 2D model that incorporates rainfall, land use, vadose zone properties and topography to estimate streamflow and generate dynamic flood depths and extents. The results show that dynamic flood mapping captures the flood hydrodynamics more accurately and is able to predict the magnitude, extent and time of occurrence for extreme events such as Hurricane Harvey. Therefore, integrated modeling has the potential to identify regions that are more susceptible to flooding, which is especially useful for large-scale planning and allocation of resources for protection against future flood risk.

  14. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  15. Dissolved and colloidal trace elements in the Mississippi River Delta outflow after Hurricanes Katrina and Rita

    Science.gov (United States)

    Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.

    2012-01-01

    The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn–O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02–0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the

  16. Stages of drug market change during disaster: Hurricane Katrina and reformulation of the New Orleans drug market.

    Science.gov (United States)

    Dunlap, Eloise; Graves, Jennifer; Benoit, Ellen

    2012-11-01

    In recent years, numerous weather disasters have crippled many cities and towns across the United States of America. Such disasters present a unique opportunity for analyses of the disintegration and reformulation of drug markets. Disasters present new facts which cannot be "explained" by existing theories. Recent and continuing disasters present a radically different picture from that of police crack downs where market disruptions are carried out on a limited basis (both use and sales). Generally, users and sellers move to other locations and business continues as usual. The Katrina Disaster in 2005 offered a larger opportunity to understand the functioning and processes by which drug markets may or may not survive. Utilizing a variety of qualitative data including ethnographic field notes, in-depth interview transcripts, and focus group transcripts, we investigate the operation of the New Orleans drug market before, during, and after Hurricane Katrina. Our data clearly indicate that drug markets go through a series of stages in the wake of disaster in which they disintegrate and then reconstitute themselves. In the case of New Orleans, the post-Katrina drug market was radically different from the pre-Katrina drug market. Ultimately this manuscript presents a paradigm which uses stages as a testable concept to scientifically examine the disintegration and reformulation of drug markets during disaster or crisis situations. It describes the specific processes - referred to as stages - which drug markets must go through in order to function and survive during and after a natural disaster. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mapping knowledge investments in the aftermath of Hurricane Katrina: a new approach for assessing regulatory agency responses to environmental disaster

    International Nuclear Information System (INIS)

    Frickel, Scott; Campanella, Richard; Vincent, M. Bess

    2009-01-01

    In the aftermath of large-scale disasters, the public's dependency on federal and state agencies for information about public safety and environmental risk is acute. While formal rules and procedures are in place to guide policy decisions in environmental risk assessment of spatially concentrated hazards such as regulated waste sites or vacant city lots, standard procedures for risk assessment seem potentially less well-suited for urban-scale disaster zones where environmental hazards may be widely dispersed and widely varying. In this paper we offer a new approach for the social assessment of regulatory science in response to large-scale disaster, illustrating our methodology through a socio-spatial analysis of the U.S. Environmental Protection Agency's (EPA) hazard assessment in New Orleans, Louisiana, following Hurricane Katrina in 2005. We find that the agency's commitment of epistemic resources or 'knowledge investments' varied considerably across the flood-impacted portion of the city, concentrating in poorer and disproportionately African American neighborhoods previously known to be heavily contaminated. We address some of the study's social and policy implications, noting the multidimensionality and interactive nature of knowledge investments and the prospects for deepening and extending this approach through comparative research

  18. The effect of social support, gratitude, resilience and satisfaction with life on depressive symptoms among police officers following Hurricane Katrina.

    Science.gov (United States)

    McCanlies, Erin C; Gu, Ja Kook; Andrew, Michael E; Violanti, John M

    2018-02-01

    Police officers in the New Orleans geographic area faced a number of challenges following Hurricane Katrina. This cross-sectional study examined the effect of social support, gratitude, resilience and satisfaction with life on symptoms of depression. A total of 86 male and 30 female police officers from Louisiana participated in this study. Ordinary least-square (OLS) regression mediation analysis was used to estimate direct and indirect effects between social support, gratitude, resilience, satisfaction with life and symptoms of depression. All models were adjusted for age, alcohol intake, military experience and an increase in the number of sick days since Hurricane Katrina. Mean depressive symptom scores were 9.6 ± 9.1 for females and 10.9 ± 9.6 for males. Mediation analyses indicates that social support and gratitude are directly associated with fewer symptoms of depression. Social support also mediated the relationships between gratitude and depression, gratitude and satisfaction with life, and satisfaction with life and depression. Similarly, resilience mediated the relationship between social support and fewer symptoms of depression. Social support, gratitude and resilience are associated with higher satisfaction with life and fewer symptoms of depression. Targeting and building these factors may improve an officer's ability to address symptoms of depression.

  19. A qualitative analysis of barriers, challenges, and successes in meeting the needs of Hurricane Katrina evacuee families.

    Science.gov (United States)

    Legerski, John-Paul; Vernberg, Eric M; Noland, Brian J

    2012-12-01

    Hurricane Katrina caused many individuals to evacuate to towns and cities throughout the United States. Psychological First Aid (PFA) is a treatment program designed to help clinicians and other disaster relief workers address the needs of adults, youth, and families immediately following disasters. We conducted focus groups with disaster relief and evacuee service providers in the Kansas City Metro Area as an exploratory study to identify their perceptions of the needs of evacuees. Participants identified a number of mental health needs, as well as displacement-related challenges, including loss of social support, material loss, unemployment, and other stressful life events that were secondary to the hurricane. Many of these needs are consistent with principles presented in the PFA manual. We also found that service providers faced unique challenges when attempting to assist evacuees. We discuss implications of these findings for treatment programs and provide suggestions for addressing barriers to care.

  20. Engaging non-Majors: Teaching From the Eye of Hurricane Katrina and the Pacific Ocean

    Science.gov (United States)

    Sarmiento, S. E.

    2007-12-01

    Engaging non-majors to become interested in the geosciences college courses they take for a science requirement represents a challenge. These courses are most likely the only exposure they will ever have to a formal earth science curriculum. Experience shows a general lack of motivation and the need to find effective teaching methods to raise their interest. In the beginning of the fall 2005 semester, I participated in a research project to measure water vapor contents on the ground of the eye of hurricane Katrina in Slidell, Louisiana. Sharing this experience with my physical and environmental geology students made a significant difference (25 percentage final grade improvement) on their interest and course performance over previous semesters. Class presentations with data collected in Katrina contributed to build a general trust in the instructor and in the way, students viewed the role of geosciences in the mitigation of natural hazardous processes. The use of travel blogs and internet enhanced courses allows teaching real time from almost anywhere as it was recently done from the east pacific (360 miles NW from Guam). An interactive portfolio of the faculty field experiences presented at the beginning of the semester has the potential to build student interest and their trust on the faculty experience and passion for the subject.

  1. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  2. Flood Inundation Mapping and Emergency Operations during Hurricane Harvey

    Science.gov (United States)

    Fang, N. Z.; Cotter, J.; Gao, S.; Bedient, P. B.; Yung, A.; Penland, C.

    2017-12-01

    Hurricane Harvey struck the Gulf Coast as Category 4 on August 25, 2017 with devastating and life-threatening floods in Texas. Harris County received up to 49 inches of rainfall over a 5-day period and experienced flooding level and impacts beyond any previous storm in Houston's history. The depth-duration-frequency analysis reveals that the areal average rainfall for Brays Bayou surpasses the 500-year rainfall in both 24 and 48 hours. To cope with this unprecedented event, the researchers at the University of Texas at Arlington and Rice University worked closely with the U.S. Army Corps of Engineers (USACE), the National Weather Service (NWS), the Texas Division of Emergency Management (TDEM), Walter P. Moore and Associates, Inc. and Halff Associates, to conduct a series of meteorological, hydrologic and hydraulic analyses to delineate flood inundation maps. Up to eight major watersheds in Harris County were delineated based the available QPE data from WGRFC. The inundation map over Brays Bayou with their impacts from Hurricane Harvey was delineated in comparison with those of 100-, 500-year, and Probable Maximum Precipitation (PMP) design storms. This presentation will provide insights for both engineers and planners to re-evaluate the existing flood infrastructure and policy, which will help build Houston stronger for future extreme storms. The collaborative effort among the federal, academic, and private entities clearly demonstrates an effective approach for flood inundation mapping initiatives for the nation.

  3. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  4. Hurricane Public Health Research Center at Louisiana State University a Case of Academia Being Prepared

    Science.gov (United States)

    van Heerden, I. L.

    2006-12-01

    Recent floods along the Atlantic and Gulf seaboards and elsewhere in the world before Katrina had demonstrated the complexity of public health impacts including trauma; fires; chemical, sewerage, and corpse contamination of air and water; and diseases. We realized that Louisiana's vulnerability was exacerbated because forty percent of the state is coastal zone in which 70% of the population resides. Ninety percent of this zone is near or below sea level and protected by man-made hurricane-protection levees. New Orleans ranked among the highest in the nation with respect to potential societal, mortality, and economic impacts. Recognizing that emergency responders had in the past been unprepared for the extent of the public health impacts of these complex flooding disasters, we created a multi-disciplinary, multi-campus research center to address these issues for New Orleans. The Louisiana Board of Regents, through its millennium Health Excellence Fund, awarded a 5-year contract to the Center in 2001. The research team combined the resources of natural scientists, social scientists, engineers, and the mental health and medical communities. We met annually with a Board of Advisors, made up of federal, state, local government, and non-governmental agency officials, first responders and emergency managers. Their advice was invaluable in acquiring various datasets and directing aspects of the various research efforts. Our center developed detailed models for assessment and amelioration of public health impacts due to hurricanes and major floods. Initial research had showed that a Category 3 storm would cause levee overtopping, and that most levee systems were unprotected from the impacts of storm-induced wave erosion. Sections of levees with distinct sags suggested the beginnings of foundation and subsidence problems. We recognized that a slow moving Cat 3 could flood up to the eaves of houses and would have residence times of weeks. The resultant mix of sewage, corpses

  5. Innovations in disaster mental health services and evaluation: national, state, and local responses to Hurricane Katrina (introduction to the special issue).

    Science.gov (United States)

    Norris, Fran H; Rosen, Craig S

    2009-05-01

    The severe consequences of Hurricane Katrina on mental health have sparked tremendous interest in improving the quality of mental health care for disaster victims. In this special issue, we seek to illustrate the breadth of work emerging in this area. The five empirical examples each reflect innovation, either in the nature of the services being provided or in the evaluation approach. Most importantly, they portray the variability of post-Katrina mental health programs, which ranged from national to state to local in scope and from educational to clinical in intensity. As a set, these papers address the fundamental question of whether it is useful and feasible to provide different intensities of mental health care to different populations according to presumed need. The issue concludes with recommendations for future disaster mental health service delivery and evaluation.

  6. Exposures to thoracic particulate matter, endotoxin, and glucan during post-Hurricane Katrina restoration work, New Orleans 2005-2012.

    Science.gov (United States)

    Rando, Roy J; Kwon, Cheol-Woong; Lefante, John J

    2014-01-01

    In the aftermath of Hurricane Katrina, which devastated the city of New Orleans in August 2005, restoration workers were at risk for respiratory illness from exposure to airborne particles and microbial agents. In support of an epidemiologic investigation of this risk, an exposure assessment for restoration work activities (demolition, trash & debris management, landscape restoration, sewer/waterline repair, and mold remediation) was performed from 2005 to 2012. For 2005 and 2006, Occupational Safety and Health Administration (OSHA) data (n = 730) for personal and area monitoring of total and respirable dust exposures of restoration workers were accessed and analyzed. The most significant exposures were for demolition work, with average respirable dust exposures in 2005 above the action level of 2.5 mg/m(3) and 17.6% of exposures exceeding the permissible exposure limit (PEL) (5 mg/m(3)). Additional personal and area monitoring for thoracic particulate matter was performed from 2007 to 2012 (n = 774) and samples were assayed for endotoxin and (1→3, 1→6)-β-D-glucan (n = 202). In order to integrate the OSHA data with the later monitoring data, three independent predictive models were developed to convert total and respirable dust measures into the equivalent thoracic dust. The three models were not statistically different and the modeling results were in good agreement with an overall coefficient of variation of 16% for the thoracic dust means across work activities estimated by each of the three models. Overall, thoracic dust exposure levels decreased by about an order of magnitude within the first year after Katrina and then more gradually declined and stabilized through 2012. Estimated average exposures to endotoxin and microbial glucan in 2005 were as high as 256 EU/m(3) and 118 μg/m(3), respectively, and likewise were seen to decrease dramatically and stabilize after 2005. The results of this exposure assessment support previously published reports of

  7. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  8. Flood safety in the Netherlands: the Dutch political response to hurricane Katrina

    NARCIS (Netherlands)

    Wesselink, A.

    2007-01-01

    In this paper, I discuss why the Dutch culture, although highly technological, remains vulnerable to flooding, with no apparent choice except to continue with its historically developed system for flood risk management. I show that this vulnerability is socially constructed. It has arisen as a

  9. Lead distributions and risks in New Orleans following Hurricanes Katrina and Rita.

    Science.gov (United States)

    Abel, Michael T; Cobb, George P; Presley, Steven M; Ray, Gary L; Rainwater, Thomas R; Austin, Galen P; Cox, Stephen B; Anderson, Todd A; Leftwich, Blair D; Kendall, Ronald J; Suedel, Burton C

    2010-07-01

    During the last four years, significant effort has been devoted to understanding the effects that Hurricanes Katrina and Rita had on contaminant distribution and redistribution in New Orleans, Louisiana, USA, and the surrounding Gulf Coast area. Elevated concentrations were found for inorganic contaminants (including As, Fe, Pb, and V), several organic pollutants (polycyclic aromatic hydrocarbons, pesticides, and volatiles) and high concentration of bioaerosols, particularly Aeromonas and Vibrio. Data from different research groups confirm that some contaminant concentrations are elevated, that existing concentrations are similar to historical data, and that contaminants such as Pb and As may pose human health risks. Two data sets have been compiled in this article to serve as the foundation for preliminary risk assessments within greater New Orleans. Research from the present study suggests that children in highly contaminated areas of New Orleans may experience Pb exposure from soil ranging from 1.37 microg/d to 102 microg/d. These data are critical in the evaluation of children's health. Copyright (c) 2010 SETAC.

  10. Monitoring storm tide and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016

    Science.gov (United States)

    Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.

    2017-11-02

    IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-tide sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Matthew. Storm tide, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-tide sensors in USGS history and was completed as part of a coordinated Federal emergency response as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-tide models for maximum and incremental water level and flood extent, and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  11. Katrina and Rita were lit up with lightning

    Science.gov (United States)

    Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.

    Hurricanes generally produce very little lightning activity compared to other noncyclonic storms, and lightning is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) Lightning can sometimes be detected in the outer, spiral rainbands, but the lightning occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their lightning production rate.

  12. Implications and Constraints of Fiscal Laws in Contingency Contracting

    Science.gov (United States)

    2013-09-01

    humanitarian assistance (for example, after Hurricanes Hugo , Andrew, and Katrina and, most recently, Hurricane Sandy in the northeastern U.S...the aftermath of Hurricane Katrina and in New York after storm damage in 2012. The military has also supported disasters in other countries, such as...focus on natural disasters such as hurricanes , weather storms, earthquakes, and floods and are supported by U.S. military forces providing clean-up and

  13. After Hurricanes Katrina and Rita: gender differences in health and religiosity in middle-aged and older adults.

    Science.gov (United States)

    Brown, Jennifer Silva; Cherry, Katie E; Marks, Loren D; Jackson, Erin M; Volaufova, Julia; Lefante, Christina; Jazwinski, S Michal

    2010-11-01

    We examined health-related quality of life in adults in the Louisiana Health Aging Study (LHAS) after Hurricanes Katrina and Rita (HK/R) that made landfall on the U.S. Gulf Coast region in 2005. Analyses of pre- and post-disaster SF-36 scores yielded changes in physical function and bodily pain. Mental health scores were lower for women than men. Gender differences were observed in religious beliefs and religious coping, favoring women. Religious beliefs and religious coping were negatively correlated with physical function, implying that stronger reliance on religiosity as a coping mechanism may be more likely among those who are less physically capable.

  14. Eye of the storm: analysis of shelter treatment records of evacuees to Acadiana from Hurricanes Katrina and Rita.

    Science.gov (United States)

    Caillouet, L Philip; Paul, P Joseph; Sabatier, Steven M; Caillouet, Kevin A

    2012-01-01

    The objective of this study is to gain insight into the medical needs of disaster evacuees, through a review of experiential data collected in evacuation shelters in the days and weeks following Hurricanes Katrina and Rita in 2005, to better prepare for similar events in the future. Armed with the information and insights provided herein, it is hoped that meaningful precautions and decisive actions can be taken by individuals, families, institutions, communities, and officials should the Louisiana Gulf Coast-or any other area with well-known vulnerabilities-be faced with a future emergency. Demographic and clinical data that were recorded on paper documents during triage and treatment in evacuation shelters were later transcribed into a computerized database management system, with cooperation of the Department of Health Information Management at The University of Louisiana at Lafayette. Analysis of those contemporaneously collected data was undertaken later by the Louisiana Center for Health Informatics. Evacuation shelters, Parish Health Units, and other locations including churches and community centers were the venue for ad hoc clinics in the Acadiana region of Louisiana. The evacuee-patients-3,329 of them-whose information is reflected in the subject dataset were among two geographically distinct but similarly distressed groups: 1) evacuees from Hurricane Katrina that devastated New Orleans and other locales near Louisiana and neighboring states in late August 2005 and 2) evacuees from Hurricane Rita that devastated Southwest Louisiana and neighboring areas of Texas in September 2005. Patient data were collected by physicians, nurses, and other volunteers associated with the Operation Minnesota Lifeline (OML) deployment during the weeks following the events. Volunteer clinicians from OML provided triage and treatment services and documented those services as paper medical records. As the focus of the OML "mission of mercy" was entirely on direct individually

  15. MAPPING THE EXTENT AND MAGNITUDE OF SEVER FLOODING INDUCED BY HURRICANE IRMA WITH MULTI-TEMPORAL SENTINEL-1 SAR AND INSAR OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2018-04-01

    Full Text Available During Hurricane Irma’s passage over Florida in September 2017, many sections of the state experienced heavy rain and sequent flooding. In order to drain water out of potential flooding zones and assess property damage, it is important to map the extent and magnitude of the flooded areas at various stages of the storm. We use Synthetic Aperture Radar (SAR and Interferometric SAR (InSAR observations, acquired by Sentinel-1 before, during and after the hurricane passage, which enable us to evaluate surface condition during different stages of the hurricane. This study uses multi-temporal images acquired under dry condition before the hurricane to constrain the background backscattering signature. Flooded areas are detected when the backscattering during the hurricane is statistically significantly different from the average dry conditions. The detected changes can be either an increase or decrease of the backscattering, which depends on the scattering characteristics of the surface. In addition, water level change information in Palmdale, South Florida is extracted from an interferogram with the aid of a local water gauge as the reference. The results of our flooding analysis revealed that the majority of the study area in South Florida was flooded during Hurricane Irma.

  16. Looking for the Silver Lining: Benefit Finding after Hurricanes Katrina and Rita in Middle-Aged, Older, and Oldest-Old Adults

    OpenAIRE

    Stanko, Katie E.; Cherry, Katie E.; Ryker, Kyle S.; Mughal, Farra; Marks, Loren D.; Brown, Jennifer Silva; Gendusa, Patricia F.; Sullivan, Marisa C.; Bruner, John; Welsh, David A.; Su, L. Joseph; Jazwinski, S. Michal

    2015-01-01

    Looking for potentially positive outcomes is one way that people cope with stressful events. In two studies, we examined perceived “silver linings” after the 2005 Hurricanes Katrina and Rita among indirectly affected adults. In Study 1, middle-aged (ages 47–64 years), older (ages 65–89 years), and oldest-old (ages 90–95 years) adults in the Louisiana Healthy Aging Study (LHAS) responded to an open-ended question on perceived silver linings in a longitudinal assessment carried out during the i...

  17. Birth Outcomes in a Disaster Recovery Environment: New Orleans Women After Katrina.

    Science.gov (United States)

    Harville, Emily W; Giarratano, Gloria; Savage, Jane; Barcelona de Mendoza, Veronica; Zotkiewicz, TrezMarie

    2015-11-01

    To examine how the recovery following Hurricane Katrina affected pregnancy outcomes. 308 New Orleans area pregnant women were interviewed 5-7 years after Hurricane Katrina about their exposure to the disaster (danger, damage, and injury); current disruption; and perceptions of recovery. Birthweight, gestational age, birth length, and head circumference were examined in linear models, and low birthweight (<2500 g) and preterm birth (<37 weeks) in logistic models, with adjustment for confounders. Associations were found between experiencing damage during Katrina and birthweight (adjusted beta for high exposure = -158 g) and between injury and gestational age (adjusted beta = -0.5 days). Of the indicators of recovery experience, most consistently associated with worsened birth outcomes was worry that another hurricane would hit the region (adjusted beta for birthweight: -112 g, p = 0.08; gestational age: -3.2 days, p = 0.02; birth length: -0.65 cm, p = 0.06). Natural disaster may have long-term effects on pregnancy outcomes. Alternately, women who are most vulnerable to disaster may be also vulnerable to poor pregnancy outcome.

  18. After Katrina, Teachers Reaching Out

    Science.gov (United States)

    Perlmutter, David D.

    2005-01-01

    In this article, the author talks about teachers communicating with students to show willingness to listen and care. In cases of real emotional distress, he refers students to the proper campus counseling services, but after Hurricane Katrina, it broke the barriers of his disengagement from students' personal problem. He learned that in many…

  19. "Natural" disasters as (neo-liberal opportunity? Discussing post-hurricane Katrina urban regeneration in New Orleans

    Directory of Open Access Journals (Sweden)

    Cecilia Scoppetta

    2016-03-01

    Full Text Available By providing a wide literature review, post-hurricane Katrina uneven urban regeneration in New Orleans is presented here by framing it within a historical perspective in order to underline how environmental threats too often seem to be not so much “natural” but rather man-made as well as to highlight both the reasons and the ways in which, in post-disaster reconstruction, competitive growth has been valued over equity, by directly benefiting those who were already the most advantaged. The aim is to highlight how environmental disasters can be considered as socially constructed phenomena, as they cannot be seen as a single event but rather as a process made by a series of progressive steps occurring within different spheres, which do not necessarily concern the environment only.

  20. HURRICANE CHANGES: EXAMINING ENHANCED MOTIVATION TO CHANGE DRUG USING BEHAVIORS AMONG KATRINA EVACUEES.

    Science.gov (United States)

    Tiburcio, Nelson Jose; Twiggs, Robert; Dunlap, Eloise E

    2009-12-01

    Substance use disorders are credited with greater amounts of death and illness than all other preventable health problems. Billions of dollars are spent on efforts to control drug supplies and fund various treatment approaches, but relatively little resources have been directed towards investigating how environmental conditions can contribute to or detract from substance user's individual motivation to change behavior. Hurricane Katrina caused untold property damage and upheaval, in addition to the vast numbers of people whose lives it drastically affected. This article examines how surviving this ordeal, subsequent evacuation, and eventual resettlement in New Orleans or re-location to a different city (in this case, Houston) impacted individuals' motivation to change their substance use patterns and behaviors. This article's approach is grounded in the values of the social work profession and examines: 1) the role of life events in motivating change of substance using behaviors in the absence of formal treatment interventions; and 2) participant resilience in overcoming the adversities inherent to this disaster.

  1. Assessment of the Water Levels and Currents at the Mississippi Bight During Hurricane Katrina.

    Science.gov (United States)

    Nwankwo, U. C.; Howden, S. D.; Dodd, D.; Wells, D. E.

    2017-12-01

    In an effort to extend the length of GPS baselines further offshore, the Hydrographic Science Research Center at the University of Southern Mississippi deployed a buoy which had a survey grade GPS receiver, an ADPC and a motion sensor unit in the Mississippi Bight in late 2004. The GPS data were initially processed using the Post Processed Kinematic technique with data from a nearby GPS base station on Horn Island. This processing technique discontinued when the storm (Hurricane Katrina) destroyed the base station in late August of 2005. However, since then a stand-alone positioning technique termed Precise Point Positioning (PPP) matured and allowed for the reprocessing of the buoy GPS data throughout Katrina. The processed GPS data were corrected for buoy angular motions using Tait Bryan transformation model. Tidal datums (Epoch 1983-2001) were transferred from the National Oceanic and Atmospheric Administration (NOAA) National Water Level at Waveland, Mississippi (Station ID 8747766) to the buoy using the Modified Range Ratio method. The maximum water level during the storm was found to be about 3.578m, relative to the transferred Mean Sea Level datum. The storm surge built over more than 24 hours, but fell back to normal levels in less than 3 hours. The maximum speed of the current with respect to the seafloor was recorded to be about 4knots towards the southeast as the storm surge moved back offshore.

  2. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    Science.gov (United States)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  3. Somatic experiencing treatment with social service workers following Hurricanes Katrina and Rita.

    Science.gov (United States)

    Leitch, M Laurie; Vanslyke, Jan; Allen, Marisa

    2009-01-01

    In a disaster, social service workers are often survivors themselves.This study examines whether somatic intervention using a brief (one to two session) stabilization model now called the Trauma Resiliency Model (TRM), which uses the skills of Somatic Experiencing (SE), can reduce the postdisaster symptoms of social service workers involved in postdisaster service delivery.The study was implemented with a nonrandom sample of 142 social service workers who were survivors of Hurricanes Katrina and Rita in New Orleans and Baton Rouge, Louisiana, two to three months after the disasters. Ninety-one participants received SE/TRM and were compared with a matched comparison group of 51 participants through the use of propensity score matching. All participants first received group psychoeducation. Results support the benefits of the brief intervention inspired by SE. The treatment group showed statistically significant gains in resiliency indicators and decreases in posttraumatic stress disorder symptoms. Although psychological symptoms increased in both groups at the three to four month follow-up, the treatment group's psychological symptoms were statistically lower than those of the comparison group.

  4. Leveraging Naval Riverine Forces to Achieve Information Superiority in Stability Operations

    Science.gov (United States)

    2010-12-01

    Commanding Officer, USS TORTUGA (LSD-46) surveys the extent of flooding in the 9th Ward, New Orleans, LA, after Hurricane Katrina (From Watkins...13). Even though forces had been on site for many days prior to the author’s arrival on USS TORTUGA eight days after the storm, on the first day...Commanding Officer, USS TORTUGA (LSD-46) surveys the extent of flooding in the 9th Ward, New Orleans, LA, after Hurricane Katrina (From Watkins, 2005

  5. Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System.

    Science.gov (United States)

    Curtis, Katherine J; Fussell, Elizabeth; DeWaard, Jack

    2015-08-01

    Changes in the human migration systems of the Gulf of Mexico coastline counties affected by Hurricanes Katrina and Rita provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of "climate refugees," but an emerging literature on environmental migration suggests that most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-stricken places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007-2009) with the pre-disaster period (1999-2004). By observing county-to-county ties and flows, we find that recovery migration was strong: the migration system of the disaster-affected coastline counties became more spatially concentrated, while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios, with implications for the population recovery of disaster-affected places.

  6. Fiji's worst natural disaster: the 1931 hurricane and flood.

    Science.gov (United States)

    Yeo, Stephen W; Blong, Russell J

    2010-07-01

    At least 225 people in the Fiji Islands died as a result of the 1931 hurricane and flood, representing the largest loss of life from a natural disaster in Fiji's recent history. This paper explores the causes of disaster and the potential for recurrence. The disaster occurred because a rare event surprised hundreds of people-especially recently settled Indian farmers-occupying highly exposed floodplains in north-west Viti Levu island. The likelihood of a flood disaster of such proportions occurring today has been diminished by changed settlement patterns and building materials; however, a trend towards re-occupancy of floodplains, sometimes in fragile dwellings, is exposing new generations to flood risks. The contribution of this paper to the global hazards literature is set out in three sections: the ethnicity, gender and age of flood fatalities; the naturalness of disasters; and the merit of choice and constraint as explanations for patterns of vulnerability.

  7. Visual methodologies and participatory action research: Performing women's community-based health promotion in post-Katrina New Orleans.

    Science.gov (United States)

    Lykes, M Brinton; Scheib, Holly

    2016-01-01

    Recovery from disaster and displacement involves multiple challenges including accompanying survivors, documenting effects, and rethreading community. This paper demonstrates how African-American and Latina community health promoters and white university-based researchers engaged visual methodologies and participatory action research (photoPAR) as resources in cross-community praxis in the wake of Hurricane Katrina and the flooding of New Orleans. Visual techniques, including but not limited to photonarratives, facilitated the health promoters': (1) care for themselves and each other as survivors of and responders to the post-disaster context; (2) critical interrogation of New Orleans' entrenched pre- and post-Katrina structural racism as contributing to the racialised effects of and responses to Katrina; and (3) meaning-making and performances of women's community-based, cross-community health promotion within this post-disaster context. This feminist antiracist participatory action research project demonstrates how visual methodologies contributed to the co-researchers' cross-community self- and other caring, critical bifocality, and collaborative construction of a contextually and culturally responsive model for women's community-based health promotion post 'unnatural disaster'. Selected limitations as well as the potential for future cross-community antiracist feminist photoPAR in post-disaster contexts are discussed.

  8. Spatiotemporal exposome dynamics of soil lead and children's blood lead pre- and ten years post-Hurricane Katrina: Lead and other metals on public and private properties in the city of New Orleans, Louisiana, U.S.A.

    Science.gov (United States)

    Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Mielke, Paul W

    2017-05-01

    Anthropogenic re-distribution of lead (Pb) principally through its use in gasoline additives and lead-based paints have transformed the urban exposome. This unique study tracks urban-scale soil Pb (SPb) and blood Pb (BPb) responses of children living in public and private communities in New Orleans before and ten years after Hurricane Katrina (29 August 2005). To compare and evaluate associations of pre- and ten years post-Katrina SPb and children's BPb on public and private residential census tracts in the core and outer areas of New Orleans, and to examine correlations between SPb and nine other soil metals. The Louisiana Healthy Housing and Childhood Lead Poisoning Prevention Program BPb (µg/dL) data from pre- (2000-2005) and post-Katrina (2010-2015) for ≤6-year-old children. Data from public and adjacent private residential census tracts within core and outer areas are stratified from a database that includes 916 and 922 SPb and 13,379 and 4830 BPb results, respectively, from pre- and post-Katrina New Orleans. Statistical analyses utilize Multi-Response Permutation Procedure and Spearman's Rho Correlation. Pre- to Post-Katrina median SPb decreases in public and private core census tracts were from 285 to 55mg/kg and 710-291mg/kg, respectively. In public and private outer census tracts the median SPb decreased from 109 to 56mg/kg and 88-55mg/kg. Children's BPb percent ≥5µg/dL on public and private core areas pre-Katrina was 63.2% and 67.5%, and declined post-Katrina to 7.6% and 20.2%, respectively. BPb decreases also occurred in outer areas. Soil Pb is strongly correlated with other metals. Post-Katrina re-building of public housing plus landscaping amends the exposome and reduces children's BPb. Most importantly, Hurricane Katrina revealed that decreasing the toxicants in the soil exposome is an effective intervention for decreasing children's BPb. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Space geodesy: subsidence and flooding in New Orleans.

    Science.gov (United States)

    Dixon, Timothy H; Amelung, Falk; Ferretti, Alessandro; Novali, Fabrizio; Rocca, Fabio; Dokka, Roy; Sella, Giovanni; Kim, Sang-Wan; Wdowinski, Shimon; Whitman, Dean

    2006-06-01

    It has long been recognized that New Orleans is subsiding and is therefore susceptible to catastrophic flooding. Here we present a new subsidence map for the city, generated from space-based synthetic-aperture radar measurements, which reveals that parts of New Orleans underwent rapid subsidence in the three years before Hurricane Katrina struck in August 2005. One such area is next to the Mississippi River-Gulf Outlet (MRGO) canal, where levees failed during the peak storm surge: the map indicates that this weakness could be explained by subsidence of a metre or more since their construction.

  10. Children and Trauma: A Post-Katrina and Rita Response

    Science.gov (United States)

    Hebert, Barbara B.; Ballard, Mary B.

    2007-01-01

    Many children have struggled to cope with the traumatic experiences brought about by hurricanes Katrina and Rita. This article recounts how the authors intervened in the lives of children and families after the storms. (Contains 3 figures.)

  11. Recovery Migration after Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System

    Science.gov (United States)

    Fussell, Elizabeth; DeWaard, Jack

    2015-01-01

    Changes in the human migration systems of Hurricane Katrina- and Rita-affected Gulf of Mexico coastline counties provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of “climate refugees,” but an emerging literature on environmental migration suggests most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-struck places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007–2009) to the pre-disaster period (1999–2004). By observing county-to-county ties and flows we find that recovery migration was strong, as the migration system of the disaster-affected coastline counties became more spatially concentrated while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios with implications for the population recovery of disaster-affected places. PMID:26084982

  12. Medium range forecasting of Hurricane Harvey flash flooding using ECMWF and social vulnerability data

    Science.gov (United States)

    Pillosu, F. M.; Jurlina, T.; Baugh, C.; Tsonevsky, I.; Hewson, T.; Prates, F.; Pappenberger, F.; Prudhomme, C.

    2017-12-01

    During hurricane Harvey the greater east Texas area was affected by extensive flash flooding. Their localised nature meant they were too small for conventional large scale flood forecasting systems to capture. We are testing the use of two real time forecast products from the European Centre for Medium-range Weather Forecasts (ECMWF) in combination with local vulnerability information to provide flash flood forecasting tools at the medium range (up to 7 days ahead). Meteorological forecasts are the total precipitation extreme forecast index (EFI), a measure of how the ensemble forecast probability distribution differs from the model-climate distribution for the chosen location, time of year and forecast lead time; and the shift of tails (SOT) which complements the EFI by quantifying how extreme an event could potentially be. Both products give the likelihood of flash flood generating precipitation. For hurricane Harvey, 3-day EFI and SOT products for the period 26th - 29th August 2017 were used, generated from the twice daily, 18 km, 51 ensemble member ECMWF Integrated Forecast System. After regridding to 1 km resolution the forecasts were combined with vulnerable area data to produce a flash flood hazard risk area. The vulnerability data were floodplains (EU Joint Research Centre), road networks (Texas Department of Transport) and urban areas (Census Bureau geographic database), together reflecting the susceptibility to flash floods from the landscape. The flash flood hazard risk area forecasts were verified using a traditional approach against observed National Weather Service flash flood reports, a total of 153 reported flash floods have been detected in that period. Forecasts performed best for SOT = 5 (hit ratio = 65%, false alarm ratio = 44%) and EFI = 0.7 (hit ratio = 74%, false alarm ratio = 45%) at 72 h lead time. By including the vulnerable areas data, our verification results improved by 5-15%, demonstrating the value of vulnerability information within

  13. Alternate site surge capacity in times of public health disaster maintains trauma center and emergency department integrity: Hurricane Katrina.

    Science.gov (United States)

    Eastman, Alexander L; Rinnert, Kathy J; Nemeth, Ira R; Fowler, Raymond L; Minei, Joseph P

    2007-08-01

    Hospital surge capacity has been advocated to accommodate large increases in demand for healthcare; however, existing urban trauma centers and emergency departments (TC/EDs) face barriers to providing timely care even at baseline patient volumes. The purpose of this study is to describe how alternate-site medical surge capacity absorbed large patient volumes while minimizing impact on routine TC/ED operations immediately after Hurricane Katrina. From September 1 to 16, 2005, an alternate site for medical care was established. Using an off-site space, the Dallas Convention Center Medical Unit (DCCMU) was established to meet the increased demand for care. Data were collected and compared with TC/ED patient volumes to assess impact on existing facilities. During the study period, 23,231 persons displaced by Hurricane Katrina were registered to receive evacuee services in the City of Dallas, Texas. From those displaced, 10,367 visits for emergent or urgent healthcare were seen at the DCCMU. The mean number of daily visits (mean +/- SD) to the DCCMU was 619 +/- 301 visits with a peak on day 3 (n = 1,125). No patients died, 3.2% (n = 257) were observed in the DCCMU, and only 2.9% (n = 236) required transport to a TC/ED. During the same period, the mean number of TC/ED visits at the region's primary provider of indigent care (Hospital 1) was 346 +/- 36 visits. Using historical data from Hospital 1 during the same period of time (341 +/- 41), there was no significant difference in the mean number of TC/ED visits from the previous year (p = 0.26). Alternate-site medical surge capacity provides for safe and effective delivery of care to a large influx of patients seeking urgent and emergent care. This protects the integrity of existing public hospital TC/ED infrastructure and ongoing operations.

  14. Learning from Katrina: environmental health observations from the SWCPHP response team in Houston.

    Science.gov (United States)

    Elledge, Brenda L; Boatright, Daniel T; Woodson, Paul; Clinkenbeard, Rodney E; Brand, Michael W

    2007-09-01

    Hurricane Katrina provided an opportunity to observe the public health and medical care response system in practice and provided vital lessons about identifying and learning critical response measures as well as about ineffective investments of time and effort. The Southwest Center for Public Health Preparedness (SWCPHP) response team, while working among evacuees housed at Reliant Park in Houston, Texas, made a number of observations related to environmental public health. This summary reports firsthand observations which are, to a great extent, supported by the Federal Response to Hurricane Katrina: Lessons Learned report, and it provides a contextual backdrop for improvement in the areas of volunteer and citizen preparedness training and education. Katrina provided an opportunity to see public health in a highly stressed practice setting and to identify and reinforce the fundamental tenets of public health with which all individuals responding to an event should be familiar. Knowledge gained from Katrina should be integrated into future efforts related to disaster response planning; specifically, it is imperative that volunteers receive standardized training in the areas of incident command systems (ICS), basic hygiene, transmission of disease, and food and water safety principles.

  15. Environmental chemical data for perishable sediments and soils collected in New Orleans, Louisiana, and along the Louisiana Delta following Hurricanes Katrina and Rita, 2005

    Science.gov (United States)

    Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.

    2008-01-01

    In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg

  16. Beyond the Floodplain: Drivers of Flood Risk in Coastal Cities

    Science.gov (United States)

    Rosenzweig, B.; McPhearson, T.; Rosi, E. J.

    2017-12-01

    While the catastrophic impacts of Hurricane Katrina increased awareness of coastal flood risk, conventional approaches to flood risk assessment do not adequately represent the drivers of flood risk in the unique, highly engineered landscape of dense cities. We review the recent (1996-2016) history of flooding events and current regional climate change projection for 4 diverse coastal cities in the United States: San Juan, Miami, Baltimore and New York. Our review suggests that while all 4 of these cities face increased risk from direct coastal flooding with climate change, pluvial flooding will be an additional, important driver of risk that is currently poorly quantified. Unlike other types of flooding, pluvial flood risk is not limited to a contiguous riverine or coastal floodplain, but is instead driven by interactions between spatially variable geophysical drivers (intense rainfall, shallow groundwater, and influent tidal water), social drivers (patterns of land use) and technical drivers (urban stormwater and coastal infrastructure). We discuss approaches for quantitative assessment of pluvial flood risk, the challenges presented by the lack of data on geophysical flooding drivers in dense cities, and opportunities for integrated research to provide the scientific information needed by practitioners.

  17. Mapping the Extent and Magnitude of Severe Flooding Induced by Hurricanes Harvey, Irma, and Maria with Sentinel-1 SAR and InSAR Observations

    Science.gov (United States)

    Zhang, B.; Koirala, R.; Oliver-Cabrera, T.; Wdowinski, S.; Osmanoglu, B.

    2017-12-01

    Hurricanes can cause winds, rainfall and storm surge, all of which could result in flooding. Between August and September 2017, Hurricanes Harvey, Irma and Maria made landfall over Texas, Florida and Puerto Rico causing destruction and damages. Flood mapping is important for water management and to estimate risks and property damage. Though water gauges are able to monitor water levels, they are normally distributed sparsely. To map flooding products of these extreme events, we use Synthetic Aperture Radar (SAR) observations acquired by the European satellite constellation Sentinel-1. We obtained two acquisitions from before each flooding event, a single acquisition during the hurricane, and two after each event, a total of five acquisitions. We use both amplitude and phase observations to map extent and magnitude of flooding respectively. To map flooding extents, we use amplitude images from before, after and if possible during the hurricane pass. A calibration is used to convert the image raw data to backscatter coefficient, termed sigma nought. We generate a composite of the two image layers using red and green bands to show the change of sigma nought between acquisitions, which directly reflects the extent of flooding. Because inundation can result with either an increase or decrease of sigma nought values depending on the surface scattering characteristics, we map flooded areas in location where sigma nought changes were above a detection threshold. To study magnitude of flooding we study Interferometric Synthetic Aperture Radar (InSAR) phase changes. Changes in the water level can be detected by the radar when the signal is reflected away from water surface and bounces again by another object (e.g. trees and/or buildings) known as double bounce phase. To generate meaningful interferograms, we compare phase information with the nearest water gauge records to verify our results. Preliminary results show that the three hurricanes caused flooding condition over

  18. Recovery Migration to the City of New Orleans after Hurricane Katrina: A Migration Systems Approach.

    Science.gov (United States)

    Fussell, Elizabeth; Curtis, Katherine J; Dewaard, Jack

    2014-03-01

    Hurricane Katrina's effect on the population of the City of New Orleans provides a model of how severe weather events, which are likely to increase in frequency and strength as the climate warms, might affect other large coastal cities. Our research focuses on changes in the migration system - defined as the system of ties between Orleans Parish and all other U.S. counties - between the pre-disaster (1999-2004) and recovery (2007-2009) periods. Using Internal Revenue Service county-to-county migration flow data, we find that in the recovery period Orleans Parish increased the number of migration ties with and received larger migration flows from nearby counties in the Gulf of Mexico coastal region, thereby spatially concentrating and intensifying the in-migration dimension of this predominantly urban system, while the out-migration dimension contracted and had smaller flows. We interpret these changes as the migration system relying on its strongest ties to nearby and less damaged counties to generate recovery in-migration.

  19. Wind vs Water in Hurricanes: The Challenge of Multi-peril Hazard Modeling

    Science.gov (United States)

    Powell, M. D.

    2017-12-01

    With the advancing threat of Sea Level Rise much of the U. S. is in danger of falling into the "protection gap". Residential property flood risk is not yet covered by the insurance market. Many coastal properties are not paying into the National Flood Insurance Program (NFIP) at premiums commensurate with the risk. This is exasperated by the program being deep in debt, despite only covering a fraction of the potential loss, while windstorm insurance covers up to replacement value. This results in a battle that benefits nobody. Any significant hurricane will include both wind and storm surge perils at the same time and any coastal property has to contend with the risk of damage by both. If you have extensive flood damage your wind storm policy might deny your claim and your flood policy (if you even have one) will in most cases be constrained to a $250,000 limit. Bring on the litigators! Some homeowners will claim that the wind destroyed the home first and then it was carried away by flood waters or pulverized by waves. Insurers might respond that the storm surge did all the damage and deny the claim. We've seen this already following Hurricane Katrina in 2005, and Hurricane Ike in 2008, with thousands of litigation claims and a cottage industry of scientists serving as expert witnesses on both sides of the aisle. Congress responded in 2012 with the Coastal Act, which provided an "unfunded mandate" directing NOAA to provide wind and water level data to FEMA for input to their "Coastal Formula" for attributing loss to wind and water. The results of the formula would then limit the amount paid by the NFIP by subtracting out the wind loss portion. The Texas Windstorm Insurance Association (TWIA) went further by assembling a panel of experts to recommend guidelines for how the state should respond to future hurricane impacting properties on the Texas coast. The expert panel report was released in April of 2016, and TWIA is currently developing a comprehensive

  20. Indoor environmental exposures for children with asthma enrolled in the HEAL study, post-Katrina New Orleans.

    Science.gov (United States)

    Grimsley, L Faye; Chulada, Patricia C; Kennedy, Suzanne; White, LuAnn; Wildfire, Jeremy; Cohn, Richard D; Mitchell, Herman; Thornton, Eleanor; El-Dahr, Jane; Mvula, Mosanda M; Sterling, Yvonne; Martin, William J; Stephens, Kevin U; Lichtveld, Maureen

    2012-11-01

    Rain and flooding from Hurricane Katrina resulted in widespread growth of mold and bacteria and production of allergens in New Orleans, Louisiana, which may have led to increased exposures and morbidity in children with asthma. The goal of the Head-off Environmental Asthma in Louisiana (HEAL) study was to characterize post-Katrina exposures to mold and allergens in children with asthma. The homes of 182 children with asthma in New Orleans and surrounding parishes were evaluated by visual inspection, temperature and moisture measurements, and air and dust sampling. Air was collected using vacuum-pump spore traps and analyzed for > 30 mold taxa using bright field microscopy. Dust was collected from the children's beds and bedroom floors and analyzed for mouse (Mus m 1), dust mite (Der p 1), cockroach (Bla g 1), and mold (Alternaria mix) allergens using ELISA. More than half (62%) of the children were living in homes that had been damaged by rain, flooding, or both. Geometric mean indoor and outdoor airborne mold levels were 501 and 3,958 spores/m3, respectively. Alternaria antigen was detected in dust from 98% of homes, with 58% having concentrations > 10 µg/g. Mus m 1, Der p 1, and Bla g 1 were detected in 60%, 35%, and 20% of homes, respectively, at low mean concentrations. Except for Alternaria antigen in dust, concentrations of airborne mold (ratio of indoor to outdoor mold) and dust allergens in the homes of HEAL children were lower than measurements found in other studies, possibly because of extensive post-Katrina mold remediation and renovations, or because children moved into cleaner homes upon returning to New Orleans.

  1. Oil spills and other issues in the aftermath of Hurricanes Katrina and Rita : an overview

    International Nuclear Information System (INIS)

    Davis, D.W.

    2006-01-01

    The aftermath of Hurricane Katrina revealed weaknesses in the command, control, communications, and information dissemination functions within a variety of emergency response systems. This paper gave an outline of clean-up procedures involving hazardous materials. To date, clean-up crews have disposed of 8.0 million tonnes of an estimated 22.0 million tonnes of debris. The clean-up involved more than 1.3 million containerized hazardous materials; more than 230,000 damaged white goods; and nearly 43,000 damaged electronic goods. More than 3,400 samples of water, soil and air have been collected. Nearly 75 chemistry laboratories in schools have been inspected, and an additional 1500 emergency assessments of potential chemical releases were investigated. The floodwaters carried nearly 4.1 million litres of oil from a Chalmette refinery. Between September and the end of 2005, the Louisiana Oil Spill Coordinator's Office logged in 81 spill events in southwest Louisiana involving 22,000 bbls of crude. Six major, 3 medium and 131 minor events have occurred in southeast Louisiana. More than 3000 offshore platforms were shut down or damaged during the 2005 hurricane season. At least 115 platforms were destroyed and 52 were damaged. Onshore spills of concern included incidents at Murphy Oil Refinery; Bass Enterprise Production Company; Chevron at Port Fourchon; Venice Energy Services Company; Shell Pipeline; and Sundown Energy. It was concluded work done by the spill community will result in the development of more effective response plans. 23 refs

  2. Oil spills and other issues in the aftermath of Hurricanes Katrina and Rita : an overview

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.W. [Lousiana Applied and Educational Research and Development Program, Baton Rouge, LA (United States)

    2006-07-01

    The aftermath of Hurricane Katrina revealed weaknesses in the command, control, communications, and information dissemination functions within a variety of emergency response systems. This paper gave an outline of clean-up procedures involving hazardous materials. To date, clean-up crews have disposed of 8.0 million tonnes of an estimated 22.0 million tonnes of debris. The clean-up involved more than 1.3 million containerized hazardous materials; more than 230,000 damaged white goods; and nearly 43,000 damaged electronic goods. More than 3,400 samples of water, soil and air have been collected. Nearly 75 chemistry laboratories in schools have been inspected, and an additional 1500 emergency assessments of potential chemical releases were investigated. The floodwaters carried nearly 4.1 million litres of oil from a Chalmette refinery. Between September and the end of 2005, the Louisiana Oil Spill Coordinator's Office logged in 81 spill events in southwest Louisiana involving 22,000 bbls of crude. Six major, 3 medium and 131 minor events have occurred in southeast Louisiana. More than 3000 offshore platforms were shut down or damaged during the 2005 hurricane season. At least 115 platforms were destroyed and 52 were damaged. Onshore spills of concern included incidents at Murphy Oil Refinery; Bass Enterprise Production Company; Chevron at Port Fourchon; Venice Energy Services Company; Shell Pipeline; and Sundown Energy. It was concluded work done by the spill community will result in the development of more effective response plans. 23 refs.

  3. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  4. Hurricanes Katrina and Rita and the Department of Veterans Affairs: a conceptual model for understanding the evacuation of nursing homes.

    Science.gov (United States)

    Dobalian, Aram; Claver, Maria; Fickel, Jacqueline J

    2010-01-01

    Hurricanes Katrina and Rita exposed significant flaws in US preparedness for catastrophic events and the nation's capacity to respond to them. These flaws were especially evident in the affected disaster areas' nursing homes, which house a particularly vulnerable population of frail older adults. Although evacuation of a healthcare facility is a key preparedness activity, there is limited research on factors that lead to effective evacuation. Our review of the literature on evacuation is focused on developing a conceptual framework to study future evacuations rather than as a comprehensive assessment of prior work. This paper summarizes what is known thus far about disaster response activities of nursing homes following natural and human-caused disasters, describes a conceptual model to guide future inquiry regarding this topic, and suggests future areas of research to further understand the decision-making process of nursing home facilitators regarding evacuating nursing home residents. To demonstrate the utility of the conceptual model and to provide guidance about effective practices and procedures, this paper focuses on the responses of Veterans Health Administration (VHA) nursing homes to the 2 hurricanes. Quarantelli's conceptual framework, as modified by Perry and Mushkatel, is useful in guiding the development of central hypotheses related to the decision-making that occurred in VA nursing homes and other healthcare facilities following Hurricanes Katrina and Rita. However, we define evacuation somewhat differently to account for the fact that evacuation may, in some instances, be permanent. Thus, we propose modifying this framework to improve its applicability beyond preventive evacuation. We need to better understand how disaster plans can be adapted to meet the needs of frail elders and other residents in nursing homes. Moreover, we must address identified gaps in the scientific literature with respect to health outcomes by tracking outcomes over time

  5. News, social capital and health in the context of Katrina.

    Science.gov (United States)

    Beaudoin, Christopher E

    2007-05-01

    This study assesses the public health functions played by news information and social capital in the context of Hurricane Katrina. In-depth interviews were conducted with 57 hurricane shelter residents between 4 and 6 weeks after the hurricane. Depression was more common for participants who relied more on news information than for other participants after the hurricane (adjusted odds ratio [AOR], 5.49; 95% CI, 1.29 to 23.35; p=.021). Depression was more common for participants with relatively low levels of pre-hurricane positive social interactions (AOR, .16; 95% CI, .02 to 1.83; p=.046) and post-hurricane positive social interactions (AOR, .02; 95% CI, .00 to .74; p=.033) and high levels of post-hurricane negative social interactions (AOR, 17.05; 95% CI, .92 to 315.64; p=.047). Illness and injury were more common for participants who had relied more on news information than for other participants after the hurricane (AOR, 1.13; 95% CI, 1.02 to 2.77; p=.046).

  6. Resilience in Post-Katrina New Orleans, Louisiana: A Preliminary ...

    African Journals Online (AJOL)

    Background: Much scholarly and practitioner attention to the impact of Hurricane Katrina on the city of New Orleans, Louisiana has focused on the failures of government disaster prevention and management at all levels, often overlooking the human strength and resourcefulness observed in individuals and groups among ...

  7. Population changes, racial/ethnic disparities, and birth outcomes in Louisiana after Hurricane Katrina.

    Science.gov (United States)

    Harville, Emily W; Tran, Tri; Xiong, Xu; Buekens, Pierre

    2010-09-01

    To examine how the demographic and other population changes affected birth and obstetric outcomes in Louisiana, and the effect of the hurricane on racial disparities in these outcomes. Vital statistics data were used to compare the incidence of low birth weight (LBW) (birth (PTB) (37 weeks' gestation), cesarean section, and inadequate prenatal care (as measured by the Kotelchuck index), in the 2 years after Katrina compared to the 2 years before, for the state as a whole, region 1 (the area around New Orleans), and Orleans Parish (New Orleans). Logistic models were used to adjust for covariates. After adjustment, rates of LBW rose for the state, but preterm birth did not. In region 1 and Orleans Parish, rates of LBW and PTB remained constant or fell. These patterns were all strongest in African American women. Rates of cesarean section and inadequate prenatal care rose. Racial disparities in birth outcomes remained constant or were reduced. Although risk of LBW/PTB remained higher in African Americans, the storm does not appear to have exacerbated health disparities, nor did population shifts explain the changes in birth and obstetric outcomes.

  8. Hurricane Harvey Riverine Flooding: Part 2: Integration of Heterogeneous Earth Observation Data for Comparative Analysis with High-Resolution Inundation Boundaries Reconstructed from Flood2D-GPU Model

    Science.gov (United States)

    Jackson, C.; Sava, E.; Cervone, G.

    2017-12-01

    Hurricane Harvey has been noted as the wettest cyclone on record for the US as well as the most destructive (so far) for the 2017 hurricane season. An entire year worth of rainfall occurred over the course of a few days. The city of Houston was greatly impacted as the storm lingered over the city for five days, causing a record-breaking 50+ inches of rain as well as severe damage from flooding. Flood model simulations were performed to reconstruct the event in order to better understand, assess, and predict flooding dynamics for the future. Additionally, number of remote sensing platforms, and on ground instruments that provide near real-time data have also been used for flood identification, monitoring, and damage assessment. Although both flood models and remote sensing techniques are able to identify inundated areas, rapid and accurate flood prediction at a high spatio-temporal resolution remains a challenge. Thus a methodological approach which fuses the two techniques can help to better validate what is being modeled and observed. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. In this work the use of multiple sources of contributed data, coupled with remotely sensed and open source geospatial datasets is demonstrated to generate an understanding of potential damage assessment for the floods after Hurricane Harvey in Harris County, Texas. The feasibility of integrating multiple sources at different temporal and spatial resolutions into hydrodynamic models for flood inundation simulations is assessed. Furthermore the contributed datasets are compared against a reconstructed flood extent generated from the Flood2D-GPU model.

  9. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  10. A survey of the occurrence of Bacillus anthracis in North American soils over two long-range transects and within post-Katrina New Orleans

    Science.gov (United States)

    Griffin, Dale W.; Petrosky, Terry; Morman, Suzette A.; Luna, Vicki A.

    2009-01-01

    Soil samples were collected along a north-south transect extending from Manitoba, Canada, to the US-Mexico border near El Paso, Texas in 2004 (104 samples), a group of sites within New Orleans, Louisiana following Hurricane Katrina in 2005 (19 samples), and a Gulf Coast transect extending from Sulphur, Louisiana, to DeFuniak Springs, Florida, in 2007 (38 samples). Samples were collected from the top 40 cm of soil and were screened for the presence of total Bacillus species and Bacillus anthracis (anthrax), specifically using multiplex-polymerase chain reaction (PCR). Using an assay with a sensitivity of ~170 equivalent colony-forming units (CFU) g-1 field moist soil, the prevalence rate of Bacillus sp./B. anthracis in the north-south transect and the 2005 New Orleans post-Katrina sample set were 20/5% and 26/26%, respectively. Prevalence in the 2007 Gulf Coast sample set using an assay with a sensitivity of ~4 CFU g-1 of soil was 63/0%. Individual transect-set data indicate a positive relation between occurrences of species and soil moisture or soil constituents (i.e., Zn and Cu content). The 2005 New Orleans post-Katrina data indicated that B. anthracis is readily detectable in Gulf Coast soils following flood events. The data also indicated that occurrence, as it relates to soil chemistry, may be confounded by flood-induced dissemination of germinated cells and the mixing of soil constituents for short temporal periods following an event.

  11. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  12. Preparing for the Worst: Psychological Excellence of First Responders - A Katrina Lessons Learned Study

    National Research Council Canada - National Science Library

    Seong, Younho; Springs, Sherry; Chung, Yongchul; Avery-Epps, Regina

    2008-01-01

    ... formidable disaster. In fact, there have been several official lessons learned reports and the findings and recommendations from these reports of the response to Hurricane Katrina have been addressed...

  13. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  14. Aerosolization of fungi, (1→3)-β-D glucan, and endotoxin from flood-affected materials collected in New Orleans homes

    Science.gov (United States)

    Adhikari, Atin; Jung, Jaehee; Reponen, Tiina; Lewis, Jocelyn Suzanne; DeGrasse, Enjoli C.; Grimsley, L. Faye; Chew, Ginger L.; Grinshpun, Sergey A.

    2015-01-01

    Standing water and sediments remaining on flood-affected materials were the breeding ground for many microorganisms in flooded homes following Hurricane Katrina. The purpose of this laboratory study was to examine the aerosolization of culturable and total fungi, (1→3)-β-D glucan, and endotoxin from eight flood-affected floor and bedding materials collected in New Orleans homes, following Hurricane Katrina. Aerosolization was examined using the Fungal Spore Source Strength Tester (FSSST) connected to a BioSampler. Dust samples were collected by vacuuming. A two-stage cyclone sampler was used for size-selective analysis of aerosolized glucan and endotoxin. On average, levels of culturable fungi ranged from undetectable (lower limit = 8.3×104) to 2.6×105 CFU/m2; total fungi ranged from 2.07×105 to 1.6×106 spores/m2; (1→3)-β-D glucan and endotoxin were 2.0×103 – 2.9×104 ng/m2 and 7.0×102 – 9.3×104 EU/m2, respectively. The results showed that 5–15 min sampling is sufficient for detecting aerosolizable biocontaminants with the FSSST. Smaller particle size fractions (1.8 μm) fractions, which raises additional exposure concerns. Vacuuming was found to overestimate inhalation exposure risks by a factor of approximately 102 for (1→3)-β-D glucan and by 103 to 104 for endotoxin as detected by the FSSST. The information generated from this study is important with respect to restoration and rejuvenation of the flood-affected areas in New Orleans. We believe the findings will be significant during similar disasters in other regions of the world including major coastal floods from tsunamis. PMID:19201399

  15. Hurricane Katrina: Fishing and Aquaculture Industries -- Damage and Recovery

    National Research Council Canada - National Science Library

    Buck, Eugene H

    2005-01-01

    ...% of the shrimp and 40% of the oysters consumed in the United States. Because of the damage wrought by Katrina, many areas of the Gulf Coast have been closed to fishing because of pollution-related contamination concerns...

  16. Resilience and challenges among staff of gulf coast nursing homes sheltering frail evacuees following Hurricane Katrina, 2005: implications for planning and training.

    Science.gov (United States)

    Laditka, Sarah B; Laditka, James N; Cornman, Carol B; Davis, Courtney B; Richter, Jane V E

    2009-01-01

    The purpose of this study was to: (1) explore experiences and responses of staff in caring for sheltered, frail, Hurricane Katrina evacuees; and (2) identify how planning and training can be enhanced for staff who may care for frail older populations during and after disasters. Individual, in-person, semi-structured interviews were conducted with 38 staff members in four nursing homes in Mississippi, sheltering 109 evacuees in November 2005, nine weeks after Hurricane Katrina. Twenty-four were direct care staff, including certified nursing assistants, licensed nurses, dietary aides, and social workers; 14 were support staff, including maintenance and business managers. The number interviewed in each nursing home averaged 9.5 (range 6-15). Using a discussion guide and focusing on their experiences caring for nursing home evacuees, staff were asked to describe: (1) experiences; (2) problems; (3) what helped; and (4) what was learned. Data were processed using grounded theory and thematic analysis. Responses of direct care staff differed in emphasis from those of support staff in several areas; responses from these groups were analyzed separately and together. Three of the researchers identified recurring themes; two organized themes conceptually. Staff emphasized providing emotional reassurance to evacuees as well as physical care. Many described caring for evacuees as "a blessing," saying the experience helped them bond with residents, evacuees, and other staff. However, caring for evacuees was difficult because staff members were extremely anxious and in poor physical condition after an arduous evacuation. Challenges included communicating with evacuees' families, preventing dehydration, lack of personal hygiene supplies, staff exhaustion, and emotional needs of residents, evacuees, and staff. Teamwork, community help, and having a well-organized disaster plan, extra supplies, and dependable staff helped personnel cope with the situation. Staff of nursing homes

  17. Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005)

    Science.gov (United States)

    Hence, Deanna A.; Houze, Robert A.

    2008-08-01

    Airborne Doppler radar data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) show the convective-scale air motions embedded in the principal rainbands of hurricanes Katrina and Rita. These embedded convective cells have overturning updrafts and low-level downdrafts (originating at 2-4 km) that enter the rainband on its radially outward side and cross over each other within the rainband as well as a strong downdraft emanating from upper levels (6+ km) on the radially inward side. These vertical motion structures repeat from one convective cell to another along each rainband. The resulting net vertical mass transport is upward in the upwind portion of the band and greatest in the middle sector of the principal rainband, where the updraft motions contribute generally to an increase of potential vorticity below the 3-4 km level. Because the convective cells in the middle sector are systematically located radially just inside the secondary horizontal wind maximum (SHWM), the local increase in vorticity implied by the convective mass transport is manifest locally as an increase in the strength of the SHWM at midlevels (˜4 km). The overturning updrafts of the convective cells tilt, stretch, and vertically transport vorticity such that the convergence of the vertical flux of vorticity strengthens the vorticity anomaly associated with the SHWM. This process could strengthen the SHWM by several meters per second per hour, and may explain how high wave number convective-scale features can influence a low wave number feature such as the principal rainband, and subsequently influence the primary vortex.

  18. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post

  19. Hydrodynamic models of the possibility of flooding Zaporizhya NPP site beyond the extreme earthquakes and hurricanes

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Gablaya, T.V.; Vashchenko, V.N.; Gerasimenko, T.V.; Kozlov, I.L.

    2014-01-01

    We propose a hydrodynamic model of possible flooding of the industrial site at Zaporozh'e NPP design basis earthquakes and hurricane. In contrast to the quasi-stationary approach of stress tests in the proposed model takes into account the dynamic nature of the processes of flooding, as well as a direct impact of external influences on extreme Kakhovske reservoir. As a result of hydrodynamic modeling, the possible conditions and criteria for the flooding of the industrial site at Zaporozhe extreme external influences

  20. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    Science.gov (United States)

    2011-12-01

    Marks et al. (2008) flight level and radar observations from Hurricane Hugo shown in Figure 9 (their Figure 3) and Hurricane Isabel (Montgomery et al...Figure 3c and Figure 6c) and Persing and Montgomery (2003, their Figures 8, 9, and 12). For the case of Hurricane Hugo , a cross-section of the... Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina

  1. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  2. Campaign contributions, lobbying and post-Katrina contracts.

    Science.gov (United States)

    Hogan, Michael J; Long, Michael A; Stretesky, Paul B

    2010-07-01

    This research explores the relationship between political campaign contributions, lobbying and post-Hurricane Katrina cleanup and reconstruction contracts. Specifically, a case-control study design is used to determine whether campaign contributions to national candidates in the 2000-04 election cycles and/or the employment of lobbyists and lobbying firms increased a company's probability of receiving a post-hurricane contract. Results indicate that both a campaign contribution dichotomous variable and the dollar amount of contributions are significantly related to whether a company received a contract, but that lobbying activity was not. These findings are discussed in the context of previous research on the politics of natural disasters, government contracting and governmental and corporate deviance.

  3. The Flood House Concept : A New Approach in Reducing Flood Vulnerability

    NARCIS (Netherlands)

    Vreugdenhil, H.; Meijer, L.; Hartnack, L.; Rijcken, T.

    2006-01-01

    Deltas throughout the world are vulnerable to natural hazards. New Orleans provides a recent and obvious example. We analyzed the situation in New Orleans and the Mississippi Delta after hurricane Katrina has passed, from a vulnerability perspective. Vulnerability can be subdivided into four

  4. Resilience in post-Katrina New Orleans, Louisiana: a preliminary study.

    Science.gov (United States)

    Glandon, Douglas M; Muller, Jocelyn; Almedom, Astier M

    2008-12-01

    Much scholarly and practitioner attention to the impact of Hurricane Katrina on the city of New Orleans, Louisiana has focused on the failures of government disaster prevention and management at all levels, often overlooking the human strength and resourcefulness observed in individuals and groups among the worst-affected communities. This preliminary study sought to investigate human resilience in the city of New Orleans, State of Louisiana, eighteen months after Hurricane Katrina struck the Mississippi delta region. The Sense of Coherence scale, short form (SOC-13) was administered to a sample of 41 residents of Lower Ninth Ward and adjacent Wards who had been displaced by Hurricane Katrina but were either living in or visiting their home area during March 2007. Study participants were recruited through the local branch of the Association of Community Organizations for Reform Now (ACORN), a nation-wide grassroots organization whose mission is to promote the housing rights of low and moderate-income individuals and families across the USA and in several other countries. Those who had returned to their homes had significantly higher SOC scores compared to those who were still displaced (p<0.001). Among the latter, those who were members of ACORN scored significantly higher than non-members (p<0.005), and their SOC-13 scores were not significantly different from the scores of study participants who had returned home (including both members and non-members of ACORN). The findings of this preliminary study concur with previous reports in the literature on the deleterious impact of displacement on individual and collective resilience to disasters. Relevant insight gleaned from the qualitative data gathered during the course of administering the SOC-13 scale compensate for the limitations of the small sample size as they draw attention to the importance of the study participants' sources of social support. Possible avenues for further research are outlined.

  5. The Visible Hand: Markets, Politics, and Regulation in Post-Katrina New Orleans

    Science.gov (United States)

    Jabbar, Huriya

    2016-01-01

    In this article Huriya Jabbar examines how the regulatory environment in post-Hurricane Katrina New Orleans has influenced choice, incentives, and competition among schools. While previous research has highlighted the mechanisms of competition and individual choice--the "invisible hand"--and the creation of markets in education, Jabbar…

  6. LEED AND THE DESIGN/BUILD EXPERIENCE: A SHELTER FOR HOMELESS FAMILIES RETURNING TO POST-KATRINA NEW ORLEANS.

    Directory of Open Access Journals (Sweden)

    Stephen Verderber

    2011-03-01

    Full Text Available Hurricane Katrina displaced nearly one million citizens from the New Orleans metro region in 2005. Five years after the catastrophe, in August of 2010, more than 150,000 citizens remained scattered across the United States. Katrina was the largest Diaspora in the nation’s history. The number of homes damaged or destroyed by Katrina’s devastation numbered more than 125,000. An award-winning case study is presented of a unique partnership forged between academia, a local social service agency, professional architectural and engineering firms, and a national humanitarian aid organization whose mission is to provide affordable housing for homeless persons in transition. This collaboration resulted in a sustainable design/build project that originated in a research-based university design studio. The facility is a 38-bed family shelter for homeless mothers and their children seeking to rebuild their lives in post-Katrina New Orleans. The site for this 4,400 facility did not flood when the city’s federally built levee system failed in 2005. This case study is presented from its inception, to programming and design, construction, occupancy, and the postoccupancy assessment of the completed building. This facility is the first LEED certified (Silver building in New Orleans. Project limitations, lessons learned, and recommendations for future initiatives of this type are discussed, particularly in the context of any inner urban community coping with the aftermath of an urban disaster.

  7. The effects of Hurricanes Katrina and Rita on seabed polycyclic aromatic hydrocarbon dynamics in the Gulf of Mexico.

    Science.gov (United States)

    Mitra, Siddhartha; Lalicata, Joseph J; Allison, Mead A; Dellapenna, Timothy M

    2009-06-01

    To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited approximately 10cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.

  8. Prevention of destructive tropical and extratropical storms, hurricanes, tornadoes, dangerous thunderstorms, and catastrophic floods

    Directory of Open Access Journals (Sweden)

    E. Yu. Krasilnikov

    2002-01-01

    Full Text Available Tropical cyclones and storms, hurricanes, powerful thunderclouds, which generate tornadoes, destructive extratropical cyclones, which result in catastrophic floods, are the powerful cloud systems that contain huge amount of water. According to the hypothesis argued in this paper, an electric field coupled with powerful clouds and electric forces play a cardinal role in supporting this huge mass of water at a high altitude in the troposphere and in the instability of powerful clouds sometimes during rather a long time duration. Based on this hypothesis, a highly effective method of volume electric charge neutralization of powerful clouds is proposed. It results in the decrease in an electric field, a sudden increase in precipitation, and subsequent degradation of powerful clouds. This method, based on the natural phenomenon, ensures the prevention of the intensification of tropical and extratropical cyclones and their transition to the storm and hurricane (typhoon stages, which makes it possible to avoid catastrophic floods. It also ensures the suppression of severe thunderclouds, which, in turn, eliminates the development of dangerous thunderstorms and the possibility of the emergence and intensification of tornadoes.

  9. The Transformation of a School System: Principal, Teacher, and Parent Perceptions of Charter and Traditional Schools in Post-Katrina New Orleans. Technical Report

    Science.gov (United States)

    Steele, Jennifer L.; Vernez, Georges; Gottfried, Michael A.; Schwam-Baird, Michael

    2011-01-01

    Hurricane Katrina set the stage for a transformation of public education in New Orleans, replacing the city's existing school system with a decentralized choice-based system of both charter and district-run schools. Using principal, teacher, and parent surveys administered three years after Katrina, this study examined schools' governance and…

  10. Impacts of cloud flare-ups on hurricane intensity resulting from departures from balance laws

    Directory of Open Access Journals (Sweden)

    T. N. Krishnamurti

    2012-05-01

    Full Text Available Cloud flare-ups along the inner eye wall of a hurricane lead to enhancement of cloud scale divergence, which in turn leads to a large local enhancement of the departure from balance laws and can lead to local supergradient winds. This scenario is tested using the results from a mesoscale microphysical model at horizontal resolution of 1.33 km for the simulation of hurricane Katrina. Rainwater mixing ratio tags growing cloud elements. The departure from balance laws includes terms such as the local, horizontal and vertical advections of divergence, divergence square and a term invoking the gradient of vertical velocity. It is noted that these terms collectively contribute to a substantial local enhancement of the departure from balance laws. Departures from balance laws are related to the radial gradient wind imbalances in a storm-centred coordinate. In this study, several examples, from the hurricane Katrina simulations, that display this scenario of rapid intensification are illustrated. Organisation of convection in the azimuthal direction seems important for the hurricane scale; cloud flare-ups away from such regions of azimuthal organisation fail to contribute to this scenario for the overall intensification of the hurricane.

  11. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  12. Chemical constituents in sediment in Lake Pontchartrain and in street mud and canal sediment in New Orleans, Louisiana, following Hurricanes Katrina and Rita, 2005

    Science.gov (United States)

    Van Metre, Peter C.; Wilson, Jennifer T.; Horowitz, Arthur J.; Skrobialowski, Stanley C.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Mahler, Barbara J.; Smith, James J.; Zaugg, Steven D.

    2007-01-01

    Samples of street mud, suspended and bottom sediment in canals discharging to Lake Ponchartrain, and suspended and bottom sediment in the lake were collected and analyzed for chemical constituents to help evaluate the effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana. The approach used for sampling and analysis of chemical data for the study is presented herein. Radionuclides, major and trace elements, and numerous organic compounds in sediment were analyzed. The organic compounds include organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, urban waste indicator compounds, and current-use pesticides. Methods for the analysis of urban waste indicator compounds and current-use pesticides in sediment were developed only recently.

  13. Floating Foundations: "Kairos," Community, and a Composition Program in Post-Katrina New Orleans

    Science.gov (United States)

    Johnson, T. R.; Letter, Joe; Livingston, Judith Kemerait

    2009-01-01

    The authors describe their individual and collective experiences reconstructing their New Orleans-based university composition program in the aftermath of Hurricane Katrina. They emphasize how the concept of "floating foundations" helps account for changes in their students' interests, and they suggest that this idea is applicable to the…

  14. School Choice, Student Mobility, and School Quality: Evidence from Post-Katrina New Orleans

    Science.gov (United States)

    Welsh, Richard O.; Duque, Matthew; McEachin, Andrew

    2016-01-01

    In recent decades, school choice policies predicated on student mobility have gained prominence as urban districts address chronically low-performing schools. However, scholars have highlighted equity concerns related to choice policies. The case of post-Hurricane Katrina New Orleans provides an opportunity to examine student mobility patterns in…

  15. Leadership for Change in the Educational Wild West of Post-Katrina New Orleans

    Science.gov (United States)

    Beabout, Brian R.

    2010-01-01

    This study examines the perceptions of public school principals in New Orleans, Louisiana during the period of extensive decentralization in the aftermath of Hurricane Katrina. Using the frameworks of systems theory and chaos/complexity theories, iterative interviews with 10 school principals form the core data which examines leaders' experiences…

  16. The broken trailer fallacy: seeing the unseen effects of government policies in post-Katrina New Orleans

    OpenAIRE

    Stringham, Edward; Snow, Nicholas

    2008-01-01

    Purpose – The purpose of this paper is to analyze some of the unseen negative effects of the post-Katrina government policies dealing with housing in New Orleans. Design/methodology/approach – Since Hurricane Katrina, the government, along with private for profit and not-for-profit organizations, has worked to rebuild the city of New Orleans. This effort is most evident in the response to the housing crisis that followed the storm. The government has spent billions of dollars and brought ...

  17. Hurricane Katrina and climate change

    International Nuclear Information System (INIS)

    Ferrara, Vincenzo

    2005-01-01

    Serious and widely reported scientific analyses and assessments have called attention to climate changes and to the additional risks the world now faces. Through science has not yet provided proof positive of a connection between the increased intensity of extreme weather events and climate change, there can be no valid reason for failing to hedge the risk with preventive action. The catastrophe that struck New Orleans had can been predicted since the 1990s. The 2050 Coast Plan for reducing the vulnerability of the Louisiana coast and preventing hurricane disasters had been approved by the local authorities but not the federal government. Partly because of its cost, it was never carried into effect [it

  18. Finding holism in disaster: a story of Katrina's aftermath.

    Science.gov (United States)

    Zahourek, Rothlyn

    2007-03-01

    How do we find holism in the aftermath of disasters? This is the author's personal account of being deployed as a psychiatric clinical nurse specialist by the Substance Abuse and Mental Health Services Administration and meeting two survivors in the Lower 9th Ward of New Orleans after Hurricane Katrina. This article tells how she learned from survivors' stories and music about healing and holism in the aftermath of disaster.

  19. Disaster-related exposures and health effects among US Coast Guard responders to Hurricanes Katrina and Rita: a cross-sectional study.

    Science.gov (United States)

    Rusiecki, Jennifer A; Thomas, Dana L; Chen, Ligong; Funk, Renée; McKibben, Jodi; Dayton, Melburn R

    2014-08-01

    Disaster responders work among poorly characterized physical and psychological hazards with little understood regarding health consequences of their work. A survey administered to 2834 US Coast Guard responders to Hurricanes Katrina and Rita provided data on exposures and health effects. Prevalence odds ratios (PORs) evaluated associations between baseline characteristics, missions, exposures, and health effects. Most frequent exposures were animal/insect vector (n = 1309; 46%) and floodwater (n = 817; 29%). Most frequent health effects were sunburn (n = 1119; 39%) and heat stress (n = 810; 30%). Significant positive associations were for mold exposure and sinus infection (POR = 10.39); carbon monoxide and confusion (POR = 6.27); lack of sleep and slips, trips, falls (POR = 3.34) and depression (POR = 3.01); being a Gulf-state responder and depression (POR = 3.22). Increasing protection for disaster responders requires provisions for adequate sleep, personal protective equipment, and access to medical and psychological support.

  20. Power Scaling of the Size Distribution of Economic Loss and Fatalities due to Hurricanes, Earthquakes, Tornadoes, and Floods in the USA

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Scott, B. E.

    2016-12-01

    Traditionally, the size of natural disaster events such as hurricanes, earthquakes, tornadoes, and floods is measured in terms of wind speed (m/sec), energy released (ergs), or discharge (m3/sec) rather than by economic loss or fatalities. Economic loss and fatalities from natural disasters result from the intersection of the human infrastructure and population with the size of the natural event. This study investigates the size versus cumulative number distribution of individual natural disaster events for several disaster types in the United States. Economic losses are adjusted for inflation to 2014 USD. The cumulative number divided by the time over which the data ranges for each disaster type is the basis for making probabilistic forecasts in terms of the number of events greater than a given size per year and, its inverse, return time. Such forecasts are of interest to insurers/re-insurers, meteorologists, seismologists, government planners, and response agencies. Plots of size versus cumulative number distributions per year for economic loss and fatalities are well fit by power scaling functions of the form p(x) = Cx-β; where, p(x) is the cumulative number of events with size equal to and greater than size x, C is a constant, the activity level, x is the event size, and β is the scaling exponent. Economic loss and fatalities due to hurricanes, earthquakes, tornadoes, and floods are well fit by power functions over one to five orders of magnitude in size. Economic losses for hurricanes and tornadoes have greater scaling exponents, β = 1.1 and 0.9 respectively, whereas earthquakes and floods have smaller scaling exponents, β = 0.4 and 0.6 respectively. Fatalities for tornadoes and floods have greater scaling exponents, β = 1.5 and 1.7 respectively, whereas hurricanes and earthquakes have smaller scaling exponents, β = 0.4 and 0.7 respectively. The scaling exponents can be used to make probabilistic forecasts for time windows ranging from 1 to 1000 years

  1. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    Science.gov (United States)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might

  2. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-12-01

    This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Hurricane Katrina was the largest natural disaster in the United States, striking the Gulf Coast on August 29, 2005, and flooding 80% of New Orleans; to make matters worse, the city was flooded again only three weeks later by the effects of Hurricane Rita. Many of the buildings, including schools, were heavily damaged. The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school maintenance. This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools-Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School-and one major renovation, Joseph A. Craig Elementary School-are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. Before Hurricane Katrina, New Orleans had 128 public schools. As part of the recovery planning, New Orleans Public Schools underwent an assessment and planning process to determine how many schools were needed and in what locations. Following a series of public town hall meetings and a district-wide comprehensive facility assessment, a Master Plan was developed, which outlined the renovation or construction of 85 schools throughout the city, which are expected to be completed by 2017. New Orleans Public Schools expects to build or renovate approximately eight schools each year over a 10-year period to achieve 21st century schools district-wide. Reconstruction costs are estimated at nearly $2 billion.

  3. Politique sociale et religion aux Etats-Unis : du « conservatisme compatissant » à l’ouragan Katrina Social Policy and Religion in the United States: From Compassionate Conservatism to Hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Taoufik Djebali

    2011-03-01

    Full Text Available Breaking with the traditional conservatism championed by Ronald Reagan, George W. Bush wanted his social policy to move away from monetary considerations to embrace a religious and spiritual method in healing social ills. The Office of Faith-Based and Community Initiatives, located in the White House, was inaugurated a few days after Bush was sworn in. However, the Office was immediately plagued by internal strife, lack of funding and absence of political commitment. Hurricane Katrina (2005 dealt a serious political blow to the Republican President. But paradoxically, it reinforced the ideological hegemony of faith-based organizations. Indeed, following the relief efforts, faith-based organizations, rather than government, were hailed as effective instruments in the fight against poverty, distress, and deviance. This article will argue that contrary to this perception, faith-based organizations have a limited effect on poverty and that the Bush administration exploited them for political purposes.

  4. Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods.

    Science.gov (United States)

    Brandt, Mary; Brown, Clive; Burkhart, Joe; Burton, Nancy; Cox-Ganser, Jean; Damon, Scott; Falk, Henry; Fridkin, Scott; Garbe, Paul; McGeehin, Mike; Morgan, Juliette; Page, Elena; Rao, Carol; Redd, Stephen; Sinks, Tom; Trout, Douglas; Wallingford, Kenneth; Warnock, David; Weissman, David

    2006-06-09

    Extensive water damage after major hurricanes and floods increases the likelihood of mold contamination in buildings. This report provides information on how to limit exposure to mold and how to identify and prevent mold-related health effects. Where uncertainties in scientific knowledge exist, practical applications designed to be protective of a person's health are presented. Evidence is included about assessing exposure, clean-up and prevention, personal protective equipment, health effects, and public health strategies and recommendations. The recommendations assume that, in the aftermath of major hurricanes or floods, buildings wet for health effects in susceptible persons regardless of the type of mold or the extent of contamination. For the majority of persons, undisturbed mold is not a substantial health hazard. Mold is a greater hazard for persons with conditions such as impaired host defenses or mold allergies. To prevent exposure that could result in adverse health effects from disturbed mold, persons should 1) avoid areas where mold contamination is obvious; 2) use environmental controls; 3) use personal protective equipment; and 4) keep hands, skin, and clothing clean and free from mold-contaminated dust. Clinical evaluation of suspected mold-related illness should follow conventional clinical guidelines. In addition, in the aftermath of extensive flooding, health-care providers should be watchful for unusual mold-related diseases. The development of a public health surveillance strategy among persons repopulating areas after extensive flooding is recommended to assess potential health effects and the effectiveness of prevention efforts. Such a surveillance program will help CDC and state and local public health officials refine the guidelines for exposure avoidance, personal protection, and clean-up and assist health departments to identify unrecognized hazards.

  5. Dopady hurikánu Katrina na pojistné trhy

    OpenAIRE

    Blabla, Jan

    2014-01-01

    This thesis examines the problem of impact of catastrophic natural events on insurance and reinsurance markets, with special focus on 2005 hurricane Katrina. It aims to analyze and evaluate the consequences of large scale economic loss on global insurance market. First part of the thesis describes the event and its implications. Impact on oil and gas industry and others is discussed. Main section is focused on repercussions of this event for both local and global insurance markets. Influence ...

  6. Connecting the Disconnected: Scholar Activists and Education Reform in Post-Katrina New Orleans

    Science.gov (United States)

    Cook, Daniella Ann

    2014-01-01

    When Hurricane Katrina slammed into New Orleans on August 29, 2005, the failure of the levees resulted in the largest single human-made disaster in the United States. In addition to the physical devastation of the city, the landscape of public schools in New Orleans was permanently altered, as was the national dialogue about school reform in the…

  7. Services oriented architectures and rapid deployment of ad-hoc health surveillance systems: lessons from Katrina relief efforts.

    Science.gov (United States)

    Mirhaji, Parsa; Casscells, S Ward; Srinivasan, Arunkumar; Kunapareddy, Narendra; Byrne, Sean; Richards, David Mark; Arafat, Raouf

    2006-01-01

    During the Hurricane Katrina relief efforts, a new city was born overnight within the City of Houston to provide accommodation and health services for thousands of evacuees deprived of food, rest, medical attention, and sanitation. The hurricane victims had been exposed to flood water, toxic materials, physical injury, and mental stress. This scenario was an invitation for a variety of public health hazards, primarily infectious disease outbreaks. Early detection and monitoring of morbidity and mortality among evacuees due to unattended health conditions was an urgent priority and called for deployment of real-time surveillance to collect and analyze data at the scene, and to enable and guide appropriate response and planning activities. The University of Texas Health Science Center at Houston (UTHSC) and the Houston Department of Health and Human Services (HDHHS) deployed an ad hoc surveillance system overnight by leveraging Internet-based technologies and Services Oriented Architecture (SOA). The system was post-coordinated through the orchestration of Web Services such as information integration, natural language processing, syndromic case finding, and online analytical processing (OLAP). Here we will report the use of Internet-based and distributed architectures in providing timely, novel, and customizable solutions on demand for unprecedented events such as natural disasters.

  8. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  9. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    Science.gov (United States)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  10. Collaborative Research in a Post-Katrina Environment: The Facilitation, Communication, and Ethical Considerations of University Researchers

    Science.gov (United States)

    Peters, Gary; McNeese, Rose M.

    2008-01-01

    The aftermath of Hurricane Katrina brought devastation and confusion to the Mississippi Gulf Coast region on August 29, 2005. A desperate need for leadership, collaboration, and coordination of relief and recovery efforts was revealed during a March 2007 strategic planning session involving 96 organizations, groups, agencies, and researchers…

  11. The Hancock County Katrina Relief Initiative: Focusing Collaborative Leadership to Facilitate Recovery after a Natural Disaster

    Science.gov (United States)

    McNeese, Rose M.; Peters, Gary

    2009-01-01

    Eighteen months after Hurricane Katrina devastated the Mississippi coastal community of Hancock County on August 29, 2005, volunteers and organizations assisting with recovery in the area found chaos, confusion, and a desperate need for leadership. This qualitative study reflects the efforts of two University of Southern Mississippi professors as…

  12. Hurricane Katrina: Barriers to Mental Health Services for Children Persist in Greater New Orleans, Although Federal Grants Are Helping to Address Them. Testimony before the Ad Hoc Subcommittee on Disaster Recovery, Senate Committee on Homeland Security and Governmental Affairs. GAO-09-935T

    Science.gov (United States)

    Bascetta, Cynthia A.

    2009-01-01

    The greater New Orleans area has yet to fully recover from the effects of Hurricane Katrina, which made landfall on August 29, 2005. One issue of concern in the recovery is the availability of mental health services for children. It is estimated that in 2008 about 187,000 children were living in the greater New Orleans area. Many children in the…

  13. Public Use of Online Hydrology Information for Harris County and Houston, Texas, during Hurricane Harvey and Suggested Improvement for Future Flood Events

    Science.gov (United States)

    Lilly, M. R.; Feditova, A.; Levine, K.; Giardino, J. R.

    2017-12-01

    The Harris County Flood Control District has an impressive amount of information available for the public related to flood management and response. During Hurricane Harvey, this information was used by the authors to help address daily questions from family and friends living in the Houston area. Common near-real-time reporting data included precipitation and water levels. Maps included locations of data stations, stream or bayou conditions (in bank, out of bank) and watershed or drainage boundaries. In general, the data station reporting and online information was updating well throughout the hurricane and post-flooding period. Only a few of the data reporting stations had problems with water level sensor measurements. The overall information was helpful to hydrologists and floodplain managers. The online information could not easily answer all common questions residents may have during a flood event. Some of the more common questions were how to use the water-level information to know the potential extent of flooding and relative location of flooding to the location of residents. To help address the questions raised during the flooding on how to use the available water level data, we used Google Earth to get lot and intersection locations to help show the relative differences between nearby water-level stations and residences of interest. The reported resolution of the Google Earth elevation data is 1-foot. To help confirm the use of this data, we compared Google Earth approximate elevations with reported Harris County Floodplain Reference Mark individual reports. This method helped verify we could use the Google Earth information for approximate comparisons. We also faced questions on what routes to take if evacuation was needed, and where to go to get to higher ground elevations. Google Earth again provided a helpful and easy to use interface to look at road and intersection elevations and develop suggested routes for family and friends to take to avoid low

  14. Brief communication "Hurricane Irene: a wake-up call for New York City?"

    Directory of Open Access Journals (Sweden)

    J. C. J. H. Aerts

    2012-06-01

    Full Text Available The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit to the city from a hurricane may expose an enormous number of people to flooding. A major hurricane has the potential to cause large-scale damage in NYC. The city's resilience to flooding can be increased by improving and integrating flood insurance, flood zoning, and building code policies.

  15. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  16. Public Libraries Can Play an Important Role in the Aftermath of a Natural Disaster. A Review of: Welsh, T. S. & Higgins, S. E. (2009). Public libraries post-Hurricane Katrina: A pilot study. Library Review, 58(9), 652-659.

    OpenAIRE

    Virginia Wilson

    2010-01-01

    Objective – This paper analyzes Hurricane Katrina-related narratives to document the challenges faced by public libraries after the disaster and the disaster-relief services these libraries provided.Design – A qualitative thematic analysis of narratives obtained by convenience sampling.Setting – Narratives were collected and analyzed in 2005 and 2006 across the Gulf Coast area of the United States.Subjects – Seventy-two library and information science students enrolled in the University of So...

  17. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta

    International Nuclear Information System (INIS)

    Su Tingzhi; Shu Shi; Shi Honglan; Wang Jianmin; Adams, Craig; Witt, Emitt C.

    2008-01-01

    This study provided a comprehensive assessment of seven toxic trace elements (As, Pb, V, Cr, Cd, Cu, and Hg) in the soil/sediment of Katrina affected greater New Orleans region 1 month after the recession of flood water. Results indicated significant contamination of As and V and non-significant contamination of Cd, Cr, Cu, Hg and Pb at most sampling sites. Compared to the reported EPA Region 6 soil background inorganic levels, except As, the concentrations of other six elements had greatly increased throughout the studied area; St. Bernard Parish and Plaquemines Parish showed greater contamination than other regions. Comparison between pre- and post-Katrina data in similar areas, and data for surface, shallow, and deep samples indicated that the trace element distribution in post-Katrina New Orleans was not obviously attributed to the flooding. This study suggests that more detailed study of As and V contamination at identified locations is needed. - This article provides an in-depth assessment of the contamination of As, Pb, V, Cr, Cd, Cu, and Hg in post-Katrina greater New Orleans region

  18. Performance of Oil Infrastructure during Hurricane Harvey

    Science.gov (United States)

    Bernier, C.; Kameshwar, S.; Padgett, J.

    2017-12-01

    Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.

  19. A Working Landscape: "Water as an Amenity" as strategy for a Delta city that suffers from stormwater flooding

    NARCIS (Netherlands)

    Hermens, P.; Salm, J.N.; Zwet, van der C.; Etteger Ma, van R.; Duchhart, I.

    2010-01-01

    First a hurricane, now oil; contemporary New Orleans is revising its relation with landscape and water, out of necessity and out of ambition. Since Hurricane Katrina devastated the city in 2005, the Dutch Dialogue workshops. initiated by local architect David Waggonner and the Royal Dutch Embassy -

  20. Strategic Planning for Emergencies: Lessons Learned from Katrina

    International Nuclear Information System (INIS)

    Hamilton, M. G.; Mashhadi, H.; Habeck, D.

    2007-01-01

    The tragedy that was unleashed when hurricane Katrina hit the United States southern coast and most particularly New Orleans is still being examined. Regardless of the allocation of blame for the response, or lack thereof, several very important components of what needs to be included in effective strategic, management, and response plans were revealed in the aftermath. The first tenet is to be sure not to make the problem worse. In other words, the goal is to prevent emergencies from becoming a disaster that subsequently grows to a catastrophe. Essential components that need to be addressed start with protection and rescue of affected people. Several characteristics of an effective strategic plan that will address saving lives include leadership, continuity of government and business, effective communications, adequate evacuation plans and security of electronic infrastructure. Katrina analysis confirms that the process to integrate all the components is too complex to be accomplished ad hoc. This presentation will outline objective methodology to successfully integrate the various facets that comprise an effective strategic plan, management plan, and tactical plans.(author)

  1. Dynamic inundation mapping of Hurricane Harvey flooding in the Houston metro area using hyper-resolution modeling and quantitative image reanalysis

    Science.gov (United States)

    Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.

    2017-12-01

    Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.

  2. Post disaster resilience: Racially different correlates of depression symptoms among hurricane Katrina-Rita volunteers.

    Science.gov (United States)

    Nicdao, Ethel G; Noel, La Tonya; Ai, Amy L; Plummer, Carol; Groff, Sara

    2013-01-01

    The present analyses examined the differential risks of and protective factors against depressive symptoms of African American and Non-Hispanic White American student volunteers, respectively after Hurricanes Katrina and Rita (H-KR). A total sample of 554 student volunteers were recruited from mental health professional programs at five universities located in the Deep South, namely areas severely impacted by H-KR during fall semester 2005. The response rate was 91% (n = 505). African American respondents (n = 299) and Non-Hispanic White Americans (n = 206) completed the survey questionnaires. Respondents retrospectively provided information on peritraumatic emotional reactions and previous trauma that were recalled by H-KR and H-KR stressors. African American respondents reported higher levels of depressive symptoms (65.2%) than their Non-Hispanic White counterparts (34.8%). Hierarchical regression analyses revealed that disaster related stressors affected African Americans (p < 0.001), but not Non-Hispanic Whites. However, African Americans who experienced peritraumatic positive emotions had lower depression levels. Lower rates of recollection of prior traumas during H-KR were reported by African American respondents, whereas previous trauma recollections predicted symptoms among Non-Hispanic White Americans (p < 0.05). Exhibiting more optimism had lower depression levels among Non-Hispanic White Americans. Peritraumatic negative emotion was the only shared risk for depressive symptoms of both groups. Findings underscore racially different levels of depressive symptoms that may contribute to varying degrees of resilience among student volunteers. Future research and practice may address these racial differences by understanding the risk factors for depressive symptoms to develop appropriate interventions for racial groups, and cultivating the protective factors that contribute to resilience from traumatic experiences.

  3. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    Science.gov (United States)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  4. The astonishingly holistic role of urban soil in the exposure of children to lead.

    Science.gov (United States)

    Mielke, Howard; Gonzales, Christopher; Powell, Eric

    2017-04-01

    The long-term resilience and sustainability of urban communities is associated with its environmental quality. One major impediment to community welfare is children's exposure to lead because it is a root cause of disparity and chronic conditions including health, learning, and behavioral differences. There is no safe level of lead exposure and this revelation is confounded by the lack of an effective intervention after exposure takes place. In August, 2005, Hurricane Katrina flooded 80% of New Orleans. This report explores the natural experiment of the dynamic changes of soil and children's blood lead in New Orleans before and ten years after the flood. Matched pre- and post-Hurricane soil lead and children's blood lead results were stratified by 172 communities of New Orleans. GIS methods were used to organize, describe, and map the pre- and post-Katrina data. Comparing pre- and post-Katrina results, simultaneous decreases occurred in soil lead and children's blood lead response. Health and welfare disparities continue to exist between environments and children's exposure living in interior compared with outer communities of the city. At the scale of a city this investigation demonstrates that declining soil lead effectively reduces children's blood lead. The astonishingly holistic role of soil relates to its position as a lead dust deposition reservoir and, at the same time, as an open source of ingestible and inhalable lead dust. Decreasing the soil lead on play areas of urban communities is beneficial and economical as a method for effective lead intervention and primary prevention. References Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Mielke, P.W. Jr. Spatiotemporal dynamic transformations of soil lead and children's blood lead ten years after Hurricane Katrina: New grounds for primary prevention. Environ. Int. 2016, DOI: 10.1016/j.envint.2016.06.017. Mielke, H.W.; Gonzales, C.R.; Powell, E.T. In review. The dynamic lead exposome and children's health in New

  5. Characterization of peak streamflows and flood inundation at selected areas in North Carolina following Hurricane Matthew, October 2016

    Science.gov (United States)

    Musser, Jonathan W.; Watson, Kara M.; Gotvald, Anthony J.

    2017-05-05

    The passage of Hurricane Matthew through central and eastern North Carolina during October 7–9, 2016, brought heavy rainfall, which resulted in major flooding. More than 15 inches of rain was recorded in some areas. More than 600 roads were closed, including Interstates 95 and 40, and nearly 99,000 structures were affected by floodwaters. Immediately following the flooding, the U.S. Geological Survey documented 267 high-water marks, of which 254 were surveyed. North Carolina Emergency Management documented and surveyed 353 high-water marks. Using a subset of these highwater marks, six flood-inundation maps were created for hard-hit communities. Digital datasets of the inundation areas, study reach boundary, and water-depth rasters are available for download. In addition, peak gage-height data, peak streamflow data, and annual exceedance probabilities (in percent) were determined for 24 U.S. Geological Survey streamgages located near the heavily flooded communities.

  6. Promoting mental health recovery after hurricanes Katrina and Rita: what can be done at what cost.

    Science.gov (United States)

    Schoenbaum, Michael; Butler, Brittany; Kataoka, Sheryl; Norquist, Grayson; Springgate, Benjamin; Sullivan, Greer; Duan, Naihua; Kessler, Ronald C; Wells, Kenneth

    2009-08-01

    Concerns about mental health recovery persist after the 2005 Gulf storms. We propose a recovery model and estimate costs and outcomes. To estimate the costs and outcomes of enhanced mental health response to large-scale disasters using the 2005 Gulf storms as a case study. Decision analysis using state-transition Markov models for 6-month periods from 7 to 30 months after disasters. Simulated movements between health states were based on probabilities drawn from the clinical literature and expert input. A total of 117 counties/parishes across Louisiana, Mississippi, Alabama, and Texas that the Federal Emergency Management Agency designated as eligible for individual relief following hurricanes Katrina and Rita. Hypothetical cohort, based on the size and characteristics of the population affected by the Gulf storms. Intervention Enhanced mental health care consisting of evidence-based screening, assessment, treatment, and care coordination. Morbidity in 6-month episodes of mild/moderate or severe mental health problems through 30 months after the disasters; units of service (eg, office visits, prescriptions, hospital nights); intervention costs; and use of human resources. Full implementation would cost $1133 per capita, or more than $12.5 billion for the affected population, and yield 94.8% to 96.1% recovered by 30 months, but exceed available provider capacity. Partial implementation would lower costs and recovery proportionately. Evidence-based mental health response is feasible, but requires targeted resources, increased provider capacity, and advanced planning.

  7. Using remotely sensed data and elementary analytical techniques in post-katrina mississippi to examine storm damage modeling

    Science.gov (United States)

    Curtis A. Collins; David L. Evans; Keith L. Belli; Patrick A. Glass

    2010-01-01

    Hurricane Katrina’s passage through south Mississippi on August 29, 2005, which damaged or destroyed thousands of hectares of forest land, was followed by massive salvage, cleanup, and assessment efforts. An initial assessment by the Mississippi Forestry Commission estimated that over $1 billion in raw wood material was downed by the storm, with county-level damage...

  8. Cloud Spirals and Outflow in Tropical Storm Katrina

    Science.gov (United States)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes. Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe

  9. Evaluation of a Socio-Hydrologic Model for the Rebuilding of Biloxi, Mississippi

    Science.gov (United States)

    Calhoun, J. L.; O'Donnell, F. C.; Burton, C. G.

    2017-12-01

    In August 2005, Hurricane Katrina ripped through the Gulf Coast of the United States causing billions in damage. The storm cost the City of Biloxi, Mississippi $355 million in infrastructure repair, which is being constructed with funding from the Federal Emergency Management Agency (FEMA). Approximately 30% of the city's storm systems including storm drains, bridges and culverts are being replaced and updated utilizing FEMA Hazard Mitigation funding to lessen the impact of future natural disasters. The infrastructure is being upgraded from conveying a 4% annual chance storm event to a 1% annual chance storm event. An extensive socio-economic data set of the impacts of Hurricane Katrina along the Mississippi Gulf Coast was used to analyze recovery in the area. The recovery data set assessed the area directly after the storm in 2005 thru 2010 with an analysis of recovery five years after the storm. This study uses a dynamic socio-hydrologic model with modifications to relate the change in flow capacity of engineered structures and socio-economic processes. The results will be used to assess the hypothesis that raising flood protection increases the base flood elevation levels and therefore requires a higher level of flood protection. The increase in flood protect eases the fears of the community leading them to not require additional flood protection when developing in flood prone areas and strengthening the socio-hydrologic association. The results will also be evaluated to create a tool for the City of Biloxi to improve their resilience from future hurricanes and storm surge events.

  10. Logistics: Use of DoD Resources Supporting Hurricane Katrina Disaster

    National Research Council Canada - National Science Library

    Scott, Wanda A; Bloomer, Donald A; Owens, Keith M; Bryant, Leon D; Matthews, Takia A; Chavez, Bryan M; Torres, Anthony M; Woolard, Alan J; Pugh, Jacqueline N

    2006-01-01

    We performed the audit in response to a September 2005 request by the Principal Deputy Inspector General, DoD to assess the use of DoD resources in providing relief efforts in support of the Hurricane...

  11. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  12. Natural Disasters, Corpses and the Risk of Infectious Diseases

    Directory of Open Access Journals (Sweden)

    JM Conly

    2005-01-01

    Full Text Available The recent occurrence of the category 4 Hurricane Katrina devastated the United States? Gulf Coast. The hurricane caused widespread destruction and flooding, and left hundreds of thousands of people homeless. The mounting death toll was reported at almost 300 deaths as of September 8, 2005 (1,2. The unfolding events and high death toll have left an unusual situation in which there are many decomposing corpses either lying on the streets or floating in the flood waters. The presence of these corpses in open settings, such as in public places and in the water that has inundated much of the city of New Orleans, naturally raises concerns about the occurrence of infectious disease epidemics (3. In the aftermath of large natural disasters, instinctive uncertainties arise among workers and the general population with respect to the appropriate handling and disposal of dead bodies and human remains. Given the recent occurrence of Hurricane Katrina as a large natural disaster and the unprecedented setting of the numerous corpses requiring disposal, it was considered timely to review the infectious disease risks associated with the handling of dead bodies.

  13. Economic implications of multi-layer safety projects for flood protection

    NARCIS (Netherlands)

    Tsimopoulou, V.; Vrijling, J.K.; Kok, M.; Jonkman, S.N.; Stijnen, J.W.

    2013-01-01

    Recent experience of large-scale water disasters such as Hurricane Katrina in 2005 and the Great Eastern Japan Earthquake and Tsunami in 2011 has reminded mankind that disasters cannot be ruledout. Unprecedented low-probability events can happen even in the most well monitored areas, causing major

  14. Risk Perceptions on Hurricanes: Evidence from the U.S. Stock Market.

    Science.gov (United States)

    Feria-Domínguez, José Manuel; Paneque, Pilar; Gil-Hurtado, María

    2017-06-05

    This article examines the market reaction of the main Property and Casualty (P & C) insurance companies listed in the New York Stock Exchange (NYSE) to seven most recent hurricanes that hit the East Coast of the United States from 2005 to 2012. For this purpose, we run a standard short horizon event study in order to test the existence of abnormal returns around the landfalls. P & C companies are one of the most affected sectors by such events because of the huge losses to rebuild, help and compensate the inhabitants of the affected areas. From the financial investors' perception, this kind of events implies severe losses, which could influence the expected returns. Our research highlights the existence of significant cumulative abnormal returns around the landfall event window in most of the hurricanes analyzed, except for the Katrina and Sandy Hurricanes.

  15. Flood protection of Crystal River Unit 3 Nuclear Plant

    International Nuclear Information System (INIS)

    Noble, R.M.; Simpson, B.

    1975-01-01

    To satisfy U.S. Atomic Energy Commission (AEC) safety criteria, a required evaluation of the worst site-related flood is performed for the Crystal River Plant, located on the Gulf Coast of Florida, the probable maximum stillwater flood levels are likely to be a result of the probable maximum hurricane. Flood protection requirements for the Crystal River Plant are determined by considering the most severe combination of probable maximum hurricane parameters for the Gulf Coast Region. These parameters are used as input to a model of hurricane surge generation and attendant wave activity in order to determine the maximum flood levels at the Crystal River Plant. 4 refs

  16. The impact of local land subsidence and global sea level rise on flood severity in Houston-Galveston caused by Hurricane Harvey

    Science.gov (United States)

    Miller, M. M.; Shirzaei, M.

    2017-12-01

    Category-4 Hurricane Harvey had devastating socioeconomic impacts to Houston, with flooding far past the 100-year flood zones published by FEMA. In recent decades, frequency and intensity of coastal flooding are escalating, correlated with sea level rise (SLR). Moreover, Local land subsidence (LLS) due to groundwater and hydrocarbon extraction and natural compaction changes surface elevation and slope, potentially altering drainage patterns. GPS data show a mm broad co-cyclonic subsidence due to elastic loading from the water mass measured by GPS, which is inverted to solve for the total fluid volume of 2.73x1010 m3. We additionally investigate the joint impact of an SLR and pre-cyclonic LLS on the flooding of Houston-Galveston during Hurricane Harvey. We examine vertical land motion within North American Vertical Datum 2012 for the period 2007 until the cyclone by investigating SAR imaged acquired by ALOS and Sentinel-1A/B radar satellites combined with GPS data. We find patchy, LLS bowls resulting in sinks where floodwater can collect. We map the flooding extent by comparing amplitudes of Sentinal1-A/B pixels' backscattered radar signal from pre- and post-Harvey acquisitions and estimate 782 km2 are submerged within the area of 3478 km2 of pixels covered by Sentinel frame. Comparing with the LLS map, 89% of the flooded pixels exhibit -3 mm/yr or greater vertical motion. Flooding attributed to the storm surge is determined with high-resolution LiDAR digital elevation models (DEM) and a 0.75 m storm tide inundation model, which engulfs only 195 km2 and nearby the shorelines. We estimate future inundation hazard by combining LiDAR DEMs with our InSAR derived subsidence map, projecting LLS rates forward 100 years, and modeling projected SLR from 0.4 to 1.2 meters. Were subsidence to continue unabated, the total flooded area is 281 km2 with a 0.4 m and 394 km2 with a 1.2 m SLR. Next, we add a modest storm tide (0.752 m), which increases the flooded area to 389 - 480

  17. Writing Critical Race Theory and Method: A Composite Counterstory on the Experiences of Black Teachers in New Orleans Post-Katrina

    Science.gov (United States)

    Cook, Daniella Ann; Dixson, Adrienne D.

    2013-01-01

    Using a critical race theory lens, the authors propose a way of writing race research using composite counterstories. Drawing on data from a yearlong study of school rebuilding in the time period immediately after Hurricane Katrina devastated the City of New Orleans, the authors examine the experiences of African-American educators in the school…

  18. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    Science.gov (United States)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage

  19. Effect of Hurricane Katrina on Low Birth Weight and Preterm Deliveries in African American Women in Louisiana, Mississippi, and Alabama

    Directory of Open Access Journals (Sweden)

    Chau-Kuang Chen

    2012-04-01

    Full Text Available Using three modeling techniques (GLR, GEP, and GM, the effect of Hurricane Katrina on low birth weight and preterm delivery babies for African American women is examined in Louisiana, Mississippi and Alabama. The study results indicate that risk factors associated with low birth weight and preterm delivery for American African women include unemployment and percent of mothers between the ages of 15-19. Among White women, ages 15-19, risk factors included poverty rate, median household income, and total birth rate. The GMs performed accurate predictions with increasing low birth weight and preterm delivery trends for African American women in the Gulf Coast states and other U.S. states, and decreasing low birth weight and preterm delivery trends for their White counterparts in the same state locations. Data presented between 2007-2010 show low birth weight and preterm delivery for White women as a decreasing tendency while adverse birth outcomes for African American women exhibited a monotonically increasing trend. The empirical findings suggest that health disparities will continue to exist in the foreseeable future, if no effective intervention is taken. The models identify risk factors that contribute to adverse birth outcomes and offer some insight into strategies and programs to address and ameliorate these effects.

  20. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Science.gov (United States)

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  1. Effects of Hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake Pontchartrain, La.: Chapter 7F in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Van Metre, Peter C.; Horowitz, Arthur J.; Mahler, Barbara J.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Furlong, Edward T.; Skrobialowski, Stanley C.; Smith, James J.; Wilson, Jennifer T.; Zaugg, Stephen D.

    2007-01-01

    Concerns about the effect of pumping contaminated flood waters into Lake Pontchartrain following the hurricanes of 2005 prompted the U.S. Geological Survey (USGS) to sample street mud, canal-suspended sediment, and bottom sediment in Lake Pontchartain. The samples were analyzed for a wide variety of potential inorganic and organic contaminants. Results indicate that contamination of lake sediment relative to other urban lakes and to accepted sedimentquality guidelines was limited to a relatively small area offshore from the Metairie Outfall Canal (popularly known as the 17th Street Canal) and that this contamination is probably transient.

  2. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    Science.gov (United States)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus

  3. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  4. Sleep deprivation and adverse health effects in United States Coast Guard responders to Hurricanes Katrina and Rita.

    Science.gov (United States)

    Bergan, Timothy; Thomas, Dana; Schwartz, Erica; McKibben, Jodi; Rusiecki, Jennifer

    2015-12-01

    Disaster responders are increasingly called upon to assist in various natural and manmade disasters. A critical safety concern for this population is sleep deprivation; however, there are limited published data regarding sleep deprivation and disaster responder safety. We expanded upon a cross-sectional study of 2695 United States Coast Guard personnel who responded to Hurricanes Katrina and Rita. Data were collected via survey on self-reported timing and location of deployment, missions performed, health effects, medical treatment sought, average nightly sleep, and other lifestyle variables. We created a 4-level sleep deprivation metric based on both average nightly reported sleep (d5hours; >5hours) and length of deployment (d2weeks; >2weeks) to examine the association between sustained sleep deprivation and illnesses, injuries, and symptoms using logistic regression to calculate odds ratios (ORs) and 95% confidence intervals. The strongest, statistically significant positive ORs for the highest sleep deprivation category compared with the least sleep-deprived category were for mental health and neurologic effects, specifically depression (OR=6.76), difficulty concentrating (OR=8.33), and confusion (OR=11.34), and for dehydration (OR=9.0). Injuries most strongly associated with sleep deprivation were twists, sprains, and strains (OR=6.20). Most health outcomes evaluated had monotonically increasing ORs with increasing sleep deprivation, and P tests for trend were statistically significant. Agencies deploying disaster responders should understand the risks incurred to their personnel by sustained sleep deprivation. Improved planning of response efforts to disasters can reduce the potential for sleep deprivation and lead to decreased morbidity in disaster responders. Published by Elsevier Inc.

  5. The US Air Force Aerial Spray Unit: a history of large area disease vector control operations, WWII through Katrina.

    Science.gov (United States)

    Breidenbaugh, Mark; Haagsma, Karl

    2008-01-01

    The US Air Force has had a long history of aerial applications of pesticides to fulfill a variety of missions, the most important being the protection of troops through the minimization of arthropod vectors capable of disease transmission. Beginning in World War II, aerial application of pesticides by the military has effectively controlled vector and nuisance pest populations in a variety of environments. Currently, the military aerial spray capability resides in the US Air Force Reserve (USAFR), which operates and maintains C-130 airplanes capable of a variety of missions, including ultra low volume applications for vector and nuisance pests, as well as higher volume aerial applications of herbicides and oil-spill dispersants. The USAFR aerial spray assets are the only such fixed-wing aerial spray assets within the Department of Defense. In addition to troop protection, the USAFR Aerial Spray Unit has participated in a number of humanitarian/relief missions, most recently in the response to the 2005 Hurricanes Katrina and Rita, which heavily damaged the Gulf Coasts of Louisiana, Mississippi, and Texas. This article provides historical background on the Air Force Aerial Spray Unit and describes the operations in Louisiana in the aftermath of Hurricane Katrina.

  6. Teaching New Orleans: A Cultural Immersion and Service Learning Travel Course

    Science.gov (United States)

    Luquet, Wade J.

    2009-01-01

    This article describes a travel course to New Orleans that allows students the opportunity to study a unique culture in the United States. Students in the course are able to study how the culture developed through its immigration patterns, its food, its architecture, and the development of jazz. Since the flooding following Hurricane Katrina, a…

  7. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    This report describes the Project Home Again community in New Orleans, a new development for high-performance, affordable homes for residents who lost their homes to Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness.

  8. Spatial confidentiality and GIS: re-engineering mortality locations from published maps about Hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Leitner Michael

    2006-10-01

    Full Text Available Abstract Background Geographic Information Systems (GIS can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. Results We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. Conclusion The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made

  9. Spatial confidentiality and GIS: re-engineering mortality locations from published maps about Hurricane Katrina.

    Science.gov (United States)

    Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael

    2006-10-10

    Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing

  10. Low probability flood-risk modeling for New York City.

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Lin, N.; Botzen, W.J.W.; Emanuel, K.; de Moel, H.

    2013-01-01

    The devastating impact by Hurricane Sandy (2012) again showed New York City (NYC) is one of the most vulnerable cities to coastal flooding around the globe. The low-lying areas in NYC can be flooded by nor'easter storms and North Atlantic hurricanes. The few studies that have estimated potential

  11. Pre-Hurricane Perceived Social Support Protects against Psychological Distress: A Longitudinal Analysis of Low-Income Mothers

    Science.gov (United States)

    Lowe, Sarah R.; Chan, Christian S.; Rhodes, Jean E.

    2010-01-01

    Objective: In this study, we examined the influence of pre-disaster perceived social support on post-disaster psychological distress among survivors of Hurricane Katrina. Method: Participants (N = 386) were low-income mothers between 18 and 34 years of age at baseline (M = 26.4, SD = 4.43). The majority (84.8%) was African American; 10.4%…

  12. Biogeochemical Impact of Hurricane Harvey on Texas Coastal Lagoons

    Science.gov (United States)

    Montagna, P.; Hu, X.; Walker, L.; Wetz, M.

    2017-12-01

    Hurricane Harvey made landfall Friday 25 August 2017 as a Category 4 hurricane, which is the strongest hurricane to hit the middle Texas coast since Carla in 1961. After the wind storm and storm surge, coastal flooding occurred due to the storm lingering over Texas for four more days, dumping as much as 50" of rain near Houston, producing 1:1000 year flood event. The Texas coast is characterized by lagoons behind barrier islands, and their ecology and biogeochemistry are strongly influenced by coastal hydrology. The ensuing inflow event replaced brackish water with fresh water that was high in inorganic an organic matter, significantly enhancing respiration of coastal blue carbon, and dissolved oxygen went to zero for a long period of time. Recovery will likely take months or nearly one year.

  13. Prevalence and predictors of mental health distress post-Katrina: findings from the Gulf Coast Child and Family Health Study.

    Science.gov (United States)

    Abramson, David; Stehling-Ariza, Tasha; Garfield, Richard; Redlener, Irwin

    2008-06-01

    Catastrophic disasters often are associated with massive structural, economic, and population devastation; less understood are the long-term mental health consequences. This study measures the prevalence and predictors of mental health distress and disability of hurricane survivors over an extended period of recovery in a postdisaster setting. A representative sample of 1077 displaced or greatly affected households was drawn in 2006 using a stratified cluster sampling of federally subsidized emergency housing settings in Louisiana and Mississippi, and of Mississippi census tracts designated as having experienced major damage from Hurricane Katrina in 2005. Two rounds of data collection were conducted: a baseline face-to-face interview at 6 to 12 months post-Katrina, and a telephone follow-up at 20 to 23 months after the disaster. Mental health disability was measured using the Medical Outcome Study Short Form 12, version 2 mental component summary score. Bivariate and multivariate analyses were conducted examining socioeconomic, demographic, situational, and attitudinal factors associated with mental health distress and disability. More than half of the cohort at both baseline and follow-up reported significant mental health distress. Self-reported poor health and safety concerns were persistently associated with poorer mental health. Nearly 2 years after the disaster, the greatest predictors of poor mental health included situational characteristics such as greater numbers of children in a household and attitudinal characteristics such as fatalistic sentiments and poor self-efficacy. Informal social support networks were associated significantly with better mental health status. Housing and economic circumstances were not independently associated with poorer mental health. Mental health distress and disability are pervasive issues among the US Gulf Coast adults and children who experienced long-term displacement or other serious effects as a result of Hurricanes

  14. Orkaan Katrina

    Index Scriptorium Estoniae

    2006-01-01

    28. augustil 2005. a. New Orleansi tabanud orkaanist Katrina, selle põhjustatud kahjudest ja päästetööde organiseerimisest. Vt. samas: Katrina taustal. Eesti päästemeeskonna juht Alo Tammsalu selgitab, miks Eesti päästjatel jäi Ameerikasse appi minemata

  15. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    Science.gov (United States)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  16. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  17. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    Science.gov (United States)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  18. Sex and drug risk behavior pre- and post-emigration among Latino migrant men in post-Hurricane Katrina New Orleans

    Science.gov (United States)

    Mills, Jennifer; Burton, Nicole; Schmidt, Norine; Salinas, Oscar; Hembling, John; Aran, Alberto; Shedlin, Michele; Kissinger, Patricia

    2012-01-01

    High rates of sex and drug risk behaviors have been documented among Latino migrant men in the U.S. Whether these behaviors were established in the migrants’ home countries or were adopted in the U.S. has not been described and has implications for prevention strategies. Quarterly surveys were conducted to gather information on selected sex and drug risk practices of Latino migrant men who arrived in New Orleans after Hurricane Katrina seeking work. Both kappa scores and McNemar’s tests were performed to determine if practice of these behaviors in home country was similar to practice post-emigration to the U.S. Female sex worker (FSW) patronage, same sex encounters (MSM), and crack cocaine use was more likely to occur post-rather than pre-emigration. Of those who ever engaged in these selected behaviors, most adopted the behavior in the U.S. (i.e. 75.8% of FSW patrons, 72.7% of MSM participants, and 85.7% of crack cocaine users), with the exception of binge drinking (26.8%). Men who were living with a family member were less likely to adopt FSW patronage OR=0.27, CI=0.10-0.76, whereas men who earned >$465 per week were more likely to adopt crack cocaine use OR=6.29 CI=1.29, 30.57. Interventions that facilitate the maintenance of family cohesion and provide strategies for financial management may be useful for reducing sex and drug risk among newly arrived migrants. PMID:22669638

  19. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Science.gov (United States)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  20. Another hurricane, high prices and more chaos in Iraq

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Another hurricane, this time called Rita, battered the US Gulf Coast, sending oil prices up worldwide, though not to the heights seen when its predecessor, Katrina, arrived. As before, a large swathe of US refinery capacity was temporarily put out of action: this time mainly in Texas. For around a week in late September, when Rita arrived, nearly 4.1 mn bpd of crude distillation capacity was taken off-line. At the same time, some 0.9 mn bpd was still unusable as a result of the depredations of Katrina in late August, leaving the US briefly minus nearly one third of its refinery capacity. The situation improved as some capacity was brought slowly back on-line, but by the beginning of October around 3.0 mn bpd was still not back in operation. The main price effects of Katrina were on gasoline, prompting demands in the Congress and elsewhere for investigations into overcharging by refiners and retailers (see 'Focus'). A record weekly increase in the first week of September propelled the average price of regular gasoline across the US to $3.07/gall. Rita's principal effect was on heating oil, which went up in the last week of September by nearly 20% to $2.51/gall in the US Gulf. US crude oil prices remained below their immediate post-Katrina record highs (see 'The Month in Brief', September 2005) despite the loss of the entire 1.5 mn bpd production in the Gulf of Mexico following Rita's arrival. (author)

  1. Early Childhood Education Students' Reflections: Volunteering after Hurricanes Katrina and Rita

    Science.gov (United States)

    Buchanan, Teresa K.; Benedict, Joan

    2007-01-01

    After the hurricanes, faculty asked the students to help with the relief efforts in different ways. Most students volunteered to work in shelters directly with individual or groups of children, youths, and adults. After their experiences, they wrote brief reflections about what they had done. Their comments show that they developed a better…

  2. ‘New Ways to Frame the Mammoth Horror’: Media First Responders and the Katrina Event

    Directory of Open Access Journals (Sweden)

    Sara Knox

    2011-04-01

    Full Text Available This article explores the state of emergency following Hurrican Katrina or ‘the Katrina Event’ with reference to the role of media first responders. Throughout the ensuing disaster the performance of the media (including celebrity advocates like Oprah Winfrey, Geraldo Rivera and Kanye West worked as a mechanism for technical remastery in the face of systemic breakdown. This re-mediation of panic and of the state of emergency shifted attention from the local (that is, from the acts of witness by Katrina’s victims to national reactions (as figured by advocates of the cause of the neglected poor of New Orleans. In this way even as voice was given to the failure of the nation to rise to the needs of its most vulnerable citizens, the figure of the nation as carer was re-instantiated in the televised outrage and frustration of talk show hosts, news anchors, and charity fund-raising celebrities.

  3. Flood Risk Characterization for the Eastern United States

    Science.gov (United States)

    Villarini, G.; Smith, J. A.; Ntelekos, A. A.

    2009-04-01

    Tropical cyclones landfalling in the eastern United States pose a major risk for insured property and can lead to extensive damage through storm surge flooding, inland flooding or extreme windspeeds. Current hurricane cat-models do not include calculations of inland flooding from the outer rainfall bands of tropical cyclones but the issue is becoming increasingly important for commercial insurance risk assessment. The results of this study could be used to feed into the next generation of hurricane cat-models and assist in the calculation of damages from inland hurricane flood damage. Annual maximum peak discharge records from more than 400 stations in the eastern United States with at least 75 years of record to examine the role of landfalling tropical cyclones in controlling the upper tail of inland flood risk for the eastern United States. In addition to examining tropical cyclone inland flood risk at specific locations, the spatial extent of extreme flooding from lanfalling tropical cyclones is analyzed. Analyses of temporal trends and abrupt changes in the mean and variance of annual flood peaks are performed. Change-point analysis is performed using the non-parametric Pettitt test. Two non-parametric (Mann-Kendall and Spearman) tests and one parametric (Pearson) test are applied to detect the presence of temporal trends. Flood risk characterization centers on assessments of the spatial variation in "upper tail" properties of annual flood peak distributions. The modeling framework for flood frequency analysis is provided by the Generalized Additive Models for Location Scale and Shape (GAMLSS).

  4. Maternal exposure to hurricane destruction and fetal mortality.

    Science.gov (United States)

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is

  6. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    ... evacuation decision-making. To accomplish this, the study provides information on the extent and severity of potential flooding from hurricanes, the associated vulnerable population, capacities of existing public shelters...

  7. Rebuilding the past: health care reform in post-Katrina Louisiana.

    Science.gov (United States)

    Clark, Mary A

    2010-10-01

    After Hurricane Katrina, there was good reason to believe that a gaping window of opportunity had opened for Louisiana to revamp its safety-net health care system. But two years of discussions among stakeholders within Louisiana and extensive negotiations with federal officials resulted in no such change. This article argues that any explanation for this outcome needs to incorporate both structure and process. In terms of structure, the rules of the Medicaid disproportionate-share hospital (DSH) program give states substantial independent authority to decide which hospitals to fund. Federal authorities could not force Louisiana, which had historically turned its DSH money over to the state hospital system, to redirect it toward an insurance expansion. In the process of negotiation after Katrina, those who defended the institutions wedded to the prestorm status quo conducted a better strategy than their challengers. They narrowed the purview of the Louisiana Health Care Redesign Collaborative, set up to propose changes in the safety net to the federal government, such that the question of whether to rebuild Charity Hospital in New Orleans was off the table. Meanwhile, on a separate track, the state and the Department of Veterans Affairs successfully pursued a plan to jointly build replacement hospitals.

  8. A Participatory Modeling Application of a Distributed Hydrologic Model in Nuevo Leon, Mexico for the 2010 Hurricane Alex Flood Event

    Science.gov (United States)

    Baish, A. S.; Vivoni, E. R.; Payan, J. G.; Robles-Morua, A.; Basile, G. M.

    2011-12-01

    A distributed hydrologic model can help bring consensus among diverse stakeholders in regional flood planning by producing quantifiable sets of alternative futures. This value is acute in areas with high uncertainties in hydrologic conditions and sparse observations. In this study, we conduct an application of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) in the Santa Catarina basin of Nuevo Leon, Mexico, where Hurricane Alex in July 2010 led to catastrophic flooding of the capital city of Monterrey. Distributed model simulations utilize best-available information on the regional topography, land cover, and soils obtained from Mexican government agencies or analysis of remotely-sensed imagery from MODIS and ASTER. Furthermore, we developed meteorological forcing for the flood event based on multiple data sources, including three local gauge networks, satellite-based estimates from TRMM and PERSIANN, and the North American Land Data Assimilation System (NLDAS). Remotely-sensed data allowed us to quantify rainfall distributions in the upland, rural portions of the Santa Catarina that are sparsely populated and ungauged. Rural areas had significant contributions to the flood event and as a result were considered by stakeholders for flood control measures, including new reservoirs and upland vegetation management. Participatory modeling workshops with the stakeholders revealed a disconnect between urban and rural populations in regard to understanding the hydrologic conditions of the flood event and the effectiveness of existing and potential flood control measures. Despite these challenges, the use of the distributed flood forecasts developed within this participatory framework facilitated building consensus among diverse stakeholders and exploring alternative futures in the basin.

  9. Hurricane Harvey Report: A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    OpenAIRE

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall totals and flood-related damages. Across large portions of southeast Texas, rainfall totals during the six-day period between August 25 and 31, 2017 were amongst the highest ever recorded, causing flo...

  10. EFFECTS OF HURRICANE IVAN ON WATER QUALITY IN PENSACOLA BAY, FL USA

    Science.gov (United States)

    Pensacola Bay was in the strong NE quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, ...

  11. 2005 United States Army Corps of Engineers (USACE) Post-Hurricane Katrina Levee Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These topographic data were collected for the U.S. Army Corps of Engineers by a helicopter-mounted LiDAR sensor over the New Orleans Hurricane Protection Levee...

  12. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  13. Looking for the Silver Lining: Benefit Finding after Hurricanes Katrina and Rita in Middle-Aged, Older, and Oldest-Old Adults.

    Science.gov (United States)

    Stanko, Katie E; Cherry, Katie E; Ryker, Kyle S; Mughal, Farra; Marks, Loren D; Brown, Jennifer Silva; Gendusa, Patricia F; Sullivan, Marisa C; Bruner, John; Welsh, David A; Su, L Joseph; Jazwinski, S Michal

    2015-09-01

    Looking for potentially positive outcomes is one way that people cope with stressful events. In two studies, we examined perceived "silver linings" after the 2005 Hurricanes Katrina and Rita among indirectly affected adults. In Study 1, middle-aged (ages 47-64 years), older (ages 65-89 years), and oldest-old (ages 90-95 years) adults in the Louisiana Healthy Aging Study (LHAS) responded to an open-ended question on perceived silver linings in a longitudinal assessment carried out during the immediate impact (1 to 4 months after landfall) and post-disaster recovery phase (6 to 14 months post-storm). Qualitative grounded theory methods were employed to analyze these narrative data. Team-based coding yielded three core themes: (1) learning experience and better preparedness for future disasters, (2) having improved cities (Baton Rouge and New Orleans), and (3) an increase in "Good Samaritan" acts such as strangers helping one another. Responses were similar across age groups, although older adults were the least likely to report positive outcomes. Study 2 was a conceptual replication using a different sample of adults (ages 31 to 82 years) tested at least five years after the storms. A learning experience and preparedness core theme replicated Study 1's findings while improved social cohesion amongst family and friends emerged as a new core theme in Study 2. These data indicate that identifying lessons learned and potentially positive outcomes are psychological reactions that may facilitate post-disaster coping and foster resilience for indirectly affected adults in the years after disaster.

  14. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  15. Assessing the Relationship Between Mental Distress and Tobacco Use in Post-Katrina and Rita Louisiana.

    Science.gov (United States)

    Mukherjee, Snigdha; Canterberry, Melanie; Yore, Jennifer B; Ledford, Edward Cannon; Carton, Thomas W

    2017-08-24

    The relationship between mental health status and smoking is complicated and often confounded by bi-directionality, yet most research on this relationship assumes exogeneity. The goal of this article is to implement an instrumental variable approach to (1) test the exogeneity assumption and (2) report on the association between mental health status and smoking post-disaster. This analysis utilizes the 2006 and 2007 Louisiana Behavioral Risk Factor Surveillance Survey to examine the link between mental distress and smoking in areas affected by Hurricanes Katrina and Rita. Residence in a hurricane-affected parish (county) was used as an instrumental variable for mental distress. Just over 22% of the sample resided in a hurricane-affected parish. Residents of hurricane-affected parishes were significantly more likely to report occasional and frequent mental distress. Residence in a hurricane-affected parish was not significantly associated with smoking status. With residence established as a salient instrumental variable for mental distress, the exogeneity assumption was tested and confirmed in this sample. A dose-response relationship existed between mental distress and smoking, with smoking prevalence increasing directly (and non-linearly) with mental distress. In this sample, the relationship between mental distress and smoking status was exogenous and followed a dose-response relationship, suggesting that the disasters did not result in an uptake of smoking initiation, but that the higher amounts of mental distress may lead to increased use among smokers. The findings suggest that tobacco control programs should devise unique strategies to address mentally distressed populations.

  16. Applying Mechanistic Dam Breach Models to Historic Levee Breaches

    OpenAIRE

    Risher Paul; Gibson Stanford

    2016-01-01

    Hurricane Katrina elevated levee risk in the US national consciousness, motivating agencies to assess and improve their levee risk assessment methodology. Accurate computation of the flood flow magnitude and timing associated with a levee breach remains one of the most difficult and uncertain components of levee risk analysis. Contemporary methods are largely empirical and approximate, introducing substantial uncertainty to the damage and life loss models. Levee breach progressions are often ...

  17. Multi-source data fusion and modeling to assess and communicate complex flood dynamics to support decision-making for downstream areas of dams: The 2011 hurricane irene and schoharie creek floods, NY

    Science.gov (United States)

    Renschler, Chris S.; Wang, Zhihao

    2017-10-01

    In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better

  18. Public Talks and Science Listens: A Community-Based Participatory Approach to Characterizing Environmental Health Risk Perceptions and Assessing Recovery Needs in the Wake of Hurricanes Katrina and Rita

    Science.gov (United States)

    Sullivan, J.; Parras, B.; St. Marie, R.; Subra, W.; Petronella, S.; Gorenstein, J.; Fuchs-Young, R.; Santa, R.K.; Chavarria, A.; Ward, J.; Diamond, P.

    2009-01-01

    In response to the human health threats stemming from Hurricanes Katrina and Rita, inter-disciplinary working groups representing P30-funded Centers of the National Institute Environmental Health Sciences were created to assess threats posed by mold, harmful alga blooms, chemical toxicants, and various infectious agents at selected sites throughout the hurricane impact zone. Because of proximity to impacted areas, UTMB NIEHS Center in Environmental Toxicology was charged with coordinating direct community outreach efforts, primarily in south Louisiana. In early October 2005, UTMB/NIEHS Center Community Outreach and Education Core, in collaboration with outreach counterparts at The University of Texas MD Anderson Cancer Center @ Smithville TX/Center for Research in Environmental Disease sent two groups into southern Louisiana. One group used Lafourche Parish as a base to deliver humanitarian aid and assess local needs for additional supplies during local recovery/reclamation. A second group, ranging through New Iberia, New Orleans, Chalmette, rural Terrebonne, Lafourche and Jefferson Parishes and Baton Rouge met with community environmental leaders, emergency personnel and local citizens to 1) sample public risk perceptions, 2) evaluate the scope and reach of ongoing risk communication efforts, and 3) determine how the NIEHS could best collaborate with local groups in environmental health research and local capacity building efforts. This scoping survey identified specific information gaps limiting efficacy of risk communication, produced a community “wish list” of potential collaborative research projects. The project provided useful heuristics for disaster response and management planning and a platform for future collaborative efforts in environmental health assessment and risk communication with local advocacy groups in south Terrebonne-Lafourche parishes. PMID:20508756

  19. Public Talks and Science Listens: A Community-Based Participatory Approach to Characterizing Environmental Health Risk Perceptions and Assessing Recovery needs in the Wake of Hurricanes Katrina and Rita

    Directory of Open Access Journals (Sweden)

    J. Sullivan

    2009-01-01

    Full Text Available In response to the human health threats stemming from Hurricanes Katrina and Rita, inter-disciplinary working groups representing P30-funded Centers of the National Institute Environmental Health Sciences were created to assess threats posed by mold, harmful alga blooms, chemical toxicants, and various infectious agents at selected sites throughout the hurricane impact zone. Because of proximity to impacted areas, UTMB NIEHS Center in Environmental Toxicology was charged with coordinating direct community outreach efforts, primarily in south Louisiana. In early October 2005, UTMB/NIEHS Center Community Outreach and Education Core, in collaboration with outreach counterparts at The University of Texas MD Anderson Cancer Center @ Smithville TX/Center for Research in Environmental Disease sent two groups into southern Louisiana. One group used Lafourche Parish as a base to deliver humanitarian aid and assess local needs for additional supplies during local recovery/reclamation. A second group, ranging through New Iberia, New Orleans, Chalmette, rural Terrebonne, Lafourche and Jefferson Parishes and Baton Rouge met with community environmental leaders, emergency personnel and local citizens to 1 sample public risk perceptions, 2 evaluate the scope and reach of ongoing risk communication efforts, and 3 determine how the NIEHS could best collaborate with local groups in environmental health research and local capacity building efforts. This scoping survey identified specific information gaps limiting efficacy of risk communication, produced a community “wish list” of potential collaborative research projects. The project provided useful heuristics for disaster response and management planning and a platform for future collaborative efforts in environmental health assessment and risk communication with local advocacy groups in south Terrebonne-Lafourche parishes.

  20. Business Return in New Orleans: Decision Making Amid Post-Katrina Uncertainty

    Science.gov (United States)

    Lam, Nina S. N.; Pace, Kelley; Campanella, Richard; LeSage, James; Arenas, Helbert

    2009-01-01

    Background Empirical observations on how businesses respond after a major catastrophe are rare, especially for a catastrophe as great as Hurricane Katrina, which hit New Orleans, Louisiana on August 29, 2005. We analyzed repeated telephone surveys of New Orleans businesses conducted in December 2005, June 2006, and October 2007 to understand factors that influenced decisions to re-open amid post-disaster uncertainty. Methodology/Principal Findings Businesses in the group of professional, scientific, and technical services reopened the fastest in the near term, but differences in the rate of reopening for businesses stratified by type became indistinguishable in the longer term (around two years later). A reopening rate of 65% was found for all businesses by October 2007. Discriminant analysis showed significant differences in responses reflecting their attitudes about important factors between businesses that reopened and those that did not. Businesses that remained closed at the time of our third survey (two years after Katrina) ranked levee protection as the top concern immediately after Katrina, but damage to their premises and financing became major concerns in subsequent months reflected in the later surveys. For businesses that had opened (at the time of our third survey), infrastructure protection including levee, utility, and communications were the main concerns mentioned in surveys up to the third survey, when the issue of crime became their top concern. Conclusions/Significance These findings underscore the need to have public policy and emergency plans in place prior to the actual disaster, such as infrastructure protection, so that the policy can be applied in a timely manner before business decisions to return or close are made. Our survey results, which include responses from both open and closed businesses, overcome the “survivorship bias” problem and provide empirical observations that should be useful to improve micro-level spatial economic

  1. Business return in New Orleans: decision making amid post-Katrina uncertainty.

    Directory of Open Access Journals (Sweden)

    Nina S N Lam

    Full Text Available BACKGROUND: Empirical observations on how businesses respond after a major catastrophe are rare, especially for a catastrophe as great as Hurricane Katrina, which hit New Orleans, Louisiana on August 29, 2005. We analyzed repeated telephone surveys of New Orleans businesses conducted in December 2005, June 2006, and October 2007 to understand factors that influenced decisions to re-open amid post-disaster uncertainty. METHODOLOGY/PRINCIPAL FINDINGS: Businesses in the group of professional, scientific, and technical services reopened the fastest in the near term, but differences in the rate of reopening for businesses stratified by type became indistinguishable in the longer term (around two years later. A reopening rate of 65% was found for all businesses by October 2007. Discriminant analysis showed significant differences in responses reflecting their attitudes about important factors between businesses that reopened and those that did not. Businesses that remained closed at the time of our third survey (two years after Katrina ranked levee protection as the top concern immediately after Katrina, but damage to their premises and financing became major concerns in subsequent months reflected in the later surveys. For businesses that had opened (at the time of our third survey, infrastructure protection including levee, utility, and communications were the main concerns mentioned in surveys up to the third survey, when the issue of crime became their top concern. CONCLUSIONS/SIGNIFICANCE: These findings underscore the need to have public policy and emergency plans in place prior to the actual disaster, such as infrastructure protection, so that the policy can be applied in a timely manner before business decisions to return or close are made. Our survey results, which include responses from both open and closed businesses, overcome the "survivorship bias" problem and provide empirical observations that should be useful to improve micro

  2. Navy Seabees: Versatile Instruments of Power Projection

    Science.gov (United States)

    2013-04-16

    Bay Area, Hurricane Hugo in Florida, Northridge Earthquake in Southern California, Hurricane Andrew in Homestead Florida, and many other significant...to the Hurricane Katrina disaster in between deployments from Iraq and Afghanistan in 2005. 1 Seabees cleared debris from roads and harbors...normal capacity. During the biggest and costliest natural disaster in recent history, Hurricane Katrina demonstrated the difficulty of local and federal

  3. Exploring community resilience in workforce communities of first responders serving Katrina survivors.

    Science.gov (United States)

    Wyche, Karen Fraser; Pfefferbaum, Rose L; Pfefferbaum, Betty; Norris, Fran H; Wisnieski, Deborah; Younger, Hayden

    2011-01-01

    Community resilience activities were assessed in workplace teams that became first responders for Hurricane Katrina survivors. Community resilience was assessed by a survey, focus groups, and key informant interviews. On the survey, 90 first responders ranked their team's disaster response performance as high on community resilience activities. The same participants, interviewed in 11 focus groups and 3 key informant interviews, discussed how their teams engaged in community resilience activities to strengthen their ability to deliver services. Specifically, their resilient behaviors were characterized by: shared organizational identity, purpose, and values; mutual support and trust; role flexibility; active problem solving; self-reflection; shared leadership; and skill building. The implications for research, policy, practice, and education of professionals are discussed. © 2011 American Orthopsychiatric Association.

  4. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    Science.gov (United States)

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  5. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  6. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Science.gov (United States)

    The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The EPA Office of Research & Development (ORD) modified the original model from NOAA to fit the model parameters for the Buzzards Bay region. The models show storm surge extent for the Mattapoisett area and therefore the flooding area was reduced to the study area. Areas of flooding that were not connected to the main water body were removed. The files in the geodatabase are:Cat2_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 2 hurricane with 0 ft sea level riseCat4_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 4 hurricane with 0 ft sea level riseCat4_SLR4_Int_Feet_dissolve_Mattapoisett: Future Category 4 hurricane with 4 feet sea level riseThe features support the Weather Ready Mattapoisett story map, which can be accessed via the following link:https://epa.maps.arcgis.com/apps/MapJournal/index.html?appid=1ff4f1d28a254cb689334799d94b74e2

  7. 78 FR 13077 - Notice of Proposed Information Collection for Public Comment; Section 901 Implementation

    Science.gov (United States)

    2013-02-26

    ... subject proposal. Eligible public housing agencies (PHAs) in areas most heavily impacted by Hurricanes... flexibility to address the impacts of Hurricanes Rita and Katrina. Some PHAs have used the fungibility plan... collection was 6,624 hours assuming all ninety-six PHAs in the areas impacted by Hurricanes Katrina and Rita...

  8. Flood Protection Through Landscape Scale Ecosystem Restoration- Quantifying the Benefits

    Science.gov (United States)

    Pinero, E.

    2017-12-01

    Hurricane Harvey illustrated the risks associated with storm surges on coastal areas, especially during severe storms. One way to address storm surges is to utilize the natural ability of offshore coastal land to dampen their severity. In addition to helping reduce storm surge intensity and related damage, restoring the land will generate numerous co-benefits such as carbon sequestration and water quality improvement. The session will discuss the analytical methodology that helps define what is the most resilient species to take root, and to calculate quantified benefits. It will also address the quantification and monetization of benefits to make the business case for restoration. In 2005, Hurricanes Katrina and Rita damaged levees along the Gulf of Mexico, leading to major forest degradation, habitat deterioration and reduced wildlife use. As a result, this area lost an extensive amount of land, with contiguous sections of wetlands being converted to open water. The Restore the Earth Foundation's North American Amazon project intends to restore one million acres of forests and forested wetlands in the lower Mississippi River Valley. The proposed area for the first phase of this project was once an historic bald cypress forested wetland, which was degraded due to increased salinity levels and extreme fluctuations in hydrology. The Terrebonne and Lafourche Parishes, the "bayou parishes", communities with a combined population of over 200,000, sit on thin fingers of land that are protected by surrounding wetland swamps and wetlands, beyond which is the Gulf of Mexico. The Parishes depend on fishing, hunting, trapping, boat building, off-shore oil and gas production and support activities. Yet these communities are highly vulnerable to risks from natural hazards and future land loss. The ground is at or near sea level and therefore easily inundated by storm surges if not protected by wetlands. While some communities are protected by a levee system, the Terrebonne and

  9. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R.; Kerrigan, P.

    2012-02-01

    Project Home Again is a development in New Orleans, LA created to provide new homes to victims of Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness. These techniques include the use of high density spray foam insulation, LoE3 glazing, and supplemental dehumidification to maintain comfortable humidity levels without unnecessary cooling.

  10. Community Resilience, Psychological Resilience, and Depressive Symptoms: An Examination of the Mississippi Gulf Coast 10 Years After Hurricane Katrina and 5 Years After the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Lee, Joohee; Blackmon, Bret J; Cochran, David M; Kar, Bandana; Rehner, Timothy A; Gunnell, Mauri Stubbs

    2018-04-01

    This study examined the role of community resilience and psychological resilience on depressive symptoms in areas on the Mississippi Gulf Coast that have experienced multiple disasters. Survey administration took place in the spring of 2015 to a spatially stratified, random sample of households. This analysis included a total of 294 subjects who lived in 1 of the 3 counties of the Mississippi Gulf Coast at the time of both Hurricane Katrina in 2005 and the Deepwater Horizon oil spill in 2010. The survey included the Communities Advancing Resilience Toolkit (CART) scale, the Connor-Davidson Resilience Scale (CD-RISC 10), and the Center for Epidemiologic Studies Depression Scale (CES-D). There was a significant inverse relationship between psychological resilience and depressive symptoms and a significant positive relationship between community resilience and psychological resilience. The results also revealed that community resilience was indirectly related to depressive symptoms through the mediating variable of psychological resilience. These findings highlight the importance of psychological resilience in long-term disaster recovery and imply that long-term recovery efforts should address factors associated with both psychological and community resilience to improve mental health outcomes. (Disaster Med Public Health Preparedness. 2018;12:241-248).

  11. Pre-hurricane perceived social support protects against psychological distress: A longitudinal analysis of low-income mothers

    OpenAIRE

    Lowe, SR; Chan, CS; Rhodes, JE

    2010-01-01

    Objective: In this study, we examined the influence of pre-disaster perceived social support on post-disaster psychological distress among survivors of Hurricane Katrina. Method: Participants (N = 386) were low-income mothers between 18 and 34 years of age at baseline (M = 26.4, SD = 4.43). The majority (84.8) was African American; 10.4 identified as Caucasian, 3.2 identified as Hispanic, and 1.8 identified as other. Participants were enrolled in an educational intervention study in 2004 and ...

  12. Protecting Coastal Areas from Flooding by Injecting Solids into the Subsurface

    Science.gov (United States)

    Germanovich, L. N.; Murdoch, L.

    2008-12-01

    Subsidence and sea level rise conspire to increase the risk of flooding in coastal cities throughout the world, and these processes were key contributors to the devastation of New Orleans by hurricane Katrina. Constructing levees and placing fill to raise ground elevations are currently the main options for reducing flooding risks in coastal areas, and both of these options have drawbacks. We suggest that hydromechanical injection of solid compounds suspended in liquid can be used to lift the ground surface and thereby expand the options for protecting such coastal cities as New Orleans, Venice, and Shanghai from flooding. These techniques are broadly related to hydraulic fracturing and compensation grouting, where solid compounds are injected as slurries and cause upward displacements at the ground surface. The equipment and logistics required for hydromechanical solid injection and ground lifting are readily available from current geotechnical and petroleum operations. Hydraulic fractures are routinely created in the upper tens of meters of sediments, where they are filled with a wide range of different proppants for environmental applications. At shallow depths, many of these fractures are sub-parallel to the ground surface and lift their overburden by a few mm to cm, although lifting is not the objective of these fractures. Much larger, vertical displacements, of the order of several meters, could be created in low-cohesion sediments over areas as large as square kilometers. This would be achieved as a result of multiple injections. Injecting solid particulates provides the benefits of a permanent displacement supported by the solids. We have demonstrated that hydraulic fractures will lift the ground surface at shallow depths in Texas near the Sabine River, where the geological setting is generally similar to that of New Orleans (and where, incidentally, hurricane Rita landed in 2005). In these regions, the soft surficial sediments are underlain by relatively

  13. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    Science.gov (United States)

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. © 2013 Society for Risk Analysis.

  14. Public Libraries Can Play an Important Role in the Aftermath of a Natural Disaster. A Review of: Welsh, T. S. & Higgins, S. E. (2009. Public libraries post-Hurricane Katrina: A pilot study. Library Review, 58(9, 652-659.

    Directory of Open Access Journals (Sweden)

    Virginia Wilson

    2010-09-01

    Full Text Available Objective – This paper analyzes Hurricane Katrina-related narratives to document the challenges faced by public libraries after the disaster and the disaster-relief services these libraries provided.Design – A qualitative thematic analysis of narratives obtained by convenience sampling.Setting – Narratives were collected and analyzed in 2005 and 2006 across the Gulf Coast area of the United States.Subjects – Seventy-two library and information science students enrolled in the University of Southern Mississippi’s School of Library and Information Science. Many worked in local libraries.Methods – In this pilot study, studentsvolunteered to participate in a confidential process that involved telling their stories of their post-Hurricane Katrina experiences. Data was collected in a natural setting (the libraries in which the students worked, and inductive reasoning was used to build themes based on these research questions: What post-disaster problems related to public libraries were noted in the students’ narratives? What post-disaster public library services were noted in the narratives?NVivo7 qualitative analysis software was used to analyze and code the narratives. Passages related to public libraries were coded by library location and student. These passages were analyzed for themes related to post-disaster challenges and disaster-recovery services pertaining to public libraries. Main Results – Ten of the 72 narratives contained passages related to public libraries. The libraries included four in Alabama, one in Louisiana, and five in Mississippi. Results related to the first research question (What post-disaster problems related to public libraries were noted in the students’ narrative? were physical damage to the building, from light damage to total destruction (reported in 8 or 80% of the students’ narratives, and inundation by refugees, evacuees, and relief workers (reported in 8 or 80% of the narratives. Results

  15. Designing a spatial decision-support system to improve urban resilience to floods

    Science.gov (United States)

    Heinzlef, Charlotte; Ganz, François; Becue, Vincent; Serre, Damien

    2017-04-01

    Since Hurricane Katrina (2005), the scientific-political-urban attention is focusing on urban resilience to floods. To prevent the recurrence of such a deadly and costly event ( 82 billion, Serre et al, 2014), experts began to question pre- and post- disaster management. Until now, managers and urban planners have been working on flood risk, according to the paradigm of prevention. However, following Katrina, a new approach was gradually integrated and the concept of resilience applied to urban areas (Serre, 2011). The resilience concept, used in ecology and defined by Holling (1973), refers to the ability of a system to keep its own variables despite changes and analyses the capacity of an (eco)system to tolerate disturbances without changing its state. To link it with flood risk management, this concept takes more into account water and would lead to technical, architectural, social, urban and political innovation (Serre et al, 2016). However, despite 12 years after Katrina, very few concrete actions have been made (Barroca and Serre, 2013). Based on this argument, and several abortive studies, we wish to re-address the operationalization of resilience by redefining its objectives and expectations. While in Europe some studies have been done to build up vulnerability indicators (Barroca et al, 2006; Opach et al, 2016; Wiréhn et al, 2016), few still talk about resilience. When some do (Folke et al, 2010; Lhomme et al, 2011; Nguyen et al, 2013; Suarez et al, 2016), they mainly speak about technical resilience without integrating social resilience. Our objective is thus to imagine a system facilitating the understanding of this concept, its integration in management and development policies. We started on the methodology of information systems, organized system for collection, organization, storage and communication of information, and more precisely on observatories, information systems using the methodology of observation. These last years, we assist to an

  16. Adolescent Survivors of Hurricane Katrina: A Pilot Study of Hypothalamic-Pituitary-Adrenal Axis Functioning

    Science.gov (United States)

    Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal

    2015-01-01

    Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…

  17. When high waters recede and the floodplain reemerges: Evaluating the lingering effects of extreme flooding on stream nitrogen cycling.

    Science.gov (United States)

    Neville, J.; Emanuel, R. E.

    2017-12-01

    In 2016 Hurricane Matthew brought immense flooding and devastation to the Lumbee (aka Lumber) River basin. Some impacts are obvious, such as deserted homes and businesses, but other impacts, including long-term environmental, are uncertain. Extreme flooding throughout the basin established temporary hydrologic connectivity between aquatic environments and upland sources of nutrients and other pollutants. Though 27% of the basin is covered by wetlands, hurricane-induced flooding was so intense that wetlands may have had no opportunity to mitigate delivery of nutrients into surface waters. As a result, how Hurricane Matthew impacted nitrate retention and uptake in the Lumbee River remains uncertain. The unknown magnitude of nitrate transported into the Lumbee River from surrounding sources may have lingering impacts on nitrogen cycling in this stream. With these potential impacts in mind, we conducted a Lagrangian water quality sampling campaign to assess the ability of the Lumbee River to retain and process nitrogen following Hurricane Matthew. We collected samples before and after flooding and compare first order nitrogen uptake kinetics of both periods. The analysis and comparisons allow us to evaluate the long-term impacts of Hurricane Matthew on nitrogen cycling after floodwaters recede.

  18. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast

    Science.gov (United States)

    Reja, Md Y.; Brody, Samuel D.; Highfield, Wesley E.; Newman, Galen D.

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  19. Towards a Flood Severity Index

    Science.gov (United States)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  20. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    NARCIS (Netherlands)

    Van Oldenborgh, Geert Jan; Van Der Wiel, Karin; Sebastian, A.G.; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-01-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return

  1. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  2. Constructions of Resilience: Ethnoracial Diversity, Inequality, and Post-Katrina Recovery, the Case of New Orleans

    Directory of Open Access Journals (Sweden)

    Kevin Fox Gotham

    2013-12-01

    Full Text Available In this paper, we draw on multi-level census data, in-depth interviews, ethnographic and Geographical Information Systems (GIS methods to examine the effects of median household income, ethnoracial diversity, and flood damage on rates of post-Katrina repopulation in New Orleans. Our main finding is that New Orleans neighborhoods have been experiencing modest increases in ethnoracial diversity as well as a retrenchment of socio-spatial inequalities, as measured by low diversity scores, low median household income levels, and high poverty rates. In addition to documenting the objective indicators of “recovery”, we draw attention to the socially constructed nature of resilience. Based on interviews and ethnographic field observations, we investigate how resident constructions of resilience shape their views of the post-Katrina recovery process, provide a compelling and reassuring story of community revitalization, and convey a sense of collective power and control despite continued vulnerability to hazards and disasters.

  3. 75 FR 25284 - Tracking the Use of CDBG Homeowners and Small Landlords Disaster Assistance Grants

    Science.gov (United States)

    2010-05-07

    ... affected by hurricanes Katrina and Rita (Louisiana, Mississippi, and Texas) and identify the most important... affected by hurricanes Katrina and Rita (Louisiana, Mississippi, and Texas) and identify the most important... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-32] Tracking the Use of CDBG...

  4. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    Energy Technology Data Exchange (ETDEWEB)

    JUDI, DAVID [Los Alamos National Laboratory; KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY [Los Alamos National Laboratory; BERSCHEID, ALAN [Los Alamos National Laboratory

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  5. Mapping Hurricane Rita inland storm tide

    Science.gov (United States)

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  6. Homeland Security is Hometown Security: Comparison and Case Studies of Vertically Synchronized Catastrophe Response Plans

    Science.gov (United States)

    2015-09-01

    Hurricanes Andrew, Hugo , and Katrina resonate as failures where there was little, if any, federal response in the initial hours, which left the depleted...was also initiated by several large scale incidents, including the Three Mile Island Disaster and Hurricanes Hugo and Andrew.67 This evolved at the...persist during large scale disasters, as was demonstrated during Hurricane Katrina and Super Storm Sandy. Catastrophe response planning at the

  7. Documentation and hydrologic analysis of Hurricane Sandy in New Jersey, October 29–30, 2012

    Science.gov (United States)

    Suro, Thomas P.; Deetz, Anna; Hearn, Paul

    2016-11-17

    higher than the previously recorded period-of-record maximum. A comparison of peak storm-tide elevations to preliminary FEMA Coastal Flood Insurance Study flood elevations indicated that these areas experienced the highest recurrence intervals along the coast of New Jersey. Analysis showed peak storm-tide elevations exceeded the 100-year FEMA flood elevations in many parts of Middlesex, Union, Essex, Hudson, and Bergen Counties, and peak storm-tide elevations at many locations in Monmouth County exceeded the 500-year recurrence interval.A level 1 HAZUS (HAZards United States) analysis was done for the counties in New Jersey affected by flooding to estimate total building stock losses. The aggregated total building stock losses estimated by HAZUS for New Jersey, on the basis of the final inundation verified by USGS high-water marks, was almost $19 billion. A comparison of Hurricane Sandy with historic coastal storms showed that peak storm-tide elevations associated with Hurricane Sandy exceeded most of the previously documented elevations associated with the storms of December 1992, March 1962, September 1960, and September 1944 at many coastal communities in New Jersey. This scientific investigation report was prepared in cooperation with FEMA to document flood processes and flood damages resulting from this storm and to assist in future flood mitigation actions in New Jersey.

  8. Hurricane Season Public Health Preparedness, Response, and Recovery Guidance for Health Care Providers, Response and Recovery Workers, and Affected Communities - CDC, 2017.

    Science.gov (United States)

    2017-09-22

    CDC and the Agency for Toxic Substances and Disease Registry (ATSDR) have guidance and technical materials available in both English and Spanish to help communities prepare for hurricanes and floods (Table 1). To help protect the health and safety of the public, responders, and clean-up workers during response and recovery operations from hurricanes and floods, CDC and ATSDR have developed public health guidance and other resources; many are available in both English and Spanish (Table 2).

  9. Hurricane Harvey Building Damage Assessment Using UAV Data

    Science.gov (United States)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  10. Estimation of Damage Costs Associated with Flood Events

    Science.gov (United States)

    Andrews, T. A.; Wauthier, C.; Zipp, K.

    2017-12-01

    This study investigates the possibility of creating a mathematical function that enables the estimation of flood-damage costs. We begin by examining the costs associated with past flood events in the United States. The data on these tropical storms and hurricanes are provided by the National Oceanic and Atmospheric Administration. With the location, extent of flooding, and damage reparation costs identified, we analyze variables such as: number of inches rained, land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. We seek to identify the leading drivers of high flood-damage costs and understand which variables play a large role in the costliness of these weather events. Upon completion of our mathematical analysis, we turn out attention to the 2017 natural disaster of Texas. We divide the region, as we did above, by land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. Then, we overlay the number of inches rained in those regions onto the divided landscape and apply our function. We hope to use these findings to estimate the potential flood-damage costs of Hurricane Harvey. This information is then transformed into a hazard map that could provide citizens and businesses of flood-stricken zones additional resources for their insurance selection process.

  11. Discipline for Students with Disabilities in the Recovery School District (RSD) of New Orleans

    Science.gov (United States)

    Jeffers, Elizabeth K.

    2014-01-01

    This article focuses on special education in New Orleans post Hurricane Katrina. After Hurricane Katrina, Louisiana's Recovery School District (RSD) took over 102 of the city's 128 schools with the stated goal of creating a "choice district" for parents. This "choice distric"' is made up of RSD direct-run schools, Orleans…

  12. Factors predicting crisis counselor referrals to other crisis counseling, disaster relief, and psychological services: a cross-site analysis of post-Katrina programs.

    Science.gov (United States)

    Rosen, Craig S; Matthieu, Monica M; Norris, Fran H

    2009-05-01

    An important aspect of crisis counseling is linking survivors with services for their unmet needs. We examined determinants of referrals for disaster relief, additional crisis counseling, and psychological services in 703,000 crisis counseling encounters 3-18 months after Hurricane Katrina. Referrals for disaster relief were predicted by clients' losses, age (adults rather than children), and urbanicity. Referrals for additional counseling and psychological services were predicted by urbanicity, losses and trauma exposure, prior trauma, and preexisting mental health problems. Counseling and psychological referrals declined over time despite continuing mental health needs. Results confirm large urban-rural disparities in access to services.

  13. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  14. Renovating Charity Hospital or building a new hospital in post-Katrina New Orleans: economic rationale versus political will.

    Science.gov (United States)

    Leleu, Hervé; Moises, James; Valdmanis, Vivian Grace

    2013-02-01

    Since September 2005, Charity Hospital of New Orleans has been closed due to Hurricane Katrina. A debate following the closing arose about whether this public hospital should be renovated or a new medical center affiliated with the Louisiana State University should be built. Using academic literature, government statistics, and popular press reports, we describe the economic implications that support the view that Charity Hospital should have been renovated. We also address why this policy was not pursued by demonstrating the influence politics and individual stakeholders (specifically, Louisiana State University) had on the eventual policy pursued. In this commentary we also note the political identity movement away from public-sector provision of services to private-sector interests.

  15. The Effect of Hurricanes on Annual Precipitation in Maryland and the Connection to Global Climate Change

    Science.gov (United States)

    Liu, Jackie; Liu, Zhong

    2015-01-01

    Precipitation is a vital aspect of our lives droughts, floods and other related disasters that involve precipitation can cause costly damage in the economic system and general society. Purpose of this project is to determine what, if any effect do hurricanes have on annual precipitation in Maryland Research will be conducted on Marylands terrain, climatology, annual precipitation, and precipitation contributed from hurricanes Possible connections to climate change

  16. Brief communication: Loss of life due to Hurricane Harvey

    Science.gov (United States)

    Jonkman, Sebastiaan N.; Godfroy, Maartje; Sebastian, Antonia; Kolen, Bas

    2018-04-01

    An analysis was made of the loss of life caused by Hurricane Harvey. Information was collected for 70 fatalities that occurred due to the event and were recovered within the first 2 weeks after landfall. Most fatalities occurred due to drowning (81 %), particularly in and around vehicles. Males (70 %) and people over 50 years old (56 %) were overrepresented in the dataset. More than half of the fatalities occurred in the greater Houston area (n = 37), where heavy rainfall and dam releases caused unprecedented urban flooding. The majority of fatalities were recovered outside the designated 100- and 500-year flood hazard areas.

  17. Hurricane Irene: a Wake Up Call for New York City?

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Botzen, W.J.W.

    2012-01-01

    The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC) than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit

  18. Lidar-based mapping of flood control levees in south Louisiana

    Science.gov (United States)

    Thatcher, Cindy A.; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.

    2016-01-01

    Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.

  19. Channel Shallowing as Mitigation of Coastal Flooding

    Directory of Open Access Journals (Sweden)

    Philip M. Orton

    2015-07-01

    Full Text Available Here, we demonstrate that reductions in the depth of inlets or estuary channels can be used to reduce or prevent coastal flooding. A validated hydrodynamic model of Jamaica Bay, New York City (NYC, is used to test nature-based adaptation measures in ameliorating flooding for NYC's two largest historical coastal flood events. In addition to control runs with modern bathymetry, three altered landscape scenarios are tested: (1 increasing the area of wetlands to their 1879 footprint and bathymetry, but leaving deep shipping channels unaltered; (2 shallowing all areas deeper than 2 m in the bay to be 2 m below Mean Low Water; (3 shallowing only the narrowest part of the inlet to the bay. These three scenarios are deliberately extreme and designed to evaluate the leverage each approach exerts on water levels. They result in peak water level reductions of 0.3%, 15%, and 6.8% for Hurricane Sandy, and 2.4%, 46% and 30% for the Category-3 hurricane of 1821, respectively (bay-wide averages. These results suggest that shallowing can provide greater flood protection than wetland restoration, and it is particularly effective at reducing "fast-pulse" storm surges that rise and fall quickly over several hours, like that of the 1821 storm. Nonetheless, the goal of flood mitigation must be weighed against economic, navigation, and ecological needs, and practical concerns such as the availability of sediment.

  20. The Situational Small World of a Post-Disaster Community: Insights into Information Behaviors after the Devastation of Hurricane Katrina in Slidell, Louisiana

    Science.gov (United States)

    Slagle, Tisha Anne

    2010-01-01

    Catastrophes like Katrina destroy a community's critical infrastructure--a situation that instigates several dilemmas. Immediately, the community experiences information disruption within the community, as well as between the community and the outside world. The inability to communicate because of physical or virtual barriers to information…

  1. Katrina Millard | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Katrina Millard is the Director of Grant Administration. Katrina has held various positions in IDRC's Finance and Administration and Grant Administration divisions, as well as in the Office of the Vice-President, Resources. She has gained a range of professional experience from these positions, both on a corporate level and ...

  2. Brief communication: Post-event analysis of loss of life due to hurricane Harvey

    OpenAIRE

    Jonkman, Sebastiaan N.; Godfroy, Maartje; Sebastian, Antonia; Kolen, Bas

    2018-01-01

    An analysis was made of the loss of life directly caused by hurricane Harvey. Information was collected for 70 fatalities that occurred directly due to the event. Most of the fatalities occurred in the greater Houston area, which was most severely affected by extreme rainfall and heavy flooding. The majority of fatalities in this area were recovered outside the designated 100 and 500 year flood zones. Most fatalities occurred due to drowning (81 %), particularly in and around vehicles...

  3. LPD 17 San Antonio Class Amphibious Transport Dock (LPD 17)

    Science.gov (United States)

    2015-12-01

    Grumman’s shipbuilding division and deferred depreciation expenses for recovery of insurance proceeds associated with Hurricane Katrina damages. Contract...Safety and Health Administration and the Pension Protection Act. The government liability for deferred depreciation from Hurricane Katrina was...of engineering change proposals and negotiation of a contract price adjustment to cover the Navy’s share of deferred depreciation expenses for

  4. Bleeding Mud: The Testimonial Poetry of Hurricane Mitch in Nicaragua

    Directory of Open Access Journals (Sweden)

    Erin S Finzer

    2015-01-01

    Full Text Available Beginning with Rubén Darío, Nicaragua has long prided itself in being a country of poets. During the Sandinista Revolution, popular poetry workshops dispatched by Minister of Culture Ernesto Cardenal taught peasants and soldiers to write poetry about everyday life and to use poetry as a way to work through trauma from the civil war. When Hurricane Mitch--one of the first superstorms that heralded climate change--brought extreme flooding to Nicaragua in 1998, poetry again served as a way for victims to process the devastation. Examining testimonial poetry from Hurricane Mitch, this article shows how the mud and despair of this environmental disaster function as palimpsests of conquest and imperial oppression.

  5. Windstorm Impact Reduction Implementation Plan

    National Research Council Canada - National Science Library

    2007-01-01

    The tragedy caused by Hurricanes Katrina and Rita in August and September 2005, the unprecedented hurricane season of 2004 in which five hurricanes made landfall in Florida, and the May 1999 outbreak...

  6. The Chaos of Katrina

    National Research Council Canada - National Science Library

    Morris, Jr, Gerald W

    2007-01-01

    .... The study investigates whether chaos theory, part of complexity science, can extract information from Katrina contracting data to help managers make better logistics decisions during disaster relief operations...

  7. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology

    International Nuclear Information System (INIS)

    Czajkowski, Jeffrey; Michel-Kerjan, Erwann; Villarini, Gabriele; Smith, James A

    2013-01-01

    In recent years, the United States has been severely affected by numerous tropical cyclones (TCs) which have caused massive damages. While media attention mainly focuses on coastal losses from storm surge, these TCs have inflicted significant devastation inland as well. Yet, little is known about the relationship between TC-related inland flooding and economic losses. Here we introduce a novel methodology that first successfully characterizes the spatial extent of inland flooding, and then quantifies its relationship with flood insurance claims. Hurricane Ivan in 2004 is used as illustration. We empirically demonstrate in a number of ways that our quantified inland flood magnitude produces a very good representation of the number of inland flood insurance claims experienced. These results highlight the new technological capabilities that can lead to a better risk assessment of inland TC flood. This new capacity will be of tremendous value to a number of public and private sector stakeholders dealing with disaster preparedness. (letter)

  8. Brief communication: Loss of life due to Hurricane Harvey

    Directory of Open Access Journals (Sweden)

    S. N. Jonkman

    2018-04-01

    Full Text Available An analysis was made of the loss of life caused by Hurricane Harvey. Information was collected for 70 fatalities that occurred due to the event and were recovered within the first 2 weeks after landfall. Most fatalities occurred due to drowning (81 %, particularly in and around vehicles. Males (70 % and people over 50 years old (56 % were overrepresented in the dataset. More than half of the fatalities occurred in the greater Houston area (n  =  37, where heavy rainfall and dam releases caused unprecedented urban flooding. The majority of fatalities were recovered outside the designated 100- and 500-year flood hazard areas.

  9. A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters

    Science.gov (United States)

    Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.

    2017-12-01

    A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.

  10. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    Science.gov (United States)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to

  11. Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding

    Science.gov (United States)

    Underwood, L. W.; Kalcic, Maria; Fletcher, Rose

    2012-01-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250

  12. The Impact of Hurricanes Katrina and Rita on People with Disabilities: A Look Back and Remaining Challenges

    Science.gov (United States)

    Powell, Robyn; Gilbert, Sheldon

    2006-01-01

    This paper focuses on the effects of the hurricanes on people with all types of disabilities. The National Council on Disability (NCD) released another report that addressed in detail the specific challenges for people with psychiatric disabilities. Please refer to "The Needs of People with Psychiatric Disabilities During and After Hurricanes…

  13. Constraining Big Hurricanes: Remotely sensing Galveston Islands' changing coastal landscape from days to millennia

    Science.gov (United States)

    Dougherty, A. J.; Choi, J. H.; Heo, S.; Dosseto, A.

    2017-12-01

    Climate change models forecast increased storm intensity, which will drive coastal erosion as sea-level rise accelerates with global warming. Over the last five years the largest hurricanes ever recorded in the Pacific (Patricia) and the Atlantic (Irma) occurred as well as the devastation of Harvey. The preceding decade was marked with Super Storm Sandy, Katrina and Ike. A century prior, the deadliest natural disaster in North America occurred as a category 4 hurricane known as `The 1900 Storm' hit Galveston Island. This research aims to contextualize the impact of storms long before infrastructure and historical/scientific accounts documented erosion. Unlike the majority of barrier islands in the US, Galveston built seaward over the Holocene. As the beach prograded it preserved a history of storms and shoreline change over millennia to the present-day. These systems (called prograded barriers) were first studied over 50 years ago using topographic profiles, sediment cores and radiocarbon dating. This research revisits some of these benchmark study sites to augment existing data utilizing state-of-the-art Light Detection and Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL) techniques. In 2016 GPR and OSL data were collected from Galveston Island, with the aim to combine GPR, OSL and LiDAR (GOaL) to extract a high-resolution geologic record spanning 6,000 years. The resulting millennia-scale coastal evolution can be used to contextualize the impact of historic hurricanes over the past century (`The 1900 Storm'), decade (Ike in 2008) and year (now with Harvey). Preliminary results reveal a recent change in shoreline behaviour, and data from Harvey are currently being accessed within the perspective of these initial findings. This dataset will be discussed with respect to the other two benchmark prograded barriers studied in North America: Nayarit Barrier (Mexico) that Hurricane Patricia passed directly over in 2013 and

  14. How Investment in #GovTech Tools Helped with USGS Disaster Response During Hurricane Harvey

    Science.gov (United States)

    Shah, S.; Pearson, D. K.

    2017-12-01

    Hurricane Harvey was an unprecedented storm event that not only included a challenge to decision-makers, but also the scientific community to provide clear and rapid dissemination of changing streamflow conditions and potential flooding concerns. Of primary importance to the U.S. Geological Survey (USGS) Texas Water Science Center was to focus on the availability of accessible data and scientific communication of rapidly changing water conditions across Texas with regards to heavy rainfall rates, rising rivers, streams, and lake elevations where USGS has monitoring stations. Infrastructure modernization leading to advanced GovTech practices and data visualization was key to the USGS role in providing data during Hurricane Harvey. In the last two years, USGS has released two web applications, "Texas Water Dashboard" and "Water-On-The-Go", which were heavily utilized by partners, local media, and municipal government officials. These tools provided the backbone for data distribution through both desktop and mobile applications as decision support during flood events. The combination of Texas Water Science Center web tools and the USGS National Water Information System handled more than 5-million data requests over the course of the storm. On the ground local information near Buffalo Bayou and Addicks/Barker Dams, as well as statewide support of USGS real-time scientific data, were delivered to the National Weather Service, U.S. Army Corps of Engineers, FEMA, Harris County Flood Control District, the general public, and others. This presentation will provide an overview of GovTech solutions used during Hurricane Harvey, including the history of USGS tool development, discussion on the public response, and future applications for helping provide scientific communications to the public.

  15. Better Data Help Make Better Decisions: Disseminating Information During Hurricane Harvey

    Science.gov (United States)

    Conner, K.; Lindner, J.; Moore, M.

    2017-12-01

    During large scale natural disasters, like hurricane Harvey, time-critical decisions are made on a constant basis. From evacuation orders, allocation of emergency resources, or allowing people to return home, decisions are only as good as the information upon which they are based. Better real-time data lead to better decisions which ultimately leads to improved disaster response and recovery. In 2015 Harris County Flood Control District (HCFCD) in Houston, TX began upgrading their automatic flood warning system (FWS) that dates back to the 1980s. The HCFCD network consists of 154 remote stations that report precipitation intensities and stream levels in near real time. Since the upgrades were completed in 2016 the Houston area has experienced multiple 100+ rain events, the most recent being Hurricane Harvey. The FWS generated accurate, reliable, real-time data throughout the entirety of the record breaking, four-day event. This information was disseminated to state, local and federal agencies, news outlets and the public via web sites and social media. Without this quality of data, disaster management decisions could not have been made effectively, ultimately leading to greater destruction of property and loss of life.

  16. The U.S. Navy in the World (2001-2010): Context for U.S. Navy Capstone Strategies and Concepts

    Science.gov (United States)

    2011-12-01

    NOCJO, Fleet Response Plan NSP ISO POM 08 NOC Rumsfeld Winter Iraq ABOT attack Indian Ocean tsunami Hurricane Katrina Bali terror bombings OEF begins...Colombia Cuban Communist anti-US leadership transition uncertainties  Increasing Venezuelan hostility to US Anti-American & authoritarian Hugo Chavez...disasters hit US Gulf Coast  Hurricane Katrina (Aug 2005) Deepwater Horizon Oil Spill (2010) 53 54 2000s: The nation (VI)  Press reporting on military

  17. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  18. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  19. Louisiana State University Health Sciences Center Katrina Inspired Disaster Screenings (KIDS): Psychometric Testing of the National Child Traumatic Stress Network Hurricane Assessment and Referral Tool

    Science.gov (United States)

    Hansel, Tonya Cross; Osofsky, Joy D.; Osofsky, Howard J.

    2015-01-01

    Background: Post disaster psychosocial surveillance procedures are important for guiding effective and efficient recovery. The Louisiana State University Health Sciences Center Katrina Inspired Disaster Screenings (KIDS) is a model designed with the goal of assisting recovering communities in understanding the needs of and targeting services…

  20. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  1. Academic Development of First-Year Living-Learning Program Students before and after Hurricanes Katrina and Rita of 2005

    Science.gov (United States)

    Rohli, Robert V.; Keppler, Kurt J.; Winkler, Daniel L.

    2013-01-01

    Previous research suggests that the far-reaching impacts of hurricanes include the academic performance of students. In an examination of such impacts, we found a trend toward self-perceived decline in some performance indicators relative to students at peer universities. However, few longitudinal impacts were found, perhaps because of the sense…

  2. A multi-scale ensemble-based framework for forecasting compound coastal-riverine flooding: The Hackensack-Passaic watershed and Newark Bay

    Science.gov (United States)

    Saleh, F.; Ramaswamy, V.; Wang, Y.; Georgas, N.; Blumberg, A.; Pullen, J.

    2017-12-01

    Estuarine regions can experience compound impacts from coastal storm surge and riverine flooding. The challenges in forecasting flooding in such areas are multi-faceted due to uncertainties associated with meteorological drivers and interactions between hydrological and coastal processes. The objective of this work is to evaluate how uncertainties from meteorological predictions propagate through an ensemble-based flood prediction framework and translate into uncertainties in simulated inundation extents. A multi-scale framework, consisting of hydrologic, coastal and hydrodynamic models, was used to simulate two extreme flood events at the confluence of the Passaic and Hackensack rivers and Newark Bay. The events were Hurricane Irene (2011), a combination of inland flooding and coastal storm surge, and Hurricane Sandy (2012) where coastal storm surge was the dominant component. The hydrodynamic component of the framework was first forced with measured streamflow and ocean water level data to establish baseline inundation extents with the best available forcing data. The coastal and hydrologic models were then forced with meteorological predictions from 21 ensemble members of the Global Ensemble Forecast System (GEFS) to retrospectively represent potential future conditions up to 96 hours prior to the events. Inundation extents produced by the hydrodynamic model, forced with the 95th percentile of the ensemble-based coastal and hydrologic boundary conditions, were in good agreement with baseline conditions for both events. The USGS reanalysis of Hurricane Sandy inundation extents was encapsulated between the 50th and 95th percentile of the forecasted inundation extents, and that of Hurricane Irene was similar but with caveats associated with data availability and reliability. This work highlights the importance of accounting for meteorological uncertainty to represent a range of possible future inundation extents at high resolution (∼m).

  3. Dental care as a vital service response for disaster victims.

    Science.gov (United States)

    Mosca, Nicholas G; Finn, Emanuel; Joskow, Renée

    2007-05-01

    Hurricane Katrina's impact on the infrastructure of public health and the health care system in the affected areas was unprecedented in the United States. Many dental offices were flood-bound in New Orleans and over 60% of dental practices were partially or completely damaged in affected counties in Mississippi. Most needs assessments conducted during the initial recovery operations did not include questions about access to oral health care. However, the extent of the destruction of the health care infrastructure demonstrated the need for significant state and federal support to make dental treatment accessible to survivors and evacuees. The Katrina response is one of the few times that state and federal government agencies responded to provide dental services to victims as part of disaster response and recovery. The purpose of this paper is to share our experiences in Mississippi and the District of Columbia providing urgent dental care to disaster victims as part of a crisis response.

  4. Estimating hypothetical present-day insured losses for past intense hurricanes in the French Antilles

    Science.gov (United States)

    Thornton, James; Desarthe, Jérémy; Naulin, Jean-Philippe; Garnier, Emmanuel; Liu, Ye; Moncoulon, David

    2015-04-01

    On the islands of the French Antilles, the period for which systematic meteorological measurements and historic event loss data are available is short relative to the recurrence intervals of very intense, damaging hurricanes. Additionally, the value of property at risk changes through time. As such, the recent past can only provide limited insight into potential losses from extreme storms in coming years. Here we present some research that seeks to overcome, as far as is possible, the limitations of record length in assessing the possible impacts of near-future hurricanes on insured properties. First, using the archives of the French overseas departments (which included administrative and weather reports, inventories of damage to houses, crops and trees, as well as some meteorological observations after 1950) we reconstructed the spatial patterns of hazard intensity associated with three historical events. They are: i) the 1928 Hurricane (Guadeloupe), ii) Hurricane Betsy (1956, Guadeloupe) and iii) Hurricane David (1979, Martinique). These events were selected because all were damaging, and the information available on each is rich. Then, using a recently developed catastrophe model for hurricanes affecting Guadeloupe, Martinique, Saint-Barthélemy and Saint-Martin, we simulated the hypothetical losses to insured properties that the reconstructed events might cause if they were to reoccur today. The model simulated damage due to wind, rainfall-induced flooding and storm surge flooding. These 'what if' scenarios provided an initial indication of the potential present-day exposure of the insurance industry to intense hurricanes. However, we acknowledge that historical events are unlikely to repeat exactly. We therefore extended the study by producing a stochastic event catalogue containing a large number of synthetic but plausible hurricane events. Instrumental data were used as a basis for event generation, but importantly the statistical methods we applied permit

  5. Hurricane Havoc - Mapping the Mayhem with NOAA's National Water Model

    Science.gov (United States)

    Aggett, G. R.; Stone, M.

    2017-12-01

    With Hurricane Irene as an example, this work demonstrates the versatility of NOAA's new National Water Model (NWM) as a tool for analyzing hydrologic hazards before, during, and after events. Hurricane Irene made landfall on the coast of North Carolina on August 27, 2011, and made its way up the East Coast over the next 3 days. This storm caused widespread flooding across the Northeast, where rain totals over 20" and wind speeds of 100mph were recorded, causing loss of life and significant damage to infrastructure. Large portions of New York and Vermont were some of the hardest hit areas. This poster will present a suite of post-processed products, derived from NWM output, that are currently being developed at NOAA's National Water Center in Tuscaloosa, AL. The National Water Model is allowing NOAA to expand its water prediction services to the approximately 2.7 million stream reaches across the U.S. The series of forecasted and real-time analysis products presented in this poster will demonstrate the strides NOAA is taking to increase preparedness and aid response to severe hydrologic events, like Hurricane Irene.

  6. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    Science.gov (United States)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  7. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  8. Dam-Break Flood Analysis Upper Hurricane Reservoir, Hartford, Vermont

    National Research Council Canada - National Science Library

    Acone, Scott

    1995-01-01

    .... Various dam break flood conditions were modeled and inundation maps developed. Based on this analysis the dam is rated a Class 2 or significant hazard category in terms of its potential to cause downstream damage...

  9. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.

    Science.gov (United States)

    Martín, Yago; Li, Zhenlong; Cutter, Susan L

    2017-01-01

    Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th) and post-evacuation (October 7th-9th)-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.

  10. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.

    Directory of Open Access Journals (Sweden)

    Yago Martín

    Full Text Available Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th and post-evacuation (October 7th-9th-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.

  11. Orkaan Katrina kergitas nafta hinna järjekordse rekordini / Annika Matson

    Index Scriptorium Estoniae

    Matson, Annika, 1976-

    2005-01-01

    Naftabarreli hind tõusis börsil üle 70 dollari taseme, kui orkaan Katrina sundis kompaniisid katkestama nafta pumpamise Mehhiko lahel. Diagramm. Vt. samas: Martin Hanson. Orkaan ei sunni aktsiisiplaanist loobuma; Tõnis Arnover. Katrina sundis miljon ameeriklast kodust põgenema

  12. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    OpenAIRE

    Van Oldenborgh, Geert Jan; Van Der Wiel, Karin; Sebastian, A.G.; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-01-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1)...

  13. Examining the effects of hurricanes Matthew and Irma on water quality in the intracoastal waterway, St. Augustine, FL.

    Science.gov (United States)

    Ward, N. D.; Osborne, T.; Dye, T.; Julian, P.

    2017-12-01

    The last several years have been marked by a high incidence of Atlantic tropical cyclones making landfall as powerful hurricanes or tropical storms. For example, in 2016 Hurricane Matthew devastated parts of the Caribbean and the southeastern United States. In 2017, this region was further battered by hurricanes Irma and Maria. Here, we present water quality data collected in the intracoastal waterway near the Whitney Lab for Marine Bioscience during hurricanes Matthew and Irma, a region that experienced flooding during both storms. YSI Exo 2 sondes were deployed to measure pH, salinity, temperature, dissolved O2, fluorescent dissolved organic matter (fDOM), turbidity, and Chlorophyll-a (Chl-a) on a 15 minute interval. The Hurricane Matthew sonde deployment failed as soon as the storm hit, but revealed an interesting phenomenon leading up to the storm that was also observed during Irma. Salinity in the intracoastal waterway (off the Whitney Lab dock) typically varies from purely marine to 15-20 psu throughout the tidal cycle. However, several days before both storms approached the Florida coast (i.e. when they were near the Caribbean), the salinity signal became purely marine, overriding any tidal signal. Anecdotally, storm drains were already filled up to street level prior to the storm hitting, poising the region for immense flooding and storm surge. The opposite effect was observed after Irma moved past FL. Water became much fresher than normal for several days and it took almost a week to return to "normal" salinity tidal cycles. As both storms hit, turbidity increased by an order of magnitude for a several hour period. fDOM and O2 behaved similar to salinity during and after Irma, showing a mostly marine signal (e.g. higher O2, lower fDOM) in the lead up, and brief switch to more freshwater influence the week after the storm. Chl-a peaked several days after the storm, presumably due to mobilization of nutrient rich flood and waste waters and subsequent algae

  14. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  15. Analysis of coastal protection under rising flood risk

    Directory of Open Access Journals (Sweden)

    Megan J. Lickley

    2014-01-01

    Full Text Available Infrastructure located along the U.S. Atlantic and Gulf coasts is exposed to rising risk of flooding from sea level rise, increasing storm surge, and subsidence. In these circumstances coastal management commonly based on 100-year flood maps assuming current climatology is no longer adequate. A dynamic programming cost–benefit analysis is applied to the adaptation decision, illustrated by application to an energy facility in Galveston Bay. Projections of several global climate models provide inputs to estimates of the change in hurricane and storm surge activity as well as the increase in sea level. The projected rise in physical flood risk is combined with estimates of flood damage and protection costs in an analysis of the multi-period nature of adaptation choice. The result is a planning method, using dynamic programming, which is appropriate for investment and abandonment decisions under rising coastal risk.

  16. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  17. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  18. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  19. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  20. Assessing the tree health impacts of salt water flooding in coastal cities: A case study in New York City

    Science.gov (United States)

    Richard Hallett; Michelle L. Johnson; Nancy F. Sonti

    2018-01-01

    Hurricane Sandy was the second costliest hurricane in United States (U.S.) history. The category 2 storm hit New York City (NYC) on the evening of October 29, 2012, causing major flooding, wind damage, and loss of life. The New York City Department of Parks & Recreation (NYC Parks) documented over 20,000 fallen street trees due to the physical impact of wind...

  1. Deflecting Hurakan: Enhancing DOD and DOS Interagency Hurricane Response Operations in Central America

    Science.gov (United States)

    2010-04-01

    a large-scale, extended response disaster such as massive floods and landslides produced from hurricanes, it may be necessary for the USAID/OFDA...national power to synergistically leverage their independent capabilities to counter the devastating first, second, and third order effects produced by...humanitarian assistance abroad. The first disaster occurred in March when Costa Rica endured an eruption of the Irazú volcano resulting in

  2. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach

    Science.gov (United States)

    van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.

    2015-01-01

    Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0

  3. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    Science.gov (United States)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  4. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  5. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    Science.gov (United States)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane

  6. Spatial analysis of landfills in respect to flood events and sea-level rise using ArcGIS Pro

    OpenAIRE

    Taylor, Benjamin S; Fei, Songlin

    2017-01-01

    "Recently in the news, media coverage of flood events has garnered attention due to tropical storms like Hurricane Harvey and the costly damages that resulted. Under climate change, events like sea-level rise (SLR) and flooding are projected to increase which threaten infrastructure, making it necessary for proper planning before, during, and after installation of landfills to mitigate risk. Studies in Austria and the UK have revealed that many landfills are located in flood zones in addition...

  7. From drought to flooding in less than a week over South Carolina

    Directory of Open Access Journals (Sweden)

    Jonathan L. Case

    Full Text Available A deep tropical moisture connection to Hurricane Joaquin led to historic rainfall and flooding over South Carolina from 3 to 5 October 2015, erasing the prevailing moderate to severe meteorological and agricultural drought that had developed from May through September. NASA’s Global Precipitation Mission constellation of satellites and a real-time implementation of the NASA Land Information System highlight the precipitation and land surface response of this event. Keywords: Extreme precipitation, Flooding, NASA, Land surface modeling, Soil moisture

  8. The Infectious and Noninfectious Dermatological Consequences of Flooding: A Field Manual for the Responding Provider.

    Science.gov (United States)

    Bandino, Justin P; Hang, Anna; Norton, Scott A

    2015-10-01

    Meteorological data show that disastrous floods are increasingly frequent and more severe in recent years, perhaps due to climatic changes such as global warming. During and after a flood disaster, traumatic injuries, communicable diseases, chemical exposures, malnutrition, decreased access to care, and even mental health disorders dramatically increase, and many of these have dermatological manifestations. Numerous case reports document typical and atypical cutaneous infections, percutaneous trauma, immersion injuries, noninfectious contact exposures, exposure to wildlife, and exacerbation of underlying skin diseases after such disasters as the 2004 Asian tsunami, Hurricane Katrina in 2005, and the 2010 Pakistan floods. This review attempts to provide a basic field manual of sorts to providers who are engaged in care after a flooding event, with particular focus on the infectious consequences. Bacterial pathogens such as Staphylococcus and Streptococcus are still common causes of skin infections after floods, with atypical bacteria also greatly increased. Vibrio vulnificus is classically associated with exposure to saltwater or brackish water. It may present as necrotizing fasciitis with hemorrhagic bullae, and treatment consists of doxycycline or a quinolone, plus a third-generation cephalosporin and surgical debridement. Atypical mycobacterial infections typically produce indolent cutaneous infections, possibly showing sporotrichoid spread. A unique nontuberculous infection called spam has recently been identified in Satowan Pacific Islanders; combination antibiotic therapy is recommended. Aeromonas infection is typically associated with freshwater exposure and, like Vibrio infections, immunocompromised or cirrhotic patients are at highest risk for severe disease, such as necrotizing fasciitis and sepsis. Various antibiotics can be used to treat Aeromonas infections. Melioidosis is seen mainly in Southeast Asia and Australia, particularly in rice farmers, and

  9. The melding of drug markets in Houston after Katrina: dealer and user perspectives.

    Science.gov (United States)

    Kotarba, Joseph A; Fackler, Jennifer; Johnson, Bruce D; Dunlap, Eloise

    2010-07-01

    In the aftermath of Hurricane Katrina, the majority of routine activities in New Orleans were disrupted, including the illegal drug market. The large-scale relocation of New Orleans evacuees (NOEs), including many illegal drug users and sellers, to host cities led to a need for new sources of illegal drugs. This need was quickly satisfied by two initially distinct drug markets (1) drug dealers from New Orleans who were themselves evacuees and (2) established drug dealers in the host cities. To be expected, the two markets did not operate indefinitely in parallel fashion. This paper describes the evolving, operational relationship between these two drug markets over time, with a focus on Houston. We analyze the reciprocal evolution of these two markets at two significant points in time: at the beginning of the relocation (2005) and two years later (2007). The overall trend is towards a melding of the two drug markets, as evidenced primarily by decreases in drug-related violence and the cross-fertilization of drug tastes. We describe the process by which the two drug markets are melded over time, in order to seek a better understanding of the social processes by which drug markets in general evolve.

  10. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  11. Rethinking Disasters: Finding Efficiencies Through Collaboration

    Science.gov (United States)

    2012-12-01

    in FEMA.4 Dating back to 1989 and 1992, catastrophic disasters, such as Hurricane Hugo , the Loma Prieta earthquake, and Hurricanes Andrew and Iniki...is over-engineered resulting in missed opportunities to capitalize on collaborative, decentralized solutions. As Hurricane Sandy ripped through the...generated intense criticism of the federal response effort.5 In 2006, despite recognition of the catastrophic effects caused by Hurricane Katrina

  12. Flood of September 22, 1998, in Arecibo and Utuado, Puerto Rico

    Science.gov (United States)

    Torres-Sierra, Heriberto

    2002-01-01

    Hurricane Georges made landfall on the southeastern part of Puerto Rico during September 21, 1998. Georges, with maximum sustained winds of 185 kilometers per hour and gusts to 240 kilometers per hour, produced 24-hour total rainfall amounts of 770 millimeters on the island's mountainous interior. Severe flooding affected almost half of the island's 78 municipios during September 21-22, 1998. The most affected municipios were Adjuntas, Aguada, Aguadilla, A?asco, Arecibo, Cayey, Ciales, Comerio, Barceloneta, Dorado, Jayuya, Manati, Mayaguez, Morovis, Orocovis, Patillas, Toa Alta, Toa Baja, and Utuado. The combination of strong winds, intense rainfall and severe flooding caused widespread property damages. More than 20,000 houses were destroyed and more than 100,000 houses sustained damage. Floodwaters and landslides destroyed or damaged many bridges and roads throughout the island. Records indicate that Hurricane Georges induced flood discharges in the Rio Grande de Arecibo Basin that were the largest on record. Floodwaters inundated urban and rural areas, affecting urban subdivisions, businesses, vehicles, bridges, roads, and high-tension electric power lines. To define the extent and depth of inundation, more than 280 high-water marks were identified and surveyed in Arecibo and Utuado. In addition estimates of flood magnitude and frequency were made at selected gaging stations, and flood profiles were developed for certain stream reaches. Flooding was most severe in the towns of Arecibo and Utuado. In Arecibo, the most affected communities were the rural area of San Francisco, the urban subdivisions of Martell, Nolla, and Arecibo Gardens, and the low-lying areas of downtown Arecibo. In these areas, the water depths ranged from 0.6 to 1.8 meters. In Utuado, floodwaters from the Rio Vivi and the Rio Grande de Arecibo inundated the downtown area affecting homes, public facilities, and businesses. In the urban subdivision of Jesus Maria Lago, the depth of flooding

  13. Köied ja sõlmed tõid Katrina Kaubile võidu / Monika Puutsa

    Index Scriptorium Estoniae

    Puutsa, Monika

    2007-01-01

    Supernoova moevõistluse tulemustest. Noorte disainerite auhind Katrina Kaubile oli 20 000 krooni ja Supernoova hõbedane pross, vanemas kategoorias Liisi Eesmaale 50 000 krooni. Žürii koosseis. Katrina Kaubi kommentaarid

  14. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  15. Development of wave and surge atlas for the design and protection of coastal bridges in south Louisiana : [tech summary].

    Science.gov (United States)

    2015-02-01

    The failures of highway bridges on the Gulf Coast seen in the aftermath of Hurricane Katrina in 2005 were unprecedented. : In the past four decades, wind waves accompanied by high surges from hurricanes have damaged a number of coastal : bridges alon...

  16. Assessing the environmental justice consequences of flood risk: a case study in Miami, Florida

    Science.gov (United States)

    Montgomery, Marilyn C.; Chakraborty, Jayajit

    2015-09-01

    Recent environmental justice (EJ) research has emphasized the need to analyze social inequities in the distribution of natural hazards such as hurricanes and floods, and examine intra-ethnic diversity in patterns of EJ. This study contributes to the emerging EJ scholarship on exposure to flooding and ethnic heterogeneity by analyzing the racial/ethnic and socioeconomic characteristics of the population residing within coastal and inland flood risk zones in the Miami Metropolitan Statistical Area (MSA), Florida—one of the most ethnically diverse MSAs in the U.S. and one of the most hurricane-prone areas in the world. We examine coastal and inland flood zones separately because of differences in amenities such as water views and beach access. Instead of treating the Hispanic population as a homogenous group, we disaggregate the Hispanic category into relevant country-of-origin subgroups. Inequities in flood risk exposure are statistically analyzed using socio-demographic variables derived from the 2010 U.S. Census and 2007-2011 American Community Survey estimates, and 100-year flood risk zones from the Federal Emergency Management Agency (FEMA). Social vulnerability is represented with two neighborhood deprivation indices called economic insecurity and instability. We also analyze the presence of seasonal/vacation homes and proximity to public beach access sites as water-related amenity variables. Logistic regression modeling is utilized to estimate the odds of neighborhood-level exposure to coastal and inland 100-year flood risks. Results indicate that neighborhoods with greater percentages of non-Hispanic Blacks, Hispanics, and Hispanic subgroups of Colombians and Puerto Ricans are exposed to inland flood risks in areas without water-related amenities, while Mexicans are inequitably exposed to coastal flood risks. Our findings demonstrate the importance of treating coastal and inland flood risks separately while controlling for water-related amenities, and

  17. An analysis of the synoptic and dynamical characteristics of hurricane Sandy (2012)

    Science.gov (United States)

    Varlas, George; Papadopoulos, Anastasios; Katsafados, Petros

    2018-01-01

    Hurricane Sandy affected the Caribbean Islands and the Northeastern United States in October 2012 and caused 233 fatalities, severe rainfalls, floods, electricity blackouts, and 75 billion U.S. dollars in damages. In this study, the synoptic and dynamical characteristics that led to the formation of the hurricane are investigated. The system was driven by the interaction between the polar jet displacement and the subtropical jet stream. In particular, Sandy was initially formed as a tropical depression system over the Caribbean Sea and the unusually warm sea drove its intensification. The interaction between a rapidly approaching trough from the northwest and the stagnant ridge over the Atlantic Ocean drove Sandy to the northeast coast of United States. To better understand the dynamical characteristics and the mechanisms that triggered Sandy, a non-hydrostatic mesoscale model has been used. Model results indicate that the surface heat fluxes and the moisture advection enhanced the convective available potential energy, increased the low-level convective instability, and finally deepened the hurricane. Moreover, the upper air conditions triggered the low-level frontogenesis and increased the asymmetry of the system which finally affected its trajectory.

  18. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  19. Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast

    Science.gov (United States)

    Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.

    2017-12-01

    As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour

  20. Tornadoes and Lightning and Floods, Oh My! Weather-Related Web Sites for K-12 Science Lessons.

    Science.gov (United States)

    Matkins, Juanita Jo; Murphy, Denise

    1999-01-01

    Reviews 30 weather-related Web sites, including readability level, under the subjects of air pressure, bad meteorology, clouds, droughts, floods, hurricanes, lightning, seasons, temperature, thunderstorms, tornadoes, water cycle, weather instruments, weather on other planets, and wind. (LRW)

  1. The weight of a storm: what observations of Earth surface deformation can tell us about Hurricane Harvey

    Science.gov (United States)

    Borsa, A. A.; Mencin, D.; van Dam, T. M.

    2017-12-01

    Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to

  2. Participatory Research in Support of Quality Public Education in New Orleans

    Science.gov (United States)

    Johnson-Burel, Deirdre; Drame, Elizabeth; Frattura, Elise

    2014-01-01

    In 2007, two years after Hurricane Katrina, several education and child advocacy groups began discussing the depleted conditions of the New Orleans public school district. These groups came together to discuss how to create a sustainable education reform movement post Katrina. New Orleans-based community groups and outside university researchers…

  3. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  4. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    Science.gov (United States)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  5. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 1-Decision Support System.

    Science.gov (United States)

    Davidson, Rachel A; Nozick, Linda K; Wachtendorf, Tricia; Blanton, Brian; Colle, Brian; Kolar, Randall L; DeYoung, Sarah; Dresback, Kendra M; Yi, Wenqi; Yang, Kun; Leonardo, Nicholas

    2018-03-30

    This article introduces a new integrated scenario-based evacuation (ISE) framework to support hurricane evacuation decision making. It explicitly captures the dynamics, uncertainty, and human-natural system interactions that are fundamental to the challenge of hurricane evacuation, but have not been fully captured in previous formal evacuation models. The hazard is represented with an ensemble of probabilistic scenarios, population behavior with a dynamic decision model, and traffic with a dynamic user equilibrium model. The components are integrated in a multistage stochastic programming model that minimizes risk and travel times to provide a tree of evacuation order recommendations and an evaluation of the risk and travel time performance for that solution. The ISE framework recommendations offer an advance in the state of the art because they: (1) are based on an integrated hazard assessment (designed to ultimately include inland flooding), (2) explicitly balance the sometimes competing objectives of minimizing risk and minimizing travel time, (3) offer a well-hedged solution that is robust under the range of ways the hurricane might evolve, and (4) leverage the substantial value of increasing information (or decreasing degree of uncertainty) over the course of a hurricane event. A case study for Hurricane Isabel (2003) in eastern North Carolina is presented to demonstrate how the framework is applied, the type of results it can provide, and how it compares to available methods of a single scenario deterministic analysis and a two-stage stochastic program. © 2018 Society for Risk Analysis.

  6. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    Science.gov (United States)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  7. Department of Defense Doctrine Should Incorporate Sixty Years of Disaster Research in Order to Realistically Plan and Effectively Execute Disaster Response

    Science.gov (United States)

    2013-05-01

    community. During Hurricane Hugo more than 90% of all homes in St. Croix in the Virgin Islands were destroyed. The situation in St. Croix prevented...recent or present disaster studies that have occurred within the United States; Hurricane Katrina in New Orleans and Hurricane Hugo in St. Croix.17...particular targets as opposed to targets of opportunity.21 In the case of the Hurricane Hugo and the catastrophe that resulted in St Croix, there are

  8. Disaster Doctor From 9/11 to Katrina

    Science.gov (United States)

    ... cytosine—DNA (deoxyribonucleic acid) is life's chemical instruction manual, governing how cells grow, divide, live and die. ... DNA traces that could specifically link victim to identity—had vanished in Katrina's wake. Gone, too, were ...

  9. Leveraging Social Media Data to Understand Disaster Resilience: A Case Study of Hurricane Isaac

    Science.gov (United States)

    Zou, L.; Lam, N.; Cai, H.

    2017-12-01

    Coastal communities are facing multiple threats from natural hazards, such as hurricanes, flooding, and storm surge, and show uneven response and recovery behaviors. To build a sustainable coast, it is critical to understand how coastal hazards affect humans and how to enhance disaster resilience. However, understanding community resilience remains challenging, due to the lack of real-time data describing community's response and recovery behaviors during disasters. Public discussion through social media platforms provides an opportunity to understand these behaviors by categorizing real-time social media data into three main phases of emergency management - preparedness, response, and recovery. This study analyzes the spatial-temporal patterns of Twitter use and content during Hurricane Isaac, which struck coastal Louisiana on August 29, 2012. The study area includes counties affected by Hurricane Isaac in Louisiana and Mississippi. The objectives are three-fold. First, we will compute a set of Twitter indices to quantify the Twitter activities during Hurricane Issac and the results will be compared with those of Hurricane Sandy to gain a better understanding of human response in extreme events. Second, county-level disaster resilience in the affected region will be computed and evaluated using the Resilience Inference Measurement (RIM) model. Third, we will examine the relationship between the geographical and social disparities in Twitter use and the disparities in disaster resilience and evaluate the role of Twitter use in disaster resilience. Knowledge gained from this study could provide valuable insights into strategies for utilizing social media data to increase resilience to disasters.

  10. What Happened to Our Environment and Mental Health as a Result of Hurricane Sandy?

    Science.gov (United States)

    Lin, Shao; Lu, Yi; Justino, John; Dong, Guanghui; Lauper, Ursula

    2016-06-01

    This study describes findings of the impacts of Hurricane Sandy on environmental factors including power outages, air quality, water quality, and weather factors and how these affected mental health during the hurricane. An ecological study was conducted at the county level to describe changes in environmental factors-especially power outages-and their relationships to emergency department (ED) visits for mental health problems by use of a Poisson regression model. We found that many environmental hazards occurred as co-exposures during Hurricane Sandy in addition to flooding. Mental health ED visits corresponded with the peak of maximum daily power blackouts, with a 3-day lag, and were positively associated with power blackouts in Bronx (prevalence ratio [PR]: 8.82, 95% confidence interval [CI]: 1.27-61.42) and Queens (PR: 2.47, 95% CI: 1.05-5.82) counties. A possible dose-response relationship was found between the quantile of maximum blackout percentage and the risk of mental health in the Bronx. We found that multiple co-environmental hazards occurred during Hurricane Sandy, especially power blackouts that mediated this disaster's impacts. The effects of power outage on mental health had large geographic variations and were substantial, especially in communities with low sociodemographic status. These findings may provide new insights for future disaster response and preparedness efforts. (Disaster Med Public Health Preparedness. 2016;10:314-319).

  11. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    Science.gov (United States)

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  12. Comparing residential contamination in a Houston environmental justice neighborhood before and after Hurricane Harvey.

    Science.gov (United States)

    Horney, Jennifer A; Casillas, Gaston A; Baker, Erin; Stone, Kahler W; Kirsch, Katie R; Camargo, Krisa; Wade, Terry L; McDonald, Thomas J

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex environmental toxicants. Exposure to them has been linked to adverse health outcomes including cancer, as well as diseases of the skin, liver, and immune system. Based on an ongoing community engagement partnership with stakeholder groups and residents, we conducted a small longitudinal study to assess domestic exposure to PAHs among residents of Manchester, an environmental justice neighborhood located in the East End of Houston, TX. In December, 2016, we used fiber wipes to collect samples of household dust from 25 homes in Manchester. Following Hurricane Harvey, in September 2017, we revisited 24 of the 25 homes to collect soil samples from the front yards of the same homes. Wipes and soil were analyzed for the presence of PAHs using gas chromatography-mass spectrometry (GC-MS) methods. Principal component analysis plots, heatmaps, and PAH ratios were used to compare pre- and post-Hurricane Harvey samples. While direct comparison is not possible, we present three methods for comparing PAHs found in pre-hurricane fiber wipes and post-hurricane soil samples. The methods demonstrate that the PAHs found before and after Hurricane Harvey are likely from similar sources and that those sources are most likely to be associated with combustion. We also found evidence of redistribution of PAHs due to extreme flooding associated with Hurricane Harvey. Residents of the Manchester neighborhood of Houston, TX, are exposed to a range of PAHs in household dust and outdoor soil. While it was not possible to compare directly, we were able to use several methods to assess detected concentrations, changes in site-specific PAH allocations, and PAH origination. Additional research is needed to identify specific sources of domestic PAH exposure in these communities and continued work involving community members and policy makers should aim to develop interventions to reduce domestic exposure to and prevent negative health outcomes

  13. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  14. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  15. Disaster: would your community bounce back?

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Benjamin H [Los Alamos National Laboratory

    2011-01-12

    ) Competent organizations - Government, health care, community service, and religious organizations are competent and trustworthy, and have resources to handle community needs; and (4) High-quality infrastructure - Road, power, and water systems (etc.) are in good condition and are designed to provide service even if some connections are destroyed. To explore how these factors make communities resilient, I will tell two stories of disasters. The first is the Buffalo Creek flood, which wiped out a coal mining community in West Virginia in 1972. This is a classic example of community that was not resilient in the aftermath of a disaster. The second example is the Vietnamese immigrant community in the Versailles neighborhood of New Orleans. In spite of being relatively poor and culturally isolated, this community was one of the first to fully rebound following Hurricane Katrina.

  16. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  17. Surrogate modeling of joint flood risk across coastal watersheds

    Science.gov (United States)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  18. Hurricane risk management and climate information gatekeeping in southeast Florida

    Science.gov (United States)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  19. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to

  20. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  1. When it happens again: impact of future San Francisco Bay area earthquakes

    Science.gov (United States)

    Zoback, M.; Boatwright, J.; Kornfield, L.; Scawthorn, C.; Rojahn, C.

    2005-12-01

    San Francisco Bay area earthquakes, like major floods and hurricanes, have the potential for massive damage to dense urban population centers concentrated in vulnerable zones-along active faults, in coastal regions, and along major river arteries. The recent destruction of Hurricane Katrina does have precedent in the destruction following the 1906 "San Francisco" earthquake and fire in which more than 3000 people were killed and 225,000 were left homeless in San Francisco alone, a city of 400,000 at the time. Analysis of a comprehensive set of damage reports from the magnitude (M) 7.9 1906 earthquake indicates a region of ~ 18,000 km2 was subjected to shaking of Modified Mercalli Intensity of VIII or more - motions capable of damaging even modern, well-built structures; more than 60,000 km2 was subjected to shaking of Intensity VII or greater - the threshold for damage to masonry and poorly designed structures. By comparison, Katrina's hurricane force winds and intense rainfall impacted an area of ~100,000 km2 on the Gulf Coast. Thus, the anticipated effects of a future major Bay Area quake to lives, property, and infrastructure are comparable in scale to Katrina. Secondary hazards (levee failure and flooding in the case of Katrina and fire following the 1906 earthquake) greatly compounded the devastation in both disasters. A recent USGS-led study concluded there is a 62% chance of one or more damaging (M6.7 or greater) earthquakes striking the greater San Francisco Bay area over the next 30 years. The USGS prepared HAZUS loss estimates for the 10 most likely forecast earthquakes which range in size from a M6.7 event on a blind thrust to the largest anticipated event, a M7.9 repeat of the 1906 earthquake. The largest economic loss is expected for a repeat of the 1906 quake. Losses in the Bay region for this event are nearly double those predicted for a M6.9 rupture of the entire Hayward Fault in the East Bay. However, because of high density of population along the

  2. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    Science.gov (United States)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system

  3. Floods of June-July 1957 in Indiana

    Science.gov (United States)

    Schoppenhorst, Charles E.

    1958-01-01

    The floods of June-July 1957 exceeded those previously known on some of the tributaries of the Wabash and White Rivers in central Indiana. Six lives were lost, 1,282 dwellings were damaged, and 125 business places were flooded. Heavy rains of June 27 and 28 resulted from remnants of Hurricane Audrey meeting a front that lay across central Indiana. Heaviest rainfall reported for the storm period at a U.S. Weather Bureau station was 10.15 inches at Rockville. Previous maximum stages during the period of record were exceeded at 12 gaging stations. The peak stage on Raccoon Creek at Mansfield exceeded the previous maximum known stage, which occurred in 1875. One of the notable rates of discharge recorded was 245 cfs per square mile from a drainage area of 440 square miles on Raccoon Creek at Coxville.

  4. Emotional stress and heart rate variability measures associated with cardiovascular risk in relocated Katrina survivors.

    Science.gov (United States)

    Tucker, Phebe; Pfefferbaum, Betty; Jeon-Slaughter, Haekyung; Khan, Qaiser; Garton, Theresa

    2012-01-01

    To explore the effects of hurricane exposure and forced relocation on the mind and body, we compared psychiatric diagnoses and symptoms with heart rate variability (HRV) for 34 relocated Katrina survivors and 34 demographically matched controls. All participants were healthy and free of psychiatric and cardiovascular medications. We measured symptoms of posttraumatic stress disorder (PTSD) (Clinician-Administered PTSD Scale 1) and depression (Beck Depression Inventory), Axis I psychiatric diagnoses (Structured Clinical Interview for DSM-IV), psychosocial disability (Sheehan Disability Scale), and power spectral analysis HRV reactivity to trauma reminders. Katrina-related PTSD occurred in 38% of survivors and 12% of controls. Survivors reported higher levels of PTSD and depression symptoms, within diagnostic ranges, and greater psychosocial disability than controls. Survivors had higher resting heart rate (80.82 [standard deviation = 13.60] versus 74.85 [10.67], p = .05), lower parasympathetic (high-frequency [HF] normalized unit) baseline HRV activity (40.14 [23.81] versus 50.67 [19.93], p = .04) and less reactivity with trauma cues (-2.63 [20.70] versus -11.96 [15.84], p = .04), and higher baseline sympathovagal activity (low frequency/HF ratio) (2.84 [3.08] versus 1.35 [1.08], p = .04) than controls. Survivors with depression (n = 12) and with depression and PTSD combined (n = 7), but not those with PTSD (n = 13), had flattened parasympathetic responsiveness to trauma cues. HRV indices correlated with depressive (low frequency/HF, p = .01; HF normalized unit, p = .046) but not PTSD symptoms (p values > .05). Results showed this multilayer trauma's impact on emotional health and HRV-based measures of autonomic nervous system dysregulation. Specifically, dysregulation of depressed survivors' HRV in response to trauma reminders supports more autonomic involvement in traumatic loss/depression than in PTSD. Diagnostic criteria for PTSD include physiologic reactivity

  5. The 100-year flood seems to be changing. Can we really tell?

    Science.gov (United States)

    Ceres, R. L., Jr.; Forest, C. E.; Keller, K.

    2017-12-01

    Widespread flooding from Hurricane Harvey greatly exceeded the Federal Emergency Management Agency's 100-year flood levels. In the US, this flood level is often used as an important line of demarcation where areas above this level are considered safe, while areas below the line are at risk and require additional flood risk mitigation. In the wake of Harvey's damage, the US media has highlighted at least two important questions. First, has the 100-year flood level changed? Second, is the 100-year flood level a good metric for determining flood risk? To address the first question, we use an Observation System Simulation Experiment of storm surge flood levels and find that gradual changes to the 100-year storm surge level may not be reliably detected over the long lifespans expected of major flood risk mitigation strategies. Additionally, we find that common extreme value analysis models lead to biased results and additional uncertainty when incorrect assumptions are used for the underlying statistical model. These incorrect assumptions can lead to examples of negative learning. Addressing the second question, these findings further challenge the validity of using simple return levels such as the 100-year flood as a decision tool for assessing flood risk. These results indicate risk management strategies must account for such uncertainties to build resilient and robust planning tools that stakeholders desperately need.

  6. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    Science.gov (United States)

    Fearnley, Sarah Mary; Miner, Michael D.; Kulp, Mark; Bohling, Carl; Penland, Shea

    2009-12-01

    Results from historical (1855-2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of -0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of -1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from -11.4 m/year between 1922 and 1996 to -41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated -201.5 m/year, compared with an average retreat rate of -38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.

  7. Why near-miss events can decrease an individual's protective response to hurricanes.

    Science.gov (United States)

    Dillon, Robin L; Tinsley, Catherine H; Cronin, Matthew

    2011-03-01

    Prior research shows that when people perceive the risk of some hazardous event to be low, they are unlikely to engage in mitigation activities for the potential hazard. We believe one factor that can lower inappropriately (from a normative perspective) people's perception of the risk of a hazard is information about prior near-miss events. A near-miss occurs when an event (such as a hurricane), which had some nontrivial probability of ending in disaster (loss of life, property damage), does not because good fortune intervenes. People appear to mistake such good fortune as an indicator of resiliency. In our first study, people with near-miss information were less likely to purchase flood insurance, and this was shown for both participants from the general population and individuals with specific interests in risk and natural disasters. In our second study, we consider a different mitigation decision, that is, to evacuate from a hurricane, and vary the level of statistical probability of hurricane damage. We still found a strong effect for near-miss information. Our research thus shows how people who have experienced a similar situation but escape damage because of chance will make decisions consistent with a perception that the situation is less risky than those without the past experience. We end by discussing the implications for risk communication. © 2010 Society for Risk Analysis.

  8. Predicting floods with Flickr tags.

    Science.gov (United States)

    Tkachenko, Nataliya; Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

  9. Comparing residential contamination in a Houston environmental justice neighborhood before and after Hurricane Harvey.

    Directory of Open Access Journals (Sweden)

    Jennifer A Horney

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are complex environmental toxicants. Exposure to them has been linked to adverse health outcomes including cancer, as well as diseases of the skin, liver, and immune system. Based on an ongoing community engagement partnership with stakeholder groups and residents, we conducted a small longitudinal study to assess domestic exposure to PAHs among residents of Manchester, an environmental justice neighborhood located in the East End of Houston, TX.In December, 2016, we used fiber wipes to collect samples of household dust from 25 homes in Manchester. Following Hurricane Harvey, in September 2017, we revisited 24 of the 25 homes to collect soil samples from the front yards of the same homes. Wipes and soil were analyzed for the presence of PAHs using gas chromatography-mass spectrometry (GC-MS methods. Principal component analysis plots, heatmaps, and PAH ratios were used to compare pre- and post-Hurricane Harvey samples.While direct comparison is not possible, we present three methods for comparing PAHs found in pre-hurricane fiber wipes and post-hurricane soil samples. The methods demonstrate that the PAHs found before and after Hurricane Harvey are likely from similar sources and that those sources are most likely to be associated with combustion. We also found evidence of redistribution of PAHs due to extreme flooding associated with Hurricane Harvey.Residents of the Manchester neighborhood of Houston, TX, are exposed to a range of PAHs in household dust and outdoor soil. While it was not possible to compare directly, we were able to use several methods to assess detected concentrations, changes in site-specific PAH allocations, and PAH origination. Additional research is needed to identify specific sources of domestic PAH exposure in these communities and continued work involving community members and policy makers should aim to develop interventions to reduce domestic exposure to and prevent negative

  10. Community Disasters, Psychological Trauma, and Crisis Intervention.

    Science.gov (United States)

    Boscarino, Joseph A

    The current issue of International Journal of Emergency Mental Health and Human Resilience is focused on community disasters, the impact of trauma exposure, and crisis intervention. The articles incorporated include studies ranging from the World Trade Center disaster to Hurricane Sandy. These studies are related to public attitudes and beliefs about disease outbreaks, the impact of volunteerism following the World Trade Center attacks, alcohol misuse among police officers after Hurricane Katrina, posttraumatic stress disorder after Hurricane Sandy among those exposed to the Trade Center disaster, compassion fatigue and burnout among trauma workers, crisis interventions in Eastern Europe, and police officers' use of stress intervention services. While this scope is broad, it reflects the knowledge that has emerged since the Buffalo Creek and Chernobyl catastrophes, to the more recent Hurricane Katrina and Sandy disasters. Given the current threat environment, psychologists, social workers, and other providers need to be aware of these developments and be prepared to mitigate the impact of psychological trauma following community disasters, whether natural or man-made.

  11. Temporal Vulnerability and the Post-Disaster ‘Window of Opportunity to Woo' : A Case Study of an African-American Floodplain Neighborhood after Hurricane Floyd in North Carolina

    NARCIS (Netherlands)

    de Vries, D.H.

    After major flooding associated with Hurricane Floyd (1999) in North Carolina, mitigation managers seized upon the “window of opportunity” to woo residents to accept residential buyout offers despite sizable community resistance. I present a theoretical explanation of how post-crisis periods turn

  12. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    Science.gov (United States)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  13. Factors Contributing to Mental and Physical Health Care in a Disaster-Prone Environment.

    Science.gov (United States)

    Osofsky, Howard J; Hansel, Tonya Cross; Osofsky, Joy D; Speier, Anthony

    2015-01-01

    Environment as a contextual factor plays an important role in southeastern Louisiana, as this area represents a major economic hub for the United States port, petroleum, and fishing industries. The location also exposes the population to both natural and technological disasters, including Hurricane Katrina and the Gulf oil spill. This study explored associations among hurricane loss, oil spill disruption, and environmental quality of life on mental and physical health on over 1,000 residents (N = 1,225) using structural equation modeling techniques. Results showed that oil spill distress was associated with increased symptoms of mental and physical health; Hurricane Katrina loss; and decreased environmental quality of life. Findings also indicate that mental health symptoms explain the association among oil spill distress and physical health symptoms-specifically, those that overlap with somatic complaints. These findings provide important support of the need for mental health assessment and service availability for disaster recovery.

  14. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  15. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    Science.gov (United States)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We

  16. RURAL FLASH-FLOOD BEHAVIOR IN GOUYAVE WATERSHED, GRENADA, CARIBBEAN ISLAND

    Directory of Open Access Journals (Sweden)

    Rahmat Aris Pratomo

    2016-10-01

    Full Text Available Flash-flood is considered as one of the most common natural disasters in Grenada, a tropical small state island in Caribbean Island. Grenada has several areas which are susceptible to flooding. One of them is Gouyave town which is located in the north-west of Grenada. Its land-use types are highly dominated by green areas, especially in the upper-part of the region. The built-up areas can only be found in the lower-part of Gouyave watershed, near the coastal area. However, there were many land conversions from natural land-use types into built-up areas in the upper-part region. They affected the decrease of water infiltration and the increase of potential run-off, making these areas susceptible to flash-flood. In addition, it is also influenced by the phenomenon of climate change. Changes in extreme temperature increase higher potential of hurricanes or wind-storm, directly related to the potential escalation of flash-flood. To develop effective mitigation strategies, understanding the behavior of flash-flood is required. The purpose of this paper was to observe the behavior of flash-flood in Gouyave watershed in various return periods using OpenLISEM software. It was used to develop and analyse the flash-flood characteristics. The result showed that the climatic condition (rainfall intensity and land-use are influential to the flash-flood event. Flash-flood occurs in 35 and 100 years return period. Flash-flood inundates Gouyave’s area in long duration, with below 1 m flood depth. The flood propagation time is slow. This condition is also influenced by the narrower and longer of Gouyave basin shape. To develop flash-flood reduction strategies, the overall understanding of flash-flood behavior is important. If the mitigation strategy is adapted to their behavior, the implementation will be more optimum.

  17. A New Department of Defense Framework for Efficient Defense Support of Civil Authorities

    National Research Council Canada - National Science Library

    Liberato, Rodney

    2007-01-01

    ...) capabilities support to civilian authorities during emergencies. Hurricane Katrina added to this national attention on the role the Department of Defense should play in responding to emergencies...

  18. Attributable Human-Induced Changes in the Likelihood and Magnitude of the Observed Extreme Precipitation during Hurricane Harvey

    OpenAIRE

    Risser, MD; Wehner, MF

    2017-01-01

    ©2017. American Geophysical Union. All Rights Reserved. Record rainfall amounts were recorded during Hurricane Harvey in the Houston, Texas, area, leading to widespread flooding. We analyze observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of El Niño–Southern Oscillation. We find that human-induced climate change likely increase...

  19. School Nurse Resilience: Experiences after Multiple Natural Disasters

    Science.gov (United States)

    Broussard, Lisa; Myers, Rachel

    2010-01-01

    This qualitative descriptive study explored the experiences of school nurses in coastal Louisiana, who were affected by Hurricanes Gustav and Ike in 2008 and who had also been in the path of destruction caused by Hurricanes Katrina and Rita in 2005. The purpose of the study was to describe the experiences of school nurses affected by repeated…

  20. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  1. Floods of 2005 in the State of Veracruz Book Presentation

    Science.gov (United States)

    Tejeda, A.; Ochoa, C.

    2007-05-01

    During October of 2005, when hurricane Stan caused destruction to the center and south of the state of Veracruz, a book was elaborated. The book's called Floods of 2005 in the state of Veracruz and contains twenty chapters. The first three chapters conform a panoramic of the book and two historical and archaeological contributions. One second part takes care of the natural phenomena of floods: meteorological, hydrological aspects, and biodiversity. Economic and social aspects are the largest contents of the volume, which concludes with reflections towards the future: the possible consequences of global climatic change, the chemical component that's not considered in the evaluation and prevention of risks by hidrometeorogical phenomena, and the duty of political prevention of disasters. The frame reference for the book is through a discussion of all kind of contributions. Which means that this book presentation is for the geophysicists community of Mexico. Keywords: Floods, state of Veracruz, risks and disasters.

  2. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  3. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    Science.gov (United States)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of

  4. Intelligence, Surveillance, and Reconnaissance Support to Humanitarian Relief Operations within the United States: Where Everyone is in Charge

    National Research Council Canada - National Science Library

    Sovada, Jennifer P

    2008-01-01

    ... the leadership of the military, federal government, and state governments since Hurricane Katrina. These organizations have deemed ISR support essential to conducting timely, effective, and responsive relief operations...

  5. Quantification of Interbasin Transfers into the Addicks Reservoir during Hurricane Harvey

    Science.gov (United States)

    Sebastian, A.; Juan, A.; Gori, A.; Maulsby, F.; Bedient, P. B.

    2017-12-01

    Between August 25 and 30, Hurricane Harvey dropped unprecedented rainfall over southeast Texas causing widespread flooding in the City of Houston. Water levels in the Addicks and Barker reservoirs, built in the 1940s to protect downtown Houston, exceeded previous records by approximately 2 meters. Concerns regarding structural integrity of the dams and damage to neighbourhoods in within the reservoir pool resulted in controlled releases into Buffalo Bayou, flooding an estimated 4,000 additional structures downstream of the dams. In 2016, during the Tax Day it became apparent that overflows from Cypress Creek in northern Harris County substantially contribute to water levels in Addicks. Prior to this event, little was known about the hydrodynamics of this overflow area or about the additional stress placed on Addicks and Barker reservoirs due to the volume of overflow. However, this information is critical for determining flood risk in Addicks Watershed, and ultimately Buffalo Bayou. In this study, we utilize the recently developed HEC-RAS 2D model the interbasin transfer that occurs between Cypress Creek Watershed and Addicks Reservoir to quantify the volume and rate at which water from Cypress enters the reservoir during extreme events. Ultimately, the results of this study will help inform the official hydrologic models used by HCFCD to determine reservoir operation during future storm events and better inform residents living in or above the reservoir pool about their potential flood risk.

  6. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  7. Late Holocene flood probabilities in the Black Hills, South Dakota with emphasis on the Medieval Climate Anomaly

    Science.gov (United States)

    Harden, Tessa M.; O'Connor, James E.; Driscoll, Daniel G.

    2015-01-01

    A stratigraphic record of 35 large paleofloods and four large historical floods during the last 2000 years for four basins in the Black Hills of South Dakota reveals three long-term flooding episodes, identified using probability distributions, at A.D.: 120–395, 900–1290, and 1410 to present. During the Medieval Climate Anomaly (~ A.D. 900–1300) the four basins collectively experienced 13 large floods compared to nine large floods in the previous 800 years, including the largest floods of the last 2000 years for two of the four basins. This high concentration of extreme floods is likely caused by one or more of the following: 1) instability of air masses caused by stronger than normal westerlies; 2) larger or more frequent hurricanes in the Gulf of Mexico and Atlantic Ocean; and/or 3) reduced land covering vegetation or increased forest fires caused by persistent regional drought.

  8. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats

    Science.gov (United States)

    La Peyre, M.K.; Gordon, J.

    2012-01-01

    We compared nekton habitat value of submerged aquatic vegetation, flooded non-vegetated natural and man-made edge habitats in mesohaline interior marsh areas in southwest Louisiana using a 1-m 2 throw trap and 3-mm bag seine. When present, SAV habitats supported close to 4 times greater densities and higher species richness of nekton as compared to either natural or man-made edge habitats, which supported similar densities to one another. Three species of concern (bayou killifish, diamond killifish, chain pipefish) were targeted in the analysis, and two of the three were collected almost entirely in SAV habitat. During the course of the study, Hurricanes Ike and Gustav passed directly over the study sites in September 2008. Subsequent analyses indicated significant reductions in resident nekton density 1-mo post hurricanes, and only limited recovery 13-mo post-hurricane. Possible alteration of environmental characteristics such as scouring of SAV habitat, deposition of sediment over SAV, edge erosion and marsh loss, and extended high salinities may explain these lasting impacts. ?? 2011.

  9. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    Science.gov (United States)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  10. Defense Support to Civil Authorities: Critical Capability or Vulnerability? Optimizing DOD's Domestic Range Of Military Operations

    National Research Council Canada - National Science Library

    Wessman, Derek S

    2007-01-01

    .... The enduring and varied nature of this vulnerability was again highlighted in August 2005 by the failings of the Hurricane Katrina response, bringing the necessity of effective crisis response...

  11. Impacts of a large array of offshore wind farms on precipitation during hurricane Harvey

    Science.gov (United States)

    Pan, Y.; Archer, C. L.

    2017-12-01

    Hurricane Harvey brought to the Texas coast possibly the heaviest rain ever recorded in U.S. history, which then caused flooding at unprecedented levels. Previous studies have shown that large arrays of offshore wind farms can extract kinetic energy from a hurricane and thus reduce the wind and storm surge. This study will quantitatively test weather the offshore turbines may also affect precipitation patterns. The Weather Research Forecast model is employed to model Harvey and the offshore wind farms are parameterized as elevated drag and turbulence kinetic energy sources. The turbines (7.8 MW Enercon-126 with rotor diameter D=127 m) are placed along the coast of Texas and Louisiana within 100 km from the shore, where the water depth is below 200 meters. Three spacing between turbines are considered (with the number of turbines in parenthesis): 7D×7D (149,936), 9D×9D (84,339), and 11D×11D (56,226). A fourth case (9D×9D) with a smaller area and thus less turbines (33,363) is added to the simulations to emphasize the impacts of offshore turbines installed specifically to protect the city of Houston, which was flooded heavily during hurricane Harvey. The model is integrated for 24 hours from 00UTC Aug 26th, 2017 to 00UTC Aug 27th, 2017. Model results indicate that the offshore wind farms have a strong impact on the distribution of 24-hour accumulated precipitation, with an obvious decrease onshore, downstream of the wind farms, and an increase in the offshore areas, upstream of or within the wind farms. A sector covering the metro-Houston area is chosen to study the sensitivity of the four different wind farm layouts. The spatial-average 24-hour accumulated precipitation is decreased by 37%, 28%, 20% and 25% respectively for the four cases. Compared with the control case with no wind turbines, increased horizontal wind divergence and lower vertical velocity are found where the precipitation is reduced onshore, whereas increased horizontal wind convergence and

  12. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    Science.gov (United States)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  13. 48 CFR 1852.236-73 - Hurricane plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Hurricane plan. 1852.236-73... Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all materials...

  14. Hurricane in US, chaos in Iraq and even more price records

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    A hurricane named Katrina devastated oil installations along the US Gulf Coast as well as the city of New Orleans, sending oil prices to new record levels. Nearly 1.4 mn bpd of offshore oil production was shut-in, along with 8.3 bn cfd of the Gulf's natural gas. More production was closed down onshore along with nearly 2.4 mn bpd of refining capacity. Crude and product prices shot up worldwide. The 30th August saw October WTI close at a record $69.81/bbl, having traded earlier in the day up to $70.85/bbl. On 31st August, Nymex gasoline closed at a new high of $2.6145/gall as the Gulf Coast's refineries remained off-line. Gulf spot prices rose above $3/gall. The following day, October heating oil set a new record by closing at $2.1985/gall. Records fell outside the US, with Tapis at $70.97 on 31st August. The previous day saw IPE October Brent settle at a record $67.57, whilst the November and December contracts both saw trades above $69.00/bbl. Natural gas prices also moved into record territory in the US, topping $12 per mn BTU on Nymex during the morning of 30th August. (author)

  15. Wetland Accretion Rates Along Coastal Louisiana: Spatial and Temporal Variability in Light of Hurricane Isaac’s Impacts

    Directory of Open Access Journals (Sweden)

    Thomas A. Bianchette

    2015-12-01

    Full Text Available The wetlands of the southern Louisiana coast are disappearing due to a host of environmental stressors. Thus, it is imperative to analyze the spatial and temporal variability of wetland vertical accretion rates. A key question in accretion concerns the role of landfalling hurricanes as a land-building agent, due to their propensity to deposit significant volumes of inorganic sediments. Since 1996, thousands of accretion measurements have been made at 390 sites across coastal Louisiana as a result of a regional monitoring network, called the Coastal Reference Monitoring System (CRMS. We utilized this dataset to analyze the spatial and temporal patterns of accretion by mapping rates during time periods before, around, and after the landfall of Hurricane Isaac (2012. This analysis is vital for quantifying the role of hurricanes as a land-building agent and for understanding the main mechanism causing heightened wetland accretion. The results show that accretion rates averaged about 2.89 cm/year from stations sampled before Isaac, 4.04 cm/year during the period encompassing Isaac, and 2.38 cm/year from sites established and sampled after Isaac. Accretion rates attributable to Isaac’s effects were therefore 40% and 70% greater than before and after the event, respectively, indicating the event’s importance toward coastal land-building. Accretion associated with Isaac was highest at sites located 70 kilometers from the storm track, particularly those near the Mississippi River and its adjacent distributaries and lakes. This spatial pattern of elevated accretion rates indicates that freshwater flooding from fluvial channels, rather than storm surge from the sea per se, is the main mechanism responsible for increased wetland accretion. This significance of riverine flooding has implications toward future coastal restoration policies and practices.

  16. Rescuing Joint Personnel Recovery: Using Air Force Capability to Address Joint Shortfalls

    Science.gov (United States)

    2011-06-01

    of an IP, the IP is not successfully reintegrated or the lessons learned are not incorporated into other operations. Adversaries will benefit from...Washington, D.C.: Office of Air Force History , United States Air Force, 1980, 117. 47 Durant , Michael J. In the Company of Heroes, Penguin Group... Lessons Learned, 22 September 2005, 3. 2 US Joint Task Force Katrina. The Federal Response to Hurricane Katrina Lessons Learned, February 2006, 54

  17. Modeling of Flood Risk for the Continental United States

    Science.gov (United States)

    Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.

    2011-12-01

    The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from

  18. Flooding Simulation of Extreme Event on Barnegat Bay by High-Resolution Two Dimensional Hydrodynamic Model

    Science.gov (United States)

    Wang, Y.; Ramaswamy, V.; Saleh, F.

    2017-12-01

    Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.

  19. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons

    Directory of Open Access Journals (Sweden)

    Kerry Milch

    2018-01-01

    Full Text Available Although the field has seen great advances in hurricane prediction and response, the economic toll from hurricanes on U.S. communities continues to rise. We present data from Hurricanes Earl (2010, Irene (2011, Isaac (2012, and Sandy (2012 to show that individual and household decisions contribute to this vulnerability. From phone surveys of residents in communities threatened by impending hurricanes, we identify five decision biases or obstacles that interfere with residents’ ability to protect themselves and minimize property damage: (1 temporal and spatial myopia, (2 poor mental models of storm risk, (3 gaps between objective and subjective probability estimates, (4 prior storm experience, and (5 social factors. We then discuss ways to encourage better decision making and reduce the economic and emotional impacts of hurricanes, using tools such as decision defaults (requiring residents to opt out of precautions rather than opt in and tailoring internet-based forecast information so that it is local, specific, and emphasizes impacts rather than probability.

  20. 2005 Hurricane Katrina Response Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a single image tile from a collection of GeoTIFF format natural color image tiles that cover regions of Alabama, Louisiana, and Mississippi that were...