WorldWideScience

Sample records for hurricane intensity prediction

  1. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  2. Hurricane feedback research may improve intensity forecasts

    Science.gov (United States)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  3. Multivariate Analysis of MODerate Resolution Imaging Spectroradiometer (MODIS Aerosol Retrievals and the Statistical Hurricane Intensity Prediction Scheme (SHIPS Parameters for Atlantic Hurricanes

    Directory of Open Access Journals (Sweden)

    Mohammed M. Kamal

    2012-09-01

    Full Text Available MODerate Resolution Imaging Spectroradiometer (MODIS aerosol retrievals over the North Atlantic spanning seven hurricane seasons are combined with the Statistical Hurricane Intensity Prediction Scheme (SHIPS parameters. The difference between the current and future intensity changes were selected as response variables. For 24 major hurricanes (category 3, 4 and 5 between 2003 and 2009, eight lead time response variables were determined to be between 6 and 48 h. By combining MODIS and SHIPS data, 56 variables were compiled and selected as predictors for this study. Variable reduction from 56 to 31 was performed in two steps; the first step was via correlation coefficients (cc followed by Principal Component Analysis (PCA extraction techniques. The PCA reduced 31 variables to 20. Five categories were established based on the PCA group variables exhibiting similar physical phenomena. Average aerosol retrievals from MODIS Level 2 data in the vicinity of UTC 1,200 and 1,800 h were mapped to the SHIPS parameters to perform Multiple Linear Regression (MLR between each response variable against six sets of predictors of 31, 30, 28, 27, 23 and 20 variables. The deviation among the predictors Root Mean Square Error (RMSE varied between 0.01 through 0.05 and, therefore, implied that reducing the number of variables did not change the core physical information. Even when the parameters are reduced from 56 to 20, the correlation values exhibit a stronger relationship between the response and predictors. Therefore, the same phenomena can be explained by the reduction of variables.

  4. Performance of the FV3-powered Next Generation Global Prediction System for Harvey and Irma, and a vision for a "beyond weather timescale" prediction system for long-range hurricane track and intensity predictions

    Science.gov (United States)

    Lin, S. J.; Bender, M.; Harris, L.; Hazelton, A.

    2017-12-01

    The performance of a GFDL developed FV3-based Next Generation Global Prediction System (NGGPS) for Harvey and Irma will be reported. We will report on aspects of track and intensity errors (vs operational models), heavy precipitation (Harvey), rapid intensification, and simulated structure (in comparison with ground based radar), and point to a need of a future long-range (from day-5 up to 30 days) physically based ensemble hurricane prediction system for providing useful information to the forecasters, beyond the usual weather timescale.

  5. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  6. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  7. The Impact of Microphysics on Intensity and Structure of Hurricanes

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn; Lang, Steve; Peters-Lidard, Christa

    2006-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WFW is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WFW model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WW to examine the impact of six different cloud microphysical schemes on hurricane track, intensity and rainfall forecast. We are also performing the inline tracer calculation to comprehend the physical processes @e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes.

  8. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    Science.gov (United States)

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  9. NOAA predicts active 2013 Atlantic hurricane season

    Science.gov (United States)

    (discussion) El Niño/Southern Oscillation (ENSO) Diagnostic Discussion National Hurricane Preparedness Week in both English and Spanish, featuring NOAA hurricane experts and the FEMA administrator at

  10. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  11. Predicting hurricane wind damage by claim payout based on Hurricane Ike in Texas

    Directory of Open Access Journals (Sweden)

    Ji-Myong Kim

    2016-09-01

    Full Text Available The increasing occurrence of natural disasters and their related damage have led to a growing demand for models that predict financial loss. Although considerable research on the financial losses related to natural disasters has found significant predictors, there has been a lack of comprehensive study that addresses the relationship among vulnerabilities, natural disasters, and the economic losses of individual buildings. This study identifies the vulnerability indicators for hurricanes to establish a metric to predict the related financial loss. We classify hurricane-prone areas by highlighting the spatial distribution of losses and vulnerabilities. This study used a Geographical Information System (GIS to combine and produce spatial data and a multiple regression method to establish a wind damage prediction model. As the dependent variable, we used the value of the Texas Windstorm Insurance Association (TWIA claim payout divided by the appraised values of the buildings to predict real economic loss. As independent variables, we selected a hurricane indicator and built environment vulnerability indicators. The model we developed can be used by government agencies and insurance companies to predict hurricane wind damage.

  12. Observational Estimates of the Horizontal Eddy Diffusivity and Mixing Length in the Low-Level Region of Intense Hurricanes

    Science.gov (United States)

    2011-11-01

    flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989), Category 4 Hurricane Allen (1980) and...data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo 42 (1989), Category 4 Hurricane Allen (1980) and Category...understood. 87 Using the data from the periods of eyewall penetrations in the intense Hurricanes Hugo 88 (1989) and Allen (1980), Zhang et al. (2011a

  13. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    Science.gov (United States)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the

  14. Children, Learning and Chronic Natural Disasters: How Does the Government of Dominica Address Education during Low-Intensity Hurricanes?

    Science.gov (United States)

    Serrant, Ted Donaldson

    2013-01-01

    By the time today's Grade K students graduate high school in the Commonwealth of Dominica, they will have experienced five major and many low-intensity hurricanes (LIH). Between August and November each year, each hurricane, major or low-intensity, represents a major threat to their safety and schooling. This mixed-method case study investigated…

  15. Sleep Quality Among Low-Income Young Women in Southeast Texas Predicts Changes in Perceived Stress Through Hurricane Ike.

    Science.gov (United States)

    Wu, Zhao Helen; Stevens, Richard G; Tennen, Howard; North, Carol S; Grady, James J; Holzer, Charles

    2015-07-01

    To document the time course of perceived stress among women through the period of a natural disaster, to determine the effect of sleep quality on this time course, and to identify risk factors that predict higher levels of perceived stress. Longitudinal study from 2006-2012. Community-based family planning clinics in southeast Texas. There were 296 women aged 18-31 y who experienced Hurricane Ike, September 2008. Cohen Perceived Stress Scale (PSS) was administered every 2 mo from 6 mo before to 12 mo after Hurricane Ike. Sleep quality was assessed 1 mo after Hurricane Ike using the Pittsburg Sleep Quality Index (PSQI). Good sleep was defined as a PSQI summary score sleep as a score ≥ 5. Hurricane Ike stressors (e.g., property damage, subjective stressors) and pre-Ike lifetime major life events and emotional health (e.g., emotional dysregulation, self-control) were also assessed. Over the entire period of 18 mo (6 mo before and 12 mo after the hurricane), perceived stress was significantly higher among poor sleepers compared to good sleepers, and only good sleepers showed a significant decrease in perceived stress after Hurricane Ike. In addition, a higher level of perceived stress was positively associated with greater Ike damage among poor sleepers, whereas this correlation was not observed among good sleepers. In the final multivariate longitudinal model, Ike-related subjective stressors as well as baseline major life events and emotional dysregulation among poor sleepers predicted higher levels of perceived stress over time; among good sleepers, additional factors such as lower levels of self-control and having a history of a psychiatric disorder also predicted higher levels of perceived stress. Sleep quality after Hurricane Ike, an intense natural disaster producing substantial damage, impacted changes in perceived stress over time. Our findings suggest the possibility that providing victims of disasters with effective interventions to improve sleep quality

  16. Estimating hypothetical present-day insured losses for past intense hurricanes in the French Antilles

    Science.gov (United States)

    Thornton, James; Desarthe, Jérémy; Naulin, Jean-Philippe; Garnier, Emmanuel; Liu, Ye; Moncoulon, David

    2015-04-01

    On the islands of the French Antilles, the period for which systematic meteorological measurements and historic event loss data are available is short relative to the recurrence intervals of very intense, damaging hurricanes. Additionally, the value of property at risk changes through time. As such, the recent past can only provide limited insight into potential losses from extreme storms in coming years. Here we present some research that seeks to overcome, as far as is possible, the limitations of record length in assessing the possible impacts of near-future hurricanes on insured properties. First, using the archives of the French overseas departments (which included administrative and weather reports, inventories of damage to houses, crops and trees, as well as some meteorological observations after 1950) we reconstructed the spatial patterns of hazard intensity associated with three historical events. They are: i) the 1928 Hurricane (Guadeloupe), ii) Hurricane Betsy (1956, Guadeloupe) and iii) Hurricane David (1979, Martinique). These events were selected because all were damaging, and the information available on each is rich. Then, using a recently developed catastrophe model for hurricanes affecting Guadeloupe, Martinique, Saint-Barthélemy and Saint-Martin, we simulated the hypothetical losses to insured properties that the reconstructed events might cause if they were to reoccur today. The model simulated damage due to wind, rainfall-induced flooding and storm surge flooding. These 'what if' scenarios provided an initial indication of the potential present-day exposure of the insurance industry to intense hurricanes. However, we acknowledge that historical events are unlikely to repeat exactly. We therefore extended the study by producing a stochastic event catalogue containing a large number of synthetic but plausible hurricane events. Instrumental data were used as a basis for event generation, but importantly the statistical methods we applied permit

  17. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    Science.gov (United States)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-08-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  18. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  19. Large-scale Vertical Motions, Intensity Change and Precipitation Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    Science.gov (United States)

    Reddy, S. R.; Kwembe, T.; Zhang, Z.

    2016-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data for Convective Available Potential Energy for water vapor (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorm, tornadoes, storm surge and floods Numerical model (WRF/ARW) with data assimilations have been used for this research to investigate the model's performances on hurricane tracks and intensities associated with the hurricane Katrina, which began to strengthen until reaching Category 5 on 28 August 2005. The model was run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 hr periods, from August 28th to August 30th. The model output was compared with the observations and is capable of simulating the surface features, intensity change and track associated with hurricane Katrina.

  20. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  1. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  2. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  3. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    Science.gov (United States)

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  4. Predicting the hurricane damage ratio of commercial buildings by claim payout from Hurricane Ike

    OpenAIRE

    J. M. Kim; P. K. Woods; Y. J. Park; T. H. Kim; J. S. Choi; K. Son

    2013-01-01

    The increasing occurrence of natural disaster events and related damages have led to a growing demand for models that predict financial loss. Although considerable research has studied the financial losses related to natural disaster events, and has found significant predictors, there has not yet been a comprehensive study that addresses the relationship among the vulnerabilities, natural disasters, and economic losses of the individual buildings. This study...

  5. Caribbean Brain coral tracks the Atlantic Multidecadal Oscillation and Past Hurricane Intensity

    NARCIS (Netherlands)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-C.; Keenlyside, N.; Latif, M.; Zinke, J.

    2008-01-01

    It is highly debated whether global warming contributed to the strong hurricane activity observed during the last decade. The crux of the recent debate is the limited length of the reliable instrumental record that exacerbates the detection of possible long-term changes in hurricane activity, which

  6. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  7. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    Energy Technology Data Exchange (ETDEWEB)

    JUDI, DAVID [Los Alamos National Laboratory; KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY [Los Alamos National Laboratory; BERSCHEID, ALAN [Los Alamos National Laboratory

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  8. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Science.gov (United States)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  9. Impacts of cloud flare-ups on hurricane intensity resulting from departures from balance laws

    Directory of Open Access Journals (Sweden)

    T. N. Krishnamurti

    2012-05-01

    Full Text Available Cloud flare-ups along the inner eye wall of a hurricane lead to enhancement of cloud scale divergence, which in turn leads to a large local enhancement of the departure from balance laws and can lead to local supergradient winds. This scenario is tested using the results from a mesoscale microphysical model at horizontal resolution of 1.33 km for the simulation of hurricane Katrina. Rainwater mixing ratio tags growing cloud elements. The departure from balance laws includes terms such as the local, horizontal and vertical advections of divergence, divergence square and a term invoking the gradient of vertical velocity. It is noted that these terms collectively contribute to a substantial local enhancement of the departure from balance laws. Departures from balance laws are related to the radial gradient wind imbalances in a storm-centred coordinate. In this study, several examples, from the hurricane Katrina simulations, that display this scenario of rapid intensification are illustrated. Organisation of convection in the azimuthal direction seems important for the hurricane scale; cloud flare-ups away from such regions of azimuthal organisation fail to contribute to this scenario for the overall intensification of the hurricane.

  10. Avifauna response to hurricanes: regional changes in community similarity

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Chengquan Huang; Jeffrey G. Masek; Volker C. Radeloff

    2010-01-01

    Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does...

  11. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  12. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Directory of Open Access Journals (Sweden)

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  13. Spatial grids for hurricane climate research

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, James B.; Hodges, Robert E.; Jagger, Thomas H. [Florida State University, Tallahassee, FL (United States)

    2012-07-15

    The authors demonstrate a spatial framework for studying hurricane climatology. The framework consists of a spatial tessellation of the hurricane basin using equal-area hexagons. The hexagons are efficient at covering hurricane tracks and provide a scaffolding to combine attribute data from tropical cyclones with spatial climate data. The framework's utility is demonstrated using examples from recent hurricane seasons. Seasons that have similar tracks are quantitatively assessed and grouped. Regional cyclone frequency and intensity variations are mapped. A geographically-weighted regression of cyclone intensity on sea-surface temperature emphasizes the importance of a warm ocean in the intensification of cyclones over regions where the heat content is greatest. The largest differences between model predictions and observations occur near the coast. The authors suggest the framework is ideally suited for comparing tropical cyclones generated from different numerical simulations. (orig.)

  14. The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin.

    Science.gov (United States)

    Fedele, Francesco; Lugni, Claudio; Chawla, Arun

    2017-09-11

    We present a study on the prediction of rogue waves during the 1-hour sea state of Hurricane Joaquin when the Merchant Vessel El Faro sank east of the Bahamas on October 1, 2015. High-resolution hindcast of hurricane-generated sea states and wave simulations are combined with novel probabilistic models to quantify the likelihood of rogue wave conditions. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s prior to its sinking. As a result, we estimated that the probability that El Faro encounters a rogue wave whose crest height exceeds 14 meters while drifting over a time interval of 10 (50) minutes is ~1/400 (1/130). The largest simulated wave is generated by the constructive interference of elementary spectral components (linear dispersive focusing) enhanced by bound nonlinearities. Not surprisingly then, its characteristics are quite similar to those displayed by the Andrea, Draupner and Killard rogue waves.

  15. Enhanced outage prediction modeling for strong extratropical storms and hurricanes in the Northeastern United States

    Science.gov (United States)

    Cerrai, D.; Anagnostou, E. N.; Wanik, D. W.; Bhuiyan, M. A. E.; Zhang, X.; Yang, J.; Astitha, M.; Frediani, M. E.; Schwartz, C. S.; Pardakhti, M.

    2016-12-01

    The overwhelming majority of human activities need reliable electric power. Severe weather events can cause power outages, resulting in substantial economic losses and a temporary worsening of living conditions. Accurate prediction of these events and the communication of forecasted impacts to the affected utilities is necessary for efficient emergency preparedness and mitigation. The University of Connecticut Outage Prediction Model (OPM) uses regression tree models, high-resolution weather reanalysis and real-time weather forecasts (WRF and NCAR ensemble), airport station data, vegetation and electric grid characteristics and historical outage data to forecast the number and spatial distribution of outages in the power distribution grid located within dense vegetation. Recent OPM improvements consist of improved storm classification and addition of new predictive weather-related variables and are demonstrated using a leave-one-storm-out cross-validation based on 130 severe extratropical storms and two hurricanes (Sandy and Irene) in the Northeast US. We show that it is possible to predict the number of trouble spots causing outages in the electric grid with a median absolute percentage error as low as 27% for some storm types, and at most around 40%, in a scale that varies between four orders of magnitude, from few outages to tens of thousands. This outage information can be communicated to the electric utility to manage allocation of crews and equipment and minimize the recovery time for an upcoming storm hazard.

  16. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    OpenAIRE

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-01-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual bu...

  17. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  18. NOAA predicts near-normal or below-normal 2014 Atlantic hurricane season

    Science.gov (United States)

    Related link: Atlantic Basin Hurricane Season Outlook Discussion El Niño/Southern Oscillation (ENSO ) Diagnostic Discussion National Hurricane Preparedness Week FEMA Media Contact Maureen O'Leary 301-427-9000 tips, along with video and audio public service announcements in both English and Spanish, featuring

  19. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    Data.gov (United States)

    National Aeronautics and Space Administration — A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY...

  20. Estimation of turbulence characteristics of the low-level eyewall and outer-core regions in intense Hurricanes Allen (1980) and Hugo (1989)

    Science.gov (United States)

    Zhang, J. A.; Marks, F. D.; Montgomery, M.; Lorsolo, S.

    2010-12-01

    Turbulent transport processes in the atmospheric boundary layer play an important role in the intensification and maintenance of a hurricane vortex. However, direct measurement of turbulence in the hurricane boundary layer has been scarce. This study analyzes the flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989) and Category 4 Hurricane Allen (1980) between 1 km and the sea surface. Momentum flux, turbulent kinetic energy (TKE) and vertical eddy diffusivity are estimated before and during the eyewall penetrations. Spatial scales of turbulent eddies are determined through spectral analysis. The turbulence parameters estimated for the eyewall penetration leg are found to be nearly an order of magnitude larger than those for the leg outside the eyewall at similar altitudes. In the low-level intense eyewall region, the horizontal length scale of dominant turbulent eddies is found to be between 500 - 3000 m and the corresponding vertical length scale is approximately 100 - 200 m. The results suggest also that it is unwise to include the eyewall vorticity maximum (EVM) in the turbulence parameter estimation, since the EVMs are likely to be quasi two-dimensional vortex structures that are embedded within the three dimensional turbulence on the inside edge of the eyewall.

  1. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  2. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    Science.gov (United States)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  3. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  4. Ocean Observing Public-Private Collaboration to Improve Tropical Storm and Hurricane Predictions in the Gulf of Mexico

    Science.gov (United States)

    Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.

    2016-02-01

    In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets

  5. Neural processing of emotional-intensity predicts emotion regulation choice.

    Science.gov (United States)

    Shafir, Roni; Thiruchselvam, Ravi; Suri, Gaurav; Gross, James J; Sheppes, Gal

    2016-12-01

    Emotional-intensity is a core characteristic of affective events that strongly determines how individuals choose to regulate their emotions. Our conceptual framework suggests that in high emotional-intensity situations, individuals prefer to disengage attention using distraction, which can more effectively block highly potent emotional information, as compared with engagement reappraisal, which is preferred in low emotional-intensity. However, existing supporting evidence remains indirect because prior intensity categorization of emotional stimuli was based on subjective measures that are potentially biased and only represent the endpoint of emotional-intensity processing. Accordingly, this study provides the first direct evidence for the role of online emotional-intensity processing in predicting behavioral regulatory-choices. Utilizing the high temporal resolution of event-related potentials, we evaluated online neural processing of stimuli's emotional-intensity (late positive potential, LPP) prior to regulatory-choices between distraction and reappraisal. Results showed that enhanced neural processing of intensity (enhanced LPP amplitudes) uniquely predicted (above subjective measures of intensity) increased tendency to subsequently choose distraction over reappraisal. Additionally, regulatory-choices led to adaptive consequences, demonstrated in finding that actual implementation of distraction relative to reappraisal-choice resulted in stronger attenuation of LPPs and self-reported arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  7. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    model was run to predict the effects of Sandy-like and Irene-like hurricanes with different storm tracks and wind intensities on wetland morphology in Jamaica Bay. Model results indicate that, in Jamaica Bay salt marshes, the morphological changes (greater than 5 millimeters [mm] determined by the long-term marsh accretion rate) caused by Hurricane Sandy were complex and spatially heterogeneous. Most of the erosion (5–40 mm) and deposition (5–30 mm) were mainly characterized by fine sand for channels and bay bottoms and by mud for marsh areas. Hurricane Sandy-generated deposition and erosion were generated locally. The storm-induced net sediment input through Rockaway Inlet was only about 1 percent of the total amount of the sediment reworked by the hurricane. Salt marshes inside the western part of the bay showed erosion overall while marshes inside the eastern part showed deposition from Hurricane Sandy. Model results indicated that most of the marshes could recover from Hurricane Sandy-induced erosion after 1 year and demonstrated continued marsh accretion after the hurricane over the course of long simulation periods although the effect (accretion) was diminished. Local waves and currents generated by Hurricane Sandy appeared to play a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Hypothetical hurricanes, depending on their track and intensity, cause variable responses in spatial patterns of sediment deposition and erosion compared to simulations without the hurricane. In general, hurricanes passing west of the Jamaica Bay estuary appear to be more destructive to the salt marshes than those passing the east. Consequently, marshes inside the western part of the bay were likely to be more vulnerable to hurricanes than marshes inside the eastern part of the bay. 

  8. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  9. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  10. Efficacy beliefs predict collaborative practice among intensive care unit nurses

    NARCIS (Netherlands)

    Le Blanc, Pascale M.; Schaufeli, Wilmar B.; Salanova, Marisa; Llorens, Susana; Nap, Raoul E.

    P>Aim. This paper is a report of an investigation of whether intensive care nurses' efficacy beliefs predict future collaborative practice, and to test the potential mediating role of team commitment in this relationship. Background. Recent empirical studies in the field of work and organizational

  11. Hurricane Katrina and climate change

    International Nuclear Information System (INIS)

    Ferrara, Vincenzo

    2005-01-01

    Serious and widely reported scientific analyses and assessments have called attention to climate changes and to the additional risks the world now faces. Through science has not yet provided proof positive of a connection between the increased intensity of extreme weather events and climate change, there can be no valid reason for failing to hedge the risk with preventive action. The catastrophe that struck New Orleans had can been predicted since the 1990s. The 2050 Coast Plan for reducing the vulnerability of the Louisiana coast and preventing hurricane disasters had been approved by the local authorities but not the federal government. Partly because of its cost, it was never carried into effect [it

  12. Taming the Hurricane of Acquisition Cost Growth - Or at Least Predicting It

    Science.gov (United States)

    2015-01-01

    the practice of generating two different cost estimates dubbed Will Cost and Should Cost. The Should Cost estimate is “based on realistic tech...to predict estimate error in similar future programs. This method is dubbed “macro-stochastic” estimation (Ryan, Schubert Kabban, Jacques...mph Potential Day 1-3 Track Area Tropical Storm Warning OK AR TN AL FL Mexico MS LA TX 30 N 35 N 25 N 95 W 90 W 85 W 80 W True at 30.00N Approx

  13. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    , waves and currents in hurricanes can be useful for intensity prediction, which has had relatively few improvements in the past 25 years. In 2018 RADARSAT Constellation Mission will be launched, increasing SAR coverage by 10×, allowing increased observations during the next hurricane season.

  14. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  15. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  16. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    Science.gov (United States)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus

  17. A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005 Simulation

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2011-06-01

    Full Text Available The life cycle of Hurricane Katrina (2005 was simulated using three different modeling systems of Weather Research and Forecasting (WRF mesoscale model. These are, HWRF (Hurricane WRF designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW model and the Non-hydrostatic Mesoscale Model (NMM. The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR, incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina.

  18. Identification of Caribbean basin hurricanes from Spanish documentary sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herrera, R. [Depto. Fisica de la Tierra II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gimeno, L. [Universidad de Vigo, Ourense (Spain); Ribera, P.; Gonzalez, E.; Fernandez, G. [Universidad Pablo de Olavide, Sevilla (Spain); Hernandez, E. [Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-15

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurricane activity. The documents provide detailed descriptions of a hurricane's impacts and allow us to identify previously unreported hurricanes, obtain more precise dates for hurricanes previously identified, better define the area affected by a given hurricane and, finally, better assess a hurricane's intensity.

  19. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  20. On the Influence of Global Warming on Atlantic Hurricane Frequency

    Science.gov (United States)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  1. Genesis of tornadoes associated with hurricanes

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  2. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  3. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    Science.gov (United States)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  4. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    Science.gov (United States)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane

  5. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  6. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  7. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  8. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  9. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir

    2017-01-01

    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  10. ON THE INFLUENCE OF GLOBAL WARMING ON ATLANTIC HURRICANE FREQUENCY

    Directory of Open Access Journals (Sweden)

    S. R. Hosseini

    2018-04-01

    Full Text Available In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane’s intensity and Sea Surface Temperature (SST has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR. The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82. In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  11. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    Science.gov (United States)

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  12. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    Science.gov (United States)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  13. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  14. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  15. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    Science.gov (United States)

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  16. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; David S. Nolan; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  17. Various scoring systems for predicting mortality in Intensive Care Unit

    African Journals Online (AJOL)

    2015-12-07

    Dec 7, 2015 ... Mortality rate was higher in patients admitted from wards other than surgery ... evaluate the predictability of various severity of illness scores, and ..... Livingston BM, MacKirdy FN, Howie JC, Jones R, Norrie JD. Assessment of.

  18. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  19. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  20. Sensitivity of Simulated Cyclone Gonu Intensity and Track to Variety ...

    Indian Academy of Sciences (India)

    57

    improvement in simulated intensity, an accuracy reduction in simulated track was observed. Increasing ... improve the prediction of the TC Gonu using the Advanced Hurricane WRF (AHW) model. For the first time, ...... World Meteorological Organization (2014) Tropical cyclone operational plan for the Bay of. Bengal and the ...

  1. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; hide

    2010-01-01

    rain. Potential impact on numerical prediction of hurricane intensity will also be discussed.

  2. Probabilistic fuzzy prediction of mortality in intensive care units

    NARCIS (Netherlands)

    Fialho, A.T.S.; Kaymak, U.; Almeida, R.J.; Cismondi, F.; Vieira, S.M.; Reti, S.R.; Costa Sousa, da J.M.; Finkelstein, S.N.; Bouchon-Meunier, B.

    2012-01-01

    In the present work, we propose the application of probabilistic fuzzy systems (PFS) to model the prediction of mortality in septic shock patients. This technique is characterized by the combination of the linguistic description of the system with the statistical properties of data. Preliminary

  3. The Challenge of Predicting the Occurrence of Intense Storms ...

    Indian Academy of Sciences (India)

    weather. 1. Introduction. Space weather prediction involves forecasting of the magnitude and the time of the ... they depend solely on interplanetary (IP) parameters, viz., the solar wind speed and the southward compo- ... about 30 to 60 minutes of warning time as it measures the solar wind properties at the L1 point. A longer ...

  4. An intense Nigerian stock exchange market prediction using logistic ...

    African Journals Online (AJOL)

    This paper is a continuation of our research work on the Nigerian Stock Exchange Market (NSEM) uncertainties, In our previous work (Magaji et al, 2013) we presented the Naive Bayes and SVM-SMO algorithms as a tools for predicting the Nigerian Stock Exchange Market; subsequently we used the same transformed data ...

  5. The Repopulation of New Orleans After Hurricane Katrina

    National Research Council Canada - National Science Library

    McCarthy, Kevin; Peterson, D. J; Sastry, Narayan; Pollard, Michael

    2006-01-01

    What the future size and composition of the population of New Orleans will be in the aftermath of Hurricane Katrina is a topic of intense interest and discussion among current and displaced residents of the city...

  6. Physical aspects of Hurricane Hugo in Puerto Rico

    Science.gov (United States)

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  7. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: A case study in Macon County, North Carolina

    Science.gov (United States)

    Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R.

    2011-01-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS' predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan's passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each

  8. Biometeorological and autoregressive indices for predicting olive pollen intensity.

    Science.gov (United States)

    Oteros, J; García-Mozo, H; Hervás, C; Galán, C

    2013-03-01

    This paper reports on modelling to predict airborne olive pollen season severity, expressed as a pollen index (PI), in Córdoba province (southern Spain) several weeks prior to the pollen season start. Using a 29-year database (1982-2010), a multivariate regression model based on five indices-the index-based model-was built to enhance the efficacy of prediction models. Four of the indices used were biometeorological indices: thermal index, pre-flowering hydric index, dormancy hydric index and summer index; the fifth was an autoregressive cyclicity index based on pollen data from previous years. The extreme weather events characteristic of the Mediterranean climate were also taken into account by applying different adjustment criteria. The results obtained with this model were compared with those yielded by a traditional meteorological-based model built using multivariate regression analysis of simple meteorological-related variables. The performance of the models (confidence intervals, significance levels and standard errors) was compared, and they were also validated using the bootstrap method. The index-based model built on biometeorological and cyclicity indices was found to perform better for olive pollen forecasting purposes than the traditional meteorological-based model.

  9. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  10. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Science.gov (United States)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  11. Geologic record of Hurricane impacts on the New Jersey coast

    Science.gov (United States)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  12. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  13. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  14. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  15. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  16. Examining Hurricane Track Length and Stage Duration Since 1980

    Science.gov (United States)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  17. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  18. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  19. Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye

    Science.gov (United States)

    Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.

    1995-08-01

    In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.

  20. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  1. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  2. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  3. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Science.gov (United States)

    Borcherdt, Roger D.; Gibbs, James F.

    1975-01-01

    The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.

  4. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1975-01-01

    The intensity data for the California earthquake of Apr 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan formation is intensity = 2.69 - 1.90 log (distance) (km). For sites on other geologic units, intensity increments, derived with respect to this empirical relation, correlate strongly with the average horizontal spectral amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is intensity increment = 0.27 + 2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan formation, 0.64 for the Great Valley sequence, 0.82 for Santa Clara formation, 1.34 for alluvium, and 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  5. Phenobarbital in intensive care unit pediatric population: predictive performances of population pharmacokinetic model.

    Science.gov (United States)

    Marsot, Amélie; Michel, Fabrice; Chasseloup, Estelle; Paut, Olivier; Guilhaumou, Romain; Blin, Olivier

    2017-10-01

    An external evaluation of phenobarbital population pharmacokinetic model described by Marsot et al. was performed in pediatric intensive care unit. Model evaluation is an important issue for dose adjustment. This external evaluation should allow confirming the proposed dosage adaptation and extending these recommendations to the entire intensive care pediatric population. External evaluation of phenobarbital published population pharmacokinetic model of Marsot et al. was realized in a new retrospective dataset of 35 patients hospitalized in a pediatric intensive care unit. The published population pharmacokinetic model was implemented in nonmem 7.3. Predictive performance was assessed by quantifying bias and inaccuracy of model prediction. Normalized prediction distribution errors (NPDE) and visual predictive check (VPC) were also evaluated. A total of 35 infants were studied with a mean age of 33.5 weeks (range: 12 days-16 years) and a mean weight of 12.6 kg (range: 2.7-70.0 kg). The model predicted the observed phenobarbital concentrations with a reasonable bias and inaccuracy. The median prediction error was 3.03% (95% CI: -8.52 to 58.12%), and the median absolute prediction error was 26.20% (95% CI: 13.07-75.59%). No trends in NPDE and VPC were observed. The model previously proposed by Marsot et al. in neonates hospitalized in intensive care unit was externally validated for IV infusion administration. The model-based dosing regimen was extended in all pediatric intensive care unit to optimize treatment. Due to inter- and intravariability in pharmacokinetic model, this dosing regimen should be combined with therapeutic drug monitoring. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  6. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  7. It Takes Two: NASA and NOAA's Shared Path of Hurricane Science Flights with the Global Hawk. Time for the Research To Operations (R2O) Transition?

    Science.gov (United States)

    Emory, A. E.; Wick, G. A.; Dunion, J. P.; McLinden, M.; Schreier, M. M.; Black, P.; Hood, R. E.; Sippel, J.; Tallapragada, V.

    2017-12-01

    The impacts of Harvey, Irma, and Maria during the 2017 Atlantic hurricane season re-emphasized the critical need for accurate operational forecasts. The combined NASA East Pacific Origins and Characteristics of Hurricanes (EPOCH) and NOAA UAS field campaign during August 2017 was the fourth campaign in a series of dual agency partnerships between NASA and NOAA to improve forecasting accuracy in tropical cyclogenesis and rapid intensification. A brief history of Global Hawk (GH) hurricane field campaigns, including GRIP (2010), HS3 (2012-2014), NOAA-SHOUT (2015-2016) and EPOCH (2017), will show the incremental steps taken over the last eight years to bring the GH from a research platform to a candidate for operational hurricane reconnaissance. GH dropsondes were assimilated into the ECMWF and HWRF forecast models during the 2015-2016 NOAA SHOUT campaigns. EPOCH marked the first time that GH dropsondes were assimilated in real-time into NOAA's GFS forecast model. Early results show that assimilating dropsonde data significantly increases skill in predicting intensity change, which is game changing since the National Hurricane Center intensity error trend has remained virtually unchanged, particularly at 24 hours, over the last 25 years. The results from the past few years suggest that a paradigm shift of sampling the environment with a high-altitude, long-duration UAS like the GH that is capable of deploying up to 90 dropsondes ahead of and over the top of a developing or strengthening tropical cyclone could produce the best return on hurricane forecast predictions in subsequent years. Recommendations for the future, including lessons learned and the potential for R2O transition will be discussed.

  8. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  9. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  10. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  11. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Energy Technology Data Exchange (ETDEWEB)

    Makarieva, A.M., E-mail: ammakarieva@gmail.co [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Gorshkov, V.G. [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    2011-02-14

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  12. Microseisms from Hurricane "Hilda".

    Science.gov (United States)

    De Bremaecker, J C

    1965-06-25

    As hurricane "Hilda" crossed the Gulf of Mexico the dominant period of the microseisms shifted from about 8 to 5 seconds as the eye reached water about 150 to 200 meters deep. The conversion of wind energy to microseismic energy is most efficient in water depths from 20 to 200 meters. There is no evidence that two periods, one twice the other, are present.

  13. Case Study of Hurricane Felix (2007) Rapid Intensification

    Science.gov (United States)

    Colon-Pagan, I. C.; Davis, C. A.; Holland, G. J.

    2010-12-01

    The forecasting of tropical cyclones (TC) rapid intensification (RI) is one of the most challenging problems that the operational community experiences. Research advances leading to improvements in predicting this phenomenon would help government agencies make decisions that could reduce the impact on communities that are so often affected by these weather-related events. It has been proposed that TC RI is associated to various factors, including high sea-surface temperatures, weak vertical wind shear, and the ratio of inertial to static stability, which improves the conversion of diabatic heating into circulation. While a cyclone develops, the size of the region of high inertial stability (IS) decreases whereas the magnitude of IS increases. However, it’s unknown whether this is a favorable condition or a result of RI occurrences. The purpose of this research, therefore, is to determine if the IS follows, leads or changes in sync with the intensity change by studying Hurricane Felix (2007) RI phase. Results show a trend of increasing IS before the RI stage, followed by an expansion of the region of high IS. This episode is eventually followed by a decrease in both the intensity and region of positive IS, while the maximum wind speed intensity of the TC diminished. Therefore, we propose that monitoring the IS may provide a forecast tool to determine RI periods. Other parameters, such as static stability, tangential wind, and water vapor mixing ratio may help identify other features of the storm, such as circulation and eyewall formation. The inertial stability (IS) trend during the period of rapid intensification, which occurred between 00Z and 06Z of September 3rd. Maximum values of IS were calculated before and during this period of RI within a region located 30-45 km from the center. In fact, this region could represent the eye-wall of Hurricane Felix.

  14. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons

    Directory of Open Access Journals (Sweden)

    Kerry Milch

    2018-01-01

    Full Text Available Although the field has seen great advances in hurricane prediction and response, the economic toll from hurricanes on U.S. communities continues to rise. We present data from Hurricanes Earl (2010, Irene (2011, Isaac (2012, and Sandy (2012 to show that individual and household decisions contribute to this vulnerability. From phone surveys of residents in communities threatened by impending hurricanes, we identify five decision biases or obstacles that interfere with residents’ ability to protect themselves and minimize property damage: (1 temporal and spatial myopia, (2 poor mental models of storm risk, (3 gaps between objective and subjective probability estimates, (4 prior storm experience, and (5 social factors. We then discuss ways to encourage better decision making and reduce the economic and emotional impacts of hurricanes, using tools such as decision defaults (requiring residents to opt out of precautions rather than opt in and tailoring internet-based forecast information so that it is local, specific, and emphasizes impacts rather than probability.

  15. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Science.gov (United States)

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  16. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NARCIS (Netherlands)

    Lammers, J. M.; van Soelen, E.; Liebrand, D.; Donders, T.; Reichart, G. J.

    2009-01-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the

  17. Red-cockaded woodpecker cavity-tree damage by Hurricane Rita: an evaluation of contributing factors

    Science.gov (United States)

    Ben Bainbridge; Kristen A. Baum; Daniel Saenz; Cory K. Adams

    2011-01-01

    Picoides borealis (Red-cockaded Woodpecker) is an endangered species inhabiting pine savannas of the southeastern United States. Because the intensity of hurricanes striking the southeastern United States is likely to increase as global temperatures rise, it is important to identify factors contributing to hurricane damage to Red-cockaded Woodpecker cavity-trees. Our...

  18. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  19. Prediction of chronic critical illness in a general intensive care unit

    Directory of Open Access Journals (Sweden)

    Sérgio H. Loss

    2013-06-01

    Full Text Available OBJECTIVE: To assess the incidence, costs, and mortality associated with chronic critical illness (CCI, and to identify clinical predictors of CCI in a general intensive care unit. METHODS: This was a prospective observational cohort study. All patients receiving supportive treatment for over 20 days were considered chronically critically ill and eligible for the study. After applying the exclusion criteria, 453 patients were analyzed. RESULTS: There was an 11% incidence of CCI. Total length of hospital stay, costs, and mortality were significantly higher among patients with CCI. Mechanical ventilation, sepsis, Glasgow score < 15, inadequate calorie intake, and higher body mass index were independent predictors for cci in the multivariate logistic regression model. CONCLUSIONS: CCI affects a distinctive population in intensive care units with higher mortality, costs, and prolonged hospitalization. Factors identifiable at the time of admission or during the first week in the intensive care unit can be used to predict CCI.

  20. Predicting the effects of organ motion on the dose delivered by dynamic intensity modulation

    International Nuclear Information System (INIS)

    Yu, C.X.; Jaffray, David; Martinez, A.A.; Wong, J.W.

    1997-01-01

    Purpose: Computer-optimized treatment plans, aimed to enhance tumor control and reduce normal tissue complication, generally require non-uniform beam intensities. One of the techniques for delivering intensity-modulated beams is the use of dynamic multileaf collimation, where the beam aperture and field shape change during irradiation. When intensity-modulated beams are delivered with dynamic collimation, intra-treatment organ motion may not only cause geometric misses at the field boundaries but also create hot and cold spots in the target. The mechanism for producing such effects has not been well understood. This study analyzes the dosimetric effects of intra-treatment organ motion on dynamic intensity modulation. A numerical method is developed for predicting the intensity distributions in a moving target before dose is delivered with dynamic intensity modulation. Material and Methods: In the numerical algorithm, the change in position and shape of the beam aperture with time were modeled as a three-dimensional 'tunnel', with the shape of the field aperture described in the x-y plane and its temporal position shown in the z-dimension. A point in the target had to be in the tunnel in order to receive irradiation and the dose to the point was proportional to the amount of time that this point stayed in the tunnel. Since each point in the target were analyzed separately, non-rigid body variations could easily be handled. The dependency of the dose variations on all parameters involved, including the speed of collimator motion, the frequency and amplitude of the target motion, and the size of the field segments, was analyzed. The algorithm was verified by irradiating moving phantoms with beams of dynamically modulated intensities. Predictions were also made for a treatment of a thoracic tumor using a dynamic wedge. The changes of target position with time were based on the MRI images of the chest region acquired using fast MRI scans in a cine fashion for a duration

  1. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.

    Science.gov (United States)

    Awad, Aya; Bader-El-Den, Mohamed; McNicholas, James; Briggs, Jim

    2017-12-01

    Mortality prediction of hospitalized patients is an important problem. Over the past few decades, several severity scoring systems and machine learning mortality prediction models have been developed for predicting hospital mortality. By contrast, early mortality prediction for intensive care unit patients remains an open challenge. Most research has focused on severity of illness scoring systems or data mining (DM) models designed for risk estimation at least 24 or 48h after ICU admission. This study highlights the main data challenges in early mortality prediction in ICU patients and introduces a new machine learning based framework for Early Mortality Prediction for Intensive Care Unit patients (EMPICU). The proposed method is evaluated on the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database. Mortality prediction models are developed for patients at the age of 16 or above in Medical ICU (MICU), Surgical ICU (SICU) or Cardiac Surgery Recovery Unit (CSRU). We employ the ensemble learning Random Forest (RF), the predictive Decision Trees (DT), the probabilistic Naive Bayes (NB) and the rule-based Projective Adaptive Resonance Theory (PART) models. The primary outcome was hospital mortality. The explanatory variables included demographic, physiological, vital signs and laboratory test variables. Performance measures were calculated using cross-validated area under the receiver operating characteristic curve (AUROC) to minimize bias. 11,722 patients with single ICU stays are considered. Only patients at the age of 16 years old and above in Medical ICU (MICU), Surgical ICU (SICU) or Cardiac Surgery Recovery Unit (CSRU) are considered in this study. The proposed EMPICU framework outperformed standard scoring systems (SOFA, SAPS-I, APACHE-II, NEWS and qSOFA) in terms of AUROC and time (i.e. at 6h compared to 48h or more after admission). The results show that although there are many values missing in the first few hour of ICU admission

  2. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  3. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  4. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    International Nuclear Information System (INIS)

    Balaguru, Karthik; Ruby Leung, L; Yoon, Jin-ho

    2013-01-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north–south demarcation are considered rather than the basin as a whole. (letter)

  5. A Reliable and Valid Survey to Predict a Patient’s Gagging Intensity

    Directory of Open Access Journals (Sweden)

    Casey M. Hearing

    2014-07-01

    Full Text Available Objectives: The aim of this study was to devise a reliable and valid survey to predict the intensity of someone’s gag reflex. Material and Methods: A 10-question Predictive Gagging Survey was created, refined, and tested on 59 undergraduate participants. The questions focused on risk factors and experiences that would indicate the presence and strength of someone’s gag reflex. Reliability was assessed by administering the survey to a group of 17 participants twice, with 3 weeks separating the two administrations. Finally, the survey was given to 25 dental patients. In these cases, patients completed an informed consent form, filled out the survey, and then had a maxillary impression taken while their gagging response was quantified from 1 to 5 on the Fiske and Dickinson Gagging Intensity Index. Results: There was a moderate positive correlation between the Predictive Gagging Survey and Fiske and Dickinson’s Gagging Severity Index, r = +0.64, demonstrating the survey’s validity. Furthermore, the test-retest reliability was r = +0.96, demonstrating the survey’s reliability. Conclusions: The Predictive Gagging Survey is a 10-question survey about gag-related experiences and behaviours. We established that it is a reliable and valid method to assess the strength of someone’s gag reflex.

  6. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  7. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  8. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  9. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  10. Beyond intensity: Spectral features effectively predict music-induced subjective arousal.

    Science.gov (United States)

    Gingras, Bruno; Marin, Manuela M; Fitch, W Tecumseh

    2014-01-01

    Emotions in music are conveyed by a variety of acoustic cues. Notably, the positive association between sound intensity and arousal has particular biological relevance. However, although amplitude normalization is a common procedure used to control for intensity in music psychology research, direct comparisons between emotional ratings of original and amplitude-normalized musical excerpts are lacking. In this study, 30 nonmusicians retrospectively rated the subjective arousal and pleasantness induced by 84 six-second classical music excerpts, and an additional 30 nonmusicians rated the same excerpts normalized for amplitude. Following the cue-redundancy and Brunswik lens models of acoustic communication, we hypothesized that arousal and pleasantness ratings would be similar for both versions of the excerpts, and that arousal could be predicted effectively by other acoustic cues besides intensity. Although the difference in mean arousal and pleasantness ratings between original and amplitude-normalized excerpts correlated significantly with the amplitude adjustment, ratings for both sets of excerpts were highly correlated and shared a similar range of values, thus validating the use of amplitude normalization in music emotion research. Two acoustic parameters, spectral flux and spectral entropy, accounted for 65% of the variance in arousal ratings for both sets, indicating that spectral features can effectively predict arousal. Additionally, we confirmed that amplitude-normalized excerpts were adequately matched for loudness. Overall, the results corroborate our hypotheses and support the cue-redundancy and Brunswik lens models.

  11. Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region

    International Nuclear Information System (INIS)

    Han, S.-R.; Guikema, Seth D.; Quiring, Steven M.; Lee, Kyung-Ho; Rosowsky, David; Davidson, Rachel A.

    2009-01-01

    Hurricanes have caused severe damage to the electric power system throughout the Gulf coast region of the US, and electric power is critical to post-hurricane disaster response as well as to long-term recovery for impacted areas. Managing power outage risk and preparing for post-storm recovery efforts requires accurate methods for estimating the number and location of power outages. This paper builds on past work on statistical power outage estimation models to develop, test, and demonstrate a statistical power outage risk estimation model for the Gulf Coast region of the US. Previous work used binary hurricane-indicator variables representing particular hurricanes in order to achieve a good fit to the past data. To use these models for predicting power outages during future hurricanes, one must implicitly assume that an approaching hurricane is similar to the average of the past hurricanes. The model developed in this paper replaces these indicator variables with physically measurable variables, enabling future predictions to be based on only well-understood characteristics of hurricanes. The models were developed using data about power outages during nine hurricanes in three states served by a large, investor-owned utility company in the Gulf Coast region

  12. Topography and geology site effects from the intensity prediction model (ShakeMap) for Austria

    Science.gov (United States)

    del Puy Papí Isaba, María; Jia, Yan; Weginger, Stefan

    2017-04-01

    The seismicity in Austria can be categorized as moderated. Despite the fact that the hazard seems to be rather low, earthquakes can cause great damage and losses, specially in densely populated and industrialized areas. It is well known, that equations which predict intensity as a function of magnitude and distance, among other parameters, are useful tool for hazard and risk assessment. Therefore, this study aims to determine an empirical model of the ground shaking intensities (ShakeMap) of a series of earthquakes occurred in Austria between 1000 and 2014. Furthermore, the obtained empirical model will lead to further interpretation of both, contemporary and historical earthquakes. A total of 285 events, which epicenters were located in Austria, and a sum of 22.739 reported macreoseismic data points from Austria and adjoining countries, were used. These events are enclosed in the period 1000-2014 and characterized by having a local magnitude greater than 3. In the first state of the model development, the data was careful selected, e.g. solely intensities equal or greater than III were used. In a second state the data was adjusted to the selected empirical model. Finally, geology and topography corrections were obtained by means of the model residuals in order to derive intensity-based site amplification effects.

  13. Complex data modeling and computationally intensive methods for estimation and prediction

    CERN Document Server

    Secchi, Piercesare; Advances in Complex Data Modeling and Computational Methods in Statistics

    2015-01-01

    The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held...

  14. A diary of hurricane Hugo.

    Science.gov (United States)

    Counts, C S

    1989-12-01

    Charleston, South Carolina was the recent victim of Hurricane Hugo. This article recalls the events that occurred before, during, and after the hurricane struck. The focus is on four outpatient dialysis units in that area. It is a story from which others may learn more about emergency preparedness.

  15. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.

  16. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Science.gov (United States)

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  17. Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains

    Science.gov (United States)

    Kniowski, Andrew B.; Ford, W. Mark

    2018-01-01

    In eastern North America, white-tailed deer (Odocoileus virginianus) can have profound influences on forest biodiversity and forest successional processes. Moderate to high deer populations in the central Appalachians have resulted in lower forest biodiversity. Legacy effects in some areas persist even following deer population reductions or declines. This has prompted managers to consider deer population management goals in light of policies designed to support conservation of biodiversity and forest regeneration while continuing to support ample recreational hunting opportunities. However, despite known relationships between herbivory intensity and biodiversity impact, little information exists on the predictability of herbivory intensity across the varied and spatially diverse habitat conditions of the central Appalachians. We examined the predictability of browsing rates across central Appalachian landscapes at four environmental scales: vegetative community characteristics, physical environment, habitat configuration, and local human and deer population demographics. In an information-theoretic approach, we found that a model fitting the number of stems browsed relative to local vegetation characteristics received most (62%) of the overall support of all tested models assessing herbivory impact. Our data suggest that deer herbivory responded most predictably to differences in vegetation quantity and type. No other spatial factors or demographic factors consistently affected browsing intensity. Because herbivory, vegetation communities, and productivity vary spatially, we suggest that effective broad-scale herbivory impact assessment should include spatially-balanced vegetation monitoring that accounts for regional differences in deer forage preference. Effective monitoring is necessary to avoid biodiversity impacts and deleterious changes in vegetation community composition that are difficult to reverse and/or may not be detected using traditional deer

  18. Measuring the Storm: Methods of Quantifying Hurricane Exposure in Public Health

    Science.gov (United States)

    Increasing coastal populations and storm intensity may lead to more adverse health effects from tropical storms and hurricanes. Exposure during pregnancy can influence birth outcomes through mechanisms related to healthcare, infrastructure disruption, stress, nutrition, and inju...

  19. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers

  20. Evaluation of the predictive indices for candidemia in an adult intensive care unit

    Directory of Open Access Journals (Sweden)

    Gilberto Gambero Gaspar

    2015-02-01

    Full Text Available INTRODUCTION: To evaluate predictive indices for candidemia in an adult intensive care unit (ICU and to propose a new index. METHODS: A prospective cohort study was conducted between January 2011 and December 2012. This study was performed in an ICU in a tertiary care hospital at a public university and included 114 patients staying in the adult ICU for at least 48 hours. The association of patient variables with candidemia was analyzed. RESULTS: There were 18 (15.8% proven cases of candidemia and 96 (84.2% cases without candidemia. Univariate analysis revealed the following risk factors: parenteral nutrition, severe sepsis, surgical procedure, dialysis, pancreatitis, acute renal failure, and an APACHE II score higher than 20. For the Candida score index, the odds ratio was 8.50 (95% CI, 2.57 to 28.09; the sensitivity, specificity, positive predictive value, and negative predictive value were 0.78, 0.71, 0.33, and 0.94, respectively. With respect to the clinical predictor index, the odds ratio was 9.45 (95%CI, 2.06 to 43.39; the sensitivity, specificity, positive predictive value, and negative predictive value were 0.89, 0.54, 0.27, and 0.96, respectively. The proposed candidemia index cutoff was 8.5; the sensitivity, specificity, positive predictive value, and negative predictive value were 0.77, 0.70, 0.33, and 0.94, respectively. CONCLUSIONS: The Candida score and clinical predictor index excluded candidemia satisfactorily. The effectiveness of the candidemia index was comparable to that of the Candida score.

  1. Ecohydrological Responses to Hurricane Harvey across South-Central Texas a Multidisciplinary Approach of the Texas Water Observatory

    Science.gov (United States)

    Jaimes, A.; Gaur, N.; Aparecido, L. M. T.; Everett, M. E.; Knappett, P.; Lawing, M.; Majumder, S.; Miller, G. R.; Moore, G. W.; Morgan, C.; Mitra, B.; Noormets, A.; Mohanty, B.

    2017-12-01

    The unprecedented destructive hurricane Harvey struck eastern Texas from August 25th to 29th, 2017. As the hurricane moved through the region, it dropped the equivalent of one year of precipitation within a five-day period, with peak accumulations near 165 cm. Rainfall intensity and distribution varied across the region but Harris County and portions of the lower Brazos River Basin experienced devastating flooding due to high run-off and water accumulation in the built-up area. In this study, we use a multidisciplinary approach to quantify the dynamics of carbon and water flux at different spatiotemporal resolution across land types both in and outside of the path of hurricane Harvey using a combination of remote sensing and fixed monitoring platforms of the Texas Water Observatory (TWO). We used LANDSAT imagery to compute Soil Adjusted Vegetation Index, Enhanced Vegetation Index, and Normalized Difference Moisture Index. MODIS ET, GPP, and sap flow data were used in combination with eddy covariance and meteorological data from seven sites of the TWO representative of biomes ranging from low tidal salt marsh of the Gulf Coastal Plain, Shrubland, Improved Pasture, Mixed and Native Prairies, and Crop sites. We hypothesize alteration in ecohydrological characteristics across land types, which were in the path of hurricane due to changes in vegetation structure. Specifically we used trend analysis to detect structural changes in temporal dynamics of sap flow, ET, and carbon to pulse response. In addition, we monitored trace metal concentration of soil and water pores before and immediately after the hurricane in order to predict the potential of any of the toxic metal (loid)s being mobilized in the natural water resources as a function of the changes in the redox gradient. Preliminary results indicated that tree water use was reduced on average 30% below normal days. Porewater concentration of some of the metal (loid) concentration increased (Fe, Mn, Co, As, Sb, Pb

  2. JLAB Hurricane recovery

    International Nuclear Information System (INIS)

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-01-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail

  3. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    OpenAIRE

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS A...

  4. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    Directory of Open Access Journals (Sweden)

    Eva Guérin

    2012-01-01

    Full Text Available There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P<.05 but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  5. Situational motivation and perceived intensity: their interaction in predicting changes in positive affect from physical activity.

    Science.gov (United States)

    Guérin, Eva; Fortier, Michelle S

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  6. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  7. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  8. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values.

    Science.gov (United States)

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were generated. Based on the consensus of the two observers, 15.6% of sites were of low bone density, 47.9% were of intermediate density, and 36.5% were of high density. Receiver-operating characteristic analysis showed that CBCT intensity values had a high predictive power for predicting high density sites (area under the curve [AUC] =0.94, P < 0.005) and intermediate density sites (AUC = 0.81, P < 0.005). The best cut-off value for intensity to predict intermediate density sites was 218 (sensitivity = 0.77 and specificity = 0.76) and the best cut-off value for intensity to predict high density sites was 403 (sensitivity = 0.93 and specificity = 0.77). CBCT intensity values are considered useful for predicting bone density at posterior mandibular implant sites.

  9. Development of a CME-associated geomagnetic storm intensity prediction tool

    Science.gov (United States)

    Wu, C. C.; DeHart, J. M.

    2015-12-01

    From 1995 to 2012, the Wind spacecraft recorded 168 magnetic cloud (MC) events. Among those events, 79 were found to have upstream shock waves and their source locations on the Sun were identified. Using a recipe of interplanetary magnetic field (IMF) Bz initial turning direction after shock (Wu et al., 1996, GRL), it is found that the north-south polarity of 66 (83.5%) out of the 79 events were accurately predicted. These events were tested and further analyzed, reaffirming that the Bz intial turning direction was accurate. The results also indicate that 37 of the 79 MCs originate from the north (of the Sun) averaged a Dst_min of -119 nT, whereas 42 of the MCs originating from the south (of the Sun) averaged -89 nT. In an effort to provide this research to others, a website was built that incorporated various tools and pictures to predict the intensity of the geomagnetic storms. The tool is capable of predicting geomagnetic storms with different ranges of Dst_min (from no-storm to gigantic storms). This work was supported by Naval Research Lab HBCU/MI Internship program and Chief of Naval Research.

  10. Application of Intelligent Dynamic Bayesian Network with Wavelet Analysis for Probabilistic Prediction of Storm Track Intensity Index

    Directory of Open Access Journals (Sweden)

    Ming Li

    2018-06-01

    Full Text Available The effective prediction of storm track (ST is greatly beneficial for analyzing the development and anomalies of mid-latitude weather systems. For the non-stationarity, nonlinearity, and uncertainty of ST intensity index (STII, a new probabilistic prediction model was proposed based on dynamic Bayesian network (DBN and wavelet analysis (WA. We introduced probability theory and graph theory for the first time to quantitatively describe the nonlinear relationship and uncertain interaction of the ST system. Then a casual prediction network (i.e., DBN was constructed through wavelet decomposition, structural learning, parameter learning, and probabilistic inference, which was used for expression of relation among predictors and probabilistic prediction of STII. The intensity prediction of the North Pacific ST with data from 1961–2010 showed that the new model was able to give more comprehensive prediction information and higher prediction accuracy and had strong generalization ability and good stability.

  11. Hurricane Risk Variability along the Gulf of Mexico Coastline

    Science.gov (United States)

    Trepanier, Jill C.; Ellis, Kelsey N.; Tucker, Clay S.

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran’s I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs. PMID:25767885

  12. Hurricane risk variability along the Gulf of Mexico coastline.

    Science.gov (United States)

    Trepanier, Jill C; Ellis, Kelsey N; Tucker, Clay S

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran's I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs.

  13. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    International Nuclear Information System (INIS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-01-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  14. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  15. Hurricane slams gulf operations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that reports of damage by Hurricane Andrew escalated last week as operators stepped up inspections of oil and gas installations in the Gulf of Mexico. By midweek, companies operating in the gulf and South Louisiana were beginning to agree that earlier assessments of damage only scratched the surface. Damage reports included scores of lost, toppled, or crippled platforms, pipeline ruptures, and oil slicks. By midweek the U.S. coast Guard had received reports of 79 oil spills. Even platforms capable of resuming production in some instances were begin curtailed because of damaged pipelines. Offshore service companies the another 2-4 weeks could be needed to fully assess Andrew's wrath. Lack of personnel and equipment was slowing damage assessment and repair

  16. Cascading Effects of Canopy Opening and Debris Deposition from a Large-Scale Hurricane Experiment in a Tropical Rain Forest

    Science.gov (United States)

    Aaron B. Shiels; Grizelle Gonzalez; D. Jean Lodge; Michael R Willig; Jess K. Zimmerman

    2015-01-01

    Intense hurricanes disturb many tropical forests, but the key mechanisms driving post-hurricane forest changes are not fully understood. In Puerto Rico, we used a replicated factorial experiment to determine the mechanisms of forest change associated with canopy openness and organic matter (debris) addition. Cascading effects from canopy openness accounted for...

  17. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu

    2015-06-01

    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10–20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  18. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  19. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  20. Predictive factors for the admission of a newborn in an intensive care unit

    Directory of Open Access Journals (Sweden)

    Carla Danielle Ribeiro Lages

    2014-04-01

    Full Text Available Analytical documentary and retrospective study aiming at determining association between predictive factors for admission of a newborn in a public Intensive Care Unit and maternal features. The study sample had 376 neonates admitted in 2009. Results showed: mothers aged between 19 and 25 years (43.4%, primary education (52.4%, living with a partner (66.2%. Prenatal care was done by 84.8% of them, and 62% presented gestational pathologies. Out of all neonates, 55.1% were male, 85.4% preterm, 83% underweight, 57.2% presented respiratory problems. The bivariate analysis showed a significant association between birth weight and growth (p = 0.04 between maternal age and Apgar in the 1st minute (p = 0.04 and maternal age and Apgar score in the 5th minute (p = 0.01. Maternal age and number of prenatal appointments influence on the admission of the neonates to the Intensive Care Unit because they are related to birth weight and Apgar scores.

  1. Heterogeneous postsurgical data analytics for predictive modeling of mortality risks in intensive care units.

    Science.gov (United States)

    Yun Chen; Hui Yang

    2014-01-01

    The rapid advancements of biomedical instrumentation and healthcare technology have resulted in data-rich environments in hospitals. However, the meaningful information extracted from rich datasets is limited. There is a dire need to go beyond current medical practices, and develop data-driven methods and tools that will enable and help (i) the handling of big data, (ii) the extraction of data-driven knowledge, (iii) the exploitation of acquired knowledge for optimizing clinical decisions. This present study focuses on the prediction of mortality rates in Intensive Care Units (ICU) using patient-specific healthcare recordings. It is worth mentioning that postsurgical monitoring in ICU leads to massive datasets with unique properties, e.g., variable heterogeneity, patient heterogeneity, and time asyncronization. To cope with the challenges in ICU datasets, we developed the postsurgical decision support system with a series of analytical tools, including data categorization, data pre-processing, feature extraction, feature selection, and predictive modeling. Experimental results show that the proposed data-driven methodology outperforms traditional approaches and yields better results based on the evaluation of real-world ICU data from 4000 subjects in the database. This research shows great potentials for the use of data-driven analytics to improve the quality of healthcare services.

  2. Recovery Migration after Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System

    Science.gov (United States)

    Fussell, Elizabeth; DeWaard, Jack

    2015-01-01

    Changes in the human migration systems of Hurricane Katrina- and Rita-affected Gulf of Mexico coastline counties provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of “climate refugees,” but an emerging literature on environmental migration suggests most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-struck places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007–2009) to the pre-disaster period (1999–2004). By observing county-to-county ties and flows we find that recovery migration was strong, as the migration system of the disaster-affected coastline counties became more spatially concentrated while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios with implications for the population recovery of disaster-affected places. PMID:26084982

  3. Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System.

    Science.gov (United States)

    Curtis, Katherine J; Fussell, Elizabeth; DeWaard, Jack

    2015-08-01

    Changes in the human migration systems of the Gulf of Mexico coastline counties affected by Hurricanes Katrina and Rita provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of "climate refugees," but an emerging literature on environmental migration suggests that most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-stricken places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007-2009) with the pre-disaster period (1999-2004). By observing county-to-county ties and flows, we find that recovery migration was strong: the migration system of the disaster-affected coastline counties became more spatially concentrated, while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios, with implications for the population recovery of disaster-affected places.

  4. Assessment of Risk of Cholera in Haiti following Hurricane Matthew.

    Science.gov (United States)

    Khan, Rakib; Anwar, Rifat; Akanda, Shafqat; McDonald, Michael D; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita

    2017-09-01

    Damage to the inferior and fragile water and sanitation infrastructure of Haiti after Hurricane Matthew has created an urgent public health emergency in terms of likelihood of cholera occurring in the human population. Using satellite-derived data on precipitation, gridded air temperature, and hurricane path and with information on water and sanitation (WASH) infrastructure, we tracked changing environmental conditions conducive for growth of pathogenic vibrios. Based on these data, we predicted and validated the likelihood of cholera cases occurring past hurricane. The risk of cholera in the southwestern part of Haiti remained relatively high since November 2016 to the present. Findings of this study provide a contemporary process for monitoring ground conditions that can guide public health intervention to control cholera in human population by providing access to vaccines, safe WASH facilities. Assuming current social and behavioral patterns remain constant, it is recommended that WASH infrastructure should be improved and considered a priority especially before 2017 rainy season.

  5. Performance assessment of topologically diverse power systems subjected to hurricane events

    International Nuclear Information System (INIS)

    Winkler, James; Duenas-Osorio, Leonardo; Stein, Robert; Subramanian, Devika

    2010-01-01

    Large tropical cyclones cause severe damage to major cities along the United States Gulf Coast annually. A diverse collection of engineering and statistical models are currently used to estimate the geographical distribution of power outage probabilities stemming from these hurricanes to aid in storm preparedness and recovery efforts. Graph theoretic studies of power networks have separately attempted to link abstract network topology to transmission and distribution system reliability. However, few works have employed both techniques to unravel the intimate connection between network damage arising from storms, topology, and system reliability. This investigation presents a new methodology combining hurricane damage predictions and topological assessment to characterize the impact of hurricanes upon power system reliability. Component fragility models are applied to predict failure probability for individual transmission and distribution power network elements simultaneously. The damage model is calibrated using power network component failure data for Harris County, TX, USA caused by Hurricane Ike in September of 2008, resulting in a mean outage prediction error of 15.59% and low standard deviation. Simulated hurricane events are then applied to measure the hurricane reliability of three topologically distinct transmission networks. The rate of system performance decline is shown to depend on their topological structure. Reliability is found to correlate directly with topological features, such as network meshedness, centrality, and clustering, and the compact irregular ring mesh topology is identified as particularly favorable, which can influence regional lifeline policy for retrofit and hardening activities to withstand hurricane events.

  6. Hurricane Data Analysis Tool

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of

  7. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  8. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  9. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values

    OpenAIRE

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    Objective: The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. Materials and Methods: CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were g...

  10. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  11. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  12. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  13. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  14. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  15. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  16. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  17. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  18. Influences of the Saharan Air Layer on the Formation and Intensification of Hurricane Isabel (2003): Analysis of AIRS data and Numerical Simulation

    Science.gov (United States)

    Wu, L.; Braun, S. A.

    2006-12-01

    Over the past two decades, little advance has been made in prediction of tropical cyclone intensity while substantial improvements have been made in forecasting hurricane tracks. One reason is that we don't well understand the physical processes that govern tropical cyclone intensity. Recent studies have suggested that the Saharan Air Layer (SAL) may be yet another piece of the puzzle in advancing our understanding of tropical cyclone intensity change in the Atlantic basin. The SAL is an elevated mixed layer, forming as air moves across the vast Sahara Desert, in particular during boreal summer months. The SAL contains warm, dry air as well as a substantial amount of mineral dust, which can affect radiative heating and modify cloud processes. Using the retrieved temperature and humidity profiles from the AIRS suite on the NASA Aqua satellite, the SAL and its influences on the formation and intensification of Hurricane Isabel (2003) are analyzed and simulated with MM5. When the warmth and dryness of the SAL (the thermodynamic effect) is considered by relaxing the model thermodynamic state to the AIRS profiles, MM5 can well simulate the large-scale flow patterns and the activity of Hurricane Isabel in terms of the timing and location of formation and the subsequent track. Compared with the experiment without nudging the AIRS data, it is suggested that the simulated SAL effect may delay the formation and intensification of Hurricane Isabel. This case study generally confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  19. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  20. 7 CFR 701.50 - 2005 hurricanes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  1. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  2. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  3. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    2012-09-24

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.  Created: 9/24/2012 by Office of Public Health Preparedness and Response (OPHPR), National Center for Environmental Health (NCEH), and the Agency for Toxic Substances and Disease Registry (ATSDR).   Date Released: 9/24/2012.

  4. Does exercise motivation predict engagement in objectively assessed bouts of moderate-intensity exercise? A self-determination theory perspective.

    Science.gov (United States)

    Standage, Martyn; Sebire, Simon J; Loney, Tom

    2008-08-01

    This study examined the utility of motivation as advanced by self-determination theory (Deci & Ryan, 2000) in predicting objectively assessed bouts of moderate intensity exercise behavior. Participants provided data pertaining to their exercise motivation. One week later, participants wore a combined accelerometer and heart rate monitor (Actiheart; Cambridge Neurotechnology Ltd) and 24-hr energy expenditure was estimated for 7 days. After controlling for gender and a combined marker of BMI and waist circumference, results showed autonomous motivation to positively predict moderate-intensity exercise bouts of >or=10 min, or=20 min, and an accumulation needed to meet public health recommendations for moderate intensity activity (i.e., ACSM/AHA guidelines). The present findings add bouts of objectively assessed exercise behavior to the growing body of literature that documents the adaptive consequences of engaging in exercise for autonomous reasons. Implications for practice and future work are discussed.

  5. Cardiac Risk Assessment, Morbidity Prediction, and Outcome in the Vascular Intensive Care Unit.

    LENUS (Irish Health Repository)

    Dover, Mary

    2013-09-17

    Objectives: The aim of this study is to examine the predictive value of the Lee revised cardiac risk index (RCRI) for a standard vascular intensive care unit (ICU) population as well as assessing the utility of transthoracic echocardiography and the impact of prior coronary artery disease (CAD) and coronary revascularization on patient outcome. Design: This is a retrospective review of prospectively maintained Vascubase and prospectively collected ICU data. Materials and Methods: Data from 363 consecutive vascular ICU admissions were collected. Findings were used to calculate the RCRI, which was then correlated with patient outcomes. All patients were on optimal medical therapy (OMT) in the form of cardioselective β-blocker, aspirin, statin, and folic acid. Results: There was no relationship found between a reduced ejection fraction and patient outcome. Mortality was significantly increased for patients with left ventricular hypertrophy (LVH) as identified on echo (14.9% vs 6.5%, P = .028). The overall complication rates were significantly elevated for patients with valvular dysfunction. Discrimination for the RCRI on receiver-operating characteristic analysis was poor, with an area under the receiver-operating characteristic curve of .621. Model calibration was reasonable with an Hosmer-Lemeshow Ĉ statistic of 2.726 (P = .256). Of those with known CAD, 41.22% of the patients receiving best medical treatment developed acute myocardial infarction (AMI) compared to 35.3% of those who previously underwent percutaneous cardiac intervention and 23.5% of those who had undergone coronary artery bypass grafting. There was 3-fold increase in major adverse clinical events in patients with troponin rise and LVH. Conclusions: The RCRI\\'s discriminatory capacity is low, and this raises difficulties in assessing cardiac risk in patients undergoing vascular intervention. The AMI is highest in the OMT group without prior cardiac intervention, which mandates protocols to

  6. Effects of track and threat information on judgments of hurricane strike probability.

    Science.gov (United States)

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  7. explICU: A web-based visualization and predictive modeling toolkit for mortality in intensive care patients.

    Science.gov (United States)

    Chen, Robert; Kumar, Vikas; Fitch, Natalie; Jagadish, Jitesh; Lifan Zhang; Dunn, William; Duen Horng Chau

    2015-01-01

    Preventing mortality in intensive care units (ICUs) has been a top priority in American hospitals. Predictive modeling has been shown to be effective in prediction of mortality based upon data from patients' past medical histories from electronic health records (EHRs). Furthermore, visualization of timeline events is imperative in the ICU setting in order to quickly identify trends in patient histories that may lead to mortality. With the increasing adoption of EHRs, a wealth of medical data is becoming increasingly available for secondary uses such as data exploration and predictive modeling. While data exploration and predictive modeling are useful for finding risk factors in ICU patients, the process is time consuming and requires a high level of computer programming ability. We propose explICU, a web service that hosts EHR data, displays timelines of patient events based upon user-specified preferences, performs predictive modeling in the back end, and displays results to the user via intuitive, interactive visualizations.

  8. Petroleum industry assists hurricane relief

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas

  9. Prediction of SEP Peak Proton Intensity Based on CME Speed, Direction and Observations of Associated Solar Phenomena

    Science.gov (United States)

    Richardson, I. G.; Mays, M. L.; Thompson, B. J.; Kwon, R.; Frechette, B. P.

    2017-12-01

    We assess whether a formula obtained by Richardson et al. (Solar Phys., 289, 3059, 2014; DOI 10.1007/s11207-014-0524-8) relating the intensity of 14-24 MeV protons in a solar energetic particle event at 1 AU to the solar event location and the speed of the associated coronal mass ejection (CME), may be used to "predict" the intensity of a solar energetic particle event. Starting with a subset of several hundred CMEs in the CCMC/SWRC DONKI real-time database (http://kauai.ccmc.gsfc.nasa.gov/DONKI/) selected without consideration of whether they were associated with SEP events, we first use the CME speed and direction to predict the proton intensity at Earth or the STEREO spacecraft using this formula. Since most of these CMEs were not in fact associated with SEP events, many "false alarms" result. We then examine whether considering other phenomena which may accompany the CMEs, such as the X-ray flare intensity and the properties of type II and type III radio emissions, may help to reduce the false alarm rate. We also use CME parameters calculated from an ellipsoidal shell fit to multi-spacecraft CME shock observations for a smaller number of events to predict the SEP intensity. We calculate skill scores for each case and assess whether the Richardson et al. (2014) formula, using additional observations to reduce the false alarm rate, has any potential as a SEP prediction tool, assuming that the required observations could be acquired sufficiently rapidly following the onset of the related solar event/CME.

  10. Estimating the human influence on Hurricanes Harvey, Irma and Maria

    Science.gov (United States)

    Wehner, M. F.; Patricola, C. M.; Risser, M. D.

    2017-12-01

    Attribution of the human-induced climate change influence on the physical characteristics of individual extreme weather events has become an advanced science over the past decade. However, it is only recently that such quantification of anthropogenic influences on event magnitudes and probability of occurrence could be applied to very extreme storms such as hurricanes. We present results from two different classes of attribution studies for the impactful Atlantic hurricanes of 2017. The first is an analysis of the record rainfall amounts during Hurricane Harvey in the Houston, Texas area. We analyzed observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of ENSO. We found that human-induced climate change likely increased Hurricane Harvey's total rainfall by at least 19%, and likely increased the chances of the observed rainfall by a factor of at least 3.5. This suggests that changes exceeded Clausius-Clapeyron scaling, motivating attribution studies using dynamical climate models. The second analysis consists of two sets of hindcast simulations of Hurricanes Harvey, Irma, and Maria using the Weather Research and Forecasting model (WRF) at 4.5 km resolution. The first uses realistic boundary and initial conditions and present-day greenhouse gas forcings while the second uses perturbed conditions and pre-industrial greenhouse has forcings to simulate counterfactual storms without anthropogenic influences. These simulations quantify the fraction of Harvey's precipitation attributable to human activities and test the super Clausius-Clapeyron scaling suggested by the observational analysis. We will further quantify the human influence on intensity for Harvey, Irma, and Maria.

  11. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  12. Heart rate variability predicts 30-day all-cause mortality in intensive ...

    African Journals Online (AJOL)

    ... is co-published by Medpharm Publications, NISC (Pty) Ltd and Taylor & Francis, and Informa business .... univariable logistic regression for each of the candidate predictor .... diagnostic and prognostic tool in anesthesia and intensive care.

  13. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    OpenAIRE

    Eva Guérin; Michelle S. Fortier

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] i...

  14. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  15. Determination of intensity functions for predicting subsidence from coal mining, potash mining, and groundwater withdrawal using the influence function technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, T; Yurchak, D [Twin Cities Research Center, Bureau of Mines, US Dept. of the Interior, Minneapolis, MN (United States)

    1997-12-31

    This paper presents research, conducted by the Bureau of Mines, on modifying the influence function method to predict subsidence. According to theory, this technique must incorporate an intensity function to represent the relative significance of the causes of subsidence. This paper shows that the inclusion of a reasonable intensity function increases the accuracy of the technique, then presents the required functions for case studies of longwall coal mining subsidence in Illinois, USA, potash mining subsidence in new Mexico, USA, and subsidence produced by ground water withdrawal in California, USA. Finally, the paper discusses a method to predict the resultant strain from a simply measured site constant and ground curvatures calculated by the technique. (orig.)

  16. Determination of intensity functions for predicting subsidence from coal mining, potash mining, and groundwater withdrawal using the influence function technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, T.; Yurchak, D. [Twin Cities Research Center, Bureau of Mines, US Dept. of the Interior, Minneapolis, MN (United States)

    1996-12-31

    This paper presents research, conducted by the Bureau of Mines, on modifying the influence function method to predict subsidence. According to theory, this technique must incorporate an intensity function to represent the relative significance of the causes of subsidence. This paper shows that the inclusion of a reasonable intensity function increases the accuracy of the technique, then presents the required functions for case studies of longwall coal mining subsidence in Illinois, USA, potash mining subsidence in new Mexico, USA, and subsidence produced by ground water withdrawal in California, USA. Finally, the paper discusses a method to predict the resultant strain from a simply measured site constant and ground curvatures calculated by the technique. (orig.)

  17. A Climatological Study of Hurricane Force Extratropical Cyclones

    OpenAIRE

    Laiyemo, Razaak O.

    2012-01-01

    Using data compiled by the National Weather Service Ocean Prediction Center, a hurricane force extratropical cyclone climatology is created for three cold seasons. Using the criteria of Sanders and Gyakum (1980), it is found that 75% of the 259 storms explosively deepened. The frequency maximum in the Atlantic basin is located to the southeast of Greenland. In the Pacific, two maxima to the east of Japan are identified. These results are in good agreement with previous studies, despite differ...

  18. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  19. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  20. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    Science.gov (United States)

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  1. Safety and design impact of hurricane Andrew

    International Nuclear Information System (INIS)

    Guey, Ching N.

    2004-01-01

    Turkey Point completed the IPE in June of 1991. Hurricane Andrew landed at Turkey Point on August 24, 1992. Although the safety related systems, components and structures were not damaged by the Hurricane Andrew, certain nonsafety related components and the neighboring fossil plant sustained noticeable damage. Among the major components that were nonsafety related but would affect the PRA of the plant included the service water pumps and the high tower. This paper discusses the safety and design impact of Hurricane Andrew on Turkey Point Nuclear Power Plant. The risk of hurricanes on the interim and evolving plant configurations are briefly described. The risk of the plant from internal events as a result of damage incurred during Hurricane Andrew are discussed. The design change as the result of Hurricane Andrew and its impact on the PRA are presented. (author)

  2. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    Science.gov (United States)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  3. Prediction of modified Mercalli intensity from PGA, PGV, moment magnitude, and epicentral distance using several nonlinear statistical algorithms

    Science.gov (United States)

    Alvarez, Diego A.; Hurtado, Jorge E.; Bedoya-Ruíz, Daniel Alveiro

    2012-07-01

    Despite technological advances in seismic instrumentation, the assessment of the intensity of an earthquake using an observational scale as given, for example, by the modified Mercalli intensity scale is highly useful for practical purposes. In order to link the qualitative numbers extracted from the acceleration record of an earthquake and other instrumental data such as peak ground velocity, epicentral distance, and moment magnitude on the one hand and the modified Mercalli intensity scale on the other, simple statistical regression has been generally employed. In this paper, we will employ three methods of nonlinear regression, namely support vector regression, multilayer perceptrons, and genetic programming in order to find a functional dependence between the instrumental records and the modified Mercalli intensity scale. The proposed methods predict the intensity of an earthquake while dealing with nonlinearity and the noise inherent to the data. The nonlinear regressions with good estimation results have been performed using the "Did You Feel It?" database of the US Geological Survey and the database of the Center for Engineering Strong Motion Data for the California region.

  4. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas....... Especially in the initial phase of floating foundation concept development, site specific metocean data are usually not available. As the areas of interest are furthermore not covered by any design standard, in terms of design sea states, generic and in engineering terms applicable environmental background...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...

  5. Disentangling Intensity from Breadth of Science Interest: What Predicts Learning Behaviors?

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2016-01-01

    Overall interest in science has been argued to drive learner participation and engagement. However, there are other important aspects of interest such as breadth of interest within a science domain (e.g., biology, earth science). We demonstrate that intensity of science interest is separable from topic breadth using surveys from a sample of 600…

  6. Validation of a probabilistic model for hurricane insurance loss projections in Florida

    International Nuclear Information System (INIS)

    Pinelli, J.-P.; Gurley, K.R.; Subramanian, C.S.; Hamid, S.S.; Pita, G.L.

    2008-01-01

    The Florida Public Hurricane Loss Model is one of the first public models accessible for scrutiny to the scientific community, incorporating state of the art techniques in hurricane and vulnerability modeling. The model was developed for Florida, and is applicable to other hurricane-prone regions where construction practice is similar. The 2004 hurricane season produced substantial losses in Florida, and provided the means to validate and calibrate this model against actual claim data. This paper presents the predicted losses for several insurance portfolios corresponding to hurricanes Andrew, Charley, and Frances. The predictions are validated against the actual claim data. Physical damage predictions for external building components are also compared to observed damage. The analyses show that the predictive capabilities of the model were substantially improved after the calibration against the 2004 data. The methodology also shows that the predictive capabilities of the model could be enhanced if insurance companies report more detailed information about the structures they insure and the types of damage they suffer. This model can be a powerful tool for the study of risk reduction strategies

  7. Lessons Learnt From Hurricane Katrina.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  8. Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970–2005

    Science.gov (United States)

    Logan, John R.; Issar, Sukriti; Xu, Zengwang

    2016-01-01

    Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970–2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal—a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm’s way while socially vulnerable groups have fewer choices. PMID:27531504

  9. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network.

    Science.gov (United States)

    Liu, Ruixin; Zhang, Xiaodong; Zhang, Lu; Gao, Xiaojie; Li, Huiling; Shi, Junhan; Li, Xuelin

    2014-06-01

    The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue.

  10. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  11. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest.

    Science.gov (United States)

    Schowalter, T D; Willig, M R; Presley, S J

    2017-02-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ji Young [Technical Research Center, Hyundai Steel Company, Dangjin (Korea, Republic of); Sohn, Yong Ho [Dept. of Materials Science and Engineering, University of Central Florida, Orlando (United States); Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-10-15

    Lightweight metals have been used to manufacture the body panels of cars to reduce the weight of car bodies. Typically, aluminum sheets are welded together, with a focus on weld quality assurance. A weld quality prediction system for the laser welding of aluminum was developed in this research to maximize welding production. The behavior of the plasma was also analyzed, dependent on various welding conditions. The light intensity of the plasma was altered with heat input and wire feed rate conditions, and the strength of the weld and sensor signals correlated closely for this heat input condition. Using these characteristics, a new algorithm and program were developed to evaluate the weld quality. The design involves a combinatory algorithm using a neural network model for the prediction of tensile strength from measured signals and a fuzzy multi-feature pattern recognition algorithm for the weld quality classification to improve predictability of the system.

  13. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes

    International Nuclear Information System (INIS)

    Yu, Ji Young; Sohn, Yong Ho; Park, Young Whan; Kwak, Jae Seob

    2016-01-01

    Lightweight metals have been used to manufacture the body panels of cars to reduce the weight of car bodies. Typically, aluminum sheets are welded together, with a focus on weld quality assurance. A weld quality prediction system for the laser welding of aluminum was developed in this research to maximize welding production. The behavior of the plasma was also analyzed, dependent on various welding conditions. The light intensity of the plasma was altered with heat input and wire feed rate conditions, and the strength of the weld and sensor signals correlated closely for this heat input condition. Using these characteristics, a new algorithm and program were developed to evaluate the weld quality. The design involves a combinatory algorithm using a neural network model for the prediction of tensile strength from measured signals and a fuzzy multi-feature pattern recognition algorithm for the weld quality classification to improve predictability of the system

  14. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Directory of Open Access Journals (Sweden)

    Meyfroidt Geert

    2011-10-01

    Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a

  15. Intense rainfalls prediction models for the state of Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Sidney Pereira

    2011-12-01

    Full Text Available Rain intensity data are necessary to increase security of hydraulic projects. The objective of this study was to determine the relationships among intensity-duration-frequency (IDF and Bell’s model for the State of Mato Grosso, Brazil. The equations were obtained by disaggregation of 24 h rainfall data from 136 rain stations available in the National Water Agency (ANA data base. Employing Gumbel distribution, the rainfalls were estimated for each time duration and for the return periods of 2, 5, 10, 25, 50 and 100 years, and thereafter for each season. The coefficients of IDF relationships and Bell’s models were adjusted by the minimum square method, for all seasons evaluated. The coefficients of determination and Willmott agreement index exceeded 0.98 and 0.85, respectively, for all stations, which classifies the adjustment of the rainfall models as great.

  16. Dynamics and Predictability of Tropical Cyclone Genesis, Structure and Intensity Change

    Science.gov (United States)

    2012-09-30

    analyses and forecasts of tropical cyclones, including genesis, intensity change, and extratropical transition. A secondary objective is to understand... storm -centered assimilation algorithm. Basic research in Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...COMPLETED For the four storms consider (Nuri, Jangmi, Sinlaku, and Hagupit), an 80-member EnKF has been cycled on observations (surface, rawinsondes, GPS

  17. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    Science.gov (United States)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  18. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    Science.gov (United States)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  19. Morphological responses of the Wax Lake Delta, Louisiana, to Hurricanes Rita

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2017-12-01

    compared to a hurricane of a similar intensity that made landfall directly on the delta. This demonstrates that the wetlands located on the right side of a hurricane track experience more significant morphological changes than areas located directly on the hurricane track.

  20. Predicting job-seeking intensity and job-seeking intention in the sample of unemployed

    Directory of Open Access Journals (Sweden)

    Marić Zorica

    2005-01-01

    Full Text Available In this study Ajzen' theory (1991 of planned behavior was used to predict job - seek intention and behavior among unemployed people (N = 650. In addition to theory of planned behavior variables (job - seek attitude, subjective norm, self - efficacy and controllability of job seek process we used several other psychological (financial pressure, self - mastery, self - esteem and depression and demographic (gender, age, education, marriage and lent of unemployment variables to build a model of predictors for both criterion variables. Financial pressure, intention to seek employment, job seek - self - efficacy, job - seek controllability, marriage and job - seek attitude predicted job - seeking behavior, while attitude toward job - seeking, subjective norm, job - seek self - efficacy and financial pressure predicted job seek - intention. Results are discussed in light of theory of planned behavior, current research of job - seeking behavior and recommendations are made for practice.

  1. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    Science.gov (United States)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  2. Predicting Calcium Values for Gastrointestinal Bleeding Patients in Intensive Care Unit Using Clinical Variables and Fuzzy Modeling

    Directory of Open Access Journals (Sweden)

    G Khalili-Zadeh-Mahani

    2016-07-01

    Full Text Available Introduction: Reducing unnecessary laboratory tests is an essential issue in the Intensive Care Unit. One solution for this issue is to predict the value of a laboratory test to specify the necessity of ordering the tests. The aim of this paper was to propose a clinical decision support system for predicting laboratory tests values. Calcium laboratory tests of three categories of patients, including upper and lower gastrointestinal bleeding, and unspecified hemorrhage of gastrointestinal tract, have been selected as the case studies for this research. Method: In this research, the data have been collected from MIMIC-II database. For predicting calcium laboratory values, a Fuzzy Takagi-Sugeno model is used and the input variables of the model are heart rate and previous value of calcium laboratory test. Results: The results showed that the values of calcium laboratory test for the understudy patients were predictable with an acceptable accuracy. In average, the mean absolute errors of the system for the three categories of the patients are 0.27, 0.29, and 0.28, respectively. Conclusion: In this research, using fuzzy modeling and two variables of heart rate and previous calcium laboratory values, a clinical decision support system was proposed for predicting laboratory values of three categories of patients with gastrointestinal bleeding. Using these two clinical values as input variables, the obtained results were acceptable and showed the capability of the proposed system in predicting calcium laboratory values. For achieving better results, the impact of more input variables should be studied. Since, the proposed system predicts the laboratory values instead of just predicting the necessity of the laboratory tests; it was more generalized than previous studies. So, the proposed method let the specialists make the decision depending on the condition of each patient.

  3. Real-Time Prediction of Tropical Cyclone Intensity Using COAMPS-TC

    Science.gov (United States)

    2012-01-01

    troposphere. Volcanic sul- fur dioxide and hydrogen sulfide vapor molecules are photo- oxidized in the LS, forming gaseous sulphuric acid, which in...proximity to the U.S. East Coast. The COAMPS-TC prediction captures the large areal extent of the precipitation field, as well as its asymmetry about

  4. Performance of Simplified Acute Physiology Score 3 In Predicting Hospital Mortality In Emergency Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Qing-Bian Ma

    2017-01-01

    Conclusions: The SAPS 3 score system exhibited satisfactory performance even superior to APACHE II in discrimination. In predicting hospital mortality, SAPS 3 did not exhibit good calibration and overestimated hospital mortality, which demonstrated that SAPS 3 needs improvement in the future.

  5. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database

    DEFF Research Database (Denmark)

    Niu, Mutian; Kebreab, Ermias; Hristov, Alexander N

    2018-01-01

    data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4production (g/day per cow), yield...

  6. Specific Disgust Sensitivities Differentially Predict Interest in Careers of Varying Procedural-Intensity among Medical Students

    Science.gov (United States)

    Consedine, Nathan S.; Windsor, John A.

    2014-01-01

    Mismatches between the needs of public health systems and student interests have led to renewed study on the factors predicting career specializations among medical students. While most work examines career and lifestyle values, emotional proclivities may be important; disgust sensitivity may help explain preferences for careers with greater and…

  7. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon.

    Science.gov (United States)

    Aguirre-Macedo, María Leopoldina; Vidal-Martínez, Victor M; Lafferty, Kevin D

    2011-11-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery. Copyright © 2011 Australian Society for Parasitology Inc. All rights reserved.

  8. A new risk prediction model for critical care: the Intensive Care National Audit & Research Centre (ICNARC) model.

    Science.gov (United States)

    Harrison, David A; Parry, Gareth J; Carpenter, James R; Short, Alasdair; Rowan, Kathy

    2007-04-01

    To develop a new model to improve risk prediction for admissions to adult critical care units in the UK. Prospective cohort study. The setting was 163 adult, general critical care units in England, Wales, and Northern Ireland, December 1995 to August 2003. Patients were 216,626 critical care admissions. None. The performance of different approaches to modeling physiologic measurements was evaluated, and the best methods were selected to produce a new physiology score. This physiology score was combined with other information relating to the critical care admission-age, diagnostic category, source of admission, and cardiopulmonary resuscitation before admission-to develop a risk prediction model. Modeling interactions between diagnostic category and physiology score enabled the inclusion of groups of admissions that are frequently excluded from risk prediction models. The new model showed good discrimination (mean c index 0.870) and fit (mean Shapiro's R 0.665, mean Brier's score 0.132) in 200 repeated validation samples and performed well when compared with recalibrated versions of existing published risk prediction models in the cohort of patients eligible for all models. The hypothesis of perfect fit was rejected for all models, including the Intensive Care National Audit & Research Centre (ICNARC) model, as is to be expected in such a large cohort. The ICNARC model demonstrated better discrimination and overall fit than existing risk prediction models, even following recalibration of these models. We recommend it be used to replace previously published models for risk adjustment in the UK.

  9. External Validation of Risk Prediction Scores for Invasive Candidiasis in a Medical/Surgical Intensive Care Unit: An Observational Study

    Science.gov (United States)

    Ahmed, Armin; Baronia, Arvind Kumar; Azim, Afzal; Marak, Rungmei S. K.; Yadav, Reema; Sharma, Preeti; Gurjar, Mohan; Poddar, Banani; Singh, Ratender Kumar

    2017-01-01

    Background: The aim of this study was to conduct external validation of risk prediction scores for invasive candidiasis. Methods: We conducted a prospective observational study in a 12-bedded adult medical/surgical Intensive Care Unit (ICU) to evaluate Candida score >3, colonization index (CI) >0.5, corrected CI >0.4 (CCI), and Ostrosky's clinical prediction rule (CPR). Patients' characteristics and risk factors for invasive candidiasis were noted. Patients were divided into two groups; invasive candidiasis and no-invasive candidiasis. Results: Of 198 patients, 17 developed invasive candidiasis. Discriminatory power (area under receiver operator curve [AUROC]) for Candida score, CI, CCI, and CPR were 0.66, 0.67, 0.63, and 0.62, respectively. A large number of patients in the no-invasive candidiasis group (114 out of 181) were exposed to antifungal agents during their stay in ICU. Subgroup analysis was carried out after excluding such patients from no-invasive candidiasis group. AUROC of Candida score, CI, CCI, and CPR were 0.7, 0.7, 0.65, and 0.72, respectively, and positive predictive values (PPVs) were in the range of 25%–47%, along with negative predictive values (NPVs) in the range of 84%–96% in the subgroup analysis. Conclusion: Currently available risk prediction scores have good NPV but poor PPV. They are useful for selecting patients who are not likely to benefit from antifungal therapy. PMID:28904481

  10. An effort to improve track and intensity prediction of tropical cyclones through vortex initialization in NCUM-global model

    Science.gov (United States)

    Singh, Vivek; Routray, A.; Mallick, Swapan; George, John P.; Rajagopal, E. N.

    2016-05-01

    Tropical cyclones (TCs) have strong impact on socio-economic conditions of the countries like India, Bangladesh and Myanmar owing to its awful devastating power. This brings in the need of precise forecasting system to predict the tracks and intensities of TCs accurately well in advance. However, it has been a great challenge for major operational meteorological centers over the years. Genesis of TCs over data sparse warm Tropical Ocean adds more difficulty to this. Weak and misplaced vortices at initial time are one of the prime sources of track and intensity errors in the Numerical Weather Prediction (NWP) models. Many previous studies have reported the forecast skill of track and intensity of TC improved due to the assimilation of satellite data along with vortex initialization (VI). Keeping this in mind, an attempt has been made to investigate the impact of vortex initialization for simulation of TC using UK-Met office global model, operational at NCMRWF (NCUM). This assessment is carried out by taking the case of a extremely severe cyclonic storm "Chapala" that occurred over Arabian Sea (AS) from 28th October to 3rd November 2015. Two numerical experiments viz. Vort-GTS (Assimilation of GTS observations with VI) and Vort-RAD (Same as Vort-GTS with assimilation of satellite data) are carried out. This vortex initialization study in NCUM model is first of its type over North Indian Ocean (NIO). The model simulation of TC is carried out with five different initial conditions through 24 hour cycles for both the experiments. The results indicate that the vortex initialization with assimilation of satellite data has a positive impact on the track and intensity forecast, landfall time and position error of the TCs.

  11. [Model to predict staffing for anesthesiology and post-anesthesia intensive care units and pain clinics].

    Science.gov (United States)

    Canet, J; Moral, V; Villalonga, A; Pelegrí, D; Gomar, C; Montero, A

    2001-01-01

    Human resources account for a large part of the budgets of anesthesia and post-anesthesia intensive care units and pain clinics (A-PICU-PC). Adequate staffing is a key factor in providing for both effective care and professional staff development. Changes in professional responsibilities have rendered obsolete the concept of one anesthesiologist per operating room. Duties must be analyzed objectively to facilitate understanding between hospital administrators and A-PICU-PC chiefs of service when assigning human resources. The Catalan Society of Anesthesiology, Post-anesthesia Intensive Care and Pain Therapy has developed a model for estimating requirements for A-PICU-PC staffing based on three factors: 1) Definition of staff positions that must be filled and criteria for assigning human resources; 2) Estimation of non-care-related time required by the department for training, teaching, research and internal management, and 3) Estimation of staff required to cover absences from work for vacations, personal leave or illness. The model revealed that the ratio of number of staff positions to number of persons employed by an A-PICU-PC is approximately 1.3. Differences in the nature of services managed by an A-PICU-PC or the type of hospital might change the ratio slightly. The model can be applied universally, independently of differences that might exist among departments. Widespread application would allow adoption of a common language to be used by health care managers and A-PICU-PC departments when discussing a basis for consensus about our specialty.

  12. Genesis of Hurricane Sandy (2012) Simulated with a Global Mesoscale Model

    Science.gov (United States)

    Shen, Bo-Wen; DeMaria, Mark; Li, J.-L. F.; Cheung, S.

    2013-01-01

    In this study, we investigate the formation predictability of Hurricane Sandy (2012) with a global mesoscale model. We first present five track and intensity forecasts of Sandy initialized at 00Z 22-26 October 2012, realistically producing its movement with a northwestward turn prior to its landfall. We then show that three experiments initialized at 00Z 16-18 October captured the genesis of Sandy with a lead time of up to 6 days and simulated reasonable evolution of Sandy's track and intensity in the next 2 day period of 18Z 21-23 October. Results suggest that the extended lead time of formation prediction is achieved by realistic simulations of multiscale processes, including (1) the interaction between an easterly wave and a low-level westerly wind belt (WWB) and (2) the appearance of the upper-level trough at 200 hPa to Sandy's northwest. The low-level WWB and upper-level trough are likely associated with a Madden-Julian Oscillation.

  13. Preadmission quality of life can predict mortality in intensive care unit—A prospective cohort study

    DEFF Research Database (Denmark)

    Bukan, Ramin I; Møller, Ann M; Henning, Mattias A S

    2014-01-01

    quality of life, assessed by SF-36 and SF-12, is as good at predicting ICU, 30-, and 90-day mortality as APACHE II in patients admitted to the ICU for longer than 24 hours. This indicates that estimated preadmission quality of life, potentially available in the pre-ICU setting, could aid decision making...... regarding ICU admission and deserves more attention by those caring for critically ill patients....

  14. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Caglar, Hale B.; Tishler, Roy B.; Othus, Megan; Burke, Elaine; Li Yi; Goguen, Laura; Wirth, Lori J.; Haddad, Robert I.; Norris, Carl M.; Court, Laurence E.; Aninno, Donald J. D.; Posner, Marshall R.; Allen, Aaron M.

    2008-01-01

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving ≥50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving ≥50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  15. Are recent hurricane (Harvey, Irma, Maria) disasters natural?

    Science.gov (United States)

    Trenberth, K. E.; Lijing, C.; Jacobs, P.; Abraham, J. P.

    2017-12-01

    Yes and no! Hurricanes are certainly natural, but human-caused climate change is supersizing them, and unbridled growth is exacerbating risk of major damages. The addition of heat-trapping gases to the atmosphere has led to observed increases in upper ocean heat content (OHC). This human-caused increase in OHC supports higher sea surface temperatures (SSTs) and atmospheric moisture. These elevated temperatures and increased moisture availability fuel tropical storms, allowing them to grow larger, longer lasting, and more intense, and with widespread heavy rainfalls. Our preliminary analysis of OHC through the August of 2017 shows not only was it by far the highest on record globally, but it was also the highest on record in the Gulf of Mexico prior to hurricane Harvey occurring. The human influence on the climate is also evident in rising sea levels, which increases risks from storm surges. These climatic changes are taking place against a background of growing habitation along coasts, which further increases the risk storms pose to life and property. This combination of planning choice and climatic change illustrates the tragedy of global warming, as evidenced by Harvey in Houston, Irma in the Caribbean and Florida, and Maria in Puerto Rico. However, future damages and loss of life can be mitigated, by stopping or slowing human-caused climate change, and through proactive planning (e.g., better building codes, increased-capacity drainage systems, shelters, and evacuation plans). We discuss the climatic and planning contexts of the unnatural disasters of the 2017 Atlantic Hurricane season, including novel indices of climate-hurricane influence.

  16. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    Science.gov (United States)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  17. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  18. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  19. A hurricane modification process, applying a new technology tested for warm cloud seeding to produce artificial rains

    Science.gov (United States)

    Imai, T.; Martin, I.; Iha, K.

    A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work

  20. Vietnamese Hurricane Response Fact Sheets

    Science.gov (United States)

    Các tờ dữ kiện được cung cấp nơi đây mô tả vai trò của EPA trong việc đáp ứng với bão và cách các chương trình cụ thể cung cấp sự hỗ trợ. The Vietnamese fact sheets provided here describe EPA's role in a hurricane response.

  1. Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble

    Science.gov (United States)

    Tippett, Michael K.; Ranganathan, Meghana; L'Heureux, Michelle; Barnston, Anthony G.; DelSole, Timothy

    2017-05-01

    Here we examine the skill of three, five, and seven-category monthly ENSO probability forecasts (1982-2015) from single and multi-model ensemble integrations of the North American Multimodel Ensemble (NMME) project. Three-category forecasts are typical and provide probabilities for the ENSO phase (El Niño, La Niña or neutral). Additional forecast categories indicate the likelihood of ENSO conditions being weak, moderate or strong. The level of skill observed for differing numbers of forecast categories can help to determine the appropriate degree of forecast precision. However, the dependence of the skill score itself on the number of forecast categories must be taken into account. For reliable forecasts with same quality, the ranked probability skill score (RPSS) is fairly insensitive to the number of categories, while the logarithmic skill score (LSS) is an information measure and increases as categories are added. The ignorance skill score decreases to zero as forecast categories are added, regardless of skill level. For all models, forecast formats and skill scores, the northern spring predictability barrier explains much of the dependence of skill on target month and forecast lead. RPSS values for monthly ENSO forecasts show little dependence on the number of categories. However, the LSS of multimodel ensemble forecasts with five and seven categories show statistically significant advantages over the three-category forecasts for the targets and leads that are least affected by the spring predictability barrier. These findings indicate that current prediction systems are capable of providing more detailed probabilistic forecasts of ENSO phase and amplitude than are typically provided.

  2. Hindcast and validation of Hurricane Ike waves, forerunner, and storm surge

    NARCIS (Netherlands)

    Hope, M.E.; Westerink, J.J.; Kennedy, A.B.; Kerr, P.C.; Dietrich, J.C.; Dawson, C.; Bender, C.J.; Smith, J.M.; Jensen, R.E.; Zijlema, M.; Holthuijsen, L.H.; Luettich, R.A.; Powell, M.D.; Cardone, V.J.; Cox, A.T.; Pourtaheri, H.; Roberts, H.J.; Atkinson, J.H.; Tanaka, S.; Westerink, H.J.; Westerink, L.G.

    2013-01-01

    Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana-Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied

  3. 48 CFR 1852.236-73 - Hurricane plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Hurricane plan. 1852.236-73... Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all materials...

  4. Loading Intensity Prediction by Velocity and the OMNI-RES 0-10 Scale in Bench Press.

    Science.gov (United States)

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2017-02-01

    Naclerio, F and Larumbe-Zabala, E. Loading intensity prediction by velocity and the OMNI-RES 0-10 scale in bench press. J Strength Cond Res 32(1): 323-329, 2017-This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press (BP) exercise. A total of 308 young, healthy, resistance trained athletes (242 men and 66 women) performed a progressive strength test up to the one repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity (AV) and the OMNI-Resistance Exercise Scales (OMNI-RES 0-10 scale), considering sets as the time-related variable. Load associated with the AV and the OMNI-RES 0-10 scale value expressed after performing a set of 1-3 repetitions were used to construct 2 adjusted predictive equations: Relative load = 107.75 - 62.97 × average velocity; and Relative load = 29.03 + 7.26 × OMNI-RES 0-10 scale value. The 2 models were capable of estimating the relative load with an accuracy of 84 and 93%, respectively. These findings confirm the ability of the 2 calculated regression models, using load-velocity and load-exertion from the OMNI-RES 0-10 scale, to accurately predict strength performance in BP.

  5. The Predictive Value of Scores Used in Intensive Care Unit for Burn Patients Prognostic.

    Science.gov (United States)

    Novac, M; Dragoescu, Alice; Stanculescu, Andreea; Duca, Lucica; Cernea, Daniela

    2014-01-01

    Statistical evaluation of the prognosis of burned patients based on the analysis of prognostic scores as quickly and easily obtainable that track the evolution of burned patient in ICU. Material / Methods: The prospective study included 92 patients were performed with severe burns on 35-67% body surface large area, aiming to establish a cut-off score for each studied and statistically significant prognostic parameter for assessing the risk of mortality. The control group was represented by 20 patients with burns on the body surface of 0.05) sex (male / female), but we had p cut-off. Quantification of variables by calculating the area under the ROC curve (AUC), sensitivity and sensitivity, positive predictive value (PPV) and negative predictive value (NPV), allowed a better appreciation of these prognostic scores. These systems applicable to the burned patient scores, making a cut-off of each index / mortality probability score, he can manifest usefulness in medical decision making process and strategy to reduce the risk of death in patients with severe burns.

  6. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    International Nuclear Information System (INIS)

    Higdon, Dave; McDonnell, Jordan D; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M

    2015-01-01

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, best input setting. Hence the statistical model is of the form y=η(θ)+ϵ, where ϵ accounts for measurement, and possibly other, error sources. When nonlinearity is present in η(⋅), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model η(⋅). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. (paper)

  7. Enhanced presurgical pain temporal summation response predicts post-thoracotomy pain intensity during the acute postoperative phase.

    Science.gov (United States)

    Weissman-Fogel, Irit; Granovsky, Yelena; Crispel, Yonathan; Ben-Nun, Alon; Best, Lael Anson; Yarnitsky, David; Granot, Michal

    2009-06-01

    Recent evidence points to an association between experimental pain measures obtained preoperatively and acute postoperative pain (POP). We hypothesized that pain temporal summation (TS) might be an additional predictor for POP insofar as it represents the neuroplastic changes that occur in the central nervous system following surgery. Therefore, a wide range of psychophysical tests (TS to heat and mechanical repetitive stimuli, pain threshold, and suprathreshold pain estimation) and personality tests (pain catastrophizing and anxiety levels) were administered prior to thoracotomy in 84 patients. POP ratings were evaluated on the 2nd and 5th days after surgery at rest (spontaneous pain) and in response to activity (provoked pain). Linear regression models revealed that among all assessed variables, enhanced TS and higher pain scores for mechanical stimulation were significantly associated with greater provoked POP intensity (overall r2 = 0.225, P = .008). Patients who did not demonstrate TS to both modalities reported lower scores of provoked POP as compared with patients who demonstrated TS in response to at least 1 modality (F = 4.59 P = .013). Despite the moderate association between pain catastrophizing and rest POP, none of the variables predicted the spontaneous POP intensity. These findings suggest that individual susceptibility toward a greater summation response may characterize patients who are potentially vulnerable to augmented POP. This study proposed the role of pain temporal summation assessed preoperatively as a significant psychophysical predictor for acute postoperative pain intensity. The individual profile of enhanced pain summation is associated with the greater likelihood of higher postoperative pain scores.

  8. The use of a sweetener substitution method to predict dietary exposures for the intense sweetener rebaudioside A.

    Science.gov (United States)

    Renwick, A G

    2008-07-01

    There are more published dietary exposure data for intense sweeteners than for any other group of food additives. Data are available for countries with different patterns of sweetener approvals and also for population groups with high potential intakes, such as children and diabetic subjects. These data provide a secure basis for predicting the potential intakes of a novel intense sweetener by adjustment of the reported intakes of different sweeteners in mg/kg body weight by their relative sweetness intensities. This approach allows the possibility that a novel sweetener attains the same pattern and extent of use as the existing sweeteners. The intakes by high consumers of other sweeteners allows for possible brand loyalty to the novel sweetener. Using this method, the estimated dietary exposures for rebaudioside A in average and high consumers are predicted to be 1.3 and 3.4mg/kg body weight per day for the general population, 2.1 and 5.0mg/kg body weight per day for children and 3.4 and 4.5mg/kg body weight per day for children with diabetes. The temporary ADI defined by the JECFA for steviol glycosides [JECFA, 2005. Steviol glycosides. In: 63rd Meeting of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization (WHO), Geneva, Switzerland, WHO Technical Report Series 928, pp. 34-39] was set at 0-2mg/kg body weight (expressed as steviol equivalents); after correction for the difference in molecular weights, these estimated intakes of rebaudioside A are equivalent to daily steviol intakes of less than 2mg/kg. In consequence, this analysis shows that the intakes of rebaudioside A would not exceed the JECFA temporary ADI set for steviol glycosides.

  9. Can Energy Cost During Low-Intensity Resistance Exercise be Predicted by the OMNI-RES Scale?

    Science.gov (United States)

    Vianna, Jefferson M.; Reis, Victor M.; Saavedra, Francisco; Damasceno, Vinicius; Silva, Sérgio G.; Goss, Fredric

    2011-01-01

    The aim of the present study was to assess the precision of the OMNI-RES scale to predict energy cost (EC) at low intensity in four resistance exercises (RE). 17 male recreational body builders (age = 26.6 ± 4.9 years; height = 177.7 ± 0.1 cm; body weight = 79.0 ± 11.1 kg and percent body fat = 10.5 ± 4.6%) served as subjects. Initially tests to determine 1RM for four resistance exercises (bench press, half squat, lat pull down and triceps extension) were administered. Subjects also performed resistance exercise at 12, 16, 20, and 24% of 1RM at a rate of 40 bpm until volitional exhaustion. Oxygen uptake (VO2) and rate of perceived exertion (RPE) using the OMNI-RES were obtained during and after all RE. EC was calculated using VO2 and the caloric values of VO2 for non-protein RER. Regression analyses were performed for every RE, using EC as the dependent and RPE as the predictor variable. The triceps extension, lat pull down and bench press, RPE correlated strongly with EC (R > 0.97) and predicted EC with a error of less than 0.2 kcal.min−1. In conclusion, RPE using the OMNI-RES scale can be considered as an accurate indicator of EC in the bench press, lat pull down and triceps extension performed by recreational bodybuilders, provided lower intensities are used (up to 24% of 1-RM) and provided each set of exercise is performed for the maximal sustainable duration. It would be interesting in future studies to consider having the subjects exercise at low intensities for longer durations than those in the present study. PMID:23486188

  10. Charlson comorbidity index derived from chart review or administrative data: agreement and prediction of mortality in intensive care patients

    Directory of Open Access Journals (Sweden)

    Stavem K

    2017-06-01

    Full Text Available Knut Stavem,1–3 Henrik Hoel,4 Stein Arve Skjaker,5 Rolf Haagensen6 1Institute of Clinical Medicine, University of Oslo, Oslo, 2Department of Pulmonary Medicine, Medical Division, 3Health Services Research Unit, Akershus University Hospital, Lørenskog, 4Department of Surgery, Sykehuset Innlandet Kongsvinger, Kongsvinger, 5Section of Orthopaedic Emergency, Department of Orthopaedic Surgery, Oslo University Hospital, Oslo, 6Department of Anaesthesiology, Surgical Division, Akershus University Hospital, Lørenskog, Norway Purpose: This study compared the Charlson comorbidity index (CCI information derived from chart review and administrative systems to assess the completeness and agreement between scores, evaluate the capacity to predict 30-day and 1-year mortality in intensive care unit (ICU patients, and compare the predictive capacity with that of the Simplified Acute Physiology Score (SAPS II model.Patients and methods: Using data from 959 patients admitted to a general ICU in a Norwegian university hospital from 2007 to 2009, we compared the CCI score derived from chart review and administrative systems. Agreement was assessed using % agreement, kappa, and weighted kappa. The capacity to predict 30-day and 1-year mortality was assessed using logistic regression, model discrimination with the c-statistic, and calibration with a goodness-of-fit statistic.Results: The CCI was complete (n=959 when calculated from chart than from administrative data (n=839. Agreement was good, with a weighted kappa of 0.667 (95% confidence interval: 0.596–0.714. The c-statistics for categorized CCI scores from charts and administrative data were similar in the model that included age, sex, and type of admission: 0.755 and 0.743 for 30-day mortality, respectively, and 0.783 and 0.775, respectively, for 1-year mortality. Goodness-of-fit statistics supported the model fit.Conclusion: The CCI scores from chart review and administrative data showed good agreement

  11. NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season

    Science.gov (United States)

    Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.

    2010-12-01

    evaluated based on the thermodynamic structure, wind field, track and intensity. Related HEDAS research to be presented by HRD’s data assimilation group include evaluations of the geostrophic wind balance and covariance structures for the Bill experiments, and Observation System Simulation experiments (OSSEs) for the case of hurricane Paloma using both model generated and real observations.

  12. Hurricane Havoc - Mapping the Mayhem with NOAA's National Water Model

    Science.gov (United States)

    Aggett, G. R.; Stone, M.

    2017-12-01

    With Hurricane Irene as an example, this work demonstrates the versatility of NOAA's new National Water Model (NWM) as a tool for analyzing hydrologic hazards before, during, and after events. Hurricane Irene made landfall on the coast of North Carolina on August 27, 2011, and made its way up the East Coast over the next 3 days. This storm caused widespread flooding across the Northeast, where rain totals over 20" and wind speeds of 100mph were recorded, causing loss of life and significant damage to infrastructure. Large portions of New York and Vermont were some of the hardest hit areas. This poster will present a suite of post-processed products, derived from NWM output, that are currently being developed at NOAA's National Water Center in Tuscaloosa, AL. The National Water Model is allowing NOAA to expand its water prediction services to the approximately 2.7 million stream reaches across the U.S. The series of forecasted and real-time analysis products presented in this poster will demonstrate the strides NOAA is taking to increase preparedness and aid response to severe hydrologic events, like Hurricane Irene.

  13. Hurricane shuts down gulf activity

    International Nuclear Information System (INIS)

    Koen, A.D.

    1992-01-01

    This paper reports that producers in the Gulf of Mexico and plant operators in South Louisiana last week were checking for damage wrought by Hurricane Andrew. In its wake Andrew left evacuated rigs and platforms in the gulf and shuttered plants across a wide swath of the Gulf Coast. Operations were beginning to return to normal late last week. Not all gulf operators, especially in the central gulf, expected to return to offshore facilities. And even producers able to book helicopters did not expect to be able to fully assess damage to all offshore installations before the weekend. MMS officials in Washington estimated that 37,500 offshore workers were evacuated from 700 oil and gas installations on the gulf's Outer Continental Shelf. Gulf oil and gas wells account for about 800,000 b/d of oil and one fourth of total U.S. gas production. MMS was awaiting an assessment of hurricane damage before estimating how soon and how much gulf oil and gas production would be restored

  14. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  15. Multivariate analysis of factors predicting prostate dose in intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Tsuneyuki [Division of Radiology, Osaka Red Cross Hospital, Osaka (Japan); Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Hirose, Yoshinori; Kitsuda, Kenji; Notogawa, Takuya; Miki, Katsuhito [Division of Radiology, Osaka Red Cross Hospital, Osaka (Japan); Nakamura, Kiyonao; Ishigaki, Takashi [Department of Radiation Oncology, Osaka Red Cross Hospital, Osaka (Japan)

    2014-01-01

    We conducted a multivariate analysis to determine relationships between prostate radiation dose and the state of surrounding organs, including organ volumes and the internal angle of the levator ani muscle (LAM), based on cone-beam computed tomography (CBCT) images after bone matching. We analyzed 270 CBCT data sets from 30 consecutive patients receiving intensity-modulated radiation therapy for prostate cancer. With patients in the supine position on a couch with the HipFix system, data for center of mass (COM) displacement of the prostate and the state of individual organs were acquired and compared between planning CT and CBCT scans. Dose distributions were then recalculated based on CBCT images. The relative effects of factors on the variance in COM, dose covering 95% of the prostate volume (D{sub 95%}), and percentage of prostate volume covered by the 100% isodose line (V{sub 100%}) were evaluated by a backward stepwise multiple regression analysis. COM displacement in the anterior-posterior direction (COM{sub AP}) correlated significantly with the rectum volume (δVr) and the internal LAM angle (δθ; R = 0.63). Weak correlations were seen for COM in the left-right (R = 0.18) and superior-inferior directions (R = 0.31). Strong correlations between COM{sub AP} and prostate D{sub 95%} and V{sub 100%} were observed (R ≥ 0.69). Additionally, the change ratios in δVr and δθ remained as predictors of prostate D{sub 95%} and V{sub 100%}. This study shows statistically that maintaining the same rectum volume and LAM state for both the planning CT simulation and treatment is important to ensure the correct prostate dose in the supine position with bone matching.

  16. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  17. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  18. SMART-COP: a tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia.

    Science.gov (United States)

    Charles, Patrick G P; Wolfe, Rory; Whitby, Michael; Fine, Michael J; Fuller, Andrew J; Stirling, Robert; Wright, Alistair A; Ramirez, Julio A; Christiansen, Keryn J; Waterer, Grant W; Pierce, Robert J; Armstrong, John G; Korman, Tony M; Holmes, Peter; Obrosky, D Scott; Peyrani, Paula; Johnson, Barbara; Hooy, Michelle; Grayson, M Lindsay

    2008-08-01

    Existing severity assessment tools, such as the pneumonia severity index (PSI) and CURB-65 (tool based on confusion, urea level, respiratory rate, blood pressure, and age >or=65 years), predict 30-day mortality in community-acquired pneumonia (CAP) and have limited ability to predict which patients will require intensive respiratory or vasopressor support (IRVS). The Australian CAP Study (ACAPS) was a prospective study of 882 episodes in which each patient had a detailed assessment of severity features, etiology, and treatment outcomes. Multivariate logistic regression was performed to identify features at initial assessment that were associated with receipt of IRVS. These results were converted into a simple points-based severity tool that was validated in 5 external databases, totaling 7464 patients. In ACAPS, 10.3% of patients received IRVS, and the 30-day mortality rate was 5.7%. The features statistically significantly associated with receipt of IRVS were low systolic blood pressure (2 points), multilobar chest radiography involvement (1 point), low albumin level (1 point), high respiratory rate (1 point), tachycardia (1 point), confusion (1 point), poor oxygenation (2 points), and low arterial pH (2 points): SMART-COP. A SMART-COP score of >or=3 points identified 92% of patients who received IRVS, including 84% of patients who did not need immediate admission to the intensive care unit. Accuracy was also high in the 5 validation databases. Sensitivities of PSI and CURB-65 for identifying the need for IRVS were 74% and 39%, respectively. SMART-COP is a simple, practical clinical tool for accurately predicting the need for IRVS that is likely to assist clinicians in determining CAP severity.

  19. Short-term impacts of Hurricanes Irma and Maria on tropical stream chemistry as measured by in-situ sensors

    Science.gov (United States)

    McDowell, W. H.; Potter, J.; López-Lloreda, C.

    2017-12-01

    High intensity hurricanes have been shown to alter topical forest productivity and stream chemistry for years to decades in the montane rain forest of Puerto Rico, but much less is known about the immediate ecosystem response to these extreme events. Here we report the short-term impacts of Hurricanes Irma and Maria on the chemistry of Quebrada Sonadora immediately before and after the storms. We place the results from our 15-minute sensor record in the context of long-term weekly sampling that spans 34 years and includes two earlier major hurricanes (Hugo and Geoges). As expected, turbidity during Maria was the highest in our sensor record (> 1000 NTU). Contrary to our expectations, we found that solute-flow behavior changed with the advent of the storms. Specific conductance showed a dilution response to flow before the storms, but then changed to an enrichment response during and after Maria. This switch in system behavior is likely due to the deposition of marine aerosols during the hurricane. Nitrate concentrations showed very little response to discharge prior to the recent hurricanes, but large increase in concentration occurred at high flow both during and after the hurricanes. Baseflow nitrate concentrations decreased immediately after Irma to below the long-term background concentrations, which we attribute to the immobilization of N on organic debris choking the stream channel. Within three weeks of Hurricane Maria, baseflow nitrate concentrations began to rise. This is likely due to mineralization of N from decomposing canopy vegetation on the forest floor, and reduced N uptake by hurricane-damaged vegetation. The high frequency sensors are providing new insights into the response of this ecosystem in the days and weeks following two major disturbance events. The flipping of nitrate response to storms, from source limited to transport limited, suggests that these two severe hurricanes have fundamentally altered the nitrogen cycle at the site in ways

  20. A Near-Annual Record of Hurricane Activity From the Little Bahama Bank Over the Last 700 Years

    Science.gov (United States)

    Winkler, T. S.; van Hengstum, P. J.; Donnelly, J. P.; Sullivan, R.; Albury, N. A.

    2016-12-01

    Long-term and high-resolution records of hurricane activity that extend past the short observational record (8m vibracores collected with a Rossfelder P-3. The previous core analyzed (TPBH-C1, Continental Shelf Research, 2014) was likely obtained from the cave-area of the bluehole, and previous radiocarbon-dated bivalves deeper in the core were likely impacted by an old-carbon effect, casting doubt on the veracity of the previous age-model at this site. Recent overwash beds from Hurricane Jeanne (2004) and Hurricane Floyd (1999) are present at all coretops, and additional radiocarbon dating that includes terrestrial organic matter fragments indicates a near-annual sedimentation rate in the bluehole (>1cm yr-1), with the record spanning the last 700 years. Since 1866 CE, 12 hurricanes with wind speeds exceeding Category 2 on the Saffir-Simpson Scale (wind speeds 154-177 km hr-1) have passed within a 50 km radius of TPBH, many of which can be associated with coarse-grained overwash deposits in the top 200 cm of TPBH-C3. It appears from this high-resolution record that 1500-1650 CE and 1750-1800 CE were active intervals for hurricanes near Abaco, which were previously identified in a lower-resolution (multi-decadal) hurricane reconstruction from Abaco (Blackwood Sinkhole). Additionally, these active intervals coincide with evidence of regional storminess from multiple reconstructions based on historical archives (e.g.: Archivo General de Indias, newspapers, ships' logbooks, meteorological journals), and the 1500-1650 CE active interval falls within a previously identified 1400-1675 CE active interval of intense hurricane strikes on the Northeastern United States. Once the age-model is finalized, further comparison of this record to other regional oceanographic and high-resolution hurricane reconstructions may provide further insight into the drivers of hurricane activity during the last millennium.

  1. Pulmonary embolism in intensive care unit: Predictive factors, clinical manifestations and outcome

    Directory of Open Access Journals (Sweden)

    Bahloul Mabrouk

    2010-01-01

    Full Text Available Objective : To determine predictive factors, clinical and demographics characteristics of patients with pulmonary embolism (PE in ICU, and to identify factors associated with poor outcome in the hospital and in the ICU. Methods : During a four-year prospective study, a medical committee of six ICU physicians prospectively examined all available data for each patient in order to classify patients according to the level of clinical suspicion of pulmonary thromboembolism. During the study periods, all patients admitted to our ICU were classified into four groups. The first group includes all patients with confirmed PE; the second group includes some patients without clinical manifestations of PE; the third group includes patients with suspected and not confirmed PE and the fourth group includes all patients with only deep vein thromboses (DVTs without suspicion of PE. The diagnosis of PE was confirmed either by a high-probability ventilation/perfusion (V/Q scan or by a spiral computed tomography (CT scan showing one or more filling defects in the pulmonary artery or in its branches. The diagnosis was also confirmed by echocardiography when a thrombus in the pulmonary artery was observed. Results : During the study periods, 4408 patients were admitted in our ICU. The diagnosis of PE was confirmed in 87 patients (1.9%. The mean delay of development of PE was 7.8 ± 9.5 days. On the day of PE diagnosis, clinical examination showed that 50 patients (57.5% were hypotensive, 63 (72.4% have SIRS, 15 (17.2% have clinical manifestations of DVT and 71 (81.6% have respiratory distress requiring mechanical ventilation. In our study, intravenous unfractionated heparin was used in 81 cases (93.1% and low molecular weight heparins were used in 4 cases (4.6%. The mean ICU stay was 20.2 ± 25.3 days and the mean hospital stay was 25.5 ± 25 days. The mortality rate in ICU was 47.1% and the in-hospital mortality rate was 52.9%. Multivariate analysis showed that

  2. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  3. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ming; Zhang, Qilin [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Shanghai (China); Shanghai Pituitary Tumor Center, Shanghai (China); Liu, Wenjuan; Li, Yiming; Zhang, Zhaoyun; Ye, Hongying; He, Min; Lu, Bin; Yang, Yeping [Shanghai Pituitary Tumor Center, Shanghai (China); Fudan University, Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Shanghai (China); Wang, Meng [Fudan University, Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Shanghai (China); Soochow University, Division of Endocrinology, the Second Affiliated Hospital, Suzhou (China); Zhu, Jingjing [Shanghai Pituitary Tumor Center, Shanghai (China); Fudan University, Department of Neuropathology, Huashan Hospital, Shanghai Medical College, Shanghai (China); Ma, Zengyi; He, Wenqiang; Li, Shiqi; Shou, Xuefei; Qiao, Nidan; Ye, Zhao; Zhang, Yichao; Zhao, Yao; Wang, Yongfei [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Shanghai (China); Shanghai Pituitary Tumor Center, Shanghai (China); Yao, Zhenwei [Shanghai Pituitary Tumor Center, Shanghai (China); Fudan University, Department of Radiology, Huashan Hospital, Shanghai Medical College, Shanghai (China); Lu, Yun [Fudan University, Department of Nuclear Medicine, Huashan Hospital, Shanghai Medical College, Shanghai (China)

    2016-11-15

    The difficulty of predicting the efficacy of somatostatin analogs (SSA) is not fully resolved. Here, we quantitatively evaluated the predictive value of relative signal intensity (rSI) on T1- and T2-weighted magnetic resonance imaging (MRI) for the short-term efficacy (3 months) of SSA therapy in patients with active acromegaly and assessed the correlation between MRI rSI and expression of somatostatin receptors (SSTR). This was a retrospective review of prospectively recorded data. Ninety-two newly diagnosed patients (37 males and 55 females) with active acromegaly were recruited. All patients were treated with pre-surgical SSA, followed by reassessment and transspenoidal surgery. rSI values were generated by calculating the ratio of SI in the tumor to the SI of normal frontal white matter. The Youden indices were calculated to determine the optimal cutoff of rSI to determine the efficacy of SSA. The correlation between rSI and expression of SSTR2/5 was analyzed by the Spearman rank correlation coefficient. T2 rSI was strongly correlated with biochemical sensitivity to SSA. The cutoff value of T2 rSI to distinguish biochemical sensitivity was 1.205, with a positive predictive value (PPV) of 81.5 % and a negative predictive value (NPV) of 77.3 %. No correlation was found between MRI and tumor size sensitivity. Moreover, T2 rSI was negatively correlated with the expression of SSTR5. T2 rSI correlates with the expression of SSTR5 and quantitatively predicts the biochemical efficacy of SSA in acromegaly. (orig.)

  4. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly

    International Nuclear Information System (INIS)

    Shen, Ming; Zhang, Qilin; Liu, Wenjuan; Li, Yiming; Zhang, Zhaoyun; Ye, Hongying; He, Min; Lu, Bin; Yang, Yeping; Wang, Meng; Zhu, Jingjing; Ma, Zengyi; He, Wenqiang; Li, Shiqi; Shou, Xuefei; Qiao, Nidan; Ye, Zhao; Zhang, Yichao; Zhao, Yao; Wang, Yongfei; Yao, Zhenwei; Lu, Yun

    2016-01-01

    The difficulty of predicting the efficacy of somatostatin analogs (SSA) is not fully resolved. Here, we quantitatively evaluated the predictive value of relative signal intensity (rSI) on T1- and T2-weighted magnetic resonance imaging (MRI) for the short-term efficacy (3 months) of SSA therapy in patients with active acromegaly and assessed the correlation between MRI rSI and expression of somatostatin receptors (SSTR). This was a retrospective review of prospectively recorded data. Ninety-two newly diagnosed patients (37 males and 55 females) with active acromegaly were recruited. All patients were treated with pre-surgical SSA, followed by reassessment and transspenoidal surgery. rSI values were generated by calculating the ratio of SI in the tumor to the SI of normal frontal white matter. The Youden indices were calculated to determine the optimal cutoff of rSI to determine the efficacy of SSA. The correlation between rSI and expression of SSTR2/5 was analyzed by the Spearman rank correlation coefficient. T2 rSI was strongly correlated with biochemical sensitivity to SSA. The cutoff value of T2 rSI to distinguish biochemical sensitivity was 1.205, with a positive predictive value (PPV) of 81.5 % and a negative predictive value (NPV) of 77.3 %. No correlation was found between MRI and tumor size sensitivity. Moreover, T2 rSI was negatively correlated with the expression of SSTR5. T2 rSI correlates with the expression of SSTR5 and quantitatively predicts the biochemical efficacy of SSA in acromegaly. (orig.)

  5. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly.

    Science.gov (United States)

    Shen, Ming; Zhang, Qilin; Liu, Wenjuan; Wang, Meng; Zhu, Jingjing; Ma, Zengyi; He, Wenqiang; Li, Shiqi; Shou, Xuefei; Li, Yiming; Zhang, Zhaoyun; Ye, Hongying; He, Min; Lu, Bin; Yao, Zhenwei; Lu, Yun; Qiao, Nidan; Ye, Zhao; Zhang, Yichao; Yang, Yeping; Zhao, Yao; Wang, Yongfei

    2016-11-01

    The difficulty of predicting the efficacy of somatostatin analogs (SSA) is not fully resolved. Here, we quantitatively evaluated the predictive value of relative signal intensity (rSI) on T1- and T2-weighted magnetic resonance imaging (MRI) for the short-term efficacy (3 months) of SSA therapy in patients with active acromegaly and assessed the correlation between MRI rSI and expression of somatostatin receptors (SSTR). This was a retrospective review of prospectively recorded data. Ninety-two newly diagnosed patients (37 males and 55 females) with active acromegaly were recruited. All patients were treated with pre-surgical SSA, followed by reassessment and transspenoidal surgery. rSI values were generated by calculating the ratio of SI in the tumor to the SI of normal frontal white matter. The Youden indices were calculated to determine the optimal cutoff of rSI to determine the efficacy of SSA. The correlation between rSI and expression of SSTR2/5 was analyzed by the Spearman rank correlation coefficient. T2 rSI was strongly correlated with biochemical sensitivity to SSA. The cutoff value of T2 rSI to distinguish biochemical sensitivity was 1.205, with a positive predictive value (PPV) of 81.5 % and a negative predictive value (NPV) of 77.3 %. No correlation was found between MRI and tumor size sensitivity. Moreover, T2 rSI was negatively correlated with the expression of SSTR5. T2 rSI correlates with the expression of SSTR5 and quantitatively predicts the biochemical efficacy of SSA in acromegaly.

  6. Intensity of Multilingual Language Use Predicts Cognitive Performance in Some Multilingual Older Adults

    Science.gov (United States)

    Keijzer, Merel; de Bot, Kees

    2018-01-01

    Cognitive advantages for bilinguals have inconsistently been observed in different populations, with different operationalisations of bilingualism, cognitive performance, and the process by which language control transfers to cognitive control. This calls for studies investigating which aspects of multilingualism drive a cognitive advantage, in which populations and under which conditions. This study reports on two cognitive tasks coupled with an extensive background questionnaire on health, wellbeing, personality, language knowledge and language use, administered to 387 older adults in the northern Netherlands, a small but highly multilingual area. Using linear mixed effects regression modeling, we find that when different languages are used frequently in different contexts, enhanced attentional control is observed. Subsequently, a PLS regression model targeting also other influential factors yielded a two-component solution whereby only more sensitive measures of language proficiency and language usage in different social contexts were predictive of cognitive performance above and beyond the contribution of age, gender, income and education. We discuss these findings in light of previous studies that try to uncover more about the nature of bilingualism and the cognitive processes that may drive an advantage. With an unusually large sample size our study advocates for a move away from dichotomous, knowledge-based operationalisations of multilingualism and offers new insights for future studies at the individual level. PMID:29783764

  7. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  8. The Role of Peers in the Relation between Hurricane Exposure and Ataques de Nervios among Puerto Rican Adolescents.

    Science.gov (United States)

    Rubens, Sonia L; Felix, Erika D; Vernberg, Eric M; Canino, Glorisa

    2014-11-01

    Although a relation between disaster exposure and ataques de nervios ( ataques ) has been established in adult samples, little is known about this among youth, including factors that may moderate this relation. This study examined the role of the peer context in the relation between exposure to Hurricane Georges and experiencing a past year and lifetime ataques among a representative community sample of 905 youth (N = 476 boys and 429 girls; ages 11-18) residing in Puerto Rico. Data were gathered from 1999-2000 in Puerto Rico, 12-27 months following Hurricane Georges. Logistic regression analyses found that peer violence significantly predicted experiencing an ataque in the past year. Hurricane exposure and peer violence were both significant predictors of a lifetime experience of an ataque . An interaction was found between hurricane exposure and peer violence, indicating that hurricane exposure was significantly related to a lifetime experience of an ataque among adolescents who do not report associating with violent peers. For participants reporting high levels of peer violence, hurricane exposure did not add additional risk for a lifetime experience of an ataque . Understanding the influence of peers in the relation between hurricane exposure and experiencing an ataque may assist in planning developmentally and culturally sensitive response plans.

  9. Rapid improvements in emotion regulation predict intensive treatment outcome for patients with bulimia nervosa and purging disorder.

    Science.gov (United States)

    MacDonald, Danielle E; Trottier, Kathryn; Olmsted, Marion P

    2017-10-01

    Rapid and substantial behavior change (RSBC) early in cognitive behavior therapy (CBT) for eating disorders is the strongest known predictor of treatment outcome. Rapid change in other clinically relevant variables may also be important. This study examined whether rapid change in emotion regulation predicted treatment outcomes, beyond the effects of RSBC. Participants were diagnosed with bulimia nervosa or purging disorder (N = 104) and completed ≥6 weeks of CBT-based intensive treatment. Hierarchical regression models were used to test whether rapid change in emotion regulation variables predicted posttreatment outcomes, defined in three ways: (a) binge/purge abstinence; (b) cognitive eating disorder psychopathology; and (c) depression symptoms. Baseline psychopathology and emotion regulation difficulties and RSBC were controlled for. After controlling for baseline variables and RSBC, rapid improvement in access to emotion regulation strategies made significant unique contributions to the prediction of posttreatment binge/purge abstinence, cognitive psychopathology of eating disorders, and depression symptoms. Individuals with eating disorders who rapidly improve their belief that they can effectively modulate negative emotions are more likely to achieve a variety of good treatment outcomes. This supports the formal inclusion of emotion regulation skills early in CBT, and encouraging patient beliefs that these strategies are helpful. © 2017 Wiley Periodicals, Inc.

  10. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning.

    Science.gov (United States)

    Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom

    2018-03-27

    Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.

  11. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction

    Science.gov (United States)

    Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong

    2018-01-01

    The Yellow Sea Cold Water Mass (YSCWM), which occurs during summer in the central Yellow Sea, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow Sea, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, air-sea heat flux, wind, evaporation, precipitation and sea level pressure to those in the strong year of 1984, respectively. The results showed that the air-sea heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the air-sea heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the sea surface temperature before the cooling season and the air-sea heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the

  12. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  13. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  14. Frequent Disasters in Mexico: hurricanes Pauline and Manuel in Acapulco, Guerrero

    Directory of Open Access Journals (Sweden)

    Juan Manuel Rodríguez Esteves

    2017-06-01

    Full Text Available Hurricanes and other tropical storms are natural phenomena that attract the interest of people all over the world, especially when they affect coastal communities. Each year, especially during the hurricane season, it is common to read or see in the different media damage caused by tropical storms in several countries, especially in Latin America and Asia. In Mexico total economic losses associated with natural phenomena has been increasing. During the year 2000 were allocated 230 million US dollars for the reconstruction of the infrastructure affected by hydrometeorological phenomena, while in 2013 damage amounted to $ 4,476 million, peaking during 2010 were recorded when 7,208 million dollars in losses. On the other hand, the total of damage caused by natural phenomena, 92 % were associated with hydrometeorological phenomena, which include hurricanes and other phenomena (SEGOB, 2014. The aim of this paper is to analyze the impacts caused by disasters associated with the influence of hurricanes from a comparative perspective between two phenomena in particular, hurricane Pauline in 1997 and Manuel storm in 2013 events hydrometeorological which affected the Mexican state of Guerrero, but especially to the port of Acapulco. one of the main conclusions of this study refers to that no matter only the intensity of the natural phenomenon to generate damage on society, but the total of damages also refers to the contexts of vulnerability generated by a society with the course of the years.

  15. Estimation of Phytoplankton Responses to Hurricane Gonu over the Arabian Sea Based on Ocean Color Data

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2008-08-01

    Full Text Available In this study the authors investigated phytoplankton variations in the Arabian Sea associated with Hurricane Gonu using remote-sensing data of chlorophyll-a (Chl-a, sea surface temperature (SST and winds. Additional data sets used for the study included the hurricane and Conductivity-Temperature-Depth data. Hurricane Gonu, presenting extremely powerful wind intensity, originated over the central Arabian Sea (near 67.7ºE, 15.1ºN on June 2, 2007; it traveled along a northwestward direction and made landfall in Iran around June 7. Before Hurricane Gonu, Chl-a data indicated relatively low phytoplankton biomass (0.05-0.2 mg m-3, along with generally high SST (>28.5 ºC and weak wind (<10 m s-1 in the Arabian Sea. Shortly after Gonu’s passage, two phytoplankton blooms were observed northeast of Oman (Chl-a of 3.5 mg m-3 and in the eastern central Arabian Sea (Chl-a of 0.4 mg m-3, with up to 10-fold increase in surface Chl-a concentrations, respectively. The Chl-a in the two post-hurricane blooms were 46% and 42% larger than those in June of other years, respectively. The two blooms may be attributed to the storm-induced nutrient uptake, since hurricane can influence intensively both dynamical and biological processes through vertical mixing and Ekman Pumping.

  16. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  17. Development and validation of a multivariate prediction model for patients with acute pancreatitis in Intensive Care Medicine.

    Science.gov (United States)

    Zubia-Olaskoaga, Felix; Maraví-Poma, Enrique; Urreta-Barallobre, Iratxe; Ramírez-Puerta, María-Rosario; Mourelo-Fariña, Mónica; Marcos-Neira, María-Pilar; García-García, Miguel Ángel

    2018-03-01

    Development and validation of a multivariate prediction model for patients with acute pancreatitis (AP) admitted in Intensive Care Units (ICU). A prospective multicenter observational study, in 1 year period, in 46 international ICUs (EPAMI study). adults admitted to an ICU with AP and at least one organ failure. Development of a multivariate prediction model, using the worst data of the stay in ICU, based in multivariate analysis, simple imputation in a development cohort. The model was validated in another cohort. 374 patients were included (mortality of 28.9%). Variables with statistical significance in multivariate analysis were age, no alcoholic and no biliary etiology, development of shock, development of respiratory failure, need of continuous renal replacement therapy, and intra-abdominal pressure. The model created with these variables presented an AUC of ROC curve of 0.90 (CI 95% 0.81-0.94) in the validation cohort. We developed a multivariable prediction model, and AP cases could be classified as low mortality risk (between 2 and 9.5 points, mortality of 1.35%), moderate mortality risk (between 10 and 12.5 points, 28.92% of mortality), and high mortality risk (13 points of more, mortality of 88.37%). Our model presented better AUC of ROC curve than APACHE II (0.91 vs 0.80) and SOFA in the first 24 h (0.91 vs 0.79). We developed and validated a multivariate prediction model, which can be applied in any moment of the stay in ICU, with better discriminatory power than APACHE II and SOFA in the first 24 h. Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  18. Predicting outcome of rethoracotomy for suspected pericardial tamponade following cardio-thoracic surgery in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Beishuizen Albertus

    2011-05-01

    Full Text Available Abstract Objectives Pericardial tamponade after cardiac surgery is difficult to diagnose, thereby rendering timing of rethoracotomy hard. We aimed at identifying factors predicting the outcome of surgery for suspected tamponade after cardio-thoracic surgery, in the intensive care unit (ICU. Methods Twenty-one consecutive patients undergoing rethoracotomy for suspected pericardial tamponade in the ICU, admitted after primary cardio-thoracic surgery, were identified for this retrospective study. We compared patients with or without a decrease in severe haemodynamic compromise after rethoracotomy, according to the cardiovascular component of the sequential organ failure assessment (SOFA score. Results A favourable haemodynamic response to rethoracotomy was observed in 11 (52% of patients and characterized by an increase in cardiac output, and less fluid and norepinephrine requirements. Prior to surgery, the absence of treatment by heparin, a minimum cardiac index 2 and a positive fluid balance (> 4,683 mL were predictive of a beneficial haemodynamic response. During surgery, the evacuation of clots and > 500 mL of pericardial fluid was associated with a beneficial haemodynamic response. Echocardiographic parameters were of limited help in predicting the postoperative course, even though 9 of 13 pericardial clots found at surgery were detected preoperatively. Conclusion Clots and fluids in the pericardial space causing regional tamponade and responding to surgical evacuation after primary cardio-thoracic surgery, are difficult to diagnose preoperatively, by clinical, haemodynamic and even echocardiographic evaluation in the ICU. Only absence of heparin treatment, a large positive fluid balance and low cardiac index predicted a favourable haemodynamic response to rethoracotomy. These data might help in deciding and timing of reinterventions after primary cardio-thoracic surgery.

  19. A theoretical model predicting the intensity of emitted light per unit of x-ray exposure in radiographic screens

    Energy Technology Data Exchange (ETDEWEB)

    Tsoukos, S; Kateris, A; Kalivas, N; Spyrou, G; Panayiotakis, G [Department of Medical Physics, School of Medicine, University of Patras, 265 00 pAtras (Greece); Kandarakis, I; Gavouras, D [Department of Medical Instrumentation Technology, Technological Educational Institution of Athens (Greece)

    1999-12-31

    A theoretical model predicting the intensity of light emitted by x-ray imaging phosphor screens per unit of area and time over incident x-ray flux (absolute efficiency) was developed. The model takes into account : A) the structure of the screens which consists of luminescent grains embedded in a binding matrix. B) the direct deposition of energy by x-ray absorption effects.. C) the re-absorption of K fluorescence characteristic x-rays produced when the x-ray energy exceeds the energy of the K absorption edge of the phosphor material. To test the model a set of (Gd,La)2O2S:Tb phosphor screens was prepared by sedimentation in the laboratory. Experimental absolute efficiency data were obtained at x-ray tube voltage range from 40 to 160 kVp. The coincidence between experimental and theoretical results were satisfactory. (authors) 7 refs., 4 figs.

  20. Predicting Dropout from Intensive Outpatient Cognitive Behavioural Therapy for Binge Eating Disorder Using Pre-treatment Characteristics: A Naturalistic Study.

    Science.gov (United States)

    Vroling, Maartje S; Wiersma, Femke E; Lammers, Mirjam W; Noorthoorn, Eric O

    2016-11-01

    Dropout rates in binge eating disorder (BED) treatment are high (17-30%), and predictors of dropout are unknown. Participants were 376 patients following an intensive outpatient cognitive behavioural therapy programme for BED, 82 of whom (21.8%) dropped out of treatment. An exploratory logistic regression was performed using eating disorder variables, general psychopathology, personality and demographics to identify predictors of dropout. Binge eating pathology, preoccupations with eating, shape and weight, social adjustment, agreeableness, and social embedding appeared to be significant predictors of dropout. Also, education showed an association to dropout. This is one of the first studies investigating pre-treatment predictors for dropout in BED treatment. The total explained variance of the prediction model was low, yet the model correctly classified 80.6% of cases, which is comparable to other dropout studies in eating disorders. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  1. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    Science.gov (United States)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  2. Hurricanes

    Science.gov (United States)

    ... and Practices Treatments That Work Screening and Assessment Psychological First Aid and SPR Core Curriculum on Childhood Trauma Trauma- ... Measure Reviews All Measure Reviews Usage and Glossary Psychological First Aid and SPR About PFA About SPR NCTSN Resources ...

  3. Application of a regional hurricane wind risk forecasting model for wood-frame houses.

    Science.gov (United States)

    Jain, Vineet Kumar; Davidson, Rachel Ann

    2007-02-01

    Hurricane wind risk in a region changes over time due to changes in the number, type, locations, vulnerability, and value of buildings. A model was developed to quantitatively estimate changes over time in hurricane wind risk to wood-frame houses (defined in terms of potential for direct economic loss), and to estimate how different factors, such as building code changes and population growth, contribute to that change. The model, which is implemented in a simulation, produces a probability distribution of direct economic losses for each census tract in the study region at each time step in the specified time horizon. By changing parameter values and rerunning the analysis, the effects of different changes in the built environment on the hurricane risk trends can be estimated and the relative effectiveness of hypothetical mitigation strategies can be evaluated. Using a case study application for wood-frame houses in selected counties in North Carolina from 2000 to 2020, this article demonstrates how the hurricane wind risk forecasting model can be used: (1) to provide insight into the dynamics of regional hurricane wind risk-the total change in risk over time and the relative contribution of different factors to that change, and (2) to support mitigation planning. Insights from the case study include, for example, that the many factors contributing to hurricane wind risk for wood-frame houses interact in a way that is difficult to predict a priori, and that in the case study, the reduction in hurricane losses due to vulnerability changes (e.g., building code changes) is approximately equal to the increase in losses due to building inventory growth. The potential for the model to support risk communication is also discussed.

  4. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    Science.gov (United States)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  5. Disaster imminent--Hurricane Hugo.

    Science.gov (United States)

    Guynn, J B

    1990-04-01

    Response to a disaster situation depends upon the type of circumstances presented. In situations where the disaster is the type that affects the hospital as well as a wide surrounding area directly, the hospital and pharmacy itself may be called upon to continue functioning for some period of time without outside assistance. The ability to function for prolonged periods of time requires the staff to focus on the job at hand and the administrative staff to provide security, compassion, and flexibility. Plans for a disaster of the nature of a hurricane require that attention be paid to staffing, medication inventories, supplies, and services being rendered. Recognition of the singular position occupied by a hospital in the community and the expectations of the local population require that hospitals and the pharmacy department have the ability to respond appropriately.

  6. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  7. Bottom Scour Observed Under Hurricane Ivan

    National Research Council Canada - National Science Library

    Teague, William J; Jarosz, Eva; Keen, Timothy R; Wang, David W; Hulbert, Mark S

    2006-01-01

    Observations that extensive bottom scour along the outer continental shelf under Hurricane Ivan resulted in the displacement of more than 100 million cubic meters of sediment from a 35x15 km region...

  8. Hurricane Irene Poster (August 27, 2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Irene poster. Color composite GOES image shows Irene moving through the North Carolina Outer Banks on August 27, 2011. Poster size is 36"x27"

  9. Spectral Growth of Hurricane Generated Seas

    National Research Council Canada - National Science Library

    Finlayson, William

    1997-01-01

    The characteristics of a growing sea during hurricanes are significantly different from those observed in ordinary storms since the source of energy generating waves is moving and the rate of change...

  10. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  11. Hurricane Katrina - Murphy Oil Spill Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  12. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high...

  13. Success/Failure Prediction of Noninvasive Mechanical Ventilation in Intensive Care Units. Using Multiclassifiers and Feature Selection Methods.

    Science.gov (United States)

    Martín-González, Félix; González-Robledo, Javier; Sánchez-Hernández, Fernando; Moreno-García, María N

    2016-05-17

    This paper addresses the problem of decision-making in relation to the administration of noninvasive mechanical ventilation (NIMV) in intensive care units. Data mining methods were employed to find out the factors influencing the success/failure of NIMV and to predict its results in future patients. These artificial intelligence-based methods have not been applied in this field in spite of the good results obtained in other medical areas. Feature selection methods provided the most influential variables in the success/failure of NIMV, such as NIMV hours, PaCO2 at the start, PaO2 / FiO2 ratio at the start, hematocrit at the start or PaO2 / FiO2 ratio after two hours. These methods were also used in the preprocessing step with the aim of improving the results of the classifiers. The algorithms provided the best results when the dataset used as input was the one containing the attributes selected with the CFS method. Data mining methods can be successfully applied to determine the most influential factors in the success/failure of NIMV and also to predict NIMV results in future patients. The results provided by classifiers can be improved by preprocessing the data with feature selection techniques.

  14. Fear of food prospectively predicts drive for thinness in an eating disorder sample recently discharged from intensive treatment.

    Science.gov (United States)

    Levinson, Cheri A; Brosof, Leigh C; Ma, Jackie; Fewell, Laura; Lenze, Eric J

    2017-12-01

    Fears of food are common in individuals with eating disorders and contribute to the high relapse rates. However, it is unknown how fears of food contribute to eating disorder symptoms across time, potentially contributing to an increased likelihood of relapse. Participants diagnosed with an eating disorder (N=168) who had recently completed intensive treatment were assessed after discharge and one month later regarding fear of food, eating disorder symptoms, anxiety sensitivity, and negative affect. Cross lagged path analysis was utilized to determine if fear of food predicted subsequent eating disorder symptoms one month later. Fear of food-specifically, anxiety about eating and feared concerns about eating-predicted drive for thinness, a core symptom domain of eating disorders. These relationships held while accounting for anxiety sensitivity and negative affect. There is a specific, direct relationship between anxiety about eating and feared concerns about eating and drive for thinness. Future research should test if interventions designed to target fear of food can decrease drive for thinness and thereby prevent relapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    BBP. This correlation, when further scaled by pipe diameter, effectively predicted bioluminescence intensity in fully developed turbulent flow in a 0.83-cm i.d. pipe. Determining similar correlations between other bathyphotometer flow agitators and flow fields will allow bioluminescence potential measurements to become a more powerful tool for the oceanographic community.

  16. Isentropic Analysis of a Simulated Hurricane

    Science.gov (United States)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  17. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Song, T; Zhou, L; Li, Y

    2016-01-01

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specific dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive

  18. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Song, T; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Li, Y [Beihang University, Beijing, Beijing (China)

    2016-06-15

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specific dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive

  19. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    Science.gov (United States)

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  20. Predictive value of SAPS II and APACHE II scoring systems for patient outcome in a medical intensive care unit

    Directory of Open Access Journals (Sweden)

    Amina Godinjak

    2016-11-01

    Full Text Available Objective. The aim is to determine SAPS II and APACHE II scores in medical intensive care unit (MICU patients, to compare them for prediction of patient outcome, and to compare with actual hospital mortality rates for different subgroups of patients. Methods. One hundred and seventy-four patients were included in this analysis over a oneyear period in the MICU, Clinical Center, University of Sarajevo. The following patient data were obtained: demographics, admission diagnosis, SAPS II, APACHE II scores and final outcome. Results. Out of 174 patients, 70 patients (40.2% died. Mean SAPS II and APACHE II scores in all patients were 48.4±17.0 and 21.6±10.3 respectively, and they were significantly different between survivors and non-survivors. SAPS II >50.5 and APACHE II >27.5 can predict the risk of mortality in these patients. There was no statistically significant difference in the clinical values of SAPS II vs APACHE II (p=0.501. A statistically significant positive correlation was established between the values of SAPS II and APACHE II (r=0.708; p=0.001. Patients with an admission diagnosis of sepsis/septic shock had the highest values of both SAPS II and APACHE II scores, and also the highest hospital mortality rate of 55.1%. Conclusion. Both APACHE II and SAPS II had an excellent ability to discriminate between survivors and non-survivors. There was no significant difference in the clinical values of SAPS II and APACHE II. A positive correlation was established between them. Sepsis/septic shock patients had the highest predicted and observed hospital mortality rate.

  1. A Prospective Study of Religiousness and Psychological Distress Among Female Survivors of Hurricanes Katrina and Rita

    Science.gov (United States)

    Rhodes, Jean E.; Pérez, John E.

    2013-01-01

    This prospective study examined the pathways by which religious involvement affected the post-disaster psychological functioning of women who survived Hurricanes Katrina and Rita. The participants were 386 low-income, predominantly Black, single mothers. The women were enrolled in the study before the hurricane, providing a rare opportunity to document changes in mental health from before to after the storm, and to assess the protective role of religious involvement over time. Results of structural equation modeling indicated that, controlling for level of exposure to the hurricanes, pre-disaster physical health, age, and number of children, pre-disaster religiousness predicted higher levels of post-disaster (1) social resources and (2) optimism and sense of purpose. The latter, but not the former, was associated with better post-disaster psychological outcome. Mediation analysis confirmed the mediating role of optimism and sense of purpose. PMID:21626083

  2. Assessment of pipeline stability in the Gulf of Mexico during hurricanes using dynamic analysis

    Directory of Open Access Journals (Sweden)

    Yinghui Tian

    2015-03-01

    Full Text Available Pipelines are the critical link between major offshore oil and gas developments and the mainland. Any inadequate on-bottom stability design could result in disruption and failure, having a devastating impact on the economy and environment. Predicting the stability behavior of offshore pipelines in hurricanes is therefore vital to the assessment of both new design and existing assets. The Gulf of Mexico has a very dense network of pipeline systems constructed on the seabed. During the last two decades, the Gulf of Mexico has experienced a series of strong hurricanes, which have destroyed, disrupted and destabilized many pipelines. This paper first reviews some of these engineering cases. Following that, three case studies are retrospectively simulated using an in-house developed program. The study utilizes the offshore pipeline and hurricane details to conduct a Dynamic Lateral Stability analysis, with the results providing evidence as to the accuracy of the modeling techniques developed.

  3. A prospective study of religiousness and psychological distress among female survivors of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Chan, Christian S; Rhodes, Jean E; Pérez, John E

    2012-03-01

    This prospective study examined the pathways by which religious involvement affected the post-disaster psychological functioning of women who survived Hurricanes Katrina and Rita. The participants were 386 low-income, predominantly Black, single mothers. The women were enrolled in the study before the hurricane, providing a rare opportunity to document changes in mental health from before to after the storm, and to assess the protective role of religious involvement over time. Results of structural equation modeling indicated that, controlling for level of exposure to the hurricanes, pre-disaster physical health, age, and number of children, pre-disaster religiousness predicted higher levels of post-disaster (1) social resources and (2) optimism and sense of purpose. The latter, but not the former, was associated with better post-disaster psychological outcome. Mediation analysis confirmed the mediating role of optimism and sense of purpose.

  4. Land Use Adaptation to Climate Change: Economic Damages from Land-Falling Hurricanes in the Atlantic and Gulf States of the USA, 1900–2005

    Directory of Open Access Journals (Sweden)

    Asim Zia

    2012-05-01

    Full Text Available Global climate change, especially the phenomena of global warming, is expected to increase the intensity of land-falling hurricanes. Societal adaptation is needed to reduce vulnerability from increasingly intense hurricanes. This study quantifies the adaptation effects of potentially policy driven caps on housing densities and agricultural cover in coastal (and adjacent inland areas vulnerable to hurricane damages in the Atlantic and Gulf Coastal regions of the U.S. Time series regressions, especially Prais-Winston and Autoregressive Moving Average (ARMA models, are estimated to forecast the economic impacts of hurricanes of varying intensity, given that various patterns of land use emerge in the Atlantic and Gulf coastal states of the U.S. The Prais-Winston and ARMA models use observed time series data from 1900 to 2005 for inflation adjusted hurricane damages and socio-economic and land-use data in the coastal or inland regions where hurricanes caused those damages. The results from this study provide evidence that increases in housing density and agricultural cover cause significant rise in the de-trended inflation-adjusted damages. Further, higher intensity and frequency of land-falling hurricanes also significantly increase the economic damages. The evidence from this study implies that a medium to long term land use adaptation in the form of capping housing density and agricultural cover in the coastal (and adjacent inland states can significantly reduce economic damages from intense hurricanes. Future studies must compare the benefits of such land use adaptation policies against the costs of development controls implied in housing density caps and agricultural land cover reductions.

  5. External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland.

    Science.gov (United States)

    Harrison, David A; Lone, Nazir I; Haddow, Catriona; MacGillivray, Moranne; Khan, Angela; Cook, Brian; Rowan, Kathryn M

    2014-01-01

    Risk prediction models are used in critical care for risk stratification, summarising and communicating risk, supporting clinical decision-making and benchmarking performance. However, they require validation before they can be used with confidence, ideally using independently collected data from a different source to that used to develop the model. The aim of this study was to validate the Intensive Care National Audit & Research Centre (ICNARC) model using independently collected data from critical care units in Scotland. Data were extracted from the Scottish Intensive Care Society Audit Group (SICSAG) database for the years 2007 to 2009. Recoding and mapping of variables was performed, as required, to apply the ICNARC model (2009 recalibration) to the SICSAG data using standard computer algorithms. The performance of the ICNARC model was assessed for discrimination, calibration and overall fit and compared with that of the Acute Physiology And Chronic Health Evaluation (APACHE) II model. There were 29,626 admissions to 24 adult, general critical care units in Scotland between 1 January 2007 and 31 December 2009. After exclusions, 23,269 admissions were included in the analysis. The ICNARC model outperformed APACHE II on measures of discrimination (c index 0.848 versus 0.806), calibration (Hosmer-Lemeshow chi-squared statistic 18.8 versus 214) and overall fit (Brier's score 0.140 versus 0.157; Shapiro's R 0.652 versus 0.621). Model performance was consistent across the three years studied. The ICNARC model performed well when validated in an external population to that in which it was developed, using independently collected data.

  6. A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery – Part I: model planning

    Directory of Open Access Journals (Sweden)

    Biagioli Bonizella

    2007-11-01

    Full Text Available Abstract Background Different methods have recently been proposed for predicting morbidity in intensive care units (ICU. The aim of the present study was to critically review a number of approaches for developing models capable of estimating the probability of morbidity in ICU after heart surgery. The study is divided into two parts. In this first part, popular models used to estimate the probability of class membership are grouped into distinct categories according to their underlying mathematical principles. Modelling techniques and intrinsic strengths and weaknesses of each model are analysed and discussed from a theoretical point of view, in consideration of clinical applications. Methods Models based on Bayes rule, k-nearest neighbour algorithm, logistic regression, scoring systems and artificial neural networks are investigated. Key issues for model design are described. The mathematical treatment of some aspects of model structure is also included for readers interested in developing models, though a full understanding of mathematical relationships is not necessary if the reader is only interested in perceiving the practical meaning of model assumptions, weaknesses and strengths from a user point of view. Results Scoring systems are very attractive due to their simplicity of use, although this may undermine their predictive capacity. Logistic regression models are trustworthy tools, although they suffer from the principal limitations of most regression procedures. Bayesian models seem to be a good compromise between complexity and predictive performance, but model recalibration is generally necessary. k-nearest neighbour may be a valid non parametric technique, though computational cost and the need for large data storage are major weaknesses of this approach. Artificial neural networks have intrinsic advantages with respect to common statistical models, though the training process may be problematical. Conclusion Knowledge of model

  7. The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)

    Science.gov (United States)

    Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.

    2017-12-01

    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast

  8. The Role of Parental Perceptions of Tic Frequency and Intensity in Predicting Tic-Related Functional Impairment in Youth with Chronic Tic Disorders

    Science.gov (United States)

    Espil, Flint M.; Capriotti, Matthew R.; Conelea, Christine A.; Woods, Douglas W.

    2014-01-01

    Tic severity is composed of several dimensions. Tic frequency and intensity are two such dimensions, but little empirical data exist regarding their relative contributions to functional impairment in those with Chronic Tic Disorders (CTD). The present study examined the relative contributions of these dimensions in predicting tic-related impairment across several psychosocial domains. Using data collected from parents of youth with CTD, multivariate regression analyses revealed that both tic frequency and intensity predicted tic-related impairment in several areas; including family and peer relationships, school interference, and social endeavors, even when controlling for the presence of comorbid anxiety symptoms and Attention Deficit Hyperactivity Disorder diagnostic status. Results showed that tic intensity predicted more variance across more domains than tic frequency. PMID:24395287

  9. The role of parental perceptions of tic frequency and intensity in predicting tic-related functional impairment in youth with chronic tic disorders.

    Science.gov (United States)

    Espil, Flint M; Capriotti, Matthew R; Conelea, Christine A; Woods, Douglas W

    2014-12-01

    Tic severity is composed of several dimensions. Tic frequency and intensity are two such dimensions, but little empirical data exist regarding their relative contributions to functional impairment in those with chronic tic disorders (CTD). The present study examined the relative contributions of these dimensions in predicting tic-related impairment across several psychosocial domains. Using data collected from parents of youth with CTD, multivariate regression analyses revealed that both tic frequency and intensity predicted tic-related impairment in several areas; including family and peer relationships, school interference, and social endeavors, even when controlling for the presence of comorbid anxiety symptoms and Attention Deficit Hyperactivity Disorder diagnostic status. Results showed that tic intensity predicted more variance across more domains than tic frequency.

  10. Plasma uric acid and tumor volume are highly predictive of outcome in nasopharyngeal carcinoma patients receiving intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lin, Hui; Lin, Huan-Xin; Ge, Nan; Wang, Hong-Zhi; Sun, Rui; Hu, Wei-Han

    2013-01-01

    The combined predictive value of plasma uric acid and primary tumor volume in nasopharyngeal carcinoma (NPC) patients receiving intensity modulated radiation therapy (IMRT) has not yet been determined. In this retrospective study, plasma uric acid level was measured after treatment in 130 histologically-proven NPC patients treated with IMRT. Tumor volume was calculated from treatment planning CT scans. Overall (OS), progression-free (PFS) and distant metastasis-free (DMFS) survival were compared using Kaplan-Meier analysis and the log rank test, and Cox multivariate and univariate regression models were created. Patients with a small tumor volume (<27 mL) had a significantly better DMFS, PFS and OS than patients with a large tumor volume. Patients with a high post-treatment plasma uric acid level (>301 μmol/L) had a better DMFS, PFS and OS than patients with a low post-treatment plasma uric acid level. Patients with a small tumor volume and high post-treatment plasma uric acid level had a favorable prognosis compared to patients with a large tumor volume and low post-treatment plasma uric acid level (7-year overall OS, 100% vs. 48.7%, P <0.001 and PFS, 100% vs. 69.5%, P <0.001). Post-treatment plasma uric acid level and pre-treatment tumor volume have predictive value for outcome in NPC patients receiving IMRT. NPC patients with a large tumor volume and low post-treatment plasma uric acid level may benefit from additional aggressive treatment after IMRT

  11. Assessment of performance and utility of mortality prediction models in a single Indian mixed tertiary intensive care unit.

    Science.gov (United States)

    Sathe, Prachee M; Bapat, Sharda N

    2014-01-01

    To assess the performance and utility of two mortality prediction models viz. Acute Physiology and Chronic Health Evaluation II (APACHE II) and Simplified Acute Physiology Score II (SAPS II) in a single Indian mixed tertiary intensive care unit (ICU). Secondary objectives were bench-marking and setting a base line for research. In this observational cohort, data needed for calculation of both scores were prospectively collected for all consecutive admissions to 28-bedded ICU in the year 2011. After excluding readmissions, discharges within 24 h and age <18 years, the records of 1543 patients were analyzed using appropriate statistical methods. Both models overpredicted mortality in this cohort [standardized mortality ratio (SMR) 0.88 ± 0.05 and 0.95 ± 0.06 using APACHE II and SAPS II respectively]. Patterns of predicted mortality had strong association with true mortality (R (2) = 0.98 for APACHE II and R (2) = 0.99 for SAPS II). Both models performed poorly in formal Hosmer-Lemeshow goodness-of-fit testing (Chi-square = 12.8 (P = 0.03) for APACHE II, Chi-square = 26.6 (P = 0.001) for SAPS II) but showed good discrimination (area under receiver operating characteristic curve 0.86 ± 0.013 SE (P < 0.001) and 0.83 ± 0.013 SE (P < 0.001) for APACHE II and SAPS II, respectively). There were wide variations in SMRs calculated for subgroups based on International Classification of Disease, 10(th) edition (standard deviation ± 0.27 for APACHE II and 0.30 for SAPS II). Lack of fit of data to the models and wide variation in SMRs in subgroups put a limitation on utility of these models as tools for assessing quality of care and comparing performances of different units without customization. Considering comparable performance and simplicity of use, efforts should be made to adapt SAPS II.

  12. Point-of-care testing on admission to the intensive care unit: lactate and glucose independently predict mortality.

    Science.gov (United States)

    Martin, Jan; Blobner, Manfred; Busch, Raymonde; Moser, Norman; Kochs, Eberhard; Luppa, Peter B

    2013-02-01

    The aim of the study was to retrospectively investigate whether parameters of routine point-of-care testing (POCT) predict hospital mortality in critically ill surgical patients on admission to the intensive care unit (ICU). Arterial blood analyses of 1551 patients on admission to the adult surgical ICU of the Technical University Munich were reviewed. POCT was performed on a blood gas analyser. The association between acid-base status and mortality was evaluated. Metabolic acidosis was defined by base excess (BE) lactate >50% of BE, anion gap (AG)-acidosis by AG >16 mmol/L, hyperchloraemic acidosis by chloride >115 mmol/L. Metabolic alkalosis was defined by BE ≥3 mmol/L. Logistic regression analysis identified variables independently associated with mortality. Overall mortality was 8.8%. Mortality was greater in male patients (p=0.012). Mean age was greater in non-survivors (p55 mm Hg (mortality 23.1%). Three hundred and seventy-seven patients presented with acidosis (mortality 11.4%), thereof 163 patients with lactic acidosis (mortality 19%). Mortality for alkalosis (174 patients) was 12.1%. Mean blood glucose level for non-survivors was higher compared to survivors (plactate, glucose, age, male gender as independent predictors of mortality. Lactate and glucose on ICU admission independently predict mortality. BE and AG failed as prognostic markers. Lactic acidosis showed a high mortality rate implying that lactate levels should be obtained on ICU admission. Prevalence of hyperchloraemic acidosis was low. Metabolic alkalosis was associated with an increased mortality. Further studies on this disturbance and its attendant high mortality are warranted.

  13. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  14. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  15. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  16. East London Modified-Broset as Decision-Making Tool to Predict Seclusion in Psychiatric Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Felice Loi

    2017-10-01

    Full Text Available Seclusion is a last resort intervention for management of aggressive behavior in psychiatric settings. There is no current objective and practical decision-making instrument for seclusion use on psychiatric wards. Our aim was to test the predictive and discriminatory characteristics of the East London Modified-Broset (ELMB, to delineate its decision-making profile for seclusion of adult psychiatric patients, and second to benchmark it against the psychometric properties of the Broset Violence Checklist (BVC. ELMB, an 8-item modified version of the 6-item BVC, was retrospectively employed to evaluate the seclusion decision-making process on two Psychiatric Intensive Care Units (patients n = 201; incidents n = 2,187. Data analyses were carried out using multivariate regression and Receiver Operating Characteristic (ROC curves. Predictors of seclusion were: physical violence toward staff/patients OR = 24.2; non-compliance with PRN (pro re nata medications OR = 9.8; and damage to hospital property OR = 2.9. ROC analyses indicated that ELMB was significantly more accurate that BVC, with higher sensitivity, specificity, and positive likelihood ratio. Results were similar across gender. The ELMB is a sensitive and specific instrument that can be used to guide the decision-making process when implementing seclusion.

  17. East London Modified-Broset as Decision-Making Tool to Predict Seclusion in Psychiatric Intensive Care Units.

    Science.gov (United States)

    Loi, Felice; Marlowe, Karl

    2017-01-01

    Seclusion is a last resort intervention for management of aggressive behavior in psychiatric settings. There is no current objective and practical decision-making instrument for seclusion use on psychiatric wards. Our aim was to test the predictive and discriminatory characteristics of the East London Modified-Broset (ELMB), to delineate its decision-making profile for seclusion of adult psychiatric patients, and second to benchmark it against the psychometric properties of the Broset Violence Checklist (BVC). ELMB, an 8-item modified version of the 6-item BVC, was retrospectively employed to evaluate the seclusion decision-making process on two Psychiatric Intensive Care Units (patients n  = 201; incidents n  = 2,187). Data analyses were carried out using multivariate regression and Receiver Operating Characteristic (ROC) curves. Predictors of seclusion were: physical violence toward staff/patients OR = 24.2; non-compliance with PRN (pro re nata) medications OR = 9.8; and damage to hospital property OR = 2.9. ROC analyses indicated that ELMB was significantly more accurate that BVC, with higher sensitivity, specificity, and positive likelihood ratio. Results were similar across gender. The ELMB is a sensitive and specific instrument that can be used to guide the decision-making process when implementing seclusion.

  18. Landscape and regional impacts of hurricanes in Puerto Rico

    OpenAIRE

    Boose, Emery Robert; Serrano, Mayra I.; Foster, David Russell

    2004-01-01

    Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurr...

  19. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    Science.gov (United States)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  20. Hurricane risk management and climate information gatekeeping in southeast Florida

    Science.gov (United States)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  1. The Historical Context of the 2017 Hurricane Season's Ocean Warmth

    Science.gov (United States)

    Jacobs, P.; Akella, S.; Trenberth, K. E.; Lijing, C.; Abraham, J. P.

    2017-12-01

    Public discussion of the unusually active 2017 North Atlantic Hurricane Season quickly focused on the role of sea surface temperatures (SSTs) in the North Atlantic. Some meteorologists characterized them as near-normal, while climate-focused voices tended to characterize them as warmer than average, placing them in the context of anthropogenic warming. Much of this divergence in views can be explained by the relatively recent, relatively warm baseline (1981-2010) used for daily SST information, such as provided by OISSTv2. Longer term records of SSTs, such as HadISST, HadSST, and ERSST only attempt to provide monthly averages, while tropical cyclones have lifetimes on the timescale of days. Further, hurricanes create a cold wake which can impact storm movement and intensity, as well as subsequent storms, but is gradually wiped out by the sun. This process is further complicated by the role of ocean heat content (OHC), an increase in which can mitigate the impact of upwelled water. Here we examine the statistical characteristics of daily SSTs and OHC during the satellite record, including their temporal autocorrelation, and use this information in conjunction with longer term monthly records to bound what we can and cannot confidently say about the longer term historical context of the storms Harvey, Irma, and Maria.

  2. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    common in southwestern Utah where it has damaged roads, canal embankments, and water-retention structures. Several unexplained sinkholes near the town of Hurricane possibly are the result of collapse of subsurface volcanic features. Geologic formations associated with slope failures along or near the Hurricane fault include rocks of both Mesozoic and Tertiary age. Numerous landslides are present in these materials along the Hurricane Cliffs, and the Petrified Forest Member of the Chinle Formation is commonly associated with slope failures where it crops out in the St. George Basin. Steep slopes and numerous areas of exposed bedrock make rock fall a hazard in the St. George Basin. Debris flows and debris floods in narrow canyons and on alluvial fans often accompany intense summer cloudburst thunderstorms. Flooded basements and foundation problems associated with shallow ground water are common on benches north of the Santa Clara River in the city of Santa Clara. Stream flooding is the most frequently occurring and destructive geologic hazard in southwestern Utah. Since the 1850s, there have been three major riverine (regional) floods and more than 300 damaging flash floods. Although a variety of flood control measures have been implemented, continued rapid growth in the region is again increasing vulnerability to flood hazards. Site-specific studies to evaluate geologic hazards and identify hazard-reduction measures are recommended prior to construction to reduce the need for costly repair, maintenance, or replacement of improperly placed or protected facilities.

  3. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  4. Integrating UAV and orbital remote sensing for spatiotemporal assessment of coastal vegetation health following hurricane events

    Science.gov (United States)

    Bernardes, S.; Madden, M.; Jordan, T.; Knight, A.; Aragon, A.

    2017-12-01

    Hurricane impacts often include the total or partial removal of vegetation due to strong winds (e.g., uprooted trees and broken trunks and limbs). Those impacts can usually be quickly assessed following hurricanes, by using established field and remote sensing methods. Conversely, impacts on vegetation health may present challenges for identification and assessment, as they are disconnected in time from the hurricane event and may be less evident. For instance, hurricanes may promote drastic increases in salinity of water available to roots and may increase exposure of aerial parts to salt spray. Derived stress conditions can negatively impact biological processes and may lead to plant decline and death. Large areas along the coast of the United States have been affected by hurricanes and show such damage (vegetation browning). Those areas may continue to be impacted, as climate projections indicate that hurricanes may become more frequent and intense, resulting from the warming of ocean waters. This work uses remote sensing tools and techniques to record and assess impacts resulting from recent hurricanes at Sapelo Island, a barrier island off the coast of the State of Georgia, United States. Analyses included change detection at the island using time series of co-registered Sentinel 2 and Landsat images. A field campaign was conducted in September 2017, which included flying three UAVs over the island and collecting high-overlap 20-megapixel RGB images at two spatial resolutions (1 and 2 inches/pixel). A five-band MicaSense RedEdge camera, a downwelling radiation sensor and calibration panel were used to collect calibrated multispectral images of multiple vegetation types, including healthy vegetation and vegetation affected by browning. Drone images covering over 600 acres were then analyzed for vegetation status and damage, with emphasis to vegetation removal and browning resulting from salinity alterations and salt spray. Results from images acquired by drones

  5. Investigation of the relationship between hurricane waves and extreme runup

    Science.gov (United States)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  6. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest

    International Nuclear Information System (INIS)

    Vargas, Rodrigo

    2012-01-01

    A current challenge is to understand what are the legacies left by disturbances on ecosystems for predicting response patterns and trajectories. This work focuses on the ecological implications of a major hurricane and analyzes its influence on forest gross primary productivity (GPP; derived from the moderate-resolution imaging spectroradiometer, MODIS) and soil CO 2 efflux. Following the hurricane, there was a reduction of nearly 0.5 kgC m −2 yr −1 , equivalent to ∼15% of the long-term mean GPP (∼3.0 ± 0.2 kgC m −2 yr −1 ; years 2003–8). Annual soil CO 2 emissions for the year following the hurricane were > 3.9 ± 0.5 kgC m −2 yr −1 , whereas for the second year emissions were 1.7 ± 0.4 kgC m −2 yr −1 . Higher annual emissions were associated with higher probabilities of days with extreme soil CO 2 efflux rates ( > 9.7 μmol CO 2 m −2 s −1 ). The variance of GPP was highly variable across years and was substantially increased following the hurricane. Extreme soil CO 2 efflux after the hurricane was associated with deposition of nitrogen-rich fresh organic matter, higher basal soil CO 2 efflux rates and changes in variance of the soil temperature. These results show that CO 2 dynamics are highly variable following hurricanes, but also demonstrate the strong resilience of tropical forests following these events. (letter)

  7. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  8. The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Terroir, Marie; Dercle, Laurent; Lumbroso, Jean; Baudin, Eric; Berdelou, Amandine; Deandreis, Desiree; Schlumberger, Martin; Leboulleux, Sophie [Gustave Roussy and Universite Paris Saclay, Department of Nuclear Medicine and Endocrine Oncology, Villejuif (France); Borget, Isabelle [University Paris Sud, Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif (France); Bidault, Francois [Gustave Roussy, Department of Radiology, Villejuif (France); Ricard, Marcel [Gustave Roussy, Department of Physic, Villejuif (France); Deschamps, Frederic; Tselikas, Lambros [Department of Interventional Radiology, Villejuif (France); Hartl, Dana [Gustave Roussy, Department of Surgery, Villejuif (France)

    2017-04-15

    In patients with metastatic differentiated thyroid carcinoma (DTC), fluorodeoxyglucose (FDG) uptake as well as age, tumor size and radioactive iodine (RAI) uptake are prognostic factors for survival. High FDG uptake is a poor prognostic factor and lesions with high FDG uptake are often considered aggressive, but the predictive value of FDG uptake for morphological progression is unknown. The principal aim of this retrospective single center study was to determine whether the intensity of FDG uptake was correlated on a per lesion analysis with tumor growth rate (TGR) expressed as the percentage of increase in tumor size during 1 year (1-year TGR). Fifty five patients with DTC were included between July 2012 and May 2014 with the following criteria: (i) at least one distant metastasis measuring ≥ 1 cm in diameter on CT scan (ii) evaluation by FDG-positron emission tomography/computed tomography (PET/CT) performed at our center (iii) at least one CT or another FDG-PET/CT performed 3 to 12 months after the reference FDG-PET/CT in the absence of systemic or local treatment between the two imaging procedures. One hundred and fifty-six metastatic lesions located in lungs (63), neck lymph nodes (28), chest lymph nodes (42), bone (11), liver (2) and other sites (12) were studied. The median size was 16 mm, median SUVmax/lesion: 8.7; median metabolic tumor volume/lesion (Metab.TV/lesion): 3.7 cm{sup 3}. The median 1-year TGR was 40.68 %. SUVmax and Metab.TV/lesion were not correlated to their 1-year TGR (p = 0.38 and p = 0.74 respectively). Among single patients with multiple lesions, the lesions with the highest SUVmax/lesion or the highest Metab.TV/lesion did not disclose the higher 1-year TGR. The intensity of FDG uptake on a per lesion analysis is not correlated to its 1-year TGR and cannot be used as a surrogate marker of tumour progression. (orig.)

  9. High-Amplitude Atlantic Hurricanes Produce Disparate Mortality in Small, Low-Income Countries.

    Science.gov (United States)

    Dresser, Caleb; Allison, Jeroan; Broach, John; Smith, Mary-Elise; Milsten, Andrew

    2016-12-01

    Hurricanes cause substantial mortality, especially in developing nations, and climate science predicts that powerful hurricanes will increase in frequency during the coming decades. This study examined the association of wind speed and national economic conditions with mortality in a large sample of hurricane events in small countries. Economic, meteorological, and fatality data for 149 hurricane events in 16 nations between 1958 and 2011 were analyzed. Mortality rate was modeled with negative binomial regression implemented by generalized estimating equations to account for variable population exposure, sequence of storm events, exposure of multiple islands to the same storm, and nonlinear associations. Low-amplitude storms caused little mortality regardless of economic status. Among high-amplitude storms (Saffir-Simpson category 4 or 5), expected mortality rate was 0.72 deaths per 100,000 people (95% confidence interval [CI]: 0.16-1.28) for nations in the highest tertile of per capita gross domestic product (GDP) compared with 25.93 deaths per 100,000 people (95% CI: 13.30-38.55) for nations with low per capita GDP. Lower per capita GDP and higher wind speeds were associated with greater mortality rates in small countries. Excessive fatalities occurred when powerful storms struck resource-poor nations. Predictions of increasing storm amplitude over time suggest increasing disparity between death rates unless steps are taken to modify the risk profiles of poor nations. (Disaster Med Public Health Preparedness. 2016;10:832-837).

  10. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms

    International Nuclear Information System (INIS)

    Liu Haibin; Davidson, Rachel A.; Apanasovich, Tatiyana V.

    2008-01-01

    This paper presents new statistical models that predict the number of hurricane- and ice storm-related electric power outages likely to occur in each 3 kmx3 km grid cell in a region. The models are based on a large database of recent outages experienced by three major East Coast power companies in six hurricanes and eight ice storms. A spatial generalized linear mixed modeling (GLMM) approach was used in which spatial correlation is incorporated through random effects. Models were fitted using a composite likelihood approach and the covariance matrix was estimated empirically. A simulation study was conducted to test the model estimation procedure, and model training, validation, and testing were done to select the best models and assess their predictive power. The final hurricane model includes number of protective devices, maximum gust wind speed, hurricane indicator, and company indicator covariates. The final ice storm model includes number of protective devices, ice thickness, and ice storm indicator covariates. The models should be useful for power companies as they plan for future storms. The statistical modeling approach offers a new way to assess the reliability of electric power and other infrastructure systems in extreme events

  11. Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA

    Science.gov (United States)

    Yellen, Brian; Woodruff, Jon D.; Kratz, Laura N.; Mabee, Steven B.; Morrison, Jonathan; Martini, Anna M.

    2014-01-01

    Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10–40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.

  12. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Science.gov (United States)

    2010-09-09

    .... This series was developed to describe and make available to the public such information as methods that... maximum hurricane windspeeds for hurricanes that originate in the Atlantic and make landfall along the... connected and provides an aerodynamic sail area on which the wind can act. An automobile hurricane missile...

  13. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  14. Understanding household preferences for hurricane risk mitigation information: evidence from survey responses.

    Science.gov (United States)

    Chatterjee, Chiradip; Mozumder, Pallab

    2014-06-01

    Risk information is critical to adopting mitigation measures, and seeking risk information is influenced by a variety of factors. An essential component of the recently adopted My Safe Florida Home (MSFH) program by the State of Florida is to provide homeowners with pertinent risk information to facilitate hurricane risk mitigation activities. We develop an analytical framework to understand household preferences for hurricane risk mitigation information through allowing an intensive home inspection. An empirical analysis is used to identify major drivers of household preferences to receive personalized information regarding recommended hurricane risk mitigation measures. A variety of empirical specifications show that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow inspection to seek information. However, households with more members living in the home and households who live in manufactured/mobile homes are less likely to allow inspection. While findings imply MSFH program's ability to link incentives offered by private and public agencies in promoting mitigation, households that face a disproportionately higher level of risk can get priority to make the program more effective. © 2014 Society for Risk Analysis.

  15. THE IMPACT OF HURRICANE BETA ON THE FORESTS OF PROVIDENCIA ISLAND, COLOMBIA, SOUTHWEST CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Ruiz Jorge

    2010-12-01

    Full Text Available One of the consequences of global warming in the Caribbean is an increase in thefrequency and intensity of hurricanes. Little is known on the impact of this naturalphenomenon on forests, particularly for dry tropical forests. Understanding this impactin terms of structure and species richness is important for forest management. Slowmoving Hurricane Beta, a category 1, struck Old Providence island, Colombia, inOctober 29, 2005. Before Beta woody vegetation was characterized by 88 2 x 50 mplots (0.01 ha established throughout the island following the protocol by Gentry(1982; 59 plots were studied fi ve years earlier and 29 plots four to fi ve monthsearlier. The impact of hurricane Beta was assessed within 11 plots located in the DryTropical Forests of Old Providence, six months after the hurricane. The These plotswere measured in species composition, diameter at breast height (DBH, and heightwere measured within these plots. There was a considerable reduction in the numberof individuals, stems, height, basal areas, and there was no signifi cant differencebetween DBH. Height damage was positively associated with increasing DHB class.Furthermore, based on the results of species richness, even after controlling for thedifferent number of individuals, through rarefaction, there was no major differencebefore and after Beta.

  16. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    Science.gov (United States)

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  17. Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989

    Science.gov (United States)

    Larsen, Matthew C.; Torres-Sanchez, Angel J.

    1992-01-01

    On the morning of September 18, 1989, a category-four hurricane struck eastern Puerto Rico with a sustained wind speed in excess of 46 m/s. The 24-h rainfall accumulation from the hurricane ranged from 100 to 339 mm. Average rainfall intensities ranging from 34 to 39 mm/h were calculated for 4 and 6 h periods, respectively, at a rain gage equipped with satellite telemetry, and at an observer station. The hurricane rainfall triggered more than 400 landslides in the steeply sloping, highly dissected mountains of eastern Puerto Rico. Of these landslides, 285 were mapped from aerial photography which covered 6474 ha. Many of the mapped landslides were on northeast- and northwest-facing slopes at the eastern terminus of the mountains, nearest the hurricane path. The surface area of individual landslides ranged from 18 m2 to 4500 m2, with a median size of 148 m2. The 285 landslides disturbed 0.11% of the land surface in the area covered by aerial photographs. An approximate denudation rate of 164 mm/1000 y was calculated from the volume of material eroded by landsliding and the 10-y rainfall recurrence interval.

  18. Subinertial response of the Gulf Stream System to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, Lian; Pietrafesa, Leonard J.; Zhang, Chen

    The evidence of subinertial-frequency (with periods from 2 days to 2 weeks) oceanic response to Hurricane Fran of 1996 is documented. Hurricane Fran traveled northward across the Gulf Stream and then over a cool-core trough, known as the Charleston Trough, due east of Charleston, SC and in the lee of the Charleston Bump during the period 4-5 September, 1996. During the passage of the storm, the trough closed into a gyre to form an intense cool-core cyclonic eddy. This cool-core eddy had an initial size of approximately 130 km by 170 km and drifted northeastward along the Gulf Stream front at a speed of 13 to 15 km/day as a subinertial baroclinic wave. Superimposed on this subinertial-frequency wave were near-inertial frequency, internal inertia-gravity waves formed in the stratified mixed-layer base after the passage of the storm. The results from a three-dimensional numerical ocean model confirm the existence of both near-inertial and subinertial-frequency waves in the Gulf Stream system during and after the passage of Hurricane Fran. Model results also showed that hurricane-forced oceanic response can modify Gulf Stream variability at both near-inertial and subinertial frequencies.

  19. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  20. Geotechnical Impacts of Hurricane Harvey Along the Texas, USA Coast

    Science.gov (United States)

    Smallegan, S. M.; Stark, N.; Jafari, N.; Ravichandran, N.; Shafii, I.; Bassal, P.; Figlus, J.

    2017-12-01

    As part of the NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) Association response to Hurricane Harvey, a team of engineers and scientists mobilized to the coastal cities of Texas, USA from 1 to 5 September 2017. Damage to coastal and riverine structures due to erosion by storm surge, waves, and coastal and riverine flooding was assessed in a wide coastal zone between Corpus Christi and Galveston. Making initial landfall near Rockport, Texas on 26 August 2017, Hurricane Harvey was classified as a category 4 hurricane on the Saffir-Simpson scale with wind speeds exceeding 130 mph and an atmospheric pressure of 938 mbar. The storm stalled over the Houston area, pouring 40 inches of rain on an area encompassing more than 3,000 square miles. Hurricane Harvey, which remained a named storm for 117 hours after initial landfall, slowly moved east into the Gulf of Mexico and made final landfall near Cameron, Louisiana on 30 August. The GEER team surveyed sixteen main sites, extending from Mustang Island in the southwest to Galveston in the northeast and as far inland as Rosenburg. In Port Aransas, beach erosion and undercutting along a beach access road near Aransas Pass were observed. Due to several tide gauge failures in this area, the nearest NOAA tide gauge (#8775870 near Corpus Christi) was used to estimate water levels of 1.35 m, approximately 1.0 m above the predicted tide. In Holiday Beach, anchored retaining walls were inundated, causing backside scour along the entire length and exposing the sheetpile wall anchors. Along the Colorado River at the Highway 35 bridge near Bay City, active riverbank failure was observed and a sheet pile wall was found collapsed. Significant sediment deposits lined the vegetated riverbanks. A USGS stream gage recorded gage heights greater than 45 ft, exceeding the flood stage of 44 ft. Fronting a rubblemound seawall in Surfside Beach, a runnel and ridge formation was observed. Nearby at San Luis Pass, infilled scour

  1. Longwave emission trends over Africa and implications for Atlantic hurricanes

    Science.gov (United States)

    Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.

    2017-09-01

    The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.

  2. Influence of hurricane wind field in the structure of directional wave spectra

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-04-01

    Extensive field measurements of wind waves in deep waters in the Gulf of Mexico and Caribbean Sea, have been analyzed to describe the spatial structure of directional wave spectra during hurricane conditions. Following Esquivel-Trava et al. (2015) this analysis was made for minor hurricanes (categories 1 and 2) and major hurricanes (categories 3, 4 and 5). In both cases the directionality of the energy wave spectrum is similar in all quadrants. Some differences are observed however, and they are associated with the presence and the shape of swell energy in each quadrant. Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. The aim of the experiments is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. This work has been supported by CONACYT scholarship 164510 and projects RugDisMar (155793), CB-2011-01-168173 and the Department of Physical Oceanography of CICESE. References Esquivel-Trava, B., Ocampo-Torres, F. J., & Osuna, P. (2015). Spatial structure of directional wave spectra in hurricanes. Ocean Dynam., 65(1), 65-76. doi:10.1007/s10236-014-0791-9 Van der

  3. Worldwide historical hurricane tracks from 1848 through the previous hurricane season

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and...

  4. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  5. New Orleans After Hurricane Katrina: An Unnatural Disaster?

    Science.gov (United States)

    McNamara, D.; Werner, B.; Kelso, A.

    2005-12-01

    Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.

  6. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  7. Impact of Hurricane Andrew on FPL generation facilities

    International Nuclear Information System (INIS)

    Brannen, W.F.; Adams, R.L.

    1993-01-01

    In the pre-dawn hours of August 25, 1992, Hurricane Andrew made landfall in southern Dade County, Florida. The storm approached directly from the east and moved rapidly across the State and into the Gulf of Mexico. Andrew's intense winds caused unprecedented devastation to structures and facilities in its path. Not surprisingly, Florida Power and Light's (FPL) generation, transmission and distribution facilities in south Florida also suffered extensive damage. Two of FPL's electrical generating sites were located in the direct path of the storm and received its full brunt. This paper presents a review of the damage sustained by those plants, an overview of the unique recovery challenges encountered and a summary of the lessons learned from this experience

  8. Preparing for a Hurricane: Prescription Medications

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    What you should do to protect yourself and your family from a hurricane. As you evacuate, remember to take your prescription medicines with you.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 7/17/2008.

  9. Investigation of long-term hurricane activity

    NARCIS (Netherlands)

    Nguyen, B.M.; Van Gelder, P.H.A.J.M.

    2012-01-01

    This paper presents a new approach of applying numerical methods to model storm processes. A storm empirical track technique is utilized to simulate the full tracks of hurricanes, starting with their initial points over the sea and ending with their landfall locations or final dissipations. The

  10. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  11. Lessons from Hurricane Sandy for port resilience.

    Science.gov (United States)

    2013-12-01

    New York Harbor was directly in the path of the most damaging part of Hurricane Sandy causing significant impact on many of the : facilities of the Port of New York and New Jersey. The U.S. Coast Guard closed the entire Port to all traffic before the...

  12. Fire management ramifications of Hurricane Hugo

    Science.gov (United States)

    J. M. Saveland; D. D. Wade

    1991-01-01

    Hurricane Hugo passed over the Francis Marion National Forest on September 22, 1989, removing almost 75 percent of the overstory. The radically altered fuel bed presented new and formidable challenges to fire managers. Tractor-plows, the mainstay of fire suppression, were rendered ineffective. The specter of wind-driven escaped burns with no effective means of ground...

  13. Hurricane Ike versus an Atomic Bomb

    Science.gov (United States)

    Pearson, Earl F.

    2013-01-01

    The destructive potential of one of nature's most destructive forces, the hurricane, is compared to one of human's most destructive devices, an atomic bomb. Both can create near absolute devastation at "ground zero". However, how do they really compare in terms of destructive energy? This discussion compares the energy, the…

  14. Transportation during and after Hurricane Sandy.

    Science.gov (United States)

    2012-11-01

    "Hurricane Sandy demonstrated the strengths and limits of the transportation infrastructure in New York City and the surrounding region. As a result of the timely and thorough preparations by New York City and the MTA, along with the actions of city ...

  15. Evacuating the Area of a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If a hurricane warning is issued for your area, or authorities tell you to evacuate, take only essential items. If you have time, turn off gas, electricity, and water and disconnect appliances.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/10/2007.

  16. Economic impacts of hurricanes on forest owners

    Science.gov (United States)

    Jeffrey P. Prestemon; Thomas P. Holmes

    2010-01-01

    We present a conceptual model of the economic impacts of hurricanes on timber producers and consumers, offer a framework indicating how welfare impacts can be estimated using econometric estimates of timber price dynamics, and illustrate the advantages of using a welfare theoretic model, which includes (1) welfare estimates that are consistent with neo-classical...

  17. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...

  18. Rhode Island hurricanes and tropical storms: A fifty-six year summary 1936-1991. Technical memo

    International Nuclear Information System (INIS)

    Vallee, D.R.

    1993-03-01

    The paper was compiled to provide a general overview of all tropical cyclone activity near Rhode Island since 1936. The year of 1936 is arbitrary, chosen mainly to include a 'not so well known' system prior to the well documented Great New England Hurricane of 1938. Thirty-one such storms have affected the state in the past 56 years, either making landfall along the coast of southern New England, or passing close enough over the offshore waters to spread tropical storm or hurricane force conditions into the area. The intensities of these systems have ranged from weak, disorganized tropical storms to full fledged major hurricanes. The one feature common to almost all of the storms was a rapid acceleration toward Rhode Island, which greatly reduced the time to prepare and evacuate

  19. Prediction of the intensity and diversity of day-to-day activities among people with schizophrenia using parameters obtained during acute hospitalization.

    Science.gov (United States)

    Lipskaya-Velikovsky, Lena; Jarus, Tal; Kotler, Moshe

    2017-06-01

    Participation in day-to-day activities of people with schizophrenia is restricted, causing concern to them, their families, service providers and the communities at large. Participation is a significant component of health and recovery; however, factors predicting participation are still not well established. This study examines whether the parameters obtained during acute hospitalization can predict the intensity and diversity of participation in day-to-day activities six months after discharge. In-patients with chronic schizophrenia (N = 104) were enrolled into the study and assessed for cognitive functioning, functional capacity in instrumental activities of daily living (IADL), and symptoms. Six months after discharge, the intensity and diversity of participation in day-to-day activities were evaluated (N = 70). Multiple correlations were found between parameters obtained during hospitalization and participation diversity, but not participation intensity. The model that is better suited to the prediction of participation diversity contains cognitive ability of construction, negative symptoms and number of previous hospitalizations. The total explained variance is 37.8% (F 3,66  =   14.99, p process for the prediction of participation diversity in day-to-day activities six months after discharge. Participation diversity is best predicted through a set of factors reflecting personal and environmental indicators. Implications for rehabilitation Results of in-patient evaluations can predict the diversity of participation in day-to-day activities six months after discharge. Higher prediction of participation diversity is obtained using a holistic evaluation model that includes assessments for cognitive abilities, negative symptoms severity and number of hospitalizations.

  20. The relative abundance of predicted genes associated with ammonia-oxidation, nitrate reduction, and biomass decomposition in mineral soil are altered by intensive timber harvest.

    Science.gov (United States)

    Mushinski, R. M.; Zhou, Y.; Gentry, T. J.; Boutton, T. W.

    2017-12-01

    Forest ecosystems in the southern United States are substantially altered by anthropogenic disturbances such as timber harvest and land conversion, with effects being observed in carbon and nutrient pools as well as biogeochemical processes. Furthermore, the desire to develop renewable energy sources in the form of biomass extraction from logging residues may result in alterations in soil community structure and function. While the impact of forest management on soil physicochemical properties of the region has been studied, its' long-term effect on soil bacterial community composition and metagenomic potential is relatively unknown, especially at deeper soil depths. This study investigates how intensive organic matter removal intensities associated with timber harvest influence decadal-scale alterations in bacterial community structure and functional potential in the upper 1-m of the soil profile, 18 years post-harvest in a Pinus taeda L. forest of eastern Texas. Amplicon sequencing of the 16S rRNA gene was used in conjunction with soil chemical analyses to evaluate treatment-induced differences in community composition and potential environmental drivers of associated change. Furthermore, functional potential was assessed by using amplicon data to make metagenomic predictions. Results indicate that increasing organic matter removal intensity leads to altered community composition and the relative abundance of dominant OTUs annotated to Burkholderia and Aciditerrimonas. The relative abundance of predicted genes associated with dissimilatory nitrate reduction and denitrification were highest in the most intensively harvested treatment while genes involved in nitrification were significantly lower in the most intensively harvested treatment. Furthermore, genes associated with glycosyltransferases were significantly reduced with increasing harvest intensity while polysaccharide lyases increased. These results imply that intensive organic matter removal may create

  1. Urban sprawl and body mass index among displaced Hurricane Katrina survivors.

    Science.gov (United States)

    Arcaya, Mariana; James, Peter; Rhodes, Jean E; Waters, Mary C; Subramanian, S V

    2014-08-01

    Existing research suggests that walkable environments are protective against weight gain, while sprawling neighborhoods may pose health risks. Using prospective data on displaced Hurricane Katrina survivors, we provide the first natural experimental data on sprawl and body mass index (BMI). The analysis uses prospectively collected pre- (2003-2005) and post-hurricane (2006-2007) data from the Resilience in Survivors of Katrina (RISK) project on 280 displaced Hurricane Katrina survivors who had little control over their neighborhood placement immediately after the disaster. The county sprawl index, a standardized measure of built environment, was used to predict BMI at follow-up, adjusted for baseline BMI and sprawl; hurricane-related trauma; and demographic and economic characteristics. Respondents from 8 New Orleans-area counties were dispersed to 76 counties post-Katrina. Sprawl increased by an average of 1.5 standard deviations (30 points) on the county sprawl index. Each one point increase in sprawl was associated with approximately .05kg/m(2) higher BMI in unadjusted models (95%CI: .01-.08), and the relationship was not attenuated after covariate adjustment. We find a robust association between residence in a sprawling county and higher BMI unlikely to be caused by self-selection into neighborhoods, suggesting that the built environment may foster changes in weight. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Vulnerable, But Why? Post-Traumatic Stress Symptoms in Older Adults Exposed to Hurricane Sandy.

    Science.gov (United States)

    Heid, Allison R; Christman, Zachary; Pruchno, Rachel; Cartwright, Francine P; Wilson-Genderson, Maureen

    2016-06-01

    Drawing on pre-disaster, peri-disaster, and post-disaster data, this study examined factors associated with the development of post-traumatic stress disorder (PTSD) symptoms in older adults exposed to Hurricane Sandy. We used a sample of older participants matched by gender, exposure, and geographic region (N=88, mean age=59.83 years) in which one group reported clinically significant levels of PTSD symptoms and the other did not. We conducted t-tests, chi-square tests, and exact logistic regressions to examine differences in pre-disaster characteristics and peri-disaster experiences. Older adults who experienced PTSD symptoms reported lower levels of income, positive affect, subjective health, and social support and were less likely to be working 4 to 6 years before Hurricane Sandy than were people not experiencing PTSD symptoms. Those developing PTSD symptoms reported more depressive symptoms, negative affect, functional disability, chronic health conditions, and pain before Sandy and greater distress and feelings of danger during Hurricane Sandy. Exact logistic regression revealed independent effects of preexisting chronic health conditions and feelings of distress during Hurricane Sandy in predicting PTSD group status. Our findings indicated that because vulnerable adults can be identified before disaster strikes, the opportunity to mitigate disaster-related PTSD exists through identification and resource programs that target population subgroups. (Disaster Med Public Health Preparedness. 2016;10:362-370).

  3. How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?

    Science.gov (United States)

    Anandhi, A.

    2017-12-01

    The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.

  4. Constraining Big Hurricanes: Remotely sensing Galveston Islands' changing coastal landscape from days to millennia

    Science.gov (United States)

    Dougherty, A. J.; Choi, J. H.; Heo, S.; Dosseto, A.

    2017-12-01

    Climate change models forecast increased storm intensity, which will drive coastal erosion as sea-level rise accelerates with global warming. Over the last five years the largest hurricanes ever recorded in the Pacific (Patricia) and the Atlantic (Irma) occurred as well as the devastation of Harvey. The preceding decade was marked with Super Storm Sandy, Katrina and Ike. A century prior, the deadliest natural disaster in North America occurred as a category 4 hurricane known as `The 1900 Storm' hit Galveston Island. This research aims to contextualize the impact of storms long before infrastructure and historical/scientific accounts documented erosion. Unlike the majority of barrier islands in the US, Galveston built seaward over the Holocene. As the beach prograded it preserved a history of storms and shoreline change over millennia to the present-day. These systems (called prograded barriers) were first studied over 50 years ago using topographic profiles, sediment cores and radiocarbon dating. This research revisits some of these benchmark study sites to augment existing data utilizing state-of-the-art Light Detection and Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL) techniques. In 2016 GPR and OSL data were collected from Galveston Island, with the aim to combine GPR, OSL and LiDAR (GOaL) to extract a high-resolution geologic record spanning 6,000 years. The resulting millennia-scale coastal evolution can be used to contextualize the impact of historic hurricanes over the past century (`The 1900 Storm'), decade (Ike in 2008) and year (now with Harvey). Preliminary results reveal a recent change in shoreline behaviour, and data from Harvey are currently being accessed within the perspective of these initial findings. This dataset will be discussed with respect to the other two benchmark prograded barriers studied in North America: Nayarit Barrier (Mexico) that Hurricane Patricia passed directly over in 2013 and

  5. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  6. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    Science.gov (United States)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  7. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    Science.gov (United States)

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  8. Modelling hurricane exposure and wind speed on a mesoclimate scale: a case study from Cusuco NP, Honduras.

    Science.gov (United States)

    Batke, Sven P; Jocque, Merlijn; Kelly, Daniel L

    2014-01-01

    High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%.

  9. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  10. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  11. Prediction of galactic cosmic ray intensity variation for a few (up to 10-12 years ahead on the basis of convection-diffusion and drift model

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We determine the dimension of the Heliosphere (modulation region, radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR long-term variation, depending on particle energy, the level of solar activity (SA and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expected SA variation in the near future and prediction of next future SA cycle, we may make a prediction of the expected in the near future long-term cosmic ray intensity variation. We show that by this method we may make a prediction of the expected in the near future (up to 10-12 years, and may be more, in dependence for what period can be made definite prediction of SA galactic cosmic ray intensity variation in the interplanetary space on different distances from the Sun, in the Earth's magnetosphere, and in the atmosphere at different altitudes and latitudes.

  12. The Role of Parental Perceptions of Tic Frequency and Intensity in Predicting Tic-Related Functional Impairment in Youth with Chronic Tic Disorders

    OpenAIRE

    Espil, Flint M.; Capriotti, Matthew R.; Conelea, Christine A.; Woods, Douglas W.

    2014-01-01

    Tic severity is composed of several dimensions. Tic frequency and intensity are two such dimensions, but little empirical data exist regarding their relative contributions to functional impairment in those with Chronic Tic Disorders (CTD). The present study examined the relative contributions of these dimensions in predicting tic-related impairment across several psychosocial domains. Using data collected from parents of youth with CTD, multivariate regression analyses revealed that both tic ...

  13. Projecting the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests (1851-2100)

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.

    2009-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Estimates of the carbon emissions resulting from single storms range as high as ~100 Tg C, an amount equivalent to the annual U.S. carbon sink in forest trees. Recent studies have estimated the historic regional carbon emissions from hurricane activity using an empirically based approach. Here, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by maps of mortality and damage based on historic hurricane tracks and future scenarios to predict the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests. Model estimates compare well to previous empirically based estimates, with mean annual biomass loss of 26 Tg C yr-1 (range 0 to ~225 Tg C yr-1) resulting from hurricanes during the period 1851-2000. Using the mechanistic model, we are able to include the effects of both disturbance and recovery on the net carbon flux. We find a regional carbon sink throughout much of the 20th century resulting from forest recovery following a peak in hurricane activity during the late 19th century exceeding biomass loss. Recent increased hurricane activity has resulted in the region becoming a net carbon source. For the future, several recent studies have linked increased sea surface temperatures expected with climate change to increased hurricane activity. Based on these relationships, we investigate a range of scenarios of future hurricane activity and find the potential for substantial increases in emissions from hurricane mortality and reductions in regional carbon stocks. In our scenario with the largest increase in hurricane activity, we find a 35% increase in area disturbed by 2100, but due to the reduction of standing biomass, only a 20% increase in biomass loss per year. Developing this kind of predictive modeling capability that tracks disturbance events and

  14. Mitigation of the collapse of asbestos cement light covers by hurricane winds

    Directory of Open Access Journals (Sweden)

    R. A. Estrada Cingualbres

    2017-09-01

    Full Text Available The Caribbean region, the Gulf of Mexico and the Strait of Florida, is an area of high vulnerability to high-level hurricanes. Light covers are the most vulnerable during the occurrence of these phenomena, their collapse generates a great danger to the life of the residents of these homes, as well as a high economic and social impact. The objective of this research has been the characterization of the lightweight fiber cement roofs (asbestos-cement most commonly used in Cuba and through the modeling of the Finite Element Method to determine the causes of the collapse of these when extreme winds occur due to high intensity hurricanes, perform the comparative analysis of the resistive behavior of the covers studied and to mitigate the collapse of the covered ones.

  15. Social and psychological resources associated with health status in a representative sample of adults affected by the 2004 Florida hurricanes.

    Science.gov (United States)

    Ruggiero, Kenneth J; Amstadter, Ananda B; Acierno, Ron; Kilpatrick, Dean G; Resnick, Heidi S; Tracy, Melissa; Galea, Sandro

    2009-01-01

    Overall health status after a disaster may be associated with long-term physical morbidity and mortality. Little is known about factors associated with overall health status in the aftermath of disasters. We examined self-rated health in relation to disaster characteristics, social resources, and post-disaster outcomes in a sample of adults who experienced the 2004 Florida hurricanes. We interviewed a representative sample of 1,452 adults aged 18 years and older residing in the 33 Florida counties that were in the direct path of at least one of the 2004 hurricanes (Charley, Frances, Ivan, Jeanne). Overall health status was assessed using a self-rating format known to be predictive of mortality. Poor self-rated health was endorsed by 14.6% of the sample. Final multivariable models showed that poor self-rated health was associated with older age (p hurricane (p = 0.03), low social support (p = 0.03), and depression (p = 0.003) since the hurricane. Self-rated health following the Florida hurricanes was strongly associated with two variables (social support and depression) that potentially can be mitigated through targeted interventions after disasters. Future work should evaluate secondary prevention strategies that can address general health-related concerns in the wake of a disaster.

  16. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of); Chung, J [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-06-15

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designed for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.

  17. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    International Nuclear Information System (INIS)

    Lee, J; Chung, J

    2015-01-01

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designed for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy

  18. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit

    DEFF Research Database (Denmark)

    Gögenur, Mikail; Burcharth, Jakob; Gögenur, Ismail

    2017-01-01

    searched Pubmed, Embase, Scopus and the Cochrane Central Register for Controlled Trials and reference lists of relevant articles for studies that assessed the prognostic value of cell-free DNA detection in trauma patients in the intensive care unit. Outcomes of interest included survival, posttraumatic...

  19. Predicting dropout from intensive outpatient cognitive behavioural therapy for binge eating disorder using pre-treatment characteristics: A naturalistic study

    NARCIS (Netherlands)

    Vroling, M.S.; Wiersma, F.E.; Lammers, M.W.; Noorthoorn, E.O.

    2016-01-01

    Background: Dropout rates in binge eating disorder (BED) treatment are high (17-30%), and predictors of dropout are unknown. Method: Participants were 376 patients following an intensive outpatient cognitive behavioural therapy programme for BED, 82 of whom (21.8%) dropped out of treatment. An

  20. The Stability and Workload Index for Transfer score predicts unplanned intensive care unit patient readmission: initial development and validation

    NARCIS (Netherlands)

    Gajic, Ognjen; Malinchoc, Michael; Comfere, Thomas B.; Harris, Marcelline R.; Achouiti, Ahmed; Yilmaz, Murat; Schultz, Marcus J.; Hubmayr, Rolf D.; Afessa, Bekele; Farmer, J. Christopher

    2008-01-01

    OBJECTIVE: Unplanned readmission of hospitalized patients to an intensive care unit (ICU) is associated with a worse outcome, but our ability to identify who is likely to deteriorate after ICU dismissal is limited. The objective of this study is to develop and validate a numerical index, named the

  1. Sequential organ failure assessment scoring and prediction of patient's outcome in Intensive Care Unit of a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Aditi Jain

    2016-01-01

    Conclusion: SOFA score is a simple, but effective prognostic indicator and evaluator for patient progress in ICU. Day 1 SOFA can triage the patients into risk categories. For further management, mean and maximum score help determine the severity of illness and can act as a guide for the intensity of therapy required for each patient.

  2. Objectively measured sedentary time may predict insulin resistance independent of moderate- and vigorous-intensity physical activity

    NARCIS (Netherlands)

    Helmerhorst, Hendrik J. F.; Wijndaele, Katrien; Brage, Søren; Wareham, Nicholas J.; Ekelund, Ulf

    2009-01-01

    To examine the prospective association between objectively measured time spent sedentary and insulin resistance and whether this association is independent of moderate- and vigorous-intensity physical activity (MVPA) and other relevant confounders. This was a population-based study (Medical Research

  3. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  4. Rebuilding Emergency Care After Hurricane Sandy.

    Science.gov (United States)

    Lee, David C; Smith, Silas W; McStay, Christopher M; Portelli, Ian; Goldfrank, Lewis R; Husk, Gregg; Shah, Nirav R

    2014-04-09

    A freestanding, 911-receiving emergency department was implemented at Bellevue Hospital Center during the recovery efforts after Hurricane Sandy to compensate for the increased volume experienced at nearby hospitals. Because inpatient services at several hospitals remained closed for months, emergency volume increased significantly. Thus, in collaboration with the New York State Department of Health and other partners, the Health and Hospitals Corporation and Bellevue Hospital Center opened a freestanding emergency department without on-site inpatient care. The successful operation of this facility hinged on key partnerships with emergency medical services and nearby hospitals. Also essential was the establishment of an emergency critical care ward and a system to monitor emergency department utilization at affected hospitals. The results of this experience, we believe, can provide a model for future efforts to rebuild emergency care capacity after a natural disaster such as Hurricane Sandy. (Disaster Med Public Health Preparedness. 2014;0:1-4).

  5. Using Instrument Simulators and a Satellite Database to Evaluate Microphysical Assumptions in High-Resolution Simulations of Hurricane Rita

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chao, Y.; Chau, A. H.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Martin, J. M.; Poulsen, W. L.; Rodriguez, E.; Stiles, B. W.; Turk, J.; Vu, Q.

    2009-12-01

    Improving forecasting of hurricane intensity remains a significant challenge for the research and operational communities. Many factors determine a tropical cyclone’s intensity. Ultimately, though, intensity is dependent on the magnitude and distribution of the latent heating that accompanies the hydrometeor production during the convective process. Hence, the microphysical processes and their representation in hurricane models are of crucial importance for accurately simulating hurricane intensity and evolution. The accurate modeling of the microphysical processes becomes increasingly important when running high-resolution models that should properly reflect the convective processes in the hurricane eyewall. There are many microphysical parameterizations available today. However, evaluating their performance and selecting the most representative ones remains a challenge. Several field campaigns were focused on collecting in situ microphysical observations to help distinguish between different modeling approaches and improve on the most promising ones. However, these point measurements cannot adequately reflect the space and time correlations characteristic of the convective processes. An alternative approach to evaluating microphysical assumptions is to use multi-parameter remote sensing observations of the 3D storm structure and evolution. In doing so, we could compare modeled to retrieved geophysical parameters. The satellite retrievals, however, carry their own uncertainty. To increase the fidelity of the microphysical evaluation results, we can use instrument simulators to produce satellite observables from the model fields and compare to the observed. This presentation will illustrate how instrument simulators can be used to discriminate between different microphysical assumptions. We will compare and contrast the members of high-resolution ensemble WRF model simulations of Hurricane Rita (2005), each member reflecting different microphysical assumptions

  6. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  7. Performance of Oil Infrastructure during Hurricane Harvey

    Science.gov (United States)

    Bernier, C.; Kameshwar, S.; Padgett, J.

    2017-12-01

    Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.

  8. Hurricane Katrina as a "teachable moment"

    Directory of Open Access Journals (Sweden)

    M. H. Glantz

    2008-04-01

    Full Text Available By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time.

    Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region.

    The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1.

    Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on

  9. Hurricane Katrina as a "teachable moment"

    Science.gov (United States)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  10. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    OpenAIRE

    A. D. Jayakaran; T. M. Williams; H. Ssegane; D. M. Amatya; B. Song; C. C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a rev...

  11. Predicting the Trajectories of Perceived Pain Intensity in Southern Community-Dwelling Older Adults: The Role of Religiousness.

    Science.gov (United States)

    Sun, Fei; Park, Nan Sook; Wardian, Jana; Lee, Beom S; Roff, Lucinda L; Klemmack, David L; Parker, Michael W; Koenig, Harold G; Sawyer, Patricia L; Allman, Richard M

    2013-11-01

    This study focuses on the identification of multiple latent trajectories of pain intensity, and it examines how religiousness is related to different classes of pain trajectory. Participants were 720 community-dwelling older adults who were interviewed at four time points over a 3-year period. Overall, intensity of pain decreased over 3 years. Analysis using latent growth mixture modeling (GMM) identified three classes of pain: (1) increasing ( n = 47); (2) consistently unchanging ( n = 292); and (3) decreasing ( n = 381). Higher levels of intrinsic religiousness (IR) at baseline were associated with higher levels of pain at baseline, although it attenuated the slope of pain trajectories in the increasing pain group. Higher service attendance at baseline was associated with a higher probability of being in the decreasing pain group. The increasing pain group and the consistently unchanging group reported more negative physical and mental health outcomes than the decreasing pain group.

  12. The weight of flash chromatography: A tool to predict its mass intensity from thin-layer chromatography

    Directory of Open Access Journals (Sweden)

    Freddy Pessel

    2016-11-01

    Full Text Available Purification by flash chromatography strongly impacts the greenness of a process. Unfortunately, due to the lack of the relevant literature data, very often this impact cannot be assessed thus preventing the comparison of the environmental factors affecting the syntheses. We developed a simple mathematical approach to evaluate the minimum mass intensity of flash chromatography from the retention factor values determined by thin-layer chromatography.

  13. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  14. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  15. A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-11

    This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimated stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.

  16. Effects of the Representation of Convection on the Modelling of Hurricane Tomas (2010

    Directory of Open Access Journals (Sweden)

    Irene Marras

    2017-01-01

    Full Text Available The cumulus parameterization is widely recognised as a crucial factor in tropical meteorology: this paper intends to shed further light on the effects of convection parameterization on tropical cyclones’ numerical predictions in the “grey zone” (10–1 km grid spacing. Ten experiments are devised by combining five different convection treatments over the innermost, 5 km grid spacing, domain, and two different global circulation model datasets (IFS and ERA-Interim. All ten experiments are finally analysed and compared to observations provided by the National Hurricane Center’s best track record and multisatellite rainfall measurements. Results manifestly point to the superiority of employing no convective parameterization at the scale of 5 km versus the usage of any of those provided by WRF to reproduce the case study of Hurricane Tomas, which hit the Lesser Antilles and Greater Antilles in late October and early November 2010.

  17. Predictive factors of local-regional recurrences following parotid sparing intensity modulated or 3D conformal radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Feng, Mary; Jabbari, Siavash; Lin, Alexander; Bradford, Carol R.; Chepeha, Douglas B.; Teknos, Theodoros N.; Worden, Francis P.; Tsien, Christina; Schipper, Matthew J.; Wolf, Gregory T.; Dawson, Laura A.; Eisbruch, Avraham

    2005-01-01

    Background and purpose: Predictive factors for local-regional (LR) failures after parotid-sparing, Intensity modulated (IMRT) or 3D conformal radiotherapy for head and neck (HN) cancers were assessed. Patients and methods: One hundred and fifty-eight patients with mostly stages III-IV HN squamous cell carcinoma underwent curative bilateral neck irradiation aimed at sparing the parotid glands. Patient, tumor, and treatment factors were analyzed as predictive factors for LR failure. Results: Twenty-three patients had LR recurrence (19 in-field and four marginal). No differences were found in the doses delivered to the PTVs of patients with or without in-field recurrences. In univariate analysis, tumor site was highly predictive for LR failure in both postoperative and definitive RT patients. In postoperative RT patients, pathologic tumor size, margin status, extracapsular extension (ECE) and number of lymph node metastases, were also significantly predictive. Multivariate analysis showed tumor site (oropharynx vs. other sites) to be a significant predictor in all patients, and involved margins and number of involved lymph nodes in postoperative patients. Conclusions: Clinical rather than dosimetric factors predicted for LR failures in this series, and were similar to those reported following standard RT. These factors may aid in the selection of patients for studies of treatment intensification using IMRT

  18. Short-term prediction of threatening and violent behaviour in an Acute Psychiatric Intensive Care Unit based on patient and environment characteristics

    Directory of Open Access Journals (Sweden)

    Morken Gunnar

    2011-03-01

    Full Text Available Abstract Background The aims of the present study were to investigate clinically relevant patient and environment-related predictive factors for threats and violent incidents the first three days in a PICU population based on evaluations done at admittance. Methods In 2000 and 2001 all 118 consecutive patients were assessed at admittance to a Psychiatric Intensive Care Unit (PICU. Patient-related conditions as actuarial data from present admission, global clinical evaluations by physician at admittance and clinical nurses first day, a single rating with an observer rated scale scoring behaviours that predict short-term violence in psychiatric inpatients (The Brøset Violence Checklist (BVC at admittance, and environment-related conditions as use of segregation or not were related to the outcome measure Staff Observation Aggression Scale-Revised (SOAS-R. A multiple logistic regression analysis with SOAS-R as outcome variable was performed. Results The global clinical evaluations and the BVC were effective and more suitable than actuarial data in predicting short-term aggression. The use of segregation reduced the number of SOAS-R incidents. Conclusions In a naturalistic group of patients in a PICU segregation of patients lowers the number of aggressive and threatening incidents. Prediction should be based on clinical global judgment, and instruments designed to predict short-term aggression in psychiatric inpatients. Trial registrations NCT00184119/NCT00184132

  19. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    Science.gov (United States)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  20. Predicting two-year longitudinal MD Anderson Dysphagia Inventory outcomes after intensity modulated radiotherapy for locoregionally advanced oropharyngeal carcinoma.

    Science.gov (United States)

    Goepfert, Ryan P; Lewin, Jan S; Barrow, Martha P; Fuller, C David; Lai, Stephen Y; Song, Juhee; Hobbs, Brian P; Gunn, G Brandon; Beadle, Beth M; Rosenthal, David I; Garden, Adam S; Kies, Merrill S; Papadimitrakopoulou, Vali A; Schwartz, David L; Hutcheson, Katherine A

    2017-04-01

    To determine the factors associated with longitudinal patient-reported dysphagia as measured by the MD Anderson Dysphagia Inventory (MDADI) in locoregionally advanced oropharyngeal carcinoma (OPC) survivors treated with split-field intensity modulated radiotherapy (IMRT). Retrospective patient analysis. A retrospective analysis combined data from three single-institution clinical trials for stage III/IV head and neck carcinoma. According to trial protocols, patients had prospectively collected MDADI at baseline, 6, 12, and 24 months after treatment. OPC patients with baseline and at least one post-treatment MDADI were included. Longitudinal analysis was completed with multivariate linear mixed effects modeling. There were 116 patients who met inclusion criteria. Mean baseline MDADI composite was 88.3, dropping to 73.8 at 6 months, and rising to 78.6 and 83.3 by 12 and 24 months, respectively (compared to baseline, all P dysphagia early after split-field IMRT for locoregionally advanced OPC that remains apparent 6 months after treatment. MDADI scores recover slowly thereafter, but remain depressed at 24 months compared to baseline. Higher tumor stage and smoking status are important markers of patient-reported function through the course of treatment, suggesting these are important groups for heightened surveillance and more intensive interventions to optimize swallowing outcomes. 4 Laryngoscope, 127:842-848, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    Science.gov (United States)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  2. Lessons from Hurricane Sandy: a community response in Brooklyn, New York.

    Science.gov (United States)

    Schmeltz, Michael T; González, Sonia K; Fuentes, Liza; Kwan, Amy; Ortega-Williams, Anna; Cowan, Lisa Pilar

    2013-10-01

    The frequency and intensity of extreme weather events have increased in recent decades; one example is Hurricane Sandy. If the frequency and severity continue or increase, adaptation and mitigation efforts are needed to protect vulnerable populations and improve daily life under changed weather conditions. This field report examines the devastation due to Hurricane Sandy experienced in Red Hook, Brooklyn, New York, a neighborhood consisting of geographically isolated low-lying commercial and residential units, with a concentration of low-income housing, and disproportionate rates of poverty and poor health outcomes largely experienced by Black and Latino residents. Multiple sources of data were reviewed, including street canvasses, governmental reports, community flyers, and meeting transcripts, as well as firsthand observations by a local nonprofit Red Hook Initiative (RHI) and community members, and social media accounts of the effects of Sandy and the response to daily needs. These data are considered within existing theory, evidence, and practice on protecting public health during extreme weather events. Firsthand observations show that a community-based organization in Red Hook, RHI, was at the center of the response to disaster relief, despite the lack of staff training in response to events such as Hurricane Sandy. Review of these data underscores that adaptation and response to climate change and likely resultant extreme weather is a dynamic process requiring an official coordinated governmental response along with on-the-ground volunteer community responders.

  3. Long-term response of Caribbean palm forests to hurricanes

    Science.gov (United States)

    Ariel Lugo; J.L. Frangi

    2016-01-01

    We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...

  4. Effects of Hurricane Hugo: Mental Health Workers and Community Members.

    Science.gov (United States)

    Muzekari, Louis H.; And Others

    This paper reports the effects of Hurricane Hugo on mental health workers and indigenous community members. The response and perceptions of mental health staff from the South Carolina Department of Mental Health (Go Teams) from areas unaffected by the hurricane were compared and contrasted with those of a subsequent Hugo Outreach Support Team…

  5. Post-hurricane forest damage assessment using satellite remote sensing

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  6. Retention of Displaced Students after Hurricanes Katrina and Rita

    Science.gov (United States)

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  7. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  8. Mass Media Use by College Students during Hurricane Threat

    Science.gov (United States)

    Piotrowski, Chris

    2015-01-01

    There is a dearth of studies on how college students prepare for the threat of natural disasters. This study surveyed college students' preferences in mass media use prior to an approaching hurricane. The convenience sample (n = 76) were from a university located in the hurricane-prone area of the central Gulf of Mexico coast. Interestingly,…

  9. A Climatological Study of Hurricane Force Extratropical Cyclones

    Science.gov (United States)

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  10. Teacher Guidelines for Helping Students after a Hurricane

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  11. East London Modified-Broset as Decision-Making Tool to Predict Seclusion in Psychiatric Intensive Care Units

    OpenAIRE

    Loi, Felice; Marlowe, Karl

    2017-01-01

    Seclusion is a last resort intervention for management of aggressive behavior in psychiatric settings. There is no current objective and practical decision-making instrument for seclusion use on psychiatric wards. Our aim was to test the predictive and discriminatory characteristics of the East London Modified-Broset (ELMB), to delineate its decision-making profile for seclusion of adult psychiatric patients, and second to benchmark it against the psychometric properties of the Broset Violenc...

  12. Loading intensity prediction by velocity and the OMNI-RES 0–10 scale in bench press

    OpenAIRE

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2017-01-01

    This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press exercise. Three hundred eight young, healthy, resistance trained athletes (242 male and 66 female) performed a progressive strength test up to the one-repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity...

  13. Low pain intensity after opioid withdrawal as a first step of a comprehensive pain rehabilitation program predicts long-term nonuse of opioids in chronic noncancer pain.

    Science.gov (United States)

    Krumova, Elena K; Bennemann, Philipp; Kindler, Doris; Schwarzer, Andreas; Zenz, Michael; Maier, Christoph

    2013-09-01

    In specialized pain clinics there is an increasing number of patients with severe chronic noncancer pain (CNCP) despite long-term opioid medication. Few clinical studies show short-term pain relief after opioid withdrawal (OW). We have evaluated the relation between pain intensity after OW and long-term opioid nonuse. One hundred two consecutive patients with severe CNCP despite opioid medication (mean treatment duration, 43 mo) reported pain intensity (numerical rating scale, 0 to 10), Pain Disability Index, mood (CES-D), and quality of life (Short Form 36) before, shortly, and 12 to 24 months after inpatient OW. Total opioid withdrawal (n = 78) or significant dose reduction (DR; n = 24, mean reduction, 82%) was performed after individual decision. Opioid intake 12 to 24 months later, respectively dose increase ≥ 100% (DR group), was considered relapse. T tests, multivariable analysis of variance, logistic regression. After OW current pain intensity significantly decreased on an average by 41% (6.4 ± 2.4 vs. 3.8 ± 2.5), maximal and average pain by 18% and 24%, respectively. Twelve to 24 months later 42 patients (41%) relapsed (31 of the total opioid withdrawal group, 6 of the DR group, 5 lost). Patients without later relapse showed significantly lower pain scores than the later relapsed patients already shortly after OW (5.0 ± 2.2 vs. 5.9 ± 2.1) and 12 to 24 months later (5.5 ± 2.4 vs. 6.5 ± 2.0). There was a significant relation between relapse probability and pain intensity immediately after OW. In many patients with severe CNCP, despite opioid medication, sustainable pain relief can be achieved if OW is included in the rehabilitation program. Consequently, we recommend OW for opioid-resistant CNCP before any opioid escalation. Lower pain intensity shortly after OW may predict the long-term opioid nonuse probability.

  14. Predictive Performance of the Simplified Acute Physiology Score (SAPS) II and the Initial Sequential Organ Failure Assessment (SOFA) Score in Acutely Ill Intensive Care Patients

    DEFF Research Database (Denmark)

    Granholm, Anders; Møller, Morten Hylander; Kragh, Mette

    2016-01-01

    PURPOSE: Severity scores including the Simplified Acute Physiology Score (SAPS) II and the Sequential Organ Failure Assessment (SOFA) score are used in intensive care units (ICUs) to assess disease severity, predict mortality and in research. We aimed to assess the predictive performance of SAPS II...... compared the discrimination of SAPS II and initial SOFA scores, compared the discrimination of SAPS II in our cohort with the original cohort, assessed the calibration of SAPS II customised to our cohort, and compared the discrimination for 90-day mortality vs. in-hospital mortality for both scores....... Discrimination was evaluated using areas under the receiver operating characteristics curves (AUROC). Calibration was evaluated using Hosmer-Lemeshow's goodness-of-fit Ĉ-statistic. RESULTS: AUROC for in-hospital mortality was 0.80 (95% confidence interval (CI) 0.77-0.83) for SAPS II and 0.73 (95% CI 0...

  15. Can dosimetric parameters predict acute hematologic toxicity in rectal cancer patients treated with intensity-modulated pelvic radiotherapy?

    International Nuclear Information System (INIS)

    Wan, Juefeng; Liu, Kaitai; Li, Kaixuan; Li, Guichao; Zhang, Zhen

    2015-01-01

    To identify dosimetric parameters associated with acute hematologic toxicity (HT) in rectal cancer patients undergoing concurrent chemotherapy and intensity-modulated pelvic radiotherapy. Ninety-three rectal cancer patients receiving concurrent capecitabine and pelvic intensity-modulated radiation therapy (IMRT) were analyzed. Pelvic bone marrow (PBM) was contoured for each patient and divided into three subsites: lumbosacral spine (LSS), ilium, and lower pelvis (LP). The volume of each site receiving 5–40 Gy (V 5, V10, V15, V20, V30, and V40, respectively) as well as patient baseline clinical characteristics was calculated. The endpoint for hematologic toxicity was grade ≥ 2 (HT2+) leukopenia, neutropenia, anemia or thrombocytopenia. Logistic regression was used to analyze correlation between dosimetric parameters and grade ≥ 2 hematologic toxicity. Twenty-four in ninety-three patients experienced grade ≥ 2 hematologic toxicity. Only the dosimetric parameter V40 of lumbosacral spine was correlated with grade ≥ 2 hematologic toxicity. Increased pelvic lumbosacral spine V40 (LSS-V40) was associated with an increased grade ≥ 2 hematologic toxicity (p = 0.041). Patients with LSS-V40 ≥ 60 % had higher rates of grade ≥ 2 hematologic toxicity than did patients with lumbosacral spine V40 < 60 % (38.3 %, 18/47 vs.13 %, 6/46, p =0.005). On univariate and multivariate logistic regression analysis, lumbosacral spine V40 and gender was also the variable associated with grade ≥ 2 hematologic toxicity. Female patients were observed more likely to have grade ≥ 2 hematologic toxicity than male ones (46.9 %, 15/32 vs 14.8 %, 9/61, p =0.001). Lumbosacral spine -V40 was associated with clinically significant grade ≥ 2 hematologic toxicity. Keeping the lumbosacral spine -V40 < 60 % was associated with a 13 % risk of grade ≥ 2 hematologic toxicity in rectal cancer patients undergoing concurrent chemoradiotherapy

  16. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    Science.gov (United States)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  17. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  18. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    Science.gov (United States)

    van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-12-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.

  19. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer.

    Science.gov (United States)

    Kim, Sungwon; Han, Kyunghwa; Seo, Nieun; Kim, Hye Jin; Kim, Myeong-Jin; Koom, Woong Sub; Ahn, Joong Bae; Lim, Joon Seok

    2018-06-01

    To evaluate the diagnostic value of signal intensity (SI)-selected volumetry findings in T2-weighted magnetic resonance imaging (MRI) as a potential biomarker for predicting pathological complete response (pCR) to preoperative chemoradiotherapy (CRT) in patients with rectal cancer. Forty consecutive patients with pCR after preoperative CRT were compared with 80 age- and sex-matched non-pCR patients in a case-control study. SI-selected tumor volume was measured on post-CRT T2-weighted MRI, which included voxels of the treated tumor exceeding the SI (obturator internus muscle SI + [ischiorectal fossa fat SI - obturator internus muscle SI] × 0.2). Three blinded readers independently rated five-point pCR confidence scores and compared the diagnostic outcome with SI-selected volumetry findings. The SI-selected volumetry protocol was validated in 30 additional rectal cancer patients. The area under the receiver-operating characteristic curve (AUC) of SI-selected volumetry for pCR prediction was 0.831, with an optimal cutoff value of 649.6 mm 3 (sensitivity 0.850, specificity 0.725). The AUC of the SI-selected tumor volume was significantly greater than the pooled AUC of readers (0.707, p volumetry in post-CRT T2-weighted MRI can help predict pCR after preoperative CRT in patients with rectal cancer. • Fibrosis and viable tumor MRI signal intensities (SIs) are difficult to distinguish. • T2 SI-selected volumetry yields high diagnostic performance for assessing pathological complete response. • T2 SI-selected volumetry is significantly more accurate than readers and non-SI-selected volumetry. • Post-chemoradiation therapy T2-weighted MRI SI-selected volumetry facilitates prediction of pathological complete response.

  20. Early changes of parotid density and volume predict modifications at the end of therapy and intensity of acute xerostomia.

    Science.gov (United States)

    Belli, Maria Luisa; Scalco, Elisa; Sanguineti, Giuseppe; Fiorino, Claudio; Broggi, Sara; Dinapoli, Nicola; Ricchetti, Francesco; Valentini, Vincenzo; Rizzo, Giovanna; Cattaneo, Giovanni Mauro

    2014-10-01

    To quantitatively assess the predictive power of early variations of parotid gland volume and density on final changes at the end of therapy and, possibly, on acute xerostomia during IMRT for head-neck cancer. Data of 92 parotids (46 patients) were available. Kinetics of the changes during treatment were described by the daily rate of density (rΔρ) and volume (rΔvol) variation based on weekly diagnostic kVCT images. Correlation between early and final changes was investigated as well as the correlation with prospective toxicity data (CTCAEv3.0) collected weekly during treatment for 24/46 patients. A higher rΔρ was observed during the first compared to last week of treatment (-0,50 vs -0,05HU, p-value = 0.0001). Based on early variations, a good estimation of the final changes may be obtained (Δρ: AUC = 0.82, p = 0.0001; Δvol: AUC = 0.77, p = 0.0001). Both early rΔρ and rΔvol predict a higher "mean" acute xerostomia score (≥ median value, 1.57; p-value = 0.01). Median early density rate changes for patients with mean xerostomia score ≥ / xerostomia is well predicted by higher rΔρ and rΔvol in the first two weeks of treatment: best cut-off values were -0.50 HU/day and -380 mm(3)/day for rΔρ and rΔvol respectively. Further studies are necessary to definitively assess the potential of early density/volume changes in identifying more sensitive patients at higher risk of experiencing xerostomia.

  1. Gulf of Mexico hurricane wave simulations using SWAN : Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate

  2. Hurricane Harvey Report : A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    NARCIS (Netherlands)

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall

  3. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  4. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; hide

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  5. Early changes of parotid density and volume predict modifications at the end of therapy and intensity of acute xerostomia

    International Nuclear Information System (INIS)

    Belli, Maria Luisa; Broggi, Sara; Scalco, Elisa; Rizzo, Giovanna; Sanguineti, Giuseppe; Fiorino, Claudio; Cattaneo, Giovanni Mauro; Dinapoli, Nicola; Valentini, Vincenzo; Ricchetti, Francesco

    2014-01-01

    To quantitatively assess the predictive power of early variations of parotid gland volume and density on final changes at the end of therapy and, possibly, on acute xerostomia during IMRT for head-neck cancer. Data of 92 parotids (46 patients) were available. Kinetics of the changes during treatment were described by the daily rate of density (rΔρ) and volume (rΔvol) variation based on weekly diagnostic kVCT images. Correlation between early and final changes was investigated as well as the correlation with prospective toxicity data (CTCAEv3.0) collected weekly during treatment for 24/46 patients. A higher rΔρ was observed during the first compared to last week of treatment (-0,50 vs -0,05HU, p-value = 0.0001). Based on early variations, a good estimation of the final changes may be obtained (Δρ: AUC = 0.82, p = 0.0001; Δvol: AUC = 0.77, p = 0.0001). Both early rΔρ and rΔvol predict a higher ''mean'' acute xerostomia score (≥ median value, 1.57; p-value = 0.01). Median early density rate changes for patients with mean xerostomia score ≥ / 3 /day for rΔρ and rΔvol respectively. Further studies are necessary to definitively assess the potential of early density/volume changes in identifying more sensitive patients at higher risk of experiencing xerostomia. (orig.) [de

  6. Change in self-esteem predicts depressive symptoms at follow-up after intensive multimodal psychotherapy for major depression.

    Science.gov (United States)

    Dinger, Ulrike; Ehrenthal, Johannes C; Nikendei, Christoph; Schauenburg, Henning

    2017-09-01

    Reduced self-esteem is a core symptom of depression, but few studies have investigated within-treatment change of self-esteem as a predictor of long-term outcome in depression. This study investigated change in self-esteem during 8 weeks of multimodal, psychodynamically oriented psychotherapy for 40 depressed patients and tested whether it would predict outcome 6 months after termination. Data was drawn from a randomized clinical pilot trial on day-clinic versus inpatient psychotherapy for depression. Findings supported the association between change in self-esteem and follow-up depression severity, even when controlling for within-treatment symptom change. Change in self-esteem was not related to overall symptoms and interpersonal problems at follow-up. Thus, change in self-esteem may be an important variable in preventing relapse for depression. Self-esteem is related to depressive symptoms and interpersonal problems. Improvement of self-esteem during psychotherapy correlates with improvements of symptoms and interpersonal problems. Change of self-esteem during psychotherapy predicts depressive symptoms 6 months after termination of therapy. When treating depressed patients, psychotherapists should work towards an improvement of self-esteem in order to prevent relapse. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Higher Precision of Heart Rate Compared with VO2 to Predict Exercise Intensity in Endurance-Trained Runners.

    Science.gov (United States)

    Reis, Victor M; den Tillaar, Roland Van; Marques, Mario C

    2011-01-01

    The aim of the present study was to assess the precision of oxygen uptake with heart rate regression during track running in highly-trained runners. Twelve national and international level male long-distance road runners (age 30.7 ± 5.5 yrs, height 1.71 ± 0.04 m and mass 61.2 ± 5.8 kg) with a personal best on the half marathon of 62 min 37 s ± 1 min 22 s participated in the study. Each participant performed, in an all-weather synthetic track five, six min bouts at constant velocity with each bout at an increased running velocity. The starting velocity was 3.33 m·s(-1) with a 0.56 m·s(-1) increase on each subsequent bout. VO2 and heart rate were measured during the runs and blood lactate was assessed immediately after each run. Mean peak VO2 and mean peak heart rate were, respectively, 76.2 ± 9.7 mL·kg(-1)·min(-1) and 181 ± 13 beats·min(-1). The linearity of the regressions between heart rate, running velocity and VO2 were all very high (r > 0.99) with small standard errors of regression (i.e. Sy.x at the velocity associated with the 2 and 4 mmol·L(-1) lactate thresholds). The strong relationships between heart rate, running velocity and VO2 found in this study show that, in highly trained runners, it is possible to have heart rate as an accurate indicator of energy demand and of the running speed. Therefore, in this subject cohort it may be unnecessary to use VO2 to track changes in the subjects' running economy during training periods. Key pointsHeart rate is used in the control of exercise intensity in endurance sports.However, few studies have quantified the precision of its relationship with oxygen uptake in highly trained runners.We evaluated twelve elite half-marathon runners during track running at various intensities and established three regressions: oxygen uptake / heart rate; heart rate / running velocity and oxygen uptake / running velocity.The three regressions presented, respectively, imprecision of 4,2%, 2,75% and 4,5% at the velocity

  8. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States.

    Science.gov (United States)

    Frankenfeld, Cara L; Sikaroodi, Masoumeh; Lamb, Evan; Shoemaker, Sarah; Gillevet, Patrick M

    2015-10-01

    To evaluate gut microbiome in relation to recent high-intensity sweetener consumption in healthy adults. Thirty-one adults completed a four-day food record and provided a fecal sample on the fifth day. Bacterial community in the samples was analyzed using multitag pyrosequencing. Across consumers and nonconsumers of aspartame and acesulfame-K, bacterial abundance was compared using nonparametric statistics, and bacterial diversity was compared using UniFrac analysis. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict mean relative abundance of gene function. There were seven aspartame consumers and seven acesulfame-K consumers. Three individuals overlapped groups, consuming both sweeteners. There were no differences in median bacterial abundance (class or order) across consumers and nonconsumers of either sweetener. Overall bacterial diversity was different across nonconsumers and consumers of aspartame (P Bacterial abundance profiles and predicted gene function were not associated with recent dietary high-intensity sweetener consumption. However, bacterial diversity differed across consumers and nonconsumers. Given the increasing consumption of sweeteners and the role that the microbiome may have in chronic disease outcomes, work in further studies is warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Contrast-enhanced transrectal ultrasound for prediction of prostate cancer aggressiveness: The role of normal peripheral zone time-intensity curves.

    Science.gov (United States)

    Huang, Hui; Zhu, Zheng-Qiu; Zhou, Zheng-Guo; Chen, Ling-Shan; Zhao, Ming; Zhang, Yang; Li, Hong-Bo; Yin, Li-Ping

    2016-12-08

    To assess the role of time-intensity curves (TICs) of the normal peripheral zone (PZ) in the identification of biopsy-proven prostate nodules using contrast-enhanced transrectal ultrasound (CETRUS). This study included 132 patients with 134 prostate PZ nodules. Arrival time (AT), peak intensity (PI), mean transit time (MTT), area under the curve (AUC), time from peak to one half (TPH), wash in slope (WIS) and time to peak (TTP) were analyzed using multivariate linear logistic regression and receiver operating characteristic (ROC) curves to assess whether combining nodule TICs with normal PZ TICs improved the prediction of prostate cancer (PCa) aggressiveness. The PI, AUC (p < 0.001 for both), MTT and TPH (p = 0.011 and 0.040 respectively) values of the malignant nodules were significantly higher than those of the benign nodules. Incorporating the PI and AUC values (both, p < 0.001) of the normal PZ TIC, but not the MTT and TPH values (p = 0.076 and 0.159 respectively), significantly improved the AUC for prediction of malignancy (PI: 0.784-0.923; AUC: 0.758-0.891) and assessment of cancer aggressiveness (p < 0.001). Thus, all these findings indicate that incorporating normal PZ TICs with nodule TICs in CETRUS readings can improve the diagnostic accuracy for PCa and cancer aggressiveness assessment.

  10. Factors Contributing to the Interrupted Decay of Hurricane Joaquin (2015) in a Moderate Vertical Wind Shear Environment

    Science.gov (United States)

    2017-06-01

    11  C.  TCI MISSIONS INTO HURRICANE JOAQUIN ............................. 13  III.  DATA AND METHODOLOGY ...October (Figure 12) indicated that the convection in Joaquin had become more organized with an enshrouded eye and rainbands spiraling outward on the...mission. Note that the intensity of Joaquin was still 75 kt at 0600 UTC 6 October (Table 1). 25 III. DATA AND METHODOLOGY A. TCI FIELD PROGRAM

  11. Use of integrated analogue and numerical modelling to predict tridimensional fracture intensity in fault-related-folds.

    Science.gov (United States)

    Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio

    2016-04-01

    Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.

  12. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    Science.gov (United States)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  13. Estimating hurricane hazards using a GIS system

    Directory of Open Access Journals (Sweden)

    A. Taramelli

    2008-08-01

    Full Text Available This paper develops a GIS-based integrated approach to the Multi-Hazard model method, with reference to hurricanes. This approach has three components: data integration, hazard assessment and score calculation to estimate elements at risk such as affected area and affected population. First, spatial data integration issues within a GIS environment, such as geographical scales and data models, are addressed. Particularly, the integration of physical parameters and population data is achieved linking remotely sensed data with a high resolution population distribution in GIS. In order to assess the number of affected people, involving heterogeneous data sources, the selection of spatial analysis units is basic. Second, specific multi-hazard tasks, such as hazard behaviour simulation and elements at risk assessment, are composed in order to understand complex hazard and provide support for decision making. Finally, the paper concludes that the integrated approach herein presented can be used to assist emergency management of hurricane consequences, in theory and in practice.

  14. A Simulation Tool for Hurricane Evacuation Planning

    Directory of Open Access Journals (Sweden)

    Daniel J. Fonseca

    2009-01-01

    Full Text Available Atlantic hurricanes and severe tropical storms are a serious threat for the communities in the Gulf of Mexico region. Such storms are violent and destructive. In response to these dangers, coastal evacuation may be ordered. This paper describes the development of a simulation model to analyze the movement of vehicles through I-65, a major US Interstate highway that runs north off the coastal City of Mobile, Alabama, towards the State of Tennessee, during a massive evacuation originated by a disastrous event such a hurricane. The constructed simulation platform consists of a primary and two secondary models. The primary model is based on the entry of vehicles from the 20 on-ramps to I-65. The two secondary models assist the primary model with related traffic events such as car breakdowns and accidents, traffic control measures, interarrival signaling, and unforeseen emergency incidents, among others. Statistical testing was performed on the data generated by the simulation model to indentify variation in relevant traffic variables affecting the timely flow of vehicles travelling north. The performed statistical analysis focused on the closing of alternative on-ramps throughout the Interstate.

  15. Weathering the storm: hurricanes and birth outcomes.

    Science.gov (United States)

    Currie, Janet; Rossin-Slater, Maya

    2013-05-01

    A growing literature suggests that stressful events in pregnancy can have negative effects on birth outcomes. Some of the estimates in this literature may be affected by small samples, omitted variables, endogenous mobility in response to disasters, and errors in the measurement of gestation, as well as by a mechanical correlation between longer gestation and the probability of having been exposed. We use millions of individual birth records to examine the effects of exposure to hurricanes during pregnancy, and the sensitivity of the estimates to these econometric problems. We find that exposure to a hurricane during pregnancy increases the probability of abnormal conditions of the newborn such as being on a ventilator more than 30min and meconium aspiration syndrome (MAS). Although we are able to reproduce previous estimates of effects on birth weight and gestation, our results suggest that measured effects of stressful events on these outcomes are sensitive to specification and it is preferable to use more sensitive indicators of newborn health. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  17. A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high resolution simulation of Hurricane Bonnie (1998)

    Science.gov (United States)

    Cram, Thomas A.; Persing, John; Montgomery, Michael T.; Braun, Scott A.

    2006-01-01

    The transport and mixing characteristics of a large sample of air parcels within a mature and vertically sheared hurricane vortex is examined. Data from a high-resolution (2 km grid spacing) numerical simulation of "real-case" Hurricane Bonnie (1998) is used to calculate Lagrangian trajectories of air parcels in various subdomains of the hurricane (namely, the eye, eyewall, and near-environment) to study the degree of interaction (transport and mixing) between these subdomains. It is found that 1) there is transport and mixing from the low-level eye to the eyewall that carries high- Be air which can enhance the efficiency of the hurricane heat engine; 2) a portion of the low-level inflow of the hurricane bypasses the eyewall to enter the eye, that both replaces the mass of the low-level eye and lingers for a sufficient time (order 1 hour) to acquire enhanced entropy characteristics through interaction with the ocean beneath the eye; 3) air in the mid- to upper-level eye is exchanged with the eyewall such that more than half the air of the eye is exchanged in five hours in this case of a sheared hurricane; and 4) that one-fifth of the mass in the eyewall at a height of 5 km has an origin in the mid- to upper-level environment where thet(sub e) is much less than in the eyewall, which ventilates the ensemble average eyewall theta(sub e) by about 1 K. Implications of these findings to the problem of hurricane intensity forecasting are discussed.

  18. Retrograde Accretion of a Caribbean Fringing Reef Controlled by Hurricanes and Sea-level Rise

    Directory of Open Access Journals (Sweden)

    Paul Blanchon

    2017-10-01

    Full Text Available Predicting the impact of sea-level (SL rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry (SDB shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230Th ages shows the reef is composed of an ~2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and transport clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.

  19. Influence of hurricane wind field in the structure of directional wave spectra.

    Science.gov (United States)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  20. Predictive Factors for Delayed Extubation in the Intensive Care Unit after Coronary Artery Bypass Grafting; A Southern Iranian Experience

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Shahbazi

    2012-12-01

    Full Text Available Background: Early extubation is implemented in cardiothoracic units worldwide for its advantages such as decreased mortality, morbidity, and hospitalization costs. We conducted a retrospective study to evaluate potential factors which may affect extubation time. Methods: The records of 334 eligible patients who underwent elective coronary artery bypass grafting (CABG in 2008 in Kowsar Hospital in Shiraz, southern Iran were evaluated to find the factors that can affect the extubation time. The patients were divided to early (equal or less than 6 hours and late extubation groups. The patients’ demographic data and operative variables were extracted from the records. We excluded patients with difficult intubation, severe acid base disturbance, neurological problems, and cardiovascular instability; and those who used intra-aortic balloon pump, had underwent emergency operation, or had another concomitant surgery. Results: Multiple logistic regressions comparing age, sex, number of grafts, ejection fraction, pump time, hematocrit, number of risk factors, and number of inotropic drugs, identified only age as a predictor of delayed extubation (odds ratio=1.07, CI 95%=1.04-1.10, P<0.001. Also, in both studied groups the men to women ratio was higher (P<0.05.Conclusion: Although in our study age was the only predictive factor for delayed extubation, a comprehensive study including preoperative, perioperative, and postoperative factors is recommended in our area.

  1. Early changes of parotid density and volume predict modifications at the end of therapy and intensity of acute xerostomia

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Maria Luisa; Broggi, Sara [Ospedale San Raffaele Scientific Institute, Medical Physics, Milano (Italy); Scalco, Elisa; Rizzo, Giovanna [CNR, Istituto di Bioimmagini e Fisiologia Molecolare, Milano (Italy); Sanguineti, Giuseppe [Regina Elena National Cancer Institute, Department of Radiation Oncology, Rome (Italy); Fiorino, Claudio; Cattaneo, Giovanni Mauro [Ospedale San Raffaele Scientific Institute, Medical Physics, Milano (Italy); CNR, Istituto di Bioimmagini e Fisiologia Molecolare, Milano (Italy); Dinapoli, Nicola; Valentini, Vincenzo [Universita Cattolica del Sacro Cuore, Radiotherapy, Rome (Italy); Ricchetti, Francesco [Ospedale Sacro Cuore, Radiotherapy, Negrar (Italy)

    2014-11-15

    To quantitatively assess the predictive power of early variations of parotid gland volume and density on final changes at the end of therapy and, possibly, on acute xerostomia during IMRT for head-neck cancer. Data of 92 parotids (46 patients) were available. Kinetics of the changes during treatment were described by the daily rate of density (rΔρ) and volume (rΔvol) variation based on weekly diagnostic kVCT images. Correlation between early and final changes was investigated as well as the correlation with prospective toxicity data (CTCAEv3.0) collected weekly during treatment for 24/46 patients. A higher rΔρ was observed during the first compared to last week of treatment (-0,50 vs -0,05HU, p-value = 0.0001). Based on early variations, a good estimation of the final changes may be obtained (Δρ: AUC = 0.82, p = 0.0001; Δvol: AUC = 0.77, p = 0.0001). Both early rΔρ and rΔvol predict a higher ''mean'' acute xerostomia score (≥ median value, 1.57; p-value = 0.01). Median early density rate changes for patients with mean xerostomia score ≥ / < 1.57 were -0.98 vs -0.22 HU/day respectively (p = 0.05). Early density and volume variations accurately predict final changes of parotid glands. A higher longitudinally assessed score of acute xerostomia is well predicted by higher rΔρ and rΔvol in the first two weeks of treatment: best cut-off values were -0.50 HU/day and -380 mm{sup 3}/day for rΔρ and rΔvol respectively. Further studies are necessary to definitively assess the potential of early density/volume changes in identifying more sensitive patients at higher risk of experiencing xerostomia. (orig.) [German] Ziel der Studie ist die Untersuchung der praediktiven Aussagekraft von fruehen Veraenderungen in Volumen und Dichte der Ohrspeicheldruese in Bezug auf die finale Verformung zum Ende der Therapie sowie das Risiko von Xerostomie waehrend der intesitaetsmodulierten Strahlentherapie (IMRT) bei Kopf und Hals Tumoren. Die Studie

  2. Investigations of aerosol impacts on hurricanes: virtual seeding flights

    Directory of Open Access Journals (Sweden)

    G. G. Carrio

    2011-03-01

    Full Text Available This paper examines the feasibility of mitigating the intensity of hurricanes by enhancing the CCN concentrations in the outer rainband region. Increasing CCN concentrations would cause a reduced collision and coalescence, resulting in more supercooled liquid water to be transported aloft which then freezes and enhances convection via enhanced latent heat of freezing. The intensified convection would condense more water ultimately enhancing precipitation in the outer rainbands. Enhanced evaporative cooling from the increased precipitation in the outer rainbands would produce stronger and more widespread areal cold pools which block the flow of energy into the storm core, ultimately inhibiting the intensification of the tropical cyclone.

    We designed a series of multi-grid for which the time of the "virtual flights" as well as the aerosol release rates are varied. A code that simulates the flight of a plane is used to increase the CCN concentrations as an aircraft flies. Results show a significant sensitivity to both the seeding time and the aerosol release rates and support the aforementioned hypothesis.

  3. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  4. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  5. High positive predictive value of Gram stain on catheter-drawn blood samples for the diagnosis of catheter-related bloodstream infection in intensive care neonates.

    Science.gov (United States)

    Deleers, M; Dodémont, M; Van Overmeire, B; Hennequin, Y; Vermeylen, D; Roisin, S; Denis, O

    2016-04-01

    Catheter-related bloodstream infections (CRBSIs) remain a leading cause of healthcare-associated infections in preterm infants. Rapid and accurate methods for the diagnosis of CRBSIs are needed in order to implement timely and appropriate treatment. A retrospective study was conducted during a 7-year period (2005-2012) in the neonatal intensive care unit of the University Hospital Erasme to assess the value of Gram stain on catheter-drawn blood samples (CDBS) to predict CRBSIs. Both peripheral samples and CDBS were obtained from neonates with clinically suspected CRBSI. Gram stain, automated culture and quantitative cultures on blood agar plates were performed for each sample. The paired quantitative blood culture was used as the standard to define CRBSI. Out of 397 episodes of suspected CRBSIs, 35 were confirmed by a positive ratio of quantitative culture (>5) or a colony count of CDBS culture >100 colony-forming units (CFU)/mL. All but two of the 30 patients who had a CDBS with a positive Gram stain were confirmed as having a CRBSI. Seven patients who had a CDBS with a negative Gram stain were diagnosed as CRBSI. The sensitivity, specificity, positive predictive value and negative predictive value of Gram stain on CDBS were 80, 99.4, 93.3 and 98.1 %, respectively. Gram staining on CDBS is a viable method for rapidly (<1 h) detecting CRBSI without catheter withdrawal.

  6. Predicting the severity and prognosis of trismus after intensity-modulated radiation therapy for oral cancer patients by magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Li-Chun Hsieh

    Full Text Available To develop magnetic resonance imaging (MRI indicators to predict trismus outcome for post-operative oral cavity cancer patients who received adjuvant intensity-modulated radiation therapy (IMRT, 22 patients with oral cancer treated with IMRT were studied over a two-year period. Signal abnormality scores (SA scores were computed from Likert-type ratings of the abnormalities of nine masticator structures and compared with the Mann-Whitney U-test and Kruskal-Wallis one-way ANOVA test between groups. Seventeen patients (77.3% experienced different degrees of trismus during the two-year follow-up period. The SA score correlated with the trismus grade (r = 0.52, p<0.005. Patients having progressive trismus had higher mean doses of radiation to multiple structures, including the masticator and lateral pterygoid muscles, and the parotid gland (p<0.05. In addition, this group also had higher SA-masticator muscle dose product at 6 months and SA scores at 12 months (p<0.05. At the optimum cut-off points of 0.38 for the propensity score, the sensitivity was 100% and the specificity was 93% for predicting the prognosis of the trismus patients. The SA score, as determined using MRI, can reflect the radiation injury and correlate to trismus severity. Together with the radiation dose, it could serve as a useful biomarker to predict the outcome and guide the management of trismus following radiation therapy.

  7. Using integrated modeling for generating watershed-scale dynamic flood maps for Hurricane Harvey

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P. J.

    2017-12-01

    Hurricane Harvey, which was categorized as a 1000-year return period event, produced unprecedented rainfall and flooding in Houston. Although the expected rainfall was forecasted much before the event, there was no way to identify which regions were at higher risk of flooding, the magnitude of flooding, and when the impacts of rainfall would be highest. The inability to predict the location, duration, and depth of flooding created uncertainty over evacuation planning and preparation. This catastrophic event highlighted that the conventional approach to managing flood risk using 100-year static flood inundation maps is inadequate because of its inability to predict flood duration and extents for 500-year or 1000-year return period events in real-time. The purpose of this study is to create models that can dynamically predict the impacts of rainfall and subsequent flooding, so that necessary evacuation and rescue efforts can be planned in advance. This study uses a 2D integrated surface water-groundwater model called ICPR (Interconnected Channel and Pond Routing) to simulate both the hydrology and hydrodynamics for Hurricane Harvey. The methodology involves using the NHD stream network to create a 2D model that incorporates rainfall, land use, vadose zone properties and topography to estimate streamflow and generate dynamic flood depths and extents. The results show that dynamic flood mapping captures the flood hydrodynamics more accurately and is able to predict the magnitude, extent and time of occurrence for extreme events such as Hurricane Harvey. Therefore, integrated modeling has the potential to identify regions that are more susceptible to flooding, which is especially useful for large-scale planning and allocation of resources for protection against future flood risk.

  8. A Space-Based Perspective of the 2017 Hurricane Season from the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick Jackson, G.; Petersen, W. A.; Huffman, G. J.; Kirschbaum, D.; Wolff, D. B.; Tan, J.; Zavodsky, B.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission collected unique, near real time 3-D satellite-based views of hurricanes in 2017 together with estimated precipitation accumulation using merged satellite data for scientific studies and societal applications. Central to GPM is the NASA-JAXA GPM Core Observatory (CO). The GPM-CO carries an advanced dual-frequency precipitation radar (DPR) and a well-calibrated, multi-frequency passive microwave radiometer that together serve as an on orbit reference for precipitation measurements made by the international GPM satellite constellation. GPM-CO overpasses of major Hurricanes such as Harvey, Irma, Maria, and Ophelia revealed intense convective structures in DPR radar reflectivity together with deep ice-phase microphysics in both the eyewalls and outer rain bands. Of considerable scientific interest, and yet to be determined, will be DPR-diagnosed characteristics of the rain drop size distribution as a function of convective structure, intensity and microphysics. The GPM-CO active/passive suite also provided important decision support information. For example, the National Hurricane Center used GPM-CO observations as a tool to inform track and intensity estimates in their forecast briefings. Near-real-time rainfall accumulation from the Integrated Multi-satellitE Retrievals for GPM (IMERG) was also provided via the NASA SPoRT team to Puerto Rico following Hurricane Maria when ground-based radar systems on the island failed. Comparisons between IMERG, NOAA Multi-Radar Multi-Sensor data, and rain gauge rainfall accumulations near Houston, Texas during Hurricane Harvey revealed spatial biases between ground and IMERG satellite estimates, and a general underestimation of IMERG rain accumulations associated with infrared observations, collectively illustrating the difficulty of measuring rainfall in hurricanes.GPM data continue to advance scientific research on tropical cyclone intensification and structure, and contribute to

  9. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model.

    Science.gov (United States)

    Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W

    2013-11-15

    Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  11. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  12. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  13. Beyond Traditional Extreme Value Theory Through a Metastatistical Approach: Lessons Learned from Precipitation, Hurricanes, and Storm Surges

    Science.gov (United States)

    Marani, M.; Zorzetto, E.; Hosseini, S. R.; Miniussi, A.; Scaioni, M.

    2017-12-01

    The Generalized Extreme Value (GEV) distribution is widely adopted irrespective of the properties of the stochastic process generating the extreme events. However, GEV presents several limitations, both theoretical (asymptotic validity for a large number of events/year or hypothesis of Poisson occurrences of Generalized Pareto events), and practical (fitting uses just yearly maxima or a few values above a high threshold). Here we describe the Metastatistical Extreme Value Distribution (MEVD, Marani & Ignaccolo, 2015), which relaxes asymptotic or Poisson/GPD assumptions and makes use of all available observations. We then illustrate the flexibility of the MEVD by applying it to daily precipitation, hurricane intensity, and storm surge magnitude. Application to daily rainfall from a global raingauge network shows that MEVD estimates are 50% more accurate than those from GEV when the recurrence interval of interest is much greater than the observational period. This makes MEVD suited for application to satellite rainfall observations ( 20 yrs length). Use of MEVD on TRMM data yields extreme event patterns that are in better agreement with surface observations than corresponding GEV estimates.Applied to the HURDAT2 Atlantic hurricane intensity dataset, MEVD significantly outperforms GEV estimates of extreme hurricanes. Interestingly, the Generalized Pareto distribution used for "ordinary" hurricane intensity points to the existence of a maximum limit wind speed that is significantly smaller than corresponding physically-based estimates. Finally, we applied the MEVD approach to water levels generated by tidal fluctuations and storm surges at a set of coastal sites spanning different storm-surge regimes. MEVD yields accurate estimates of large quantiles and inferences on tail thickness (fat vs. thin) of the underlying distribution of "ordinary" surges. In summary, the MEVD approach presents a number of theoretical and practical advantages, and outperforms traditional

  14. Hurricane Isabel gives accelerators a severe test

    International Nuclear Information System (INIS)

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  15. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  16. A geospatial dataset for U.S. hurricane storm surge and sea-level rise vulnerability: Development and case study applications

    Directory of Open Access Journals (Sweden)

    Megan C. Maloney

    2014-01-01

    Full Text Available The consequences of future sea-level rise for coastal communities are a priority concern arising from anthropogenic climate change. Here, previously published methods are scaled up in order to undertake a first pass assessment of exposure to hurricane storm surge and sea-level rise for the U.S. Gulf of Mexico and Atlantic coasts. Sea-level rise scenarios ranging from +0.50 to +0.82 m by 2100 increased estimates of the area exposed to inundation by 4–13% and 7–20%, respectively, among different Saffir-Simpson hurricane intensity categories. Potential applications of these hazard layers for vulnerability assessment are demonstrated with two contrasting case studies: potential exposure of current energy infrastructure in the U.S. Southeast and exposure of current and future housing along both the Gulf and Atlantic Coasts. Estimates of the number of Southeast electricity generation facilities potentially exposed to hurricane storm surge ranged from 69 to 291 for category 1 and category 5 storms, respectively. Sea-level rise increased the number of exposed facilities by 6–60%, depending on the sea-level rise scenario and the intensity of the hurricane under consideration. Meanwhile, estimates of the number of housing units currently exposed to hurricane storm surge ranged from 4.1 to 9.4 million for category 1 and category 4 storms, respectively, while exposure for category 5 storms was estimated at 7.1 million due to the absence of landfalling category 5 hurricanes in the New England region. Housing exposure was projected to increase 83–230% by 2100 among different sea-level rise and housing scenarios, with the majority of this increase attributed to future housing development. These case studies highlight the utility of geospatial hazard information for national-scale coastal exposure or vulnerability assessment as well as the importance of future socioeconomic development in the assessment of coastal vulnerability.

  17. Sedimentological and Micropaleontological Characteristics of the 2015 Hurricane Joaquin Deposit and their Implications for Long-Term Records of Storms and Tsunamis Impacting the Caribbean

    Science.gov (United States)

    Kosciuch, T. J.; Pilarczyk, J.; Reinhardt, E. G.; Mauviel, A.; Aucoin, C. D.

    2017-12-01

    The uncertainty of extreme wave events in the Caribbean was highlighted in October 2015 when Hurricane Joaquin tracked through, or near, several islands (e.g., Bahamas, Haiti, Turks and Caicos) as a Category 4 storm. The short observational record of landfalling hurricanes is insufficient in preparing many of these islands for such a rare, intense storm. Examining the sediments deposited by recent landfalling hurricanes assists the understanding of the long-term spatial and temporal variations in storm frequency and intensity. However, the interpretation of prehistoric hurricane deposits in the Caribbean is complicated by the possibility of tsunami deposits (e.g., Puerto Rico Trench, 1755 Lisbon Tsunami), which are similar in composition and difficult to differentiate from storm sediments. To circumvent this problem, we describe the microfossil and sedimentary characteristics of a modern storm analogue, the Hurricane Joaquin deposit, from San Salvador Island in the Bahamas and use it as a basis for interpreting a series of 10 anomalous sand deposits found in a coastal pond. San Salvador is a small (160 km2) island in the Bahamas with a history of landfalling hurricanes and tsunamis. On 4 October 2015, Hurricane Joaquin came within 7 km of San Salvador, inundating most of its coastline and depositing two distinct layers: a sand layer and a boulder layer. The sand layer was 12 to 104 cm thick, extended 135 m inland, and consisted of fine to medium sand. The sand layer contained high abundances of foraminifera, including Homotrema rubra, a foraminifer that lives on the reef and is detached by large waves. The presence of well-preserved fragments of Homotrema within the Joaquin deposit suggests transport from the reef and rapid burial. The boulder layer included large clasts (30 to 200 cm in length) that were imbricated perpendicular to the shoreline and extended 135 m inland. The boulder layer was more laterally extensive (1020 m) than the sand layer (110 m). The

  18. Factors among patients receiving prone positioning for the acute respiratory distress syndrome found useful for predicting mortality in the intensive care unit.

    Science.gov (United States)

    Modrykamien, Ariel M; Daoud, Yahya

    2018-01-01

    Optimal mechanical ventilation management in patients with the acute respiratory distress syndrome (ARDS) involves the use of low tidal volumes and limited plateau pressure. Refractory hypoxemia may not respond to this strategy, requiring other interventions. The use of prone positioning in severe ARDS resulted in improvement in 28-day survival. To determine whether mechanical ventilation strategies or other parameters affected survival in patients undergoing prone positioning, a retrospective analysis was conducted of a consecutive series of patients with severe ARDS treated with prone positioning. Demographic and clinical information involving mechanical ventilation strategies, as well as other variables associated with prone positioning, was collected. The rate of in-hospital mortality was obtained, and previously described parameters were compared between survivors and nonsurvivors. Forty-three patients with severe ARDS were treated with prone positioning, and 27 (63%) died in the intensive care unit. Only three parameters were significant predictors of survival: APACHE II score ( P = 0.03), plateau pressure ( P = 0.02), and driving pressure ( P = 0.04). The ability of each of these parameters to predict mortality was assessed with receiver operating characteristic curves. The area under the curve values for APACHE II, plateau pressure, and driving pressure were 0.74, 0.69, and 0.67, respectively. In conclusion, in a group of patients with severe ARDS treated with prone positioning, only APACHE II, plateau pressure, and driving pressure were associated with mortality in the intensive care unit.

  19. Clinical-Radiological Parameters Improve the Prediction of the Thrombolysis Time Window by Both MRI Signal Intensities and DWI-FLAIR Mismatch.

    Science.gov (United States)

    Madai, Vince Istvan; Wood, Carla N; Galinovic, Ivana; Grittner, Ulrike; Piper, Sophie K; Revankar, Gajanan S; Martin, Steve Z; Zaro-Weber, Olivier; Moeller-Hartmann, Walter; von Samson-Himmelstjerna, Federico C; Heiss, Wolf-Dieter; Ebinger, Martin; Fiebach, Jochen B; Sobesky, Jan

    2016-01-01

    With regard to acute stroke, patients with unknown time from stroke onset are not eligible for thrombolysis. Quantitative diffusion weighted imaging (DWI) and fluid attenuated inversion recovery (FLAIR) MRI relative signal intensity (rSI) biomarkers have been introduced to predict eligibility for thrombolysis, but have shown heterogeneous results in the past. In the present work, we investigated whether the inclusion of easily obtainable clinical-radiological parameters would improve the prediction of the thrombolysis time window by rSIs and compared their performance to the visual DWI-FLAIR mismatch. In a retrospective study, patients from 2 centers with proven stroke with onset value/mean value of the unaffected hemisphere). Additionally, the visual DWI-FLAIR mismatch was evaluated. Prediction of the thrombolysis time window was evaluated by the area-under-the-curve (AUC) derived from receiver operating characteristic (ROC) curve analysis. Factors such as the association of age, National Institutes of Health Stroke Scale, MRI field strength, lesion size, vessel occlusion and Wahlund-Score with rSI were investigated and the models were adjusted and stratified accordingly. In 82 patients, the unadjusted rSI measures DWI-mean and -SD showed the highest AUCs (AUC 0.86-0.87). Adjustment for clinical-radiological covariates significantly improved the performance of FLAIR-mean (0.91) and DWI-SD (0.91). The best prediction results based on the AUC were found for the final stratified and adjusted models of DWI-SD (0.94) and FLAIR-mean (0.96) and a multivariable DWI-FLAIR model (0.95). The adjusted visual DWI-FLAIR mismatch did not perform in a significantly worse manner (0.89). ADC-rSIs showed fair performance in all models. Quantitative DWI and FLAIR MRI biomarkers as well as the visual DWI-FLAIR mismatch provide excellent prediction of eligibility for thrombolysis in acute stroke, when easily obtainable clinical-radiological parameters are included in the prediction

  20. Genesis and maintenance of "Mediterranean hurricanes"

    Directory of Open Access Journals (Sweden)

    K. Emanuel

    2005-01-01

    Full Text Available Cyclonic storms that closely resemble tropical cyclones in satellite images occasionally form over the Mediterranean Sea. Synoptic and mesoscale analyses of such storms show small, warm-core structure and surface winds sometimes exceeding 25ms-1 over small areas. These analyses, together with numerical simulations, reveal that in their mature stages, such storms intensify and are maintained by a feedback between surface enthalpy fluxes and wind, and as such are isomorphic with tropical cyclones. In this paper, I demonstrate that a cold, upper low over the Mediterranean can produce strong cyclogenesis in an axisymmetric model, thereby showing that baroclinic instability is not necessary during the mature stages of Mediterranean hurricanes.

  1. Forecasting Hurricane Tracks Using a Complex Adaptive System

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  2. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    ... evacuation decision-making. To accomplish this, the study provides information on the extent and severity of potential flooding from hurricanes, the associated vulnerable population, capacities of existing public shelters...

  3. A Complex Adaptive System Approach to Forecasting Hurricane Tracks

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  4. Hurricane Inner-Core Structure as Revealed by GPS Dropwindsondes

    National Research Council Canada - National Science Library

    Leejoice, Robert

    2000-01-01

    New high-resolution information of the vertical thermodynamic and kinematic structure of the hurricane inner-core is now available from aircraft released Global Positioning System (GPS) dropwindsondes...

  5. Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer

    National Research Council Canada - National Science Library

    Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil

    2005-01-01

    .... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...

  6. Extreme Hurricane-Generated Waves in Gulf of Mexico

    National Research Council Canada - National Science Library

    Alberto, Carlos; Fernandes, Santos

    2005-01-01

    .... Although WaveWatchIII (WW3) is used by many operational forecasting centers around the world, there is a lack of field studies to evaluate its accuracy in regional applications and under extreme conditions, such as Hurricanes...

  7. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  8. Nurses respond to Hurricane Hugo victims' disaster stress.

    Science.gov (United States)

    Weinrich, S; Hardin, S B; Johnson, M

    1990-06-01

    Hugo, a class IV hurricane, hit South Carolina September 22, 1989, and left behind a wake of terror and destruction. Sixty-one nursing students and five faculty were involved in disaster relief with families devastated by the hurricane. A review of the literature led these authors to propose a formulation of the concept of disaster stress, a synthesis of theories that explains response to disaster as a crisis response, a stress response, or as posttraumatic stress. With the concept of disaster stress serving as a theoretical foundation, the nurses observed, assessed, and intervened with one population of hurricane Hugo victims, noting their immediate psychosocial reactions and coping mechanisms. Victims' reactions to disaster stress included confusion, irritability, lethargy, withdrawal, and crying. The most frequently observed coping strategy of these hurricane Hugo victims was talking about their experiences; other coping tactics involved humor, religion, and altruism.

  9. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    .... The purpose of the study is to provide the Rhode Island Emergency Management Agency and Rhode Island coastal communities with realistic data quantifying the major factors involved in hurricane...

  10. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    Science.gov (United States)

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  11. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Robinson, A; Kiess, A; Quon, H; Wong, J; Lee, J [Johns Hopkins University, Baltimore, MD (United States); Plishker, W [IGI Technologies Inc., College Park, MD (United States); Shekhar, R [IGI Technologies Inc., College Park, MD (United States); Children’s National Medical Center, Washington, D.C. (United States)

    2015-06-15

    Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCT intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction

  12. A team approach to preparing for hurricanes and other disasters.

    Science.gov (United States)

    Kendig, Jim

    2009-01-01

    Applying lessons learned in Hurricane Floyd in 1999, a three-hospital system located on Florida's exposed Space Coast was able to better deal with the devastation caused by hurricanes in 2004 and make changes in its plans to better prepare for the named storms which hit its area in 2008. Each new disaster, the author points out, brings with it new challenges which have to be considered in disaster planning.

  13. Mangrove forest recovery in the Everglades following Hurricane Wilma

    Science.gov (United States)

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  14. Identification of Caribbean basin hurricanes from Spanish documentary sources

    OpenAIRE

    García Herrera, Ricardo; Gimeno, Luis; Ribera, Pedro; Hernández, Emiliano; González, Ester; Fernández, Guadalupe

    2007-01-01

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurric...

  15. Bag-breakup control of surface drag in hurricanes

    Science.gov (United States)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  16. Repulsive guidance cue semaphorin 3A in urine predicts the progression of acute kidney injury in adult patients from a mixed intensive care unit.

    Science.gov (United States)

    Doi, Kent; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Jayakumar, Calpurnia; Ramesh, Ganesan

    2014-01-01

    Predicting the development of acute kidney injury (AKI) in the critical care setting is challenging. Although several biomarkers showed somewhat satisfactory performance for detecting established AKI even in a heterogeneous disease-oriented population, identification of new biomarkers that predict the development of AKI accurately is urgently required. A single-center prospective observational cohort study was undertaken to evaluate for the first time the reliability of the newly identified biomarker semaphorin 3A for AKI diagnosis in heterogeneous intensive care unit populations. In addition to five urinary biomarkers of L-type fatty acid-binding protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL), IL-18, albumin and N-acetyl-β-d-glucosaminidase (NAG), urinary semaphorin 3A was measured at intensive care unit (ICU) admission. Three hundred thirty-nine critically ill adult patients were recruited for this study. Among them, 131 patients (39%) were diagnosed with AKI by the RIFLE criteria and 66 patients were diagnosed as AKI at post-ICU admission (later-onset AKI). Eighty-four AKI patients showed worsening severity during 1 week observation (AKI progression). Although L-FABP, NGAL and IL-18 showed significantly higher area under the curve (AUC)-receiver operating characteristic (ROC) values than semaphorin 3A in detecting established AKI, semaphorin 3A was able to detect later-onset AKI and AKI progression with similar AUC-ROC values compared with the other five biomarkers [AUC-ROC (95% CI) for established AKI 0.64 (0.56-0.71), later-onset AKI 0.71 (0.64-0.78), AKI progression 0.71 (0.64-0.77)]. Urinary semaphorin 3A was not increased in non-progressive established AKI, while the other biomarkers were elevated regardless of further progression. Finally, sepsis did not have any impact on semaphorin 3A while the other urinary biomarkers were increased with sepsis. Semaphorin 3A is a new biomarker of AKI which may have a distinct predictive use for

  17. A comparison of the nursing home evacuation experience between hurricanes katrina (2005) and gustav (2008).

    Science.gov (United States)

    Blanchard, Gary; Dosa, David

    2009-11-01

    One of the tragic legacies of Hurricane Katrina was the loss of life among Louisiana (LA) nursing home (NH) residents. Katrina revealed a staggering lack of emergency preparation and understanding of how to safely evacuate frail populations. Three years later, LA braced for Hurricane Gustav, a storm heralded to rival Katrina's power. Although its magnitude of destruction ultimately paled to Katrina, the warnings and predicted path preceding Gustav yielded a process of NH evacuations similar to Katrina. The goal of this article was to ascertain whether NH administrative directors (ADs) felt more prepared to evacuate before Gustav. In 2006, Dosa et al(5) (J Am Med Dir Assoc, 3/07), interviewed 20 NH ADs by qualitative telephone survey to evaluate their lessons learned from Katrina. Administrators at these 20 participating nursing homes were contacted and asked to participate in a follow-up survey to compare hurricane preparedness between 2005 and 2008. Specifically, ADs were asked if they evacuated before Gustav, their destination, and about logistical issues with evacuation (eg, transportation, injuries). ADs were asked to rate their confidence with state assistance, hurricane transportation, and evacuation preparedness on a 10-point scale (10=most confident) and compare their preparedness to Katrina. Sixteen of the 20 NHs that participated in 2006 agreed to be surveyed-11 of whom held the same position before Katrina. Unlike Katrina, when only 45% evacuated before the storm, all 16 NHs evacuated before Gustav (56% to another NH and 46% to a church, gym, college, or other facility). Overall, ADs rated their confidence in preparedness for Gustav as a mean of 8.3 (range 5 to 10) compared with a mean of 5.4 (range 3 to 8) for Katrina, a 54% improvement. Of the 11 ADs employed pre-Katrina, 73% reported improved collaboration with the state and 55% noted improved transportation. Nevertheless, 7 ADs noted significant logistical problems during evacuation (mostly

  18. Using High-Resolution Imagery to Characterize Disturbance from Hurricane Irma in South Florida Wetlands

    Science.gov (United States)

    Lagomasino, D.; Cook, B.; Fatoyinbo, T.; Morton, D. C.; Montesano, P.; Neigh, C. S. R.; Wooten, M.; Gaiser, E.; Troxler, T.

    2017-12-01

    following Hurricane Irma. The synergies between these unique field, airborne, and satellite observations help to capture both the legacy and immediate ecosystem responses following catastrophic storms and will ultimately be used to improve storm surge models and provide predictions for future vulnerability and degradation.

  19. Assessing Individual Weather Risk-Taking and Its Role in Modeling Likelihood of Hurricane Evacuation

    Science.gov (United States)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of perceived risk of different severe and extreme weather conditions using a new self-report measure, the Weather Risk-Taking Scale (WRTS). For 32 severe and extreme situations in which people could perform an unsafe behavior (e. g., remaining outside with lightning striking close by, driving over roadways covered with water, not evacuating ahead of an approaching hurricane, etc.), people rated: 1.their likelihood of performing the behavior, 2. The perceived risk of performing the behavior, 3. the expected benefits of performing the behavior, and 4. whether the behavior has actually been performed in the past. Initial development research with the measure using 246 undergraduate students examined its psychometric properties and found that it was internally consistent (Cronbach's a ranged from .87 to .93 for the four scales) and that the scales possessed good temporal (test-retest) reliability (r's ranged from .84 to .91). A second regression study involving 86 undergraduate students found that taking weather risks was associated with having taken similar risks in one's past and with the personality trait of sensation-seeking. Being more attentive to the weather and perceiving its risks when it became extreme was associated with lower likelihoods of taking weather risks (overall regression model, R2adj = 0.60). A third study involving 334 people examined the contributions of weather risk perceptions and risk-taking in modeling the self-reported likelihood of complying with a recommended evacuation ahead of a hurricane. Here, higher perceptions of hurricane risks and lower perceived benefits of risk-taking along with fear of severe weather and hurricane personal self-efficacy ratings were all statistically significant contributors to the likelihood of evacuating ahead of a hurricane. Psychological rootedness and attachment to one's home also tend to predict lack of evacuation. This research highlights the

  20. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  1. Prediction of near-term increases in suicidal ideation in recently depressed patients with bipolar II disorder using intensive longitudinal data.

    Science.gov (United States)

    Depp, Colin A; Thompson, Wesley K; Frank, Ellen; Swartz, Holly A

    2017-01-15

    There are substantial gaps in understanding near-term precursors of suicidal ideation in bipolar II disorder. We evaluated whether repeated patient-reported mood and energy ratings predicted subsequent near-term increases in suicide ideation. Secondary data were used from 86 depressed adults with bipolar II disorder enrolled in one of 3 clinical trials evaluating Interpersonal and Social Rhythm Therapy and/or pharmacotherapy as treatments for depression. Twenty weeks of daily mood and energy ratings and weekly Hamilton Depression Rating Scale (HDRS) were obtained. Penalized regression was used to model trajectories of daily mood and energy ratings in the 3 week window prior to HDRS Suicide Item ratings. Participants completed an average of 68.6 (sd=52) days of mood and energy ratings. Aggregated across the sample, 22% of the 1675 HDRS Suicide Item ratings were non-zero, indicating presence of at least some suicidal thoughts. A cross-validated model with longitudinal ratings of energy and depressed mood within the three weeks prior to HDRS ratings resulted in an AUC of 0.91 for HDRS Suicide item >2, accounting for twice the variation when compared to baseline HDRS ratings. Energy, both at low and high levels, was an earlier predictor than mood. Data derived from a heterogeneous treated sample may not generalize to naturalistic samples. Identified suicidal behavior was absent from the sample so it could not be predicted. Prediction models coupled with intensively gathered longitudinal data may shed light on the dynamic course of near-term risk factors for suicidal ideation in bipolar II disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A physical function test for use in the intensive care unit: validity, responsiveness, and predictive utility of the physical function ICU test (scored).

    Science.gov (United States)

    Denehy, Linda; de Morton, Natalie A; Skinner, Elizabeth H; Edbrooke, Lara; Haines, Kimberley; Warrillow, Stephen; Berney, Sue

    2013-12-01

    Several tests have recently been developed to measure changes in patient strength and functional outcomes in the intensive care unit (ICU). The original Physical Function ICU Test (PFIT) demonstrates reliability and sensitivity. The aims of this study were to further develop the original PFIT, to derive an interval score (the PFIT-s), and to test the clinimetric properties of the PFIT-s. A nested cohort study was conducted. One hundred forty-four and 116 participants performed the PFIT at ICU admission and discharge, respectively. Original test components were modified using principal component analysis. Rasch analysis examined the unidimensionality of the PFIT, and an interval score was derived. Correlations tested validity, and multiple regression analyses investigated predictive ability. Responsiveness was assessed using the effect size index (ESI), and the minimal clinically important difference (MCID) was calculated. The shoulder lift component was removed. Unidimensionality of combined admission and discharge PFIT-s scores was confirmed. The PFIT-s displayed moderate convergent validity with the Timed "Up & Go" Test (r=-.60), the Six-Minute Walk Test (r=.41), and the Medical Research Council (MRC) sum score (rho=.49). The ESI of the PFIT-s was 0.82, and the MCID was 1.5 points (interval scale range=0-10). A higher admission PFIT-s score was predictive of: an MRC score of ≥48, increased likelihood of discharge home, reduced likelihood of discharge to inpatient rehabilitation, and reduced acute care hospital length of stay. Scoring of sit-to-stand assistance required is subjective, and cadence cutpoints used may not be generalizable. The PFIT-s is a safe and inexpensive test of physical function with high clinical utility. It is valid, responsive to change, and predictive of key outcomes. It is recommended that the PFIT-s be adopted to test physical function in the ICU.

  3. Analyzing after-action reports from Hurricanes Andrew and Katrina: repeated, modified, and newly created recommendations.

    Science.gov (United States)

    Knox, Claire Connolly

    2013-01-01

    Thirteen years after Hurricane Andrew struck Homestead, FL, Hurricane Katrina devastated the Gulf Coast of Mississippi, Alabama, and southeastern Louisiana. Along with all its destruction, the term "catastrophic" was redefined. This article extends the literature on these hurricanes by providing a macrolevel analysis of The Governor's Disaster Planning and Response Review Committee Final Report from Hurricane Andrew and three federal after-action reports from Hurricane Katrina, as well as a cursory review of relevant literature. Results provide evidence that previous lessons have not been learned or institutionalized with many recommendations being repeated or modified. This article concludes with a discussion of these lessons, as well as new issues arising during Hurricane Katrina.

  4. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita.

    Science.gov (United States)

    Lohrenz, Steven E; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-07-10

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and

  5. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Directory of Open Access Journals (Sweden)

    Merritt Tuel

    2008-07-01

    Full Text Available The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490 and chlorophyll (chlor_a from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies identified on the basis of sea surface height anomaly (SSHA. Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels

  6. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy

    Science.gov (United States)

    Phillips, Patrick J.; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly L.; Romanok, Kristin M.; Foreman, William T.; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.

    2016-01-01

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.

  7. A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters

    Science.gov (United States)

    Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.

    2017-12-01

    A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.

  8. Pretreatment combination of platelet counts and neutrophil–lymphocyte ratio predicts survival of nasopharyngeal cancer patients receiving intensity-modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Lin YH

    2017-05-01

    Full Text Available Yu-Hsuan Lin,1 Kuo-Ping Chang,2 Yaoh-Shiang Lin,2,3 Ting-Shou Chang2–4 1Department of Otolaryngology, Head and Neck Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 2Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 3Department of Otolaryngology, Head and Neck Surgery, National Defense Medical Center, Taipei, 4Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China Background: Increased cancer-related inflammation has been associated with unfavorable clinical outcomes. The combination of platelet count and neutrophil–lymphocyte ratio (COP-NLR has related outcomes in several cancers, except for nasopharyngeal carcinoma (NPC. This study evaluated the prognostic value of COP-NLR in predicting outcome in NPC patients treated with intensity-modulated radiotherapy (IMRT.Materials and methods: We analyzed the data collected from 232 NPC patients. Pretreatment total platelet counts, neutrophil–lymphocyte ratio (NLR, and COP-NLR score were evaluated as potential predictors. Optimal cutoff values for NLR and platelets were determined using receiver operating curve. Patients with both elevated NLR (>3 and platelet counts (>300×109/L were assigned a COP-NLR score of 2; those with one elevated or no elevated value were assigned a COP-NLR a score of 1 or 0. Cox proportional hazards model was used to test the association of these factors and relevant 3-year survivals.Results: Patients (COP-NLR scores 1 and 2=85; score 0=147 were followed up for 55.19 months. Univariate analysis showed no association between pretreatment NLR >2.23 and platelet counts >290.5×109/L and worse outcomes. Multivariate analysis revealed that those with COP-NLR scores of 0 had better 3-year disease-specific survival (P=0.02, overall survival (P=0.024, locoregional relapse-free survival (P=0.004, and distant

  9. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  10. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    Science.gov (United States)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  11. Aftermath of Hurricane Ike along Texas Coast

    Science.gov (United States)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and

  12. [Hurricane impact on Thalassia testudinum (Hydrocharitaceae) beds in the Mexican Caribbean].

    Science.gov (United States)

    Arellano-Méndez, Leonardo U; Liceaga-Correa, María de los Angeles; Herrera-Silveira, Jorge A; Hernández-Núñez, Héctor

    2011-03-01

    Hurricanes have increased in strength and frequency as a result of global climate change. This research was conducted to study the spatio-temporal distribution and changes of Thalassia testudinum, the dominant species in Bahia de la Ascension (Quintana Roo, Mexico), when affected by heavy weather conditions. To complete this objective, a 2001 Landsat ETM+ image and the information from 525 sampling stations on morpho-functional and coverage of T. testudinum were used, and the seeds generated for the classification of eight benthic habitats. To quantify the changes caused by two hurricanes, we used two images, one of 1988 (Gilberto) and another of 1995 (Roxanne); other three data sets (2003, 2005 and 2007) were also used to describe the study area without major weather effects. Six categorial maps were obtained and subjected to analysis by 8 Landscape Ecology indexes, that describe the spatial characteristics, structure, function, change of the elements (matrix-patch-corridor), effects on ecosystems, connectivity, edges, shape and patch habitat fragmentation. Models indicate that T. testudinum may be classified as a continuum (matrix), since the fragments were not observed intermittently, but as a progression from minimum to maximum areas in reference to their coverage (ecological corridors). The fragments do not have a regular shape, indicating that the impacts are recent and may be due to direct effects (high-intensity hurricanes) or indirect (sediment). Fragments of type "bare soils" have a discontinuous distribution, and are considered to be the sites that have remained stable over a long timescale. While more dense coverage areas ("beds", "medium prairie" and "prairie") have low fragmentation and high connection of fragments. Features have an irregular perimeter and radial growth of formal; suggesting that the impact of meteors has no effect on the resilience of T. testudinum in this ecosystem, indicating good environmental quality to grow in this bay.

  13. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  14. Predictive value of the time-intensity curves on dynamic contrast-enhanced magnetic resonance imaging for lymphatic spreading in breast cancer

    International Nuclear Information System (INIS)

    Komatsu, Shuhei; Lee, Chol Joo; Ichikawa, Daisuke

    2005-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) has emerged as a promising diagnostic modality in various breast cancer treatments. However, little is known about the correlation between the pattern of time to signal intensity curves (TIC) on the CE-MRI and clinicopathologic features. This study was designed to investigate these correlations and evaluate the predictive value of TIC on CE-MRI in order to identify high-risk patients. Between 2001 and 2003, 101 lesions were evaluated to detect malignancy on CE-MRI in 101 women who were suspected of having breast tumors based on either clinical findings or conventional imaging studies. Moreover, the clinicopathologic findings were compared with the pattern of TIC for the 69 surgically treated malignant lesions. In detecting malignancy, the sensitivity, specificity, and accuracy were 78.7%, 88.5%, and 81.2%, respectively, in the 101 breast lesions. Especially for the 69 surgically treated malignant lesions, in comparison with breast cancer tumors with the benign pattern of TIC, the breast cancer tumors with a malignant pattern were found more frequently in lymphatic invasion (P<0.01) and lymph node metastasis (P<0.005), although no statistical correlation regarding the histological type, tumor size, vascular invasion, extensive intraductal component, hormone receptor status, or pathological stage was noted between the two groups. According to a logistic regression model, lymph node metastasis was found to be a significant independent variable. The pattern of TIC could be used to predict lymphatic spreading associated with lymph node metastasis prior to surgery as well as to detect malignancy. Therefore, a more detailed evaluation should be made to identify the presence of lymphatic spreading in patients with a malignant pattern of TIC. (author)

  15. Weekly Dose-Volume Parameters of Mucosa and Constrictor Muscles Predict the Use of Percutaneous Endoscopic Gastrostomy During Exclusive Intensity-Modulated Radiotherapy for Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Sanguineti, Giuseppe; Gunn, G. Brandon; Parker, Brent C.; Endres, Eugene J.; Zeng Jing; Fiorino, Claudio

    2011-01-01

    Purpose: To define predictors of percutaneous endoscopic gastrostomy (PEG) use during intensity-modulated radiotherapy (IMRT) for oropharyngeal cancer. Methods and Materials: Data for 59 consecutive patients treated with exclusive IMRT at a single institution were recovered. Of 59 patients, 25 were treated with hyperfractionation (78 Gy, 1.3 Gy per fraction, twice daily; 'HYPER'); and 34 of 59 were treated with a once-daily fractionation schedule (66 Gy, 2.2 Gy per fraction, or 70 Gy, 2 Gy per fraction; 'no-HYPER'). On the basis of symptoms during treatment, a PEG tube could have been placed as appropriate. A number of clinical/dosimetric factors, including the weekly dose-volume histogram of oral mucosa (OM DVHw) and weekly mean dose to constrictors and larynx, were considered. The OM DVHw of patients with and without PEG were compared to assess the most predictive dose-volume combinations. Results: Of 59 patients, 22 needed a PEG tube during treatment (for 15 of 22, ≥3 months). The best cutoff values for OM DVHw were V9.5 Gy/week 3 and V10 Gy/week 3 . At univariate analysis, fractionation, mean weekly dose to OM and superior and middle constrictors, and OM DVHw were strongly correlated with the risk of PEG use. In a stepwise multivariate logistic analysis, OM V9.5 Gy/week (≥64 vs. 3 ) was the most predictive parameter (odds ratio 30.8, 95% confidence interval 3.7-254.2, p = 0.0015), confirmed even in the no-HYPER subgroup (odds ratio 21, 95% CI 2.1 confidence interval 210.1, p = 0.01). Conclusions: The risk of PEG use is drastically reduced when OM V9.5-V10 Gy/week is 3 . These data warrant prospective validation.

  16. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  17. Price Increases in the Aftermath of Hurricane Katrina: Authority to Limit Price Gouging

    National Research Council Canada - National Science Library

    Welborn, Angie A; Flynn, Aaron M

    2005-01-01

    .... Specifically, questions have arisen regarding increased prices in the areas affected by Hurricane Katrina and the effect that the damage caused by the hurricane will have on prices, specifically...

  18. HURRICANE AND SEVERE STORM SENTINEL (HS3) FLIGHT REPORTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Flight Reports provide information about flights flown by the WB-57 and Global Hawk aircrafts during the Hurricane and...

  19. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...