WorldWideScience

Sample records for hurricane dean intermediate

  1. The state of the art in evaluating the performance of assistant and associate deans as seen by deans and assistant and associate deans.

    Science.gov (United States)

    Dunning, David G; Durham, Timothy M; Aksu, Mert N; Lange, Brian M

    2008-04-01

    This study explores the little-understood process of evaluating the performance of assistant and associate deans at dental colleges in the United States and Canada. Specifically, this research aimed to identify the methods, processes, and outcomes related to the performance appraisals of assistant/associate deans. Both deans and assistant/associate deans were surveyed. Forty-four of sixty-six deans (66.7 percent) and 227 of 315 assistant/associate deans (72.1 percent) completed surveys with both close-ended and open-ended questions. In addition, ten individuals from each group were interviewed. Results indicate that 75-89 percent of assistant/associate deans are formally evaluated, although as many as 27 percent may lack formal job descriptions. Some recommended best practices for performance appraisal are being used in a majority of colleges. Examples of these best practices are having at least yearly appraisals, holding face-to-face meetings, and setting specific, personal performance objectives/benchmarks for assistant/associate deans. Still, there is much room to improve appraisals by incorporating other recommended practices. Relatively high levels of overall satisfaction were reported by both assistant/associate deans and deans for the process and outcomes of appraisals. Assistant/associate deans rated the value of appraisals to overall development lower than did deans. Qualitative data revealed definite opinions about what constitutes effective and ineffective appraisals, including the use of goal-setting, timeliness, and necessary commitment. Several critical issues related to the results are discussed: differences in perspectives on performance reviews, the importance of informal feedback and job descriptions, the influence of an assistant/associate deans' lack of tenure, and the length of service of deans. Lastly, recommendations for enhancing performance evaluations are offered.

  2. The dean as spiritual leader.

    Science.gov (United States)

    Evans, C

    1998-06-01

    These are hard times for medical school deans--high turnover among deans, the fiscal distress of many medical schools, the gap between what deans expect the job will be and what is required of them, the stark differences between what the job of dean is today and what it was in the past, and the threats to the academic missions of education and research. Using stories, anecdotes, and parables, the authors illustrates how these very difficulties might be an opportunity to rethink the role of deans and to re-examine the attributes and skills required of successful deans today. The ultimate goals of medical education have not changed, but the drastic nature of the changes taking place all around, and within, medical education make it more critical than ever to keep in mind what is really important. Deans must be exquisitely attuned to what is really important and they must make sure that the academic medical community never loses sight of what that is. To do that, deans must be deeply rooted personally in the enduring values and commitments that inform medicine as a profession and a vocation and in the fundamental values of medical education and scholarship; they must personify and embody these values; and they must remind us of these values and inspire us to embrace them and be guided by them. This is the sense in which deans must be "spiritual" leaders--that is, through their personal example, they must rekindle and engage the spirit of those working on behalf of the academic mission. While the need for fiscal expertise, management skills, and diplomatic and interpersonal skills in deans is widely acknowledged, the need for sensitivity to the spiritual dimensions of the work of deans has not received the attention it deserves.

  3. Tom Brown appointed Dean of Students

    OpenAIRE

    Williams, Meghan

    2007-01-01

    James Thomas "Tom" Brown, former senior associate dean of the Dean of Students office, has been appointed as the Dean of Students. The Dean of Students office is responsible for the coordination of student advocacy, new student orientation and parent programs, and responding to student emergencies in collaboration with Judicial Affairs, Residence Life, Cook Counseling Center, Schiffert Health Center, and other departments and agencies.

  4. Women Deans: Leadership Becoming

    Science.gov (United States)

    Isaac, Carol A.; Behar-Horenstein, Linda S.; Koro-Ljungberg, Mirka

    2009-01-01

    The term "leadership" metaphorically embodies a gendered hierarchy of labour. In this study women deans' values were found to be incongruent with the masculine discourse creating inner conflicts and alternative discourses. Data collected from 10 women deans from both male-dominated and female-dominated colleges were used to deconstruct leadership…

  5. Tacita Dean - Print Projects

    DEFF Research Database (Denmark)

    Vibolt Knudsen, Vibeke

    Teksten beskæftiger sig primært med Tacita Deans grafiske værk. Den indkredser forholdet mellem billedets autonomi på den ene side og på den anden side Deans konstante kredsen om fortælling og erindring, fiktion og realitet - forhold, som udfoldes serielt nærmest som et filmisk story board. Hun f...

  6. What a medical school chair wants from the dean

    Directory of Open Access Journals (Sweden)

    Hromas R

    2018-05-01

    Full Text Available Robert Hromas,1 Robert Leverence,1 Lazarus K Mramba,2 J Larry Jameson,3 Caryn Lerman,3 Thomas L Schwenk,4 Ellen M Zimmermann,2 Michael L Good51The Office of the Dean, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; 2Department of Medicine, College of Medicine, University of Florida Health, Gainesville, FL, USA; 3Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 4Department of Family Medicine, School of Medicine, University of Nevada Reno, Reno, NV, USA; 5Department of Anesthesiology, College of Medicine, University of Florida Health, Gainesville, FL, USAAbstract: Economic pressure has led the evolution of the role of the medical school dean from a clinician educator to a health care system executive. In addition, other dynamic requirements also have likely led to changes in their leadership characteristics. The most important relationship a dean has is with the chairs, yet in the context of the dean’s changing role, little attention has been paid to this relationship. To frame this discussion, we asked medical school chairs what characteristics of a dean’s leadership were most beneficial. We distributed a 26-question survey to 885 clinical and basic science chairs at 41 medical schools. These chairs were confidentially surveyed on their views of six leadership areas: evaluation, barriers to productivity, communication, accountability, crisis management, and organizational values. Of the 491 chairs who responded (response rate =55%, 88% thought that their dean was effective at leading the organization, and 89% enjoyed working with their dean. Chairs indicated that the most important area of expertise of a dean is to define a strategic vision, and the most important value for a dean is integrity between words and deeds. Explaining the reasons behind decisions, providing good feedback, admitting errors, open discussion of complex or

  7. Board and Deans of Amsterdam University, Netherlands

    CERN Document Server

    Patrice Loïez

    2001-01-01

    L. to r.: Dr Thomas Taylor, CERN IT Deputy Division Leader; Prof. Dymph C. van den Boom, Dean Faculty of Social and Behavioural Sciences, Professor in Empirical Thoretical Pedagogy; Prof. Jos Engelen, NIKHEF/University of Amsterdam, Dutch Delegate to the Scientific Policy Committee and Chairman of the LHC Committee; Prof. Jacob van der Gaag, Dean Faculty of Economic Science and Econometry, Professor in Developmenteconomy;Mr Jan van der Boon, CERN Director of Admnistration; Prof. Jan Robert Bausch, Dean Faculty of Dental Medicine, Professor in general Dentistry; Dr Sijbolt J. Noorda, President of the Board of the University of Amsterdam.

  8. Influence of hurricane wind field in the structure of directional wave spectra

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-04-01

    Extensive field measurements of wind waves in deep waters in the Gulf of Mexico and Caribbean Sea, have been analyzed to describe the spatial structure of directional wave spectra during hurricane conditions. Following Esquivel-Trava et al. (2015) this analysis was made for minor hurricanes (categories 1 and 2) and major hurricanes (categories 3, 4 and 5). In both cases the directionality of the energy wave spectrum is similar in all quadrants. Some differences are observed however, and they are associated with the presence and the shape of swell energy in each quadrant. Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. The aim of the experiments is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. This work has been supported by CONACYT scholarship 164510 and projects RugDisMar (155793), CB-2011-01-168173 and the Department of Physical Oceanography of CICESE. References Esquivel-Trava, B., Ocampo-Torres, F. J., & Osuna, P. (2015). Spatial structure of directional wave spectra in hurricanes. Ocean Dynam., 65(1), 65-76. doi:10.1007/s10236-014-0791-9 Van der

  9. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  10. Work and Life Balance: Community College Occupational Deans

    Science.gov (United States)

    Bailey, Jean M.

    2008-01-01

    This article focuses on work and life balance from a community college occupational dean perspective. It addresses definitions and concepts of work life and the nature of the role of occupational dean. The themes from this study include the use of time both at work and away from work, work/life crossover, perception of work/life, and work/life…

  11. Qualities of the medical school dean: insights from the literature.

    Science.gov (United States)

    Rich, Eugene C; Magrane, Diane; Kirch, Darrell G

    2008-05-01

    To review the literature and resources for professional development of medical school executives in order to identify the characteristics proposed as relevant to medical school deanship. In 2006, the authors conducted a PubMed search using the key words leadership, dean, medical school, and academic medical center to identify relevant publications since 1995. Articles were excluded that that did not address the roles and responsibilities of the North American medical school dean. Articles gleaned through review of materials from relevant executive development programs and interviews with leaders involved in these programs were added. Both management skills (e.g., institutional assessment, strategic planning, financial stewardship, recruitment and retention of talent) and leadership skills (e.g., visioning, maximizing values, building constituency) are commonly cited as important deans of contemporary medical schools. Key content knowledge (e.g., academic medical center governance, expectations of clinicians and scientists, process of medical education) and certain attitudes (e.g., commitment to the success of others, appreciation of institutional culture) are also noted to be valuable qualities for medical school deans. The literature review identifies a number of areas of knowledge and skill consistently affirmed by scholars as important to success for medical school deans. These characteristics can provide a basic foundation for needs assessment and professional development activities of academic medical executives preparing for and entering medical school deanships, and they can also provide insight to those charged with selecting their next dean.

  12. The Way Deans Run Their Faculties in Indonesian Universities

    Science.gov (United States)

    Ngo, Jenny; de Boer, Harry; Enders, Jurgen

    2014-01-01

    Using the theory of reasoned action in combination with the Competing Values Framework of organizational leadership, our study examines how deans at Indonesian universities lead and manage their faculties. Based on a large-scale survey with responses from more than 200 Indonesian deans, the study empirically identifies a number of deanship styles:…

  13. A 20-year perspective on preparation strategies and career planning of pharmacy deans.

    Science.gov (United States)

    Draugalis, JoLaine Reierson; Plaza, Cecilia M

    2010-11-10

    To provide a longitudinal description of the variety of career paths and preparation strategies of pharmacy deans. A descriptive cross-sectional study design using survey research methodology was used. Chief executive officer (CEO) deans at every full and associate member institution of the American Association of Colleges of Pharmacy (AACP) in the United States as of May 1, 2009, were potential subjects. The database housed 90.3% (N = 93) of all current (excluding interim/acting) CEO deans. Of the 4 cohorts across time (1991, 1996, 2002, and 2009 snapshots), the 2009 cohort had the highest percentage of deans following either the hierarchical or nontraditional career paths. Deans named since 2002 have spent less time collectively in the professoriate than cohorts before them. One reason for this is the increase in the number of deans that followed nontraditional career paths and who spent little or no time in the professoriate prior to their first deanship. This also could be due to the increased demand for individuals to serve as dean due to retirements and the creation of new institutions.

  14. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon.

    Science.gov (United States)

    Aguirre-Macedo, María Leopoldina; Vidal-Martínez, Victor M; Lafferty, Kevin D

    2011-11-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery. Copyright © 2011 Australian Society for Parasitology Inc. All rights reserved.

  15. Women deans' perceptions of the gender gap in American medical deanships.

    Science.gov (United States)

    Humberstone, Elizabeth

    2017-01-01

    : Women account for 16% of deans of American medical schools. To investigate this gender gap, female deans were interviewed about the barriers facing women advancing toward deanships. The author conducted semi-structured interviews with eight women deans. Interviews were analyzed using provisional coding and sub coding techniques. Four main themes emerged during the interviews: (1) the role of relationships in personal and career development, (2) leadership challenges, (3) barriers between women and leadership advancement, and (4) recommendations for improvement. Recommendations included allocating resources, mentorship, career flexibility, faculty development, updating the criteria for deanships, and restructuring search committees. The barriers identified by the deans are similar to those found in previous studies on female faculty and department chairs, suggesting limited improvement in gender equity progress.

  16. Numerical investigation of Dean vortices in a curved pipe

    Science.gov (United States)

    Bernad, S. I.; Totorean, A.; Bosioc, A.; Stanciu, R.; Bernad, E. S.

    2013-10-01

    This study is devoted to the three-dimensional numerical simulation of developing secondary flows of Newtonian fluid through a curved circular duct. The numerical simulations produced for different Dean numbers show clearly the presence of two steady Dean vortices. Therefore, results confirm that helical flow constitutes an important flow signature in vessels, and its strength as a fluid dynamic index.

  17. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    Science.gov (United States)

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in

  18. Proceedings, Dean's Day 1999

    Energy Technology Data Exchange (ETDEWEB)

    Zanner, M.A.

    1999-03-01

    On January 14--15, 1999, Sandia National Laboratories sponsored Deans Day, a conference for the Deans of Engineering and other executive-level representatives from 29 invited universities. Through breakout sessions and a wrap-up discussion, university and Sandia participants identified activities to further develop their strategic relationships. The four primary activities are: (A) concentrate joint efforts on current and future research strengths and needs; (B) attract the best students (at all grade levels) to science and engineering; (C) promote awareness of the need for and work together to influence a national science and technology R and D policy; and (D) enable the universities and Sandia to be true allies, jointly pursuing research opportunities and funding from government agencies and industry.

  19. Influence of hurricane wind field in the structure of directional wave spectra.

    Science.gov (United States)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  20. Hurricane disturbance benefits nesting American Oystercatchers (Haematopus palliatus)

    Science.gov (United States)

    Simons, Theodore R.; Schulte, Shiloh A.

    2016-01-01

    Coastal ecosystems are under increasing pressure from human activity, introduced species, sea level rise, and storm activity. Hurricanes are a powerful destructive force, but can also renew coastal habitats. In 2003, Hurricane Isabel altered the barrier islands of North Carolina, flattening dunes and creating sand flats. American Oystercatchers (Haematopus palliatus) are large shorebirds that inhabit the coastal zone throughout the year. Alternative survival models were evaluated for 699 American Oystercatcher nests on North Core Banks and South Core Banks, North Carolina, USA, from 1999–2007. Nest survival on North Core Banks increased from 0.170 (SE = 0.002) to 0.772 (SE = 0.090) after the hurricane, with a carry-over effect lasting 2 years. A simple year effects model described nest survival on South Core Banks. Habitat had no effect on survival except when the overall rate of nest survival was at intermediate levels (0.300–0.600), when nests on open flats survived at a higher rate (0.600; SE = 0.112) than nests in dune habitat (0.243; SE = 0.094). Predator activity declined on North Core Banks after the hurricane and corresponded with an increase in nest survival. Periodic years with elevated nest survival may offset low annual productivity and contribute to the stability of American Oystercatcher populations.

  1. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  2. The Role of Academic Deans as Entrepreneurial Leaders in Higher Education Institutions

    Science.gov (United States)

    Cleverley-Thompson, Shannon

    2016-01-01

    To help address enrollment and financial challenges institutions of higher learning may benefit by having a better understanding of entrepreneurial leadership orientations, or skills, of academic deans. This study revealed several significant correlations between the self-reported entrepreneurial orientations of academic deans in upstate New York,…

  3. Accelerating medical education: a survey of deans and program directors

    Directory of Open Access Journals (Sweden)

    Joan Cangiarella

    2016-06-01

    Full Text Available Background: A handful of medical schools in the U.S. are awarding medical degrees after three years. While the number of three-year pathway programs is slowly increasing there is little data on the opinions of medical education leaders on the need for shortening training. Purpose: To survey deans and program directors (PDs to understand the current status of 3-year medical degree programs and to elicit perceptions of the need for shortening medical school and the benefits and liabilities of 3-year pathway programs (3YPP. Methods: Online surveys were emailed to the academic deans of all U.S. medical schools and to a convenience sample of residency and fellowship PDs. Frequency distributions are reported for key survey items and content analysis was used to describe open-ended responses. Results: Of the respondents, 7% have a 3YPP, 4% were developing one, and 35% were considering development. In 2014, 47% of educational deans and 32% of PDs agreed that there may be a need to shorten medical school. From a list of benefits, both deans and PDs agreed that the greatest benefit to a 3YPP was debt reduction (68%. PDs and deans felt reduced readiness for independence, reduced exposure to complementary curricula regarding safety and quality improvement, premature commitment to a specialty, and burnout were all potential liabilities. From a list of concerns, PDs were concerned about depth of clinical exposure, direct patient care experience, ability to assume increased responsibility, level of maturity, and certainty regarding career choice. Conclusions: Over one-third of medical schools are considering the development of a 3YPP. While there may be benefits for a select group of students, concerns regarding maturity, depth of clinical exposure, and competency must be addressed for these programs to be well received.

  4. The West Dean Archaeological Project: research and teaching in the Sussex Downs

    Directory of Open Access Journals (Sweden)

    Bill Sillar

    2007-09-01

    Full Text Available Since 2005/2006 West Dean College and the associated West Dean Estate in West Sussex have provided the home for practical training of Institute of Archaeology students, for both the initiation ritual of the Experimental Archaeology Course (“Prim Tech” and for the field training courses undertaken at the end of the first year. It is also the location of a long-term research project, aimed at understanding human occupation and land use in this part of the South Downs from prehistory to the present day. In this article the authors describe the first two years of activity of the West Dean Archaeological Project.

  5. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  6. The Interconnections Between Job Satisfaction and Work-Related Stress in Academic Deans.

    Science.gov (United States)

    Wolverton, Mimi; Wolverton, Marvin L.; Gmelch, Walter H.

    This study examined the interrelationships between stress, job satisfaction, and other exogenous influences among academic deans at American colleges and universities. A total of 579 deans from a sample of 360 colleges and universities responded to a mailed survey, which included the Role Conflict and Role Ambiguity Questionnaire (Rizzo et al.,…

  7. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  8. Lodestar of the Faculty: The Increasingly Important Role of Dean of Faculty

    Science.gov (United States)

    Zilian, Fred

    2012-01-01

    In the tight budget atmosphere of recent years, schools may have chosen to do without a dean of faculty or, at best, to double- hat another middle manager with this responsibility. This is a mistake. That all private schools do not have a dedicated dean of faculty suggests a lack of emphasis on the very component of the school--the faculty--that…

  9. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  10. Leadership Orientations and Conflict Management Styles of Academic Deans in Masters Degree Institutions

    Science.gov (United States)

    Kimencu, Linda

    2011-01-01

    Previous research suggests that academic deans follow the human relations and structural perspectives in conflict management (Feltner & Goodsell, 1972). However, the position of an academic dean has been described to have undertones that are more political and social than hierarchical and technical. Hence, the current study evaluated the role of…

  11. A repertoire of leadership attributes: an international study of deans of nursing.

    Science.gov (United States)

    Wilkes, Lesley; Cross, Wendy; Jackson, Debra; Daly, John

    2015-04-01

    To determine which characteristics of academic leadership are perceived to be necessary for nursing deans to be successful. Effective leadership is essential for the continued growth of the discipline. A qualitative study using semi-structured interviews with 30 deans (academics in universities who headed a nursing faculty and degree programmes) was conducted in three countries--Canada, England and Australia. The conversations were analysed for leadership attributes. Sixty personal and positional attributes were nominated by the participants. Of these, the most frequent attribute was 'having vision'. Personal attributes included: passion, patience, courage, facilitating, sharing and being supportive. Positional attributes included: communication, faculty development, role modelling, good management and promoting nursing. Both positional and personal aspects of academic leadership are important to assist in developing a succession plan and education for new deans. It is important that talented people are recognised as potential leaders of the future. These future leaders should be given every chance to grow and develop through exposure to opportunities to develop skills and the attributes necessary for effective deanship. Strategic mentoring could prove to be useful in developing and supporting the growth of future deans of nursing. © 2013 John Wiley & Sons Ltd.

  12. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  13. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  14. IMPLEMENTATION OF FUNCTIONS OF ELECTRONIC DEAN'S OFFICE USING PLATFORM MOODLE

    Directory of Open Access Journals (Sweden)

    Oleksandr A. Shcherbyna

    2016-01-01

    Full Text Available The introduction of information and communication technologies (ICT allows to more effectively and efficiently solve planning and organization tasks, as well as implementation and monitoring of educational process, which are usually handled by the dean's office. The article shows how the functions of electronic dean's office can be implemented in Moodle learning management system using public plugins. In particular, the methods for collection, processing and generalization of operational information about students’ performance are considered. A method of students’ enrollment is offered. The method uses the meta courses and cohorts mechanisms, which allow significantly reduce the amount of work for site administration.

  15. Does agreement on institutional values and leadership issues between deans and surgery chairs predict their institutions' performance?

    Science.gov (United States)

    Souba, Wiley W; Mauger, David; Day, David V

    2007-03-01

    To gain a better understanding of the values that medical school deans and surgery chairs consider most essential for effective leadership, to assess their perceptions of the values and leadership climate in their institutions, and to test the premise that agreement on leadership values and climate predict greater organizational effectiveness and performance. From June 2005 through March 2006, questionnaires designed to assess leadership core values and organizational leadership climate were mailed to medical school deans and surgery chairs of the 125 U.S. academic health centers. Institutional performance measures used were the National Institutes of Health (NIH) standing and U.S. News and World Report ranking of each institution. Sixty-eight surgery chairs (54%) and 60 deans (48%) returned surveys. Q-sort results on 38 positive leadership values indicated that integrity, trust, and vision were considered the most important core values for effective leadership by both chairs and deans. Both groups ranked business acumen, authority, and institutional reputation as least important. Deans consistently ranked the leadership climate as being healthier (more positive) than did their surgery chairs on multiple scale items: leadership is widely shared (P = .005), information is widely shared (P = .002), missions are aligned (P = .003), open communication is the norm (P = .009), good performance is rewarded (P = .01), teamwork is widely practiced (P = .01), and leaders are held accountable (P = 002). Tighter alignment between chairs and deans on core values and on the leadership climate scale correlated with higher school and department NIH standing and higher U.S. News and World Report medical school and hospital ranking (P leadership values, deans believe that a healthier leadership climate exists in their institutions than their surgery chairs do. The study findings suggest that tighter leadership alignment between deans and surgery chairs may predict a higher level of

  16. How Six Women Deans of Agriculture Have Attained Their Leadership Role: A Qualitative Study

    Science.gov (United States)

    Kleihauer, Sarah; Stephens, Carrie; Hart, William E.; Stripling, Christopher T.

    2013-01-01

    There is a disproportionate ratio of men to women in leadership roles in higher education and agriculture. The purpose of this qualitative study was to explore the lives of women deans in agriculture in an attempt to conceptualize the leadership styles they have developed as a result of their positions as deans in a predominantly male field. Six…

  17. Medical school deans' perceptions of organizational climate: useful indicators for advancement of women faculty and evaluation of a leadership program's impact.

    Science.gov (United States)

    Dannels, Sharon; McLaughlin, Jean; Gleason, Katharine A; McDade, Sharon A; Richman, Rosalyn; Morahan, Page S

    2009-01-01

    The authors surveyed U.S. and Canadian medical school deans regarding organizational climate for faculty, policies affecting faculty, processes deans use for developing faculty leadership, and the impact of the Executive Leadership in Academic Medicine (ELAM) Program for Women. The usable response rate was 58% (n = 83/142). Deans perceived gender equity in organizational climate as neutral, improving, or attained on most items and deficient on four. Only three family-friendly policies/benefits were available at more than 68% of medical schools; several policies specifically designed to increase gender equity were available at fewer than 14%. Women deans reported significantly more frequent use than men (P = .032) of practices used to develop faculty leadership. Deans' impressions regarding the impact of ELAM alumnae on their schools was positive (M = 5.62 out of 7), with those having more fellows reporting greater benefit (P = .01). The deans felt the ELAM program had a very positive influence on its alumnae (M = 6.27) and increased their eligibility for promotion (M = 5.7). This study provides a unique window into the perceptions of medical school deans, important policy leaders at their institutions. Their opinion adds to previous studies of organizational climate focused on faculty perceptions. Deans perceive the organizational climate for women to be improving, but they believe that certain interventions are still needed. Women deans seem more proactive in their use of practices to develop leadership. Finally, deans provide an important third-party judgment for program evaluation of the ELAM leadership intervention, reporting a positive impact on its alumnae and their schools.

  18. Emotional Intelligence and Job Satisfaction: The EQ Relationship for Deans of U.S. Business Schools

    Science.gov (United States)

    Coco, Charles M.

    2009-01-01

    The main purpose of this study was to determine if a positive relationship existed between Emotional Intelligence and Job Satisfaction for deans of business schools. A secondary purpose was to determine which Emotional Quotient (EQ) competencies were most important for satisfied deans and how these competencies assisted processes related to…

  19. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  20. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    Science.gov (United States)

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  1. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  2. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    Science.gov (United States)

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  3. Dean C. Bennett d/b/a Affordable Tuckpointing Information Sheet

    Science.gov (United States)

    Dean C. Bennett d/b/a Affordable Tuckpointing (the Company) is located in Arnold, Missouri. The Complaint involves renovation activities conducted at property constructed prior to 1978, located in St. Louis, Missouri.

  4. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  5. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  6. Motivation and Job Satisfaction of Deans of Schools of Nursing.

    Science.gov (United States)

    Lamborn, Marilyn L.

    1991-01-01

    Responses from 335 of 595 deans of nursing schools found monetary remunerations and benefits related to job satisfaction and motivation. Long tenure in prestigious universities was also significant. Motivation and job satisfaction were significantly interrelated. (SK)

  7. The Creative Path: An Interview with Dean Keith Simonton

    Science.gov (United States)

    Henshon, Suzanna E.

    2011-01-01

    Dean Keith Simonton received his PhD from Harvard University and is currently Distinguished Professor of Psychology at the University of California, Davis. His research program concentrates on the cognitive, personality, developmental, and sociocultural factors behind exceptional creativity, leadership, genius, and talent. In this interview,…

  8. Hurricane Katrina: A Teachable Moment

    Science.gov (United States)

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  9. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  10. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  11. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  12. The simultaneous onset and interaction of Taylor and Dean instabilities in a Couette geometry

    International Nuclear Information System (INIS)

    Hills, C P; Bassom, A P

    2005-01-01

    The fluid flow between a pair of coaxial circular cylinders generated by the uniform rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor and Dean type instabilities. The flow can be characterised by two parameters: a measure of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor number. Neutral curves associated with each instability can be constructed but it has been suggested that these curves do not cross but rather posses 'kinks'. Our work is based in the small gap, large wavenumber limit and considers the simultaneous onset of Taylor and Dean instabilities. The two linear instabilities interact at exponentially small orders and a consistent, matched asymptotic solution is found across the whole annular domain, identifying five regions of interest: two boundary adjustment regions and three internal critical points. We construct necessary conditions for the concurrent onset of the linear Taylor and Dean instabilities and show that neutral curve crossing is possible

  13. Deans' Perceptions of AACSB-Endorsed Post-Doctoral Bridge Programs

    Science.gov (United States)

    Mauldin, Shawn; McManis, Bruce; Breaux, Kevin

    2011-01-01

    The Association to Advance Collegiate Schools of Business (AACSB) International has endorsed 5 Post-Doctoral Bridge (PDB) to Business Programs. The objective of these programs is to prepare PhDs from other academic programs for teaching and research careers in business. The authors solicited feedback from deans of AACSB-accredited business schools…

  14. Lessons learned from the deadly sisters: drug and alcohol treatment disruption, and consequences from Hurricanes Katrina and Rita.

    Science.gov (United States)

    Maxwell, Jane Carlisle; Podus, Deborah; Walsh, David

    2009-01-01

    This paper reports on the effects of Hurricanes Katrina and Rita on drug and alcohol treatment in Texas in 2005-2006. Findings are based on a secondary analysis of administrative data on 567 hurricane-related admissions and on interview data from a sample of 20 staff in 11 treatment programs. Katrina evacuees differed from Rita clients in terms of demographics and primary problem substances and treatment needs, while the experiences of program staff and needed changes to improve disaster readiness were more similar. Additional systematic research is needed to document the intermediate and long-term impacts of the storms in these and other affected areas.

  15. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  16. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  17. Personal health promotion at US medical schools: a quantitative study and qualitative description of deans' and students' perceptions

    Directory of Open Access Journals (Sweden)

    Elon Lisa K

    2004-12-01

    Full Text Available Abstract Background Prior literature has shown that physicians with healthy personal habits are more likely to encourage patients to adopt similar habits. However, despite the possibility that promoting medical student health might therefore efficiently improve patient outcomes, no one has studied whether such promotion happens in medical school. We therefore wished to describe both typical and outstanding personal health promotion environments experienced by students in U.S. medical schools. Methods We collected information through four different modalities: a literature review, written surveys of medical school deans and students, student and dean focus groups, and site visits at and interviews with medical schools with reportedly outstanding student health promotion programs. Results We found strong correlations between deans' and students' perceptions of their schools' health promotion environments, including consistent support of the idea of schools' encouraging healthy student behaviors, with less consistent follow-through by schools on this concept. Though students seemed to have thought little about the relationships between their own personal and clinical health promotion practices, deans felt strongly that faculty members should model healthy behaviors. Conclusions Deans' support of the relationship between physicians' personal and clinical health practices, and concern about their institutions' acting on this relationship augurs well for the role of student health promotion in the future of medical education. Deans seem to understand their students' health environment, and believe it could and should be improved; if this is acted on, it could create important positive changes in medical education and in disease prevention.

  18. [Nicanor Rojas, dean of the School of Medicine during Balmaceda's dictatorship].

    Science.gov (United States)

    Costa-Casaretto, C

    1995-07-01

    The Chilean President José Manuel Balmaceda (1886-1891) had a constitutional conflict with the parliament. This conflict lead to a revolution that ended with the President's suicide, when he was refuged at the Argentinian Embassy in September 1891. President Balmaceda conducted an authoritarian government during several months. A decree from February, 1897, disposed the reorganization of the Medical School, dismissed and imprisoned the Dean, Dr Barros-Borgoño and nominated new Professors. Dr Nicanor Rojas, Professor of Gynecology was assigned as Dean and Dr Carlos Sazié as secretary. During the During the war against Perú and Bolivia, Dr. Rojas worked gratuitously and became prominent, being named Chief Surgeon of the Chilean Army. After the triumph of the revolution against President Balmaceda, Dr Rojas was discharged, and died in 1892.

  19. Deans in German Universities: Goal Acceptance and Task Characteristics

    Science.gov (United States)

    Scholkmann, Antonia

    2011-01-01

    This paper presents an empirical study which explored how deans at German universities accept their new role as manager, and which factors influence the acceptance of this role. Within a framework referring to Locke and Latham's goal setting theory, the acceptance of operative goals implemented in the faculties served as an indicator of how well…

  20. Self-reported leadership styles of deans of baccalaureate and higher degree nursing programs in the United States.

    Science.gov (United States)

    Broome, Marion E

    2013-01-01

    Over the past decade there has been a lack of attention in the discipline paid to developing strong academic leaders. It is widely acknowledged that the role of the dean has shifted dramatically over the past two decades, with an increasing emphasis on interaction with and accountability to external constituencies at the university, community, and national levels. The overall purpose of this study was to investigate the self-reported leadership styles, behaviors, and experiences of deans of schools of nursing in the United States. The Multifactor Leadership Questionnaire (MLQ) was sent to 655 deans who were members of the American Association of Colleges of Nursing; 344 returned completed surveys for a return rate of 52.5%. Scores on the transformational scale (n = 321; 20 items) ranged from 2.75 to 4.0, with a mean of 3.79; transactional scores ranged from 1.3 to 4.0, with a mean of 3.3 and mode of 3.5. The passive leadership component was lowest, with a range of 0 to 3.75, mean of 1.1, and mode of 1.0. The highest scores for each dean were then examined and compared across the three components. Seventy-seven percent of the deans' highest scores fell on the transformational, 21% on the transactional, and 2% on the passive-avoidant scale. There were no significant differences in the most commonly reported leadership behaviors by gender, ethnicity, or terminal degree. Deans of nursing, compared with over 3,000 other leaders who have completed the MLQ, ranked in the 80th percentile for self-reported transformative behaviors and outcomes effectiveness. The findings from this sample, who were predominantly female, are congruent with previous research on women leaders. Recommendations for future research leadership development programs are presented. © 2013.

  1. Recovery from PTSD following Hurricane Katrina.

    Science.gov (United States)

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  2. 48 CFR 1852.236-73 - Hurricane plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Hurricane plan. 1852.236-73... Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all materials...

  3. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons

    Directory of Open Access Journals (Sweden)

    Kerry Milch

    2018-01-01

    Full Text Available Although the field has seen great advances in hurricane prediction and response, the economic toll from hurricanes on U.S. communities continues to rise. We present data from Hurricanes Earl (2010, Irene (2011, Isaac (2012, and Sandy (2012 to show that individual and household decisions contribute to this vulnerability. From phone surveys of residents in communities threatened by impending hurricanes, we identify five decision biases or obstacles that interfere with residents’ ability to protect themselves and minimize property damage: (1 temporal and spatial myopia, (2 poor mental models of storm risk, (3 gaps between objective and subjective probability estimates, (4 prior storm experience, and (5 social factors. We then discuss ways to encourage better decision making and reduce the economic and emotional impacts of hurricanes, using tools such as decision defaults (requiring residents to opt out of precautions rather than opt in and tailoring internet-based forecast information so that it is local, specific, and emphasizes impacts rather than probability.

  4. Intellectual Freedom in Academic Libraries: Surveying Deans about Its Significance

    Science.gov (United States)

    Oltmann, Shannon M.

    2017-01-01

    In this study, deans and directors of academic libraries were surveyed about intellectual freedom. The survey found that most respondents said they rarely think about intellectual freedom yet said it was "somewhat" or "very" important in their libraries. Most did not have formal intellectual freedom policies; they often relied…

  5. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  6. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    Science.gov (United States)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  7. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  8. 7 CFR 701.50 - 2005 hurricanes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  9. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    Science.gov (United States)

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  10. Hurricane Katrina impacts on Mississippi forests

    Science.gov (United States)

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  11. Genesis of tornadoes associated with hurricanes

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  12. Safety and design impact of hurricane Andrew

    International Nuclear Information System (INIS)

    Guey, Ching N.

    2004-01-01

    Turkey Point completed the IPE in June of 1991. Hurricane Andrew landed at Turkey Point on August 24, 1992. Although the safety related systems, components and structures were not damaged by the Hurricane Andrew, certain nonsafety related components and the neighboring fossil plant sustained noticeable damage. Among the major components that were nonsafety related but would affect the PRA of the plant included the service water pumps and the high tower. This paper discusses the safety and design impact of Hurricane Andrew on Turkey Point Nuclear Power Plant. The risk of hurricanes on the interim and evolving plant configurations are briefly described. The risk of the plant from internal events as a result of damage incurred during Hurricane Andrew are discussed. The design change as the result of Hurricane Andrew and its impact on the PRA are presented. (author)

  13. Quantifying the severity of hurricanes on extinction probabilities of a primate population: Insights into "Island" extirpations.

    Science.gov (United States)

    Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto

    2015-07-01

    Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping

  14. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  15. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Science.gov (United States)

    2010-09-09

    .... This series was developed to describe and make available to the public such information as methods that... maximum hurricane windspeeds for hurricanes that originate in the Atlantic and make landfall along the... connected and provides an aerodynamic sail area on which the wind can act. An automobile hurricane missile...

  16. Identification of Caribbean basin hurricanes from Spanish documentary sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herrera, R. [Depto. Fisica de la Tierra II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gimeno, L. [Universidad de Vigo, Ourense (Spain); Ribera, P.; Gonzalez, E.; Fernandez, G. [Universidad Pablo de Olavide, Sevilla (Spain); Hernandez, E. [Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-15

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurricane activity. The documents provide detailed descriptions of a hurricane's impacts and allow us to identify previously unreported hurricanes, obtain more precise dates for hurricanes previously identified, better define the area affected by a given hurricane and, finally, better assess a hurricane's intensity.

  17. Predicting hurricane wind damage by claim payout based on Hurricane Ike in Texas

    Directory of Open Access Journals (Sweden)

    Ji-Myong Kim

    2016-09-01

    Full Text Available The increasing occurrence of natural disasters and their related damage have led to a growing demand for models that predict financial loss. Although considerable research on the financial losses related to natural disasters has found significant predictors, there has been a lack of comprehensive study that addresses the relationship among vulnerabilities, natural disasters, and the economic losses of individual buildings. This study identifies the vulnerability indicators for hurricanes to establish a metric to predict the related financial loss. We classify hurricane-prone areas by highlighting the spatial distribution of losses and vulnerabilities. This study used a Geographical Information System (GIS to combine and produce spatial data and a multiple regression method to establish a wind damage prediction model. As the dependent variable, we used the value of the Texas Windstorm Insurance Association (TWIA claim payout divided by the appraised values of the buildings to predict real economic loss. As independent variables, we selected a hurricane indicator and built environment vulnerability indicators. The model we developed can be used by government agencies and insurance companies to predict hurricane wind damage.

  18. The College Dean, or, It's Difficult to Save Your Sanity When You're the Peanut Butter in a Peanut Butter Sandwich

    Science.gov (United States)

    Meyers, Richard S.

    1975-01-01

    Changing conditions dictate an active rather than passive role for college deans. Instructional technology can be an effective tool in the dean's active search for information to enable him to effect change in curriculum and instruction. (NHM)

  19. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.

  20. Leading and Managing in Complexity: The Case of South African Deans

    Science.gov (United States)

    Seale, Oliver; Cross, Michael

    2016-01-01

    In recent years, deanship in universities has become more complex and challenging. Deans in South African universities take up their positions without appropriate training and prior executive experience, and with no clear understanding of the ambiguity and complexity of their roles. This paper calls for appropriate leadership development…

  1. Comprehensive theory of the Deans' switch as a variable flow splitter: fluid mechanics, mass balance, and system behavior.

    Science.gov (United States)

    Boeker, Peter; Leppert, Jan; Mysliwietz, Bodo; Lammers, Peter Schulze

    2013-10-01

    The Deans' switch is an effluent switching device based on controlling flows of carrier gas instead of mechanical valves in the analytical flow path. This technique offers high inertness and a wear-free operation. Recently new monolithic microfluidic devices have become available. In these devices the whole flow system is integrated into a small metal device with low thermal mass and leak-tight connections. In contrast to a mechanical valve-based system, a flow-controlled system is more difficult to calculate. Usually the Deans' switch is used to switch one inlet to one of two outlets, by means of two auxiliary flows. However, the Deans' switch can also be used to deliver the GC effluent with a specific split ratio to both outlets. The calculation of the split ratio of the inlet flow to the two outlets is challenging because of the asymmetries of the flow resistances. This is especially the case, if one of the outlets is a vacuum device, such as a mass spectrometer, and the other an atmospheric detector, e.g. a flame ionization detector (FID) or an olfactory (sniffing) port. The capillary flows in gas chromatography are calculated with the Hagen-Poiseuille equation of the laminar, isothermal and compressible flow in circular tubes. The flow resistances in the new microfluidic devices have to be calculated with the corresponding equation for rectangular cross-section microchannels. The Hagen-Poiseuille equation underestimates the flow to a vacuum outlet. A corrected equation originating from the theory of rarefied flows is presented. The calculation of pressures and flows of a Deans' switch based chromatographic system is done by the solution of mass balances. A specific challenge is the consideration of the antidiffusion resistor between the two auxiliary gas lines of the Deans' switch. A full solution for the calculation of the Deans' switch including this restrictor is presented. Results from validation measurements are in good accordance with the developed

  2. A diary of hurricane Hugo.

    Science.gov (United States)

    Counts, C S

    1989-12-01

    Charleston, South Carolina was the recent victim of Hurricane Hugo. This article recalls the events that occurred before, during, and after the hurricane struck. The focus is on four outpatient dialysis units in that area. It is a story from which others may learn more about emergency preparedness.

  3. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  4. Examining Hurricane Track Length and Stage Duration Since 1980

    Science.gov (United States)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  5. Business Schools and Resources Constraints: A Task for Deans or Magicians?

    Science.gov (United States)

    D'Alessio, Fernando A.; Avolio, Beatrice

    2011-01-01

    One of the major challenges that face the deans of many business schools is obtaining funding for their academic operations and research to sustain world-class educational quality. Business schools raise resources in their own way, but ways of financing strongly vary when comparing educational institutions among world regions. The purpose of this…

  6. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  7. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  8. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  9. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  10. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  11. Discrepancies between perceptions of students and deans regarding the consequences of restricting students' use of electronic medical records on quality of medical education.

    Science.gov (United States)

    Solarte, Ivan; Könings, Karen D

    2017-03-13

    Electronic medical records (EMR) are more used in university hospitals, but the use of EMR by medical students at the workplace is still a challenge, because the conflict of interest between medical accountability for hospitals and quality of medical education programs for students. Therefore, this study investigates the use of EMR from the perspective of medical school deans and students, and determines their perceptions and concerns about consequences of restricted use of EMR by students on quality of education and patient care. We administered a large-scale survey about the existence of EMR, existing policies, students' use for learning, and consequences on patient care to 42 deans and 789 Residency Physician Applicants in a private university in Colombia. Data from 26 deans and 442 former graduated students were compared with independent t tests and chi square tests. Only half of medical schools had learning programs and policies about the use of EMR by students. Deans did not realize that students have less access to EMR than to paper-based MR. Perceptions of non-curricular learning opportunities how to write in (E)MR were significantly different between deans and students. Limiting students use of EMR has negative consequences on medical education, according to both deans and students, while deans worried significantly more about impact on patient care than students. Billing issues and liability aspects were their major concerns. There is a need for a clear policy and educational program on the use of EMR by students. Discrepancies between the planned curriculum by deans and the real clinical learning environment as experienced by students indicate suboptimal learning opportunities for students. Creating powerful workplace-learning experiences and resolving concerns on students use of EMR has to be resolved in a constructive collaboration way between the involved stakeholders, including also EMR designers and hospital administrators. We recommend intense

  12. Balancing the educational choices in the decision-making of a dean ...

    African Journals Online (AJOL)

    The gap between theory and practice is, however, the nucleus of the position. Objectives. To describe insights into the educational forces that act on a dean of medicine and the implications for those who wish to bring about change – in this case, changes in the inclusion of public health in the medical curriculum. Methods.

  13. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  14. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  15. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  16. Hurricane feedback research may improve intensity forecasts

    Science.gov (United States)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  17. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  18. Spatial grids for hurricane climate research

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, James B.; Hodges, Robert E.; Jagger, Thomas H. [Florida State University, Tallahassee, FL (United States)

    2012-07-15

    The authors demonstrate a spatial framework for studying hurricane climatology. The framework consists of a spatial tessellation of the hurricane basin using equal-area hexagons. The hexagons are efficient at covering hurricane tracks and provide a scaffolding to combine attribute data from tropical cyclones with spatial climate data. The framework's utility is demonstrated using examples from recent hurricane seasons. Seasons that have similar tracks are quantitatively assessed and grouped. Regional cyclone frequency and intensity variations are mapped. A geographically-weighted regression of cyclone intensity on sea-surface temperature emphasizes the importance of a warm ocean in the intensification of cyclones over regions where the heat content is greatest. The largest differences between model predictions and observations occur near the coast. The authors suggest the framework is ideally suited for comparing tropical cyclones generated from different numerical simulations. (orig.)

  19. Academic Libraries and High-Impact Practices for Student Retention: Library Deans' Perspectives

    Science.gov (United States)

    Murray, Adam

    2015-01-01

    Numerous studies on retention have highlighted the role of student engagement in influencing students' withdrawal decisions. This study seeks to address how academic libraries affect student retention by examining the perception of academic library deans or directors on the alignment between library services and resources with ten nationally…

  20. Physical aspects of Hurricane Hugo in Puerto Rico

    Science.gov (United States)

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  1. On the Influence of Global Warming on Atlantic Hurricane Frequency

    Science.gov (United States)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  2. Gulf of Mexico hurricane wave simulations using SWAN : Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate

  3. Isentropic Analysis of a Simulated Hurricane

    Science.gov (United States)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  4. Who would become a successful Dean of Faculty of Medicine: academic or clinician or administrator?

    Science.gov (United States)

    Lee, Albert; Hoyle, Eric

    2002-11-01

    It has been a long tradition that the medical school dean is an expert in a specialist field with a well-established reputation in research and clinical services. Medical education is no longer simply disease orientated; it is required to put an emphasis on prevention, the need for better management of the health care system, and the need for a better understanding of the sociopolitical aspects of medical care. The deans of medical schools must appreciate the social role of medical education, and the social contract with the community. Although doctors might have difficulties with leadership because they are trained to work as individuals and to value highly their independence and autonomy, good communication skills are an asset for clinicians in management roles. It does not matter whether the background of the dean is academic, clinical or administrative; the most important thing is to possess the managerial skills to tackle the three-way tension between management, academic leadership and professional leadership. The job should be open to people with a good knowledge of and background in health and fiscal expertise, and also a high degree of management, diplomatic and interpersonal skills. Those skills should also be emphasized in the medical curriculum.

  5. NOAA predicts active 2013 Atlantic hurricane season

    Science.gov (United States)

    (discussion) El Niño/Southern Oscillation (ENSO) Diagnostic Discussion National Hurricane Preparedness Week in both English and Spanish, featuring NOAA hurricane experts and the FEMA administrator at

  6. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  7. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  8. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast

    Science.gov (United States)

    Reja, Md Y.; Brody, Samuel D.; Highfield, Wesley E.; Newman, Galen D.

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  9. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  10. Dealing With Deans and Academic Medical Center Leadership: Advice From Leaders.

    Science.gov (United States)

    Sanfilippo, Fred; Powell, Deborah; Folberg, Robert; Tykocinski, Mark

    2018-01-01

    The 2017 Association of Pathology Chairs Annual Meeting included a session for department chairs and other department leaders on "how to deal with deans and academic medical center leadership." The session was focused on discussing ways to foster positive relationships with university, medical school, and health system leaders, and productively address issues and opportunities with them. Presentations and a panel discussion were provided by 4 former pathology chairs who subsequently have served as medical deans and in other leadership positions including university provost, medical center CEO, and health system board chair. There was a strong consensus among the participants on how best to deal with superiors about problems, conflicts, and requests for additional resources and authority. The importance of teamwork and accountability in developing a constructive and collaborative relationship with leaders and peers was discussed in detail. Effectiveness in communication, negotiation, and departmental advocacy were highlighted as important skills. As limited resources and increased regulations have become growing problems for universities and health systems, internal stress and competition have increased. In this rapidly changing environment, advice on how chairs can interact most productively with institutional leaders is becoming increasingly important.

  11. Landscape and regional impacts of hurricanes in Puerto Rico

    OpenAIRE

    Boose, Emery Robert; Serrano, Mayra I.; Foster, David Russell

    2004-01-01

    Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurr...

  12. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    Science.gov (United States)

    Barras, John A.

    2007-01-01

    Introduction Hurricane Katrina made landfall on the eastern coastline of Louisiana on August 29, 2005; Hurricane Rita made landfall on the western coastline of Louisiana on September 24, 2005. Comparison of Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Katrina and Rita and classified to identify land and water demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana as a result of the storms. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Hurricane Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, and Pearl River basin), whereas 99 mi2 (256 km2) were in areas primarily impacted by Hurricane Rita (Calcasieu/Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, and Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively, and the brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas represent land losses caused by direct removal of wetlands. They also indicate transitory changes in water area caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after the landfalls of both hurricanes (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery. The land

  13. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  14. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  15. Leadership styles of business school deans and their perceived effectiveness

    OpenAIRE

    Hassan, Ahlam Ali

    2013-01-01

    This thesis was submitted for the degree of Doctor of philosophy and awarded by Brunel University Leadership as a concept has been an area of significance for several decades. While the contribution of research to leadership concept in the industry has been substantial the same cannot be claimed with regard to the Higher Education Institutions (HEIs). There is a paucity of research studies in the context of HEIs, particularly in regard to business schools. Deans of business schools were...

  16. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  17. Managerial Decision Styles of Deans: A Case Study of a Malaysian Public University

    Directory of Open Access Journals (Sweden)

    Leele Susana Jamian

    2011-12-01

    Full Text Available It is often said that decision making style (DMS is reflective of leadership style. Numerous studies in the area of Management and Leadership indicate that DMS is a key factor that contributes to the success of both managers and their organizational performance. Using the Decision Making Styles Inventory (DMSI developed by Rowe and Boulgarides (1992, this paper examines the managerial DMS ofdeans in one of the Malaysian public universities. The scores derived from the DMS were categorized into four decision styles, namely directive, behavioural, analytical and conceptual. The findings revealed that a majority of the deans adopted at least one very dominant or dominant DMS, i mainly behavioural DMS, along with one or two back-up decision styles. Nevertheless, the overall individual results further revealed that the deans possessed more than one style implying that they have considerable flexibility in their managerial DMS and are able to change their decision styles from one situation to another with little difficulty.

  18. Perceived Leadership Soft Skills and Trustworthiness of Deans in Three Malaysian Public Universities

    Science.gov (United States)

    Tang, Keow Ngang; Ariratana, Wallapha; Treputharan, Saowanee

    2013-01-01

    Soft skills comprised both rational and emotional elements, becoming a new focus on leadership, as behavior displayed during interaction with other individuals will affect effective interaction outcomes. This study aimed to examine the leadership soft skills of deans in public universities of Malaysia. This survey designed research was performed…

  19. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    Science.gov (United States)

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  20. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    OpenAIRE

    A. D. Jayakaran; T. M. Williams; H. Ssegane; D. M. Amatya; B. Song; C. C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a rev...

  1. ON THE INFLUENCE OF GLOBAL WARMING ON ATLANTIC HURRICANE FREQUENCY

    Directory of Open Access Journals (Sweden)

    S. R. Hosseini

    2018-04-01

    Full Text Available In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane’s intensity and Sea Surface Temperature (SST has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR. The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82. In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  2. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    Science.gov (United States)

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  3. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  4. A Profile of Deans of Schools and Colleges of Journalism and Mass Communication.

    Science.gov (United States)

    Oneal, Dennis J.; Applegate, Edd

    2001-01-01

    Considers how many people hire persons whose backgrounds reflect their own training and experience. Looks at the backgrounds of those persons that hold the title of "dean" at ACEJMC(Accrediting Council on Education in Journalism and Mass Communications)-accredited colleges and schools of journalism and mass communication. Provides a solid baseline…

  5. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  6. Geologic record of Hurricane impacts on the New Jersey coast

    Science.gov (United States)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  7. The Philosopher and the Lecturer: John Dewey, Everett Dean Martin, and Reflective Thinking

    Science.gov (United States)

    Day, Michael; Harbour, Clifford P.

    2013-01-01

    Adult education scholars have not yet examined the connections between the philosopher, John Dewey, and the lecturer on adult education, Everett Dean Martin. These scholars generally portray Dewey as indifferent to their field. However, Dewey's correspondence with a New York newspaper editor in 1928, recommending Martin's The Meaning of…

  8. "Bridge over Troubled Water": Phenomenologizing Filipino College Deans' Ethical Dilemmas in Academic Administration

    Science.gov (United States)

    Catacutan, Maria Rosario G.; de Guzman, Allan B.

    2016-01-01

    This phenomenological study intends to capture and describe Filipino college deans' lived experiences of ethical dilemmas as they carry out their work as administrators. Using semi-structured in-depth interviews and following Collaizzi's method, data was collected and subjected to cool and warm analyses yielding a set of themes and sub-themes that…

  9. Ethical Decision-Making in Academic Administration: A Qualitative Study of College Deans' Ethical Frameworks

    Science.gov (United States)

    Catacutan, Maria Rosario G.; de Guzman, Allan B.

    2015-01-01

    Ethical decision-making in school administration has received considerable attention in educational leadership literature. However, most research has focused on principals working in secondary school settings while studies that explore ethical reasoning processes of academic deans have been significantly few. This qualitative study aims to…

  10. Hurricane Katrina as a "teachable moment"

    Directory of Open Access Journals (Sweden)

    M. H. Glantz

    2008-04-01

    Full Text Available By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time.

    Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region.

    The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1.

    Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on

  11. Hurricane Katrina as a "teachable moment"

    Science.gov (United States)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  12. Hurricane Season: Are You Ready?

    Centers for Disease Control (CDC) Podcasts

    2012-09-24

    Hurricanes are one of Mother Nature’s most powerful forces. Host Bret Atkins talks with CDC’s National Center for Environmental Health Director Dr. Chris Portier about the main threats of a hurricane and how you can prepare.  Created: 9/24/2012 by Office of Public Health Preparedness and Response (OPHPR), National Center for Environmental Health (NCEH), and the Agency for Toxic Substances and Disease Registry (ATSDR).   Date Released: 9/24/2012.

  13. On the relationship between hurricane cost and the integrated wind profile

    Science.gov (United States)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  14. Worldwide historical hurricane tracks from 1848 through the previous hurricane season

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and...

  15. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  16. An analytical solution for Dean flow in curved ducts with rectangular cross section

    Science.gov (United States)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  17. Hurricane Harvey Report : A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    NARCIS (Netherlands)

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall

  18. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  19. Hurricanes accelerated the Florida-Bahamas lionfish invasion.

    Science.gov (United States)

    Johnston, Matthew W; Purkis, Sam J

    2015-06-01

    In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport. © 2015 John Wiley & Sons Ltd.

  20. Hurricane Katrina Wind Investigation Report

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  1. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  2. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  3. Hurricane preparedness among elderly residents in South Florida.

    Science.gov (United States)

    Kleier, Jo Ann; Krause, Deirdre; Ogilby, Terry

    2018-01-01

    The purpose of this study was to describe factors associated with hurricane preparation and to test a theoretical model of hurricane preparation decision process among a group of elderly residents living in a high-risk geographical area. This is a descriptive, correlational study. A convenience sample consisted of 188 English-speaking individuals who were aged 55 years or older. In addition to demographic information, two survey instruments were used. Theoretical constructs were operationalized through Moon's Hurricane Preparation Questionnaire. Hurricane preparedness was measured by self-reported responses to FEMA's inventory checklist, which addresses the recommended basic steps of preparation. The theoretical model of hurricane preparation decision process was supported. Main barriers to preparation are the need for cooperation from others and cost of preparation. Participants reported having taken many preparatory steps to shelter-in-place, but too few are prepared if their home were storm-damaged or they should have to evacuate. Findings are consistent with previous studies of samples drawn from similar populations. This report provides guidance as to how public health nurses can become involved with the population and develop interventions based on the constructs of the theoretical model. © 2017 Wiley Periodicals, Inc.

  4. "Just-in-Time" Personal Preparedness: Downloads and Usage Patterns of the American Red Cross Hurricane Application During Hurricane Sandy.

    Science.gov (United States)

    Kirsch, Thomas D; Circh, Ryan; Bissell, Richard A; Goldfeder, Matthew

    2016-10-01

    Personal preparedness is a core activity but has been found to be frequently inadequate. Smart phone applications have many uses for the public, including preparedness. In 2012 the American Red Cross began releasing "disaster" apps for family preparedness and recovery. The Hurricane App was widely used during Hurricane Sandy in 2012. Patterns of download of the application were analyzed by using a download tracking tool by the American Red Cross and Google Analytics. Specific variables included date, time, and location of individual downloads; number of page visits and views; and average time spent on pages. As Hurricane Sandy approached in late October, daily downloads peaked at 152,258 on the day of landfall and by mid-November reached 697,585. Total page views began increasing on October 25 with over 4,000,000 page views during landfall compared to 3.7 million the first 3 weeks of October with a 43,980% increase in views of the "Right Before" page and a 76,275% increase in views of the "During" page. The Hurricane App offered a new type of "just-in-time" training that reached tens of thousands of families in areas affected by Hurricane Sandy. The app allowed these families to access real-time information before and after the storm to help them prepare and recover. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  5. An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

    Science.gov (United States)

    2012-08-01

    of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane ...An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey, California, and... Hurricane Research Division, Miami, Florida WEN-CHAU LEE National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 23 June 2011, in

  6. Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes.

    Science.gov (United States)

    Saporta, Diego; Hurst, David

    2017-01-01

    Objective . To report on changes in sensitivity to mold allergens determined by changes in intradermal skin testing reactivity, after exposure to two severe hurricanes. Methods . A random, retrospective allergy charts review divided into 2 groups of 100 patients each: Group A, patients tested between 2003 and 2010 prior to hurricanes, and Group B, patients tested in 2014 and 2015 following hurricanes. Reactivity to eighteen molds was determined by intradermal skin testing. Test results, age, and respiratory symptoms were recorded. Chi-square test determined reactivity/sensitivity differences between groups. Results . Posthurricane patients had 34.6 times more positive results ( p hurricanes ( p hurricanes ( p hurricanes. This supports climatologists' hypothesis that environmental changes resulting from hurricanes can be a health risk as reflected in increased allergic sensitivities and symptoms and has significant implications for physicians treating patients from affected areas.

  7. Nurses respond to Hurricane Hugo victims' disaster stress.

    Science.gov (United States)

    Weinrich, S; Hardin, S B; Johnson, M

    1990-06-01

    Hugo, a class IV hurricane, hit South Carolina September 22, 1989, and left behind a wake of terror and destruction. Sixty-one nursing students and five faculty were involved in disaster relief with families devastated by the hurricane. A review of the literature led these authors to propose a formulation of the concept of disaster stress, a synthesis of theories that explains response to disaster as a crisis response, a stress response, or as posttraumatic stress. With the concept of disaster stress serving as a theoretical foundation, the nurses observed, assessed, and intervened with one population of hurricane Hugo victims, noting their immediate psychosocial reactions and coping mechanisms. Victims' reactions to disaster stress included confusion, irritability, lethargy, withdrawal, and crying. The most frequently observed coping strategy of these hurricane Hugo victims was talking about their experiences; other coping tactics involved humor, religion, and altruism.

  8. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    Science.gov (United States)

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  9. Hurricane Katrina Sediment Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  10. Hurricane Katrina Water Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  11. Hurricane Katrina Soil Sampling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  12. The Role and Value of Global Business Research: Perspective of a Business School Dean

    Science.gov (United States)

    Grosse, Robert

    2013-01-01

    The scope of this article is two-fold. First, it looks at business research in general, in various countries, as a task that the dean wants to have faculty members pursue, to attain goals such as accreditation and ranking with organizations such as the "AACSB," "Equis," the "Financial Times," and "US News &…

  13. Interview with Dr. Charles Nolan: Dean of Admissions, Franklin W. Olin College of Engineering

    Science.gov (United States)

    Helms, Robin Matross

    2003-01-01

    This article presents an interview with Dr. Charles Nolan, the former Dean of Admission at the Franklin W. Olin College of Engineering, in Needham, Massachusetts. Chartered in 1997, Olin College has taken a new approach to undergraduate engineering education by providing its students with both a solid engineering background and knowledge in the…

  14. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008.

    Science.gov (United States)

    Kleinpeter, Myra A

    2009-01-01

    Hurricanes Katrina and Rita resulted in massive devastation of the Gulf Coast at Mississippi, Louisiana, and Texas during 2005. Because of those disasters, dialysis providers, nephrologists, and dialysis patients used disaster planning activities to work to mitigate the morbidity and mortality associated with the 2005 hurricane season for future events affecting dialysis patients. As Hurricane Gustav approached, anniversary events for Hurricane Katrina were postponed because of evacuation orders for nearly the entire Louisiana Gulf Coast. As part of the hurricane preparation, dialysis units reviewed the disaster plans of patients, and patients made preparation for evacuation. Upon evacuation, many patients returned to the dialysis units that had provided services during their exile from Hurricane Katrina; other patients went to other locations as part of their evacuation plan. Patients uniformly reported positive experiences with dialysis providers in their temporary evacuation communities, provided that those communities did not experience the effects of Hurricane Gustav. With the exception of evacuees to Baton Rouge, patients continued to receive their treatments uninterrupted. Because of extensive damage in the Baton Rouge area, resulting in widespread power losses and delayed restoration of power to hospitals and other health care facilities, some patients missed one treatment. However, as a result of compliance with disaster fluid and dietary recommendations, no adverse outcomes occurred. In most instances, patients were able to return to their home dialysis unit or a nearby unit to continue dialysis treatments within 4 - 5 days of Hurricane Gustav. Hurricane Ike struck the Texas Gulf Coast near Galveston, resulting in devastation of that area similar to the devastation seen in New Orleans after Katrina. The storm surge along the Louisiana Gulf Coast resulted in flooding that temporarily closed coastal dialysis units. Patients were prepared and experienced

  15. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Science.gov (United States)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  16. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; David S. Nolan; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  17. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  18. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  19. Not so close but still extremely loud: recollection of the World Trade Center terror attack and previous hurricanes moderates the association between exposure to hurricane Sandy and posttraumatic stress symptoms.

    Science.gov (United States)

    Palgi, Yuval; Shrira, Amit; Hamama-Raz, Yaira; Palgi, Sharon; Goodwin, Robin; Ben-Ezra, Menachem

    2014-05-01

    The present study examined whether recollections of the World Trade Center (WTC) terror attack and previous hurricanes moderated the relationship between exposure to Hurricane Sandy and related posttraumatic stress disorder (PTSD) symptoms. An online sample of 1000 participants from affected areas completed self-report questionnaires a month after Hurricane Sandy hit the East Coast of the United States. Participants reported their exposure to Hurricane Sandy, their PTSD symptoms, and recollections of the WTC terror attack and previous hurricanes elicited due to Hurricane Sandy. Exposure to Hurricane Sandy was related to PTSD symptoms among those with high level of recollections of the WTC terror attack and past hurricanes, but not among those with low level of recollections. The aftermath of exposure to Hurricane Sandy is related not only to exposure, but also to its interaction with recollections of past traumas. These findings have theoretical and practical implications for practitioners and health policy makers in evaluating and interpreting the impact of past memories on future natural disasters. This may help in intervention plans of social and psychological services. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Privatization of Public Universities: How the Budget System Affects the Decision-Making Strategy of Deans

    Science.gov (United States)

    Volpatti, Mark Christopher

    2013-01-01

    In response to lower funding commitments, many public colleges and universities have elected to incorporate decentralized budgeting systems, one of which is Responsibility Center Management (RCM). As public institutions are becoming more dependent on tuition dollars because state appropriations are declining, deans have an increased responsibility…

  1. Hurricane-related emergency department visits in an inland area: an analysis of the public health impact of Hurricane Hugo in North Carolina.

    Science.gov (United States)

    Brewer, R D; Morris, P D; Cole, T B

    1994-04-01

    To evaluate the public health impact of a hurricane on an inland area. Descriptive study. Seven hospital emergency departments. Patients who were treated from September 22 to October 6, 1989, for an injury or illness related to Hurricane Hugo. None. Over the two-week study period, 2,090 patients were treated for injuries or illnesses related to the hurricane. Of these, 1,833 (88%) were treated for injuries. Insect stings and wounds accounted for almost half of the total cases. A substantial proportion (26%) of the patients suffering from stings had a generalized reaction (eg, hives, wheezing, or both). Nearly one-third of the wounds were caused by chain saws. Hurricanes can lead to substantial morbidity in an inland area. Disaster plans should address risks associated with stinging insects and hazardous equipment and should address ways to improve case reporting.

  2. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Science.gov (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  3. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  4. Numerical study of sediment dynamics during hurricane Gustav

    Science.gov (United States)

    Zang, Zhengchen; Xue, Z. George; Bao, Shaowu; Chen, Qin; Walker, Nan D.; Haag, Alaric S.; Ge, Qian; Yao, Zhigang

    2018-06-01

    In this study, the coupled ocean-atmosphere-wave-and-sediment transport (COAWST) modeling system was employed to explore sediment dynamics in the northern Gulf of Mexico during hurricane Gustav in 2008. The performance of the model was evaluated quantitatively and qualitatively against in-situ and remote sensing measurements, respectively. After Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 8 m offshore and they decreased quickly as it moved toward the inner shelf, where the vertical stratification was largely destroyed. Alongshore currents were dominant westward on the eastern sector of the hurricane track, and offshoreward currents prevailed on the western sector. High suspended sediment concentrations (>1000 mg/l) were confined to the inner shelf at surface layers and the simulated high concentrations at the bottom layer extended to the 200 m isobaths. The stratification was restored one week after landfall, although not fully. The asymmetric hurricane winds induced stronger hydrodynamics in the eastern sector, which led to severe erosion. The calculated suspended sediment flux (SSF) was convergent to the hurricane center and the maximum SSF was simulated near the south and southeast of the Mississippi river delta. The averaged post-hurricane deposition over the Louisiana shelf was 4.0 cm, which was 3.2-26 times higher than the annual accumulation rate under normal weather conditions.

  5. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  6. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    International Nuclear Information System (INIS)

    Balaguru, Karthik; Ruby Leung, L; Yoon, Jin-ho

    2013-01-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north–south demarcation are considered rather than the basin as a whole. (letter)

  7. Maternal exposure to hurricane destruction and fetal mortality.

    Science.gov (United States)

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Sleep disturbance and its relationship to psychiatric morbidity after Hurricane Andrew.

    Science.gov (United States)

    Mellman, T A; David, D; Kulick-Bell, R; Hebding, J; Nolan, B

    1995-11-01

    Sleep disturbance is an important dimension of posttraumatic stress disorder (PTSD), but most of the limited available data were obtained years after the original traumatic event. This study provides information on sleep disturbance and its relationship to posttraumatic morbidity from evaluations done within a year after the trauma. Sleep and psychiatric symptoms of 54 victims (12 men and 42 women) of Hurricane Andrew who had no psychiatric illness in the 6 months before the hurricane were evaluated. A subset of hurricane victims with active psychiatric morbidity (N = 10) and nine comparison subjects who were unaffected by the hurricane were examined in a sleep laboratory. A broad range of sleep-related complaints were rated as being greater after the hurricane, and psychiatric morbidity (which was most commonly PTSD, followed by depression) had a significant effect on most of the subjective sleep measures. In addition, subjects with active morbidity endorsed greater frequencies of "bad dreams" and general sleep disturbances before the hurricane. Polysomnographic results for the hurricane victims revealed a greater number of arousals and entries into stage 1 sleep. REM density correlated positively with both the PTSD symptom of reexperiencing trauma and global distress. Subjects affected by Hurricane Andrew reported sleep disturbances, particularly those subjects with psychiatric morbidity. Tendencies to experience bad dreams and interrupted sleep before a trauma appear to mark vulnerability to posttraumatic morbidity. Results of sleep laboratory evaluations suggested brief shifts toward higher arousal levels during sleep for PTSD subjects and a relationship of REM phasic activity and symptom severity.

  9. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  10. Low ionospheric reactions on tropical depressions prior hurricanes

    Science.gov (United States)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  11. Effects of track and threat information on judgments of hurricane strike probability.

    Science.gov (United States)

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  12. Large eddy simulation of a T-Junction with upstream elbow: The role of Dean vortices in thermal fatigue

    International Nuclear Information System (INIS)

    Tunstall, R.; Laurence, D.; Prosser, R.; Skillen, A.

    2016-01-01

    Highlights: • A T-Junction with an upstream bend is studied using wall-resolved LES and POD. • The bend generates Dean vortices which remain prominent downstream of the junction. • Dean vortex swirl-switching results in an unsteady secondary flow about the pipe axis. • This provides a further mechanism for near-wall temperature fluctuations. • Upstream bends can have a crucial role in T-Junction thermal fatigue problems. - Abstract: Turbulent mixing of fluids in a T-Junction can generate oscillating thermal stresses in pipe walls, which may lead to high cycle thermal fatigue. This thermal stripping problem is an important safety issue in nuclear plant thermal-hydraulic systems, since it can lead to unexpected failure of the pipe material. Here, we carry out a large eddy simulation (LES) of a T-Junction with an upstream bend and use proper orthogonal decomposition (POD) to identify the dominant structures in the flow. The bend generates an unsteady secondary flow about the pipe axis, known as Dean vortex swirl-switching. This provides an additional mechanism for low-frequency near-wall temperature fluctuations downstream of the T-Junction, over those that would be produced by mixing in the same T-Junction with straight inlets. The paper highlights the important role of neighbouring pipe bends in T-Junction thermal fatigue problems and the need to include them when using CFD as a predictive tool.

  13. Teacher Guidelines for Helping Students after a Hurricane

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  14. Morphological responses of the Wax Lake Delta, Louisiana, to Hurricanes Rita

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2017-12-01

    Full Text Available This study examines the morphodynamic response of a deltaic system to extreme weather events. The Wax Lake Delta (WLD in Louisiana, USA, is used to illustrate the impact of extreme events (hurricanes on a river-dominated deltaic system. Simulations using the open source Delft3D model reveal that Hurricane Rita, which made landfall 120 km to the west of WLD as a Category 3 storm in 2005, caused erosion on the right side and deposition on the left side of the hurricane eye track on the continental shelf line (water depth 10 m to 50 m. Erosion over a wide area occurred both on the continental shelf line and in coastal areas when the hurricane moved onshore, while deposition occurred along the Gulf coastline (water depth < 5 m when storm surge water moved back offshore. The numerical model estimated that Hurricane Rita’s storm surge reached 2.5 m, with maximum currents of 2.0 m s–1, and wave heights of 1.4 m on the WLD. The northwestern-directed flow and waves induced shear stresses, caused erosion on the eastern banks of the deltaic islands and deposition in channels located west of these islands. In total, Hurricane Rita eroded more than 500,000 m3 of sediments on the WLD area. Including waves in the analysis resulted in doubling the amount of erosion in the study area, comparing to the wave-excluding scenario. The exclusion of fluvial input caused minor changes in deltaic morphology during the event. Vegetation cover was represented as rigid rods in the model which add extra source terms for drag and turbulence to influence the momentum and turbulence equations. Vegetation slowed down the floodwater propagation and decreased flow velocity on the islands, leading to a 47% reduction in the total amount of erosion. Morphodynamic impact of the hurricane track relative to the delta was explored. Simulations indicate that the original track of Hurricane Rita (landfall 120 km west of the WLD produced twice as much erosion and deposition at the delta

  15. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  16. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  17. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Energy Technology Data Exchange (ETDEWEB)

    Makarieva, A.M., E-mail: ammakarieva@gmail.co [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Gorshkov, V.G. [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    2011-02-14

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  18. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    Science.gov (United States)

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  20. Developing Local Scale, High Resolution, Data to Interface with Numerical Hurricane Models

    Science.gov (United States)

    Witkop, R.; Becker, A.

    2017-12-01

    In 2017, the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) developed hurricane models that specify wind speed, inundation, and erosion around Rhode Island with enough precision to incorporate impacts on individual facilities. At the same time, URI's Marine Affairs Visualization Lab (MAVL) developed a way to realistically visualize these impacts in 3-D. Since climate change visualizations and water resource simulations have been shown to promote resiliency action (Sheppard, 2015) and increase credibility (White et al., 2010) when local knowledge is incorporated, URI's hurricane models and visualizations may also more effectively enable hurricane resilience actions if they include Facility Manager (FM) and Emergency Manager (EM) perceived hurricane impacts. This study determines how FM's and EM's perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale while exploring methods to elicit this information from FMs and EMs in a format usable for incorporation into URI GSO's hurricane models.

  1. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  2. Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region

    International Nuclear Information System (INIS)

    Han, S.-R.; Guikema, Seth D.; Quiring, Steven M.; Lee, Kyung-Ho; Rosowsky, David; Davidson, Rachel A.

    2009-01-01

    Hurricanes have caused severe damage to the electric power system throughout the Gulf coast region of the US, and electric power is critical to post-hurricane disaster response as well as to long-term recovery for impacted areas. Managing power outage risk and preparing for post-storm recovery efforts requires accurate methods for estimating the number and location of power outages. This paper builds on past work on statistical power outage estimation models to develop, test, and demonstrate a statistical power outage risk estimation model for the Gulf Coast region of the US. Previous work used binary hurricane-indicator variables representing particular hurricanes in order to achieve a good fit to the past data. To use these models for predicting power outages during future hurricanes, one must implicitly assume that an approaching hurricane is similar to the average of the past hurricanes. The model developed in this paper replaces these indicator variables with physically measurable variables, enabling future predictions to be based on only well-understood characteristics of hurricanes. The models were developed using data about power outages during nine hurricanes in three states served by a large, investor-owned utility company in the Gulf Coast region

  3. Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data

    Science.gov (United States)

    Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.

    2017-12-01

    The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane

  4. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  5. Post-hurricane forest damage assessment using satellite remote sensing

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  6. A Climatological Study of Hurricane Force Extratropical Cyclones

    Science.gov (United States)

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  7. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  8. Psychological distress of adolescents exposed to Hurricane Hugo.

    Science.gov (United States)

    Hardin, S B; Weinrich, M; Weinrich, S; Hardin, T L; Garrison, C

    1994-07-01

    To ascertain the effects of a natural disaster on adolescents, 1482 South Carolina high school students who were exposed to Hurricane Hugo were surveyed 1 year after the disaster. Subjects completed a self-administered questionnaire measuring Hugo exposure, nonviolent and violent life events, social support, self-efficacy, and psychological distress. Results showed that the students reported minimal exposure to the hurricane and psychological distress variables approximated national norms. As exposure increased, adolescents reported increased symptoms of psychological distress; i.e., anger, depression, anxiety, and global mental distress. Females and white students experienced higher levels of distress. In most cases, other stressful life events were at least as strong a predictor of psychological distress as was exposure to the hurricane. Self-efficacy and social support were protective.

  9. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    Science.gov (United States)

    2011-12-01

    Marks et al. (2008) flight level and radar observations from Hurricane Hugo shown in Figure 9 (their Figure 3) and Hurricane Isabel (Montgomery et al...Figure 3c and Figure 6c) and Persing and Montgomery (2003, their Figures 8, 9, and 12). For the case of Hurricane Hugo , a cross-section of the... Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina

  10. Performance assessment of topologically diverse power systems subjected to hurricane events

    International Nuclear Information System (INIS)

    Winkler, James; Duenas-Osorio, Leonardo; Stein, Robert; Subramanian, Devika

    2010-01-01

    Large tropical cyclones cause severe damage to major cities along the United States Gulf Coast annually. A diverse collection of engineering and statistical models are currently used to estimate the geographical distribution of power outage probabilities stemming from these hurricanes to aid in storm preparedness and recovery efforts. Graph theoretic studies of power networks have separately attempted to link abstract network topology to transmission and distribution system reliability. However, few works have employed both techniques to unravel the intimate connection between network damage arising from storms, topology, and system reliability. This investigation presents a new methodology combining hurricane damage predictions and topological assessment to characterize the impact of hurricanes upon power system reliability. Component fragility models are applied to predict failure probability for individual transmission and distribution power network elements simultaneously. The damage model is calibrated using power network component failure data for Harris County, TX, USA caused by Hurricane Ike in September of 2008, resulting in a mean outage prediction error of 15.59% and low standard deviation. Simulated hurricane events are then applied to measure the hurricane reliability of three topologically distinct transmission networks. The rate of system performance decline is shown to depend on their topological structure. Reliability is found to correlate directly with topological features, such as network meshedness, centrality, and clustering, and the compact irregular ring mesh topology is identified as particularly favorable, which can influence regional lifeline policy for retrofit and hardening activities to withstand hurricane events.

  11. Retention of Displaced Students after Hurricanes Katrina and Rita

    Science.gov (United States)

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  12. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    Science.gov (United States)

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  13. Litterfall Production Prior to and during Hurricanes Irma and Maria in Four Puerto Rican Forests

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2018-06-01

    Full Text Available Hurricanes Irma and Maria struck Puerto Rico on the 6th and 20th of September 2017, respectively. These two powerful Cat 5 hurricanes severely defoliated forest canopy and deposited massive amounts of litterfall in the forests across the island. We established a 1-ha research plot in each of four forests (Guánica State Forest, Río Abajo State Forest, Guayama Research Area and Luquillo Experiment Forest before September 2016, and had collected one full year data of litterfall production prior to the arrival of Hurricanes Irma and Maria. Hurricane-induced litterfall was collected within one week after Hurricane Irma, and within two weeks after Hurricane Maria. Each litterfall sample was sorted into leaves, wood (branches and barks, reproductive organs (flowers, fruits and seeds and miscellaneous materials (mostly dead animal bodies or feces after oven-drying to constant weight. Annual litterfall production prior to the arrival of Hurricanes Irma and Maria varied from 4.68 to 25.41 Mg/ha/year among the four forests, and annual litterfall consisted of 50–81% leaffall, 16–44% woodfall and 3–6% fallen reproductive organs. Hurricane Irma severely defoliated the Luquillo Experimental Forest, but had little effect on the other three forests, whereas Hurricane Maria defoliated all four forests. Total hurricane-induced litterfall from Hurricanes Irma and Maria amounted to 95–171% of the annual litterfall production, with leaffall and woodfall from hurricanes amounting to 63–88% and 122–763% of their corresponding annual leaffall and woodfall, respectively. Hurricane-induced litterfall consisted of 30–45% leaves and 55–70% wood. Our data showed that Hurricanes Irma and Maria deposited a pulse of litter deposition equivalent to or more than the total annual litterfall input with at least a doubled fraction of woody materials. This pulse of hurricane-induced debris and elevated proportion of woody component may trigger changes in

  14. Calculations of the hurricane eye motion based on singularity propagation theory

    Directory of Open Access Journals (Sweden)

    Vladimir Danilov

    2002-02-01

    Full Text Available We discuss the possibility of using calculating singularities to forecast the dynamics of hurricanes. Our basic model is the shallow-water system. By treating the hurricane eye as a vortex type singularity and truncating the corresponding sequence of Hugoniot type conditions, we carry out many numerical experiments. The comparison of our results with the tracks of three actual hurricanes shows that our approach is rather fruitful.

  15. Race differences in depression vulnerability following Hurricane Katrina.

    Science.gov (United States)

    Ali, Jeanelle S; Farrell, Amy S; Alexander, Adam C; Forde, David R; Stockton, Michelle; Ward, Kenneth D

    2017-05-01

    This study investigated whether racial disparities in depression were present after Hurricane Katrina. Data were gathered from 932 New Orleans residents who were present when Hurricane Katrina struck, and who returned to New Orleans the following year. Multiple logistic regression models evaluated racial differences in screening positive for depression (a score ≥16 on the Center for Epidemiologic Studies Depression Scale), and explored whether differential vulnerability (prehurricane physical and mental health functioning and education level), differential exposure to hurricane-related stressors, and loss of social support moderated and/or reduced the association of race with depression. A univariate logistic regression analysis showed the odds for screening positive for depression were 86% higher for African Americans than for Caucasians (odds ratio [OR] = 1.86 [1.28-2.71], p = .0012). However, after controlling simultaneously for sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors, race was no longer a significant correlate for screening positive for depression (OR = 1.54 [0.95-2.48], p = .0771). The racial disparity in postdisaster depression seems to be confounded by sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors. Nonetheless, even after adjusting for these factors, there was a nonsignificant trend effect for race, which could suggest race played an important role in depression outcomes following Hurricane Katrina. Future studies should examine these associations prospectively, using stronger assessments for depression, and incorporate measures for discrimination and segregation, to further understand possible racial disparities in depression after Hurricane Katrina. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. The effects of hurricanes on birds, with special reference to Caribbean islands

    Science.gov (United States)

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  17. Avifauna response to hurricanes: regional changes in community similarity

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Chengquan Huang; Jeffrey G. Masek; Volker C. Radeloff

    2010-01-01

    Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does...

  18. On the molecular dynamics in the hurricane interactions with its environment

    Science.gov (United States)

    Meyer, Gabriel; Vitiello, Giuseppe

    2018-06-01

    By resorting to the Burgers model for hurricanes, we study the molecular motion involved in the hurricane dynamics. We show that the Lagrangian canonical formalism requires the inclusion of the environment degrees of freedom. This also allows the description of the motion of charged particles. In view of the role played by moist convection, cumulus and cloud water droplets in the hurricane dynamics, we discuss on the basis of symmetry considerations the role played by the molecular electrical dipoles and the formation of topologically non-trivial structures. The mechanism of energy storage and dissipation, the non-stationary time dependent Ginzburg-Landau equation and the vortex equation are studied. Finally, we discuss the fractal self-similarity properties of hurricanes.

  19. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  20. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    Science.gov (United States)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  1. Hurricane Harvey Report: A fact-finding effort in the direct aftermath of Hurricane Harvey in the Greater Houston Region

    OpenAIRE

    Sebastian, A.G.; Lendering, K.T.; Kothuis, B.L.M.; Brand, A.D.; Jonkman, S.N.; van Gelder, P.H.A.J.M.; Kolen, B.; Comes, M.; Lhermitte, S.L.M.; Meesters, K.J.M.G.; van de Walle, B.A.; Ebrahimi Fard, A.; Cunningham, S.; Khakzad Rostami, N.; Nespeca, V.

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall near Rockport, Texas as a Category 4 hurricane with maximum sustained winds of approximately 200 km/hour. Harvey caused severe damages in coastal Texas due to extreme winds and storm surge, but will go down in history for record-setting rainfall totals and flood-related damages. Across large portions of southeast Texas, rainfall totals during the six-day period between August 25 and 31, 2017 were amongst the highest ever recorded, causing flo...

  2. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    Science.gov (United States)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  3. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  4. Contrasting Hydrodynamic and Environmental Effects of Hurricanes Harvey and Ike in a Highly Industrialized Estuary

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    It is commonly believed that storm surge is the most destructive aspect of hurricanes. However, massive rainfall with a return period of 100 years or more induced by hurricanes can cause more catastrophic damage than losses caused by storm surge as demonstrated recently by hurricanes Harvey, Irma and Maria. In this study the hydrodynamics and environmental effects of hurricanes Ike and Harvey were compared and contrasted by linking hydrodynamic flow models with water quality models to simulate spills from storage tanks located in the Houston Ship Channel (HSC). Hurricane Ike with a maximum surge of 5.3 meters in Galveston Bay and Harvey with a maximum rainfall of 1.25 meters both struck the HSC region in Texas in 2008 and 2017, respectively. Both events resulted in numerous spills from municipal and industrial facilities, hazardous waste sites, superfund sites, and landfills. The Environmental Fluid Dynamic Code (EFDC) was coupled with the SWAN+ADCIRC hurricane simulation model to simulate Hurricane Ike and EFDC was coupled with USGS flow boundary conditions to model Hurricane Harvey. A conservative dye release was used to simulate a chemical release during each event. The results showed Hurricane Harvey caused higher water surface elevations within the HSC accompanied by longer and wider-spread land inundation. In contrast, higher water surface elevations were observed within the shallow side bays during Hurricane Ike that caused sediment resuspension and repartitioning of pollutants. Rapid spill mass transportation was observed for both hurricanes; 50% of total spill mass reached Galveston Bay in 20 and 22 hours after a spill event for Hurricane Harvey and Ike, respectively, and more than 90% of the spill mass reached the bay in 36 and 48 hours, respectively. Unlike Hurricane Harvey, the conservative tracer was spread almost 2.5 km upstream of the releasing point for Hurricane Ike due to surge. However, during Harvey, 35% more land was affected by the spilled

  5. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    Science.gov (United States)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-08-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual buildings. To address this lack of research, this study will identify vulnerabilities and hurricane indicators, develop metrics to measure the influence of economic losses from hurricanes, and visualize the spatial distribution of vulnerability to evaluate overall hurricane damage. This paper has utilized the Geographic Information System to facilitate collecting and managing data, and has combined vulnerability factors to assess the financial losses suffered by Texas coastal counties. A multiple linear regression method has been applied to develop hurricane economic damage predicting models. To reflect the pecuniary loss, insured loss payment was used as the dependent variable to predict the actual financial damage. Geographical vulnerability indicators, built environment vulnerability indicators, and hurricane indicators were all used as independent variables. Accordingly, the models and findings may possibly provide vital references for government agencies, emergency planners, and insurance companies hoping to predict hurricane damage.

  6. Lessons Learnt From Hurricane Katrina.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  7. Mass Media Use by College Students during Hurricane Threat

    Science.gov (United States)

    Piotrowski, Chris

    2015-01-01

    There is a dearth of studies on how college students prepare for the threat of natural disasters. This study surveyed college students' preferences in mass media use prior to an approaching hurricane. The convenience sample (n = 76) were from a university located in the hurricane-prone area of the central Gulf of Mexico coast. Interestingly,…

  8. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas....... Especially in the initial phase of floating foundation concept development, site specific metocean data are usually not available. As the areas of interest are furthermore not covered by any design standard, in terms of design sea states, generic and in engineering terms applicable environmental background...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...

  9. 78 FR 49990 - Dean Foods Company and WhiteWave Foods Company; Filing of Food Additive Petition

    Science.gov (United States)

    2013-08-16

    .... FDA-2013-N-0888] Dean Foods Company and WhiteWave Foods Company; Filing of Food Additive Petition... the WhiteWave Foods Company proposing that the food additive regulations be amended to provide for the expanded safe uses of vitamin D 2 and vitamin D 3 as nutrient supplements in food. DATES: The food additive...

  10. Leading Schools of Education in the Context of Academic Capitalism: Deans' Responses to State Policy Changes

    Science.gov (United States)

    McClure, Kevin R.; Teitelbaum, Kenneth

    2016-01-01

    State education policy changes have contributed to a reduced interest in teaching and a decreased enrollment in education degree programs in North Carolina, USA. Pressure to cut budgets and generate revenue has added to a climate of academic capitalism influencing the ways in which deans lead schools of education. The purpose of this mixed-methods…

  11. Knox named Phoenix associate dean of faculty affairs

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2016-12-01

    Full Text Available No abstract available. Article truncated after 150 words. The University of Arizona College of Medicine-Phoenix has announced the appointment of nationally recognized physician-scientist Kenneth S. Knox, MD, as the associate dean of faculty affairs. Dr. Knox who has been at the University of Arizona-Tucson since 2008, will oversee the Faculty Affairs Office whose charge is to promote an engaged, diverse community of faculty and scholars that sustain a culture of engagement, professionalism and inclusion. He also will serve as director of research at the Banner Lung Institute. Dr. Knox is a pulmonologist known for his research in sarcoidosis, fungal diagnostics and immunologic lung disease. His work includes developing treatments for HIV, AIDS and valley fever. The division chief of Pulmonary, Allergy, Critical Care and Sleep Medicine in Tucson, Knox was responsible for dramatic growth. His accomplishments include increasing the number of clinical and basic science faculty from five to 30 and fellowship trainings from six to 20, rekindling …

  12. Hurricane Arthur and its effect on the short-term variability of pCO2 on the Scotian Shelf, NW Atlantic

    Science.gov (United States)

    Lemay, Jonathan; Thomas, Helmuth; Craig, Susanne E.; Burt, William J.; Fennel, Katja; Greenan, Blair J. W.

    2018-04-01

    The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2), even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC) slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net) CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.

  13. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Directory of Open Access Journals (Sweden)

    B. Rojo-Garibaldi

    2018-04-01

    Full Text Available Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT and the published historical information. The hurricane time series provides a unique historical record on information about ocean–atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  14. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Science.gov (United States)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Adela Monreal-Gómez, María; Sánchez-Santillán, Norma Leticia; Salas-Monreal, David

    2018-04-01

    Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean-atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  15. Using data envelopment analysis to evaluate the performance of post-hurricane electric power restoration activities

    International Nuclear Information System (INIS)

    Reilly, Allison C.; Davidson, Rachel A.; Nozick, Linda K.; Chen, Thomas; Guikema, Seth D.

    2016-01-01

    Post-hurricane restoration of electric power is attracting increasing scrutiny as customers’ tolerance for even short power interruptions decreases. At the peak, 8.5 million customers were without power after Hurricane Sandy and over 1 million customers were without power more than a week after the storm made landfall. Currently, restoration processes are typically evaluated on a case-by-case basis by a regional public service commission or similar body and lack systematic comparisons to other restoration experiences. This paper introduces a framework using data envelopment analysis to help evaluate post-hurricane restorations through comparison with the experiences of other companies in similar storms. The method accounts for the variable severity of the hurricanes themselves, so that companies are not penalized for outages that are long only because the hurricane that caused them was particularly severe. The analysis is illustrated through an application comparing 27 recent post-hurricane restoration experiences across 13 different electric power companies in the United States. The results of the study show some consistency in performance among individual utilities after the hurricanes they experience. The method could be applied to other types of infrastructure systems and other extreme events as well. - Highlights: • A Data Envelopment Analysis (DEA) framework is developed to compare post- hurricane power-outage restoration performance. • Hurricane severity is considered, so that utilities are not penalized for long outages caused by severe storms. • A case study using real data compares 27 recent post-hurricane restoration experiences. • The results of the study show utilities tend to perform consistently after the hurricanes they experience.

  16. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NARCIS (Netherlands)

    Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-01-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at

  17. Hurricane Loss Analysis Based on the Population-Weighted Index

    Directory of Open Access Journals (Sweden)

    Grzegorz Kakareko

    2017-08-01

    Full Text Available This paper discusses different measures for quantifying regional hurricane loss. The main measures used in the past are normalized percentage loss and dollar value loss. In this research, we show that these measures are useful but may not properly reflect the size of the population influenced by hurricanes. A new loss measure is proposed that reflects the hurricane impact on people occupying the structure. For demonstrating the differences among these metrics, regional loss analysis was conducted for Florida. The regional analysis was composed of three modules: the hazard module stochastically modeled the wind occurrence in the region; the vulnerability module utilized vulnerability functions developed in this research to calculate the loss; and the financial module quantified the hurricane loss. In the financial module, we calculated three loss metrics for certain region. The first metric is the average annual loss (AAL which represents the expected loss per year in percentage. The second is the average annual dollar loss which represents the expected dollar amount loss per year. The third is the average annual population-weighted loss (AAPL—a new measure proposed in this research. Compared with the AAL, the AAPL reflects the number of people influenced by the hurricane. The advantages of the AAPL are illustrated using three different analysis examples: (1 conventional regional loss analysis, (2 mitigation potential analysis, and (3 forecasted future loss analysis due to the change in population.

  18. HURRICANE AND SEVERE STORM SENTINEL (HS3) FLIGHT REPORTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Flight Reports provide information about flights flown by the WB-57 and Global Hawk aircrafts during the Hurricane and...

  19. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  20. Analyzing after-action reports from Hurricanes Andrew and Katrina: repeated, modified, and newly created recommendations.

    Science.gov (United States)

    Knox, Claire Connolly

    2013-01-01

    Thirteen years after Hurricane Andrew struck Homestead, FL, Hurricane Katrina devastated the Gulf Coast of Mississippi, Alabama, and southeastern Louisiana. Along with all its destruction, the term "catastrophic" was redefined. This article extends the literature on these hurricanes by providing a macrolevel analysis of The Governor's Disaster Planning and Response Review Committee Final Report from Hurricane Andrew and three federal after-action reports from Hurricane Katrina, as well as a cursory review of relevant literature. Results provide evidence that previous lessons have not been learned or institutionalized with many recommendations being repeated or modified. This article concludes with a discussion of these lessons, as well as new issues arising during Hurricane Katrina.

  1. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    Science.gov (United States)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  2. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  3. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  4. Leading from the Middle: A Case-Study Approach to Academic Leadership for Associate and Assistant Deans

    Science.gov (United States)

    Stone, Tammy; Coussons-Read, Mary

    2011-01-01

    Moving from a faculty position to an administrative office frequently entails gaining considerable responsibility, but ambiguous power. The hope of these two authors is that this volume will serve as a reference and a source of support for current associate and assistant deans and as a window into these jobs for faculty who may be considering such…

  5. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  6. Long-term response of Caribbean palm forests to hurricanes

    Science.gov (United States)

    Ariel Lugo; J.L. Frangi

    2016-01-01

    We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...

  7. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  8. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  9. Hurricane Risk Variability along the Gulf of Mexico Coastline

    Science.gov (United States)

    Trepanier, Jill C.; Ellis, Kelsey N.; Tucker, Clay S.

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran’s I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs. PMID:25767885

  10. Hurricane risk variability along the Gulf of Mexico coastline.

    Science.gov (United States)

    Trepanier, Jill C; Ellis, Kelsey N; Tucker, Clay S

    2015-01-01

    Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran's I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs.

  11. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  12. Clinical Holistic Medicine: The Dean Ornish Program (“Opening the Heart”) in Cardiovascular Disease

    OpenAIRE

    Ventegodt, Søren; Merrick, Efrat; Merrick, Joav

    2006-01-01

    Dean Ornish of the Preventive Medicine Research Institute in Sausalito, California has created an intensive holistic treatment for coronary heart patients with improved diet (low fat, whole foods, plant based), exercise, stress management, and social support that has proven to be efficient. In this paper, we analyze the rationale behind his cure in relation to contemporary holistic medical theory. In spite of a complex treatment program, the principles seem to be simple and in accordance with...

  13. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  14. Effects of Hurricane Hugo: Mental Health Workers and Community Members.

    Science.gov (United States)

    Muzekari, Louis H.; And Others

    This paper reports the effects of Hurricane Hugo on mental health workers and indigenous community members. The response and perceptions of mental health staff from the South Carolina Department of Mental Health (Go Teams) from areas unaffected by the hurricane were compared and contrasted with those of a subsequent Hugo Outreach Support Team…

  15. Hurricane Katrina - Murphy Oil Spill Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked...

  16. Biogeochemical Impact of Hurricane Harvey on Texas Coastal Lagoons

    Science.gov (United States)

    Montagna, P.; Hu, X.; Walker, L.; Wetz, M.

    2017-12-01

    Hurricane Harvey made landfall Friday 25 August 2017 as a Category 4 hurricane, which is the strongest hurricane to hit the middle Texas coast since Carla in 1961. After the wind storm and storm surge, coastal flooding occurred due to the storm lingering over Texas for four more days, dumping as much as 50" of rain near Houston, producing 1:1000 year flood event. The Texas coast is characterized by lagoons behind barrier islands, and their ecology and biogeochemistry are strongly influenced by coastal hydrology. The ensuing inflow event replaced brackish water with fresh water that was high in inorganic an organic matter, significantly enhancing respiration of coastal blue carbon, and dissolved oxygen went to zero for a long period of time. Recovery will likely take months or nearly one year.

  17. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    International Nuclear Information System (INIS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-01-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  18. Hurricane Harvey Building Damage Assessment Using UAV Data

    Science.gov (United States)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  19. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  20. NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season

    Science.gov (United States)

    Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.

    2010-12-01

    The Hurricane Ensemble Data Assimilation System (HEDAS) was developed at the Hurricane Research Division (HRD) of NOAA, in conjunction with an experimental version of the Hurricane Weather and Research Forecast model (HWRFx), in an effort to improve the initial representation of the hurricane vortex by utilizing high resolution in-situ data collected during NOAA’s Hurricane Field Program. HEDAS implements the “ensemble square root “ filter of Whitaker and Hamill (2002) using a 30 member ensemble obtained from NOAA/ESRL’s ensemble Kalman filter (EnKF) system and the assimilation is performed on a 3-km nest centered on the hurricane vortex. As part of NOAA’s Hurricane Forecast Improvement Program (HFIP), HEDAS will be run in a semi-operational mode for the first time during the 2010 Atlantic hurricane season and will assimilate airborne Doppler radar winds, dropwindsonde and flight level wind, temperature, pressure and relative humidity, and Stepped Frequency Microwave Radiometer surface wind observations as they become available. HEDAS has been implemented in an experimental mode for the cases of Hurricane Bill, 2009 and Paloma, 2008 to confirm functionality and determine the optimal configuration of the system. This test case demonstrates the importance of assimilating thermodynamic data in addition to wind observations and the benefit of increasing the quantity and distribution of observations. Applying HEDAS to a larger sample of storm forecasts would provide further insight into the behavior of the model when inner core aircraft observations are assimilated. The main focus of this talk will be to present a summary of HEDAS performance in the HWRFx model for the inaugural season. The HEDAS analyses and the resulting HWRFx forecasts will be compared with HWRFx analyses and forecasts produced concurrently using the HRD modeling group’s vortex initialization which does not employ data assimilation. The initial vortex and subsequent forecasts will be

  1. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    Science.gov (United States)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane

  2. Hurricane Wind Speed Estimation Using WindSat 6 and 10 GHz Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-08-01

    Full Text Available The realistic and accurate estimation of hurricane intensity is highly desired in many scientific and operational applications. With the advance of passive microwave polarimetry, an alternative opportunity for retrieving wind speed in hurricanes has become available. A wind speed retrieval algorithm for wind speeds above 20 m/s in hurricanes has been developed by using the 6.8 and 10.7 GHz vertically and horizontally polarized brightness temperatures of WindSat. The WindSat measurements for 15 category 4 and category 5 hurricanes from 2003 to 2010 and the corresponding H*wind analysis data are used to develop and validate the retrieval model. In addition, the retrieved wind speeds are also compared to the Remote Sensing Systems (RSS global all-weather product and stepped-frequency microwave radiometer (SFMR measurements. The statistical results show that the mean bias and the overall root-mean-square (RMS difference of the retrieved wind speeds with respect to the H*wind analysis data are 0.04 and 2.75 m/s, respectively, which provides an encouraging result for retrieving hurricane wind speeds over the ocean surface. The retrieved wind speeds show good agreement with the SFMR measurements. Two case studies demonstrate that the mean bias and RMS difference are 0.79 m/s and 1.79 m/s for hurricane Rita-1 and 0.63 m/s and 2.38 m/s for hurricane Rita-2, respectively. In general, the wind speed retrieval accuracy of the new model in hurricanes ranges from 2.0 m/s in light rain to 3.9 m/s in heavy rain.

  3. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NARCIS (Netherlands)

    Lammers, J. M.; van Soelen, E.; Liebrand, D.; Donders, T.; Reichart, G. J.

    2009-01-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the

  4. Mental health outcomes among adults in Galveston and Chambers counties after Hurricane Ike.

    Science.gov (United States)

    Ruggiero, Kenneth J; Gros, Kirstin; McCauley, Jenna L; Resnick, Heidi S; Morgan, Mark; Kilpatrick, Dean G; Muzzy, Wendy; Acierno, Ron

    2012-03-01

      To examine the mental health effects of Hurricane Ike, the third costliest hurricane in US history, which devastated the upper Texas coast in September 2008.   Structured telephone interviews assessing immediate effects of Hurricane Ike (damage, loss, displacement) and mental health diagnoses were administered via random digit-dial methods to a household probability sample of 255 Hurricane Ike-affected adults in Galveston and Chambers counties.   Three-fourths of respondents evacuated the area because of Hurricane Ike and nearly 40% were displaced for at least one week. Postdisaster mental health prevalence estimates were 5.9% for posttraumatic stress disorder, 4.5% for major depressive episode, and 9.3% for generalized anxiety disorder. Bivariate analyses suggested that peritraumatic indicators of hurricane exposure severity-such as lack of adequate clean clothing, electricity, food, money, transportation, or water for at least one week-were most consistently associated with mental health problems.   The significant contribution of factors such as loss of housing, financial means, clothing, food, and water to the development and/or maintenance of negative mental health consequences highlights the importance of systemic postdisaster intervention resources targeted to meet basic needs in the postdisaster period.

  5. A Qualitative Study of the Job Challenges of Instructional Deans in the Technical College System of Georgia

    Science.gov (United States)

    Alford, Perrin J.

    2014-01-01

    The Technical College System of Georgia serves the people and the state by creating a system of technical education whose purpose is to use the latest technology and easy access for all adult Georgians and corporate citizens. Within each technical college is a hierarchy of faculty, staff, and administrators. The instructional deans serve a vital…

  6. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    Science.gov (United States)

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  7. Validation of a probabilistic model for hurricane insurance loss projections in Florida

    International Nuclear Information System (INIS)

    Pinelli, J.-P.; Gurley, K.R.; Subramanian, C.S.; Hamid, S.S.; Pita, G.L.

    2008-01-01

    The Florida Public Hurricane Loss Model is one of the first public models accessible for scrutiny to the scientific community, incorporating state of the art techniques in hurricane and vulnerability modeling. The model was developed for Florida, and is applicable to other hurricane-prone regions where construction practice is similar. The 2004 hurricane season produced substantial losses in Florida, and provided the means to validate and calibrate this model against actual claim data. This paper presents the predicted losses for several insurance portfolios corresponding to hurricanes Andrew, Charley, and Frances. The predictions are validated against the actual claim data. Physical damage predictions for external building components are also compared to observed damage. The analyses show that the predictive capabilities of the model were substantially improved after the calibration against the 2004 data. The methodology also shows that the predictive capabilities of the model could be enhanced if insurance companies report more detailed information about the structures they insure and the types of damage they suffer. This model can be a powerful tool for the study of risk reduction strategies

  8. A look into hurricane Maria rapid intensification using Meteo-France's Arome-Antilles model.

    Science.gov (United States)

    Pilon, R.; Faure, G.; Dupont, T.; Chauvin, F.

    2017-12-01

    Category 5 Hurricane Maria created a string of humanitarian crises. It caused billions of dollars of damage over the Caribbean but is also one of the worst natural disaster in Dominica.The hurricane took approximately 29 hours to strengthen from a tropical storm to a major category 5 hurricane. Here we present real-time forecasts of high resolution (2.5 km) Arome-Antilles regional model forced by real-time ECMWF's Integrated Forecasting System. The model was able to relatively represent well the rapid intensification of the hurricane whether it was in timing or in location of the eye and strength of its eye wall.We will present an outline of results.

  9. Hydrologic aspects of Hurricane Hugo in South Carolina, September 1989

    Science.gov (United States)

    Schuck-Kolben, R. E.; Cherry, R.N.

    1995-01-01

    Hurricane Hugo, with winds in excess of 135 miles per hour(mi/h), made landfall near Charleston, S.C., early on the morning of September 22, 1989. It was the most destructive hurricane ever experienced in South Carolina. The storm caused 35 deaths and $7 billion in property damage in South Carolina (Purvis, 1990).This report documents some hydrologic effects of Hurricane Hugo along the South Carolina coast. The report includes maps showing storm-tide stage and profiles of the maximum storm-tide stages along the outer coast. Storm-tide stage frequency information is presented and changes in beach morphology and water quality of coastal streams resulting from the storm are described.

  10. Spectral Growth of Hurricane Generated Seas

    National Research Council Canada - National Science Library

    Finlayson, William

    1997-01-01

    The characteristics of a growing sea during hurricanes are significantly different from those observed in ordinary storms since the source of energy generating waves is moving and the rate of change...

  11. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  12. The Honors Thesis: A Handbook for Honors Directors, Deans, and Faculty Advisors. National Collegiate Honors Council Monograph Series

    Science.gov (United States)

    Anderson, Mark; Lyons, Karen; Weiner, Norman

    2014-01-01

    This handbook is intended to help all those who design, administer, and implement honors thesis programs--honors directors, deans, staff, faculty, and advisors--evaluate their thesis programs, solve pressing problems, select more effective requirements or procedures, or introduce an entirely new thesis program. The authors' goal is to provide…

  13. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  14. The South Pacific in the works of Robert Dean Frisbie

    Directory of Open Access Journals (Sweden)

    Nataša Potočnik

    2001-12-01

    In Tahiti he had ambitious writing plans but after four years of living in Tahiti, he left his plantation and sailed to the Cook Islands. He spent the rest of his life in the Cook Islands and married a local girl Ngatokorua. His new happiness gave him the inspiration to write. 29 sketches appeared in the United States in 1929, collected by The Century Company under the title of The Book of Puka-Puka. His second book My Tahiti, a book of memories, was published in 1937. After the death of Ropati 's beloved wife his goals were to bring up his children. But by this time Frisbie was seriously ill. The family left Puka-Puka and settled down on the uninhabited atoll of Suwarrow. Later on they lived on Rarotonga and Samoa where Frisbie was medically treated. Robert Dean Frisbie died of tetanus in Rarotonga on November 18, 1948. Frisbie wrote in a vivid, graceful style. His characters and particularly the atoll of Puka-Puka are memorably depicted. Gifted with a feeling for language and a sense of humor, he was able to capture on paper the charm, beauty, and serenity of life of the small islands in the South Pacific without exaggerating the stereotypical idyllic context and as such Frisbie's contribution to South Pacific literature went far deeper than that of many writers who have passed through the Pacific and wrote about their experiences. Frisbie's first book The Book of Puka-Puka was published in New York in 1929. It is the most endearing and the most original of his works. It was written during his lifetime on the atoll Puka-Puka in the Cook Islands. It is a collection of 29 short stories, episodic and expressively narrative in style. This is an account of life on Puka-Puka that criticizes European and American commercialism and aggressiveness, and presents the themes of the praise of isolation, the castigation of missionaries, and the commendation of Polynesian economic collectivism and sexual freedom. At the same time, the book presents a portrait of Frisbie himself

  15. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  16. Performance of Oil Infrastructure during Hurricane Harvey

    Science.gov (United States)

    Bernier, C.; Kameshwar, S.; Padgett, J.

    2017-12-01

    Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.

  17. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  18. Tropical Atlantic Hurricanes, Easterly Waves, and West African Mesoscale Convective Systems

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2010-01-01

    Full Text Available The relationship between tropical Atlantic hurricanes (Hs, atmospheric easterly waves (AEWs, and West African mesoscale convective systems (MCSs is investigated. It points out atmospheric conditions over West Africa before hurricane formation. The analysis was performed for two periods, June–November in 2004 and 2005, during which 12 hurricanes (seven in 2004, five in 2005 were selected. Using the AEW signature in the 700 hPa vorticity, a backward trajectory was performed to the African coast, starting from the date and position of each hurricane, when and where it was catalogued as a tropical depression. At this step, using the Meteosat-7 satellite dataset, we selected all the MCSs around this time and region, and tracked them from their initiation until their dissipation. This procedure allowed us to relate each of the selected Hs with AEWs and a succession of MCSs that occurred a few times over West Africa before initiation of the hurricane. Finally, a dipole in sea surface temperature (SST was observed with a positive SST anomaly within the region of H generation and a negative SST anomaly within the Gulf of Guinea. This SST anomaly dipole could contribute to enhance the continental convergence associated with the monsoon that impacts on the West African MCSs formation.

  19. Hurricane Arthur and its effect on the short-term variability of pCO2 on the Scotian Shelf, NW Atlantic

    Directory of Open Access Journals (Sweden)

    J. Lemay

    2018-04-01

    Full Text Available The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2, even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.

  20. "Walter Gropius" by Dean Carter. Exhibition of College of Architecture and Urban Studies Timeline and Portrait Busts.

    OpenAIRE

    Carter, Dean

    2014-01-01

    DEAN CARTER. Walter Gropius. Cast bronze. The Art Collection / Virginia Tech Foundation Exhibition of portrait busts and the timeline of the history College of Architecture and Urban Studies, on the occasion of the 50th anniversary of the College. Curated by Truman Capone and Deb Sim. Francis T. Eck Exhibition Corridor, Moss Arts Center, Virginia Tech. Image 13

  1. NOAA predicts near-normal or below-normal 2014 Atlantic hurricane season

    Science.gov (United States)

    Related link: Atlantic Basin Hurricane Season Outlook Discussion El Niño/Southern Oscillation (ENSO ) Diagnostic Discussion National Hurricane Preparedness Week FEMA Media Contact Maureen O'Leary 301-427-9000 tips, along with video and audio public service announcements in both English and Spanish, featuring

  2. Bottom Scour Observed Under Hurricane Ivan

    National Research Council Canada - National Science Library

    Teague, William J; Jarosz, Eva; Keen, Timothy R; Wang, David W; Hulbert, Mark S

    2006-01-01

    Observations that extensive bottom scour along the outer continental shelf under Hurricane Ivan resulted in the displacement of more than 100 million cubic meters of sediment from a 35x15 km region...

  3. A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005 Simulation

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2011-06-01

    Full Text Available The life cycle of Hurricane Katrina (2005 was simulated using three different modeling systems of Weather Research and Forecasting (WRF mesoscale model. These are, HWRF (Hurricane WRF designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW model and the Non-hydrostatic Mesoscale Model (NMM. The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR, incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina.

  4. How Associate Deans' Positions are Designed within the Context of the Top 50 Colleges and Schools of Education.

    Science.gov (United States)

    Jackson, Jerlando F. L.; Gmelch, Walter H.

    2003-01-01

    Examined the design of the associate dean's position within the top 50 colleges and schools of education using three design parameters of individual positions: the specialization of the job, the formalization of the behavior in carrying out the job, and the training and indoctrination required for the job. (Contains references.) (SM)

  5. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  6. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  7. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  8. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  9. Hurricane Irene Poster (August 27, 2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Irene poster. Color composite GOES image shows Irene moving through the North Carolina Outer Banks on August 27, 2011. Poster size is 36"x27"

  10. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  11. Identification of Caribbean basin hurricanes from Spanish documentary sources

    OpenAIRE

    García Herrera, Ricardo; Gimeno, Luis; Ribera, Pedro; Hernández, Emiliano; González, Ester; Fernández, Guadalupe

    2007-01-01

    This paper analyses five hurricanes that occurred in the period 1600 to 1800. These examples were identified during a systematic search in the General Archive of the Indies (AGI) in Seville. The research combined the expertise of climatologists and historians in order to optimise the search and analysis strategies. Results demonstrate the potential of this archive for the assessment of hurricanes in this period and show some of the difficulties involved in the collection of evidence of hurric...

  12. Price Increases in the Aftermath of Hurricane Katrina: Authority to Limit Price Gouging

    National Research Council Canada - National Science Library

    Welborn, Angie A; Flynn, Aaron M

    2005-01-01

    .... Specifically, questions have arisen regarding increased prices in the areas affected by Hurricane Katrina and the effect that the damage caused by the hurricane will have on prices, specifically...

  13. Life course transitions and natural disaster: marriage, birth, and divorce following Hurricane Hugo.

    Science.gov (United States)

    Cohan, Catherine L; Cole, Steve W

    2002-03-01

    Change in marriage, birth, and divorce rates following Hurricane Hugo in 1989 were examined prospectively from 1975 to 1997 for all counties in South Carolina. Stress research and research on economic circumstances suggested that marriages and births would decline and divorces would increase in affected counties after the hurricane. Attachment theory suggested that marriages and births would increase and divorces would decline after the hurricane. Time-series analysis indicated that the year following the hurricane, marriage, birth, and divorce rates increased in the 24 counties declared disaster areas compared with the 22 other counties in the state. Taken together, the results suggested that a life-threatening event motivated people to take significant action in their close relationships that altered their life course.

  14. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Science.gov (United States)

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  15. Quantifying the hurricane catastrophe risk to offshore wind power.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  16. Are recent hurricane (Harvey, Irma, Maria) disasters natural?

    Science.gov (United States)

    Trenberth, K. E.; Lijing, C.; Jacobs, P.; Abraham, J. P.

    2017-12-01

    Yes and no! Hurricanes are certainly natural, but human-caused climate change is supersizing them, and unbridled growth is exacerbating risk of major damages. The addition of heat-trapping gases to the atmosphere has led to observed increases in upper ocean heat content (OHC). This human-caused increase in OHC supports higher sea surface temperatures (SSTs) and atmospheric moisture. These elevated temperatures and increased moisture availability fuel tropical storms, allowing them to grow larger, longer lasting, and more intense, and with widespread heavy rainfalls. Our preliminary analysis of OHC through the August of 2017 shows not only was it by far the highest on record globally, but it was also the highest on record in the Gulf of Mexico prior to hurricane Harvey occurring. The human influence on the climate is also evident in rising sea levels, which increases risks from storm surges. These climatic changes are taking place against a background of growing habitation along coasts, which further increases the risk storms pose to life and property. This combination of planning choice and climatic change illustrates the tragedy of global warming, as evidenced by Harvey in Houston, Irma in the Caribbean and Florida, and Maria in Puerto Rico. However, future damages and loss of life can be mitigated, by stopping or slowing human-caused climate change, and through proactive planning (e.g., better building codes, increased-capacity drainage systems, shelters, and evacuation plans). We discuss the climatic and planning contexts of the unnatural disasters of the 2017 Atlantic Hurricane season, including novel indices of climate-hurricane influence.

  17. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    Science.gov (United States)

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  18. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  19. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    Science.gov (United States)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  20. Observational Estimates of the Horizontal Eddy Diffusivity and Mixing Length in the Low-Level Region of Intense Hurricanes

    Science.gov (United States)

    2011-11-01

    flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989), Category 4 Hurricane Allen (1980) and...data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo 42 (1989), Category 4 Hurricane Allen (1980) and Category...understood. 87 Using the data from the periods of eyewall penetrations in the intense Hurricanes Hugo 88 (1989) and Allen (1980), Zhang et al. (2011a

  1. Microseisms from Hurricane "Hilda".

    Science.gov (United States)

    De Bremaecker, J C

    1965-06-25

    As hurricane "Hilda" crossed the Gulf of Mexico the dominant period of the microseisms shifted from about 8 to 5 seconds as the eye reached water about 150 to 200 meters deep. The conversion of wind energy to microseismic energy is most efficient in water depths from 20 to 200 meters. There is no evidence that two periods, one twice the other, are present.

  2. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  3. 2012-2013 Post-Hurricane Sandy EAARL-B Submerged Topography - Barnegat Bay, New Jersey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically...

  4. Mangrove forest recovery in the Everglades following Hurricane Wilma

    Science.gov (United States)

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  5. Has Anthropogenic Forcing Caused a Discernible Change in Atlantic Hurricane Activity?

    Science.gov (United States)

    Knutson, T. R.; Vecchi, G. A.

    2007-12-01

    There is currently evidence both for and against the existence of a discernible anthropogenic impact on Atlantic hurricane activity. Emanuel's (pers. comm. 2007) Power Dissipation Index shows unprecedented high values in recent decades in the context of the past 60 yr, and correlates remarkably well with low-frequency tropical Atlantic SST variations. The limited record length, partial basin coverage by aircraft in the pre-satellite era, and lack of reconciliation with models limit the usefulness of this result for identifying possible anthropogenic influences. Landsea (EOS, 2007) uses landfalling storm statistics to infer no significant increase in basin-wide tropical storm counts since 1900. Landsea's critical assumption of a constant landfalling fraction over time limits confidence in this assessment. Nonetheless, an important finding is that U.S. landfalling hurricane activity (frequency and PDI) show no increasing trend over the past century or so. Holland and Webster (Phil. Trans. R. Soc. A 2007) conclude that basin-wide tropical cyclone and hurricane counts have increased dramatically during the past century, related to the rise in tropical Atlantic SSTs. Their key assumption is that the existing HURDAT data reliably portrays basin-wide statistics for tropical storms, hurricanes and major hurricanes, at least back to ~1900, which requires further substantiation. We use historical Atlantic ship track and storm track data to estimate the expected number of missing tropical storms each year in the pre-satellite era (1878-1965). After adjustment, the storm counts covary with tropical SSTs on multi-decadal time scales, but their long-term trend (1878-2006) is weaker than the trend in similarly normalized SSTs (though both are nominally positive). The linear trend in adjusted storm counts for 1900-2006 is strongly positive (+4.2 storms/century) and highly significant even after accounting for serial correlation. However, this trend begins near a local minimum in

  6. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas.

    Science.gov (United States)

    Ruckart, Perri Zeitz; Orr, Maureen F; Lanier, Kenneth; Koehler, Allison

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  7. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas

    International Nuclear Information System (INIS)

    Ruckart, Perri Zeitz; Orr, Maureen F.; Lanier, Kenneth; Koehler, Allison

    2008-01-01

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews

  8. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas

    Energy Technology Data Exchange (ETDEWEB)

    Ruckart, Perri Zeitz [Division of Health Studies, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)], E-mail: afp4@cdc.gov; Orr, Maureen F. [Division of Health Studies, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States); Lanier, Kenneth; Koehler, Allison [Louisiana Department of Health and Hospitals, Office of Public Health, New Orleans, LA (United States)

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  9. Online Media Use and Adoption by Hurricane Sandy Affected Fire and Police Departments

    OpenAIRE

    Chauhan, Apoorva

    2014-01-01

    In this thesis work, I examine the use and adoption of online communication media by 840 fire and police departments that were affected by the 2012 Hurricane Sandy. I began by exploring how and why these fire and police departments used (or did not use) online media to communicate with the public during Hurricane Sandy. Results show that fire and police departments used online media during Hurricane Sandy to give timely and relevant information to the public about things such as evacuations, ...

  10. Water and erosion damage to coastal structures: South Carolina Coast, Hurricane Hugo, 1989

    OpenAIRE

    Wang, Hsiang

    1990-01-01

    Hurricane Hugo hit U.S. Mainland on September 21, 1989 just north of Charleston, South Carolina. It was billed as the most costly hurricane on record. The loss on the mainland alone exceeded 7 billion dollars, more than 15,000 homes were destroyed and the loss of lives exceeded forty. This article documents one aspect of the multi-destructions caused by the hurricane - the water and erosion damage on water front or near water front properties. A general damage surve...

  11. ENVIRONMENTAL CONDITIONS IN NORTHERN GULF OF MEXICO COASTAL WATERS FOLLOWING HURRICANE KATRINA

    Science.gov (United States)

    On the morning of August 29, 2005 Hurricane Katrina struck the coast of Louisiana, between New Orleans and Biloxi, Mississippi, as a strong category three hurricane on the Saffir-Simpson scale. The massive winds and flooding had the potential for a tremendous environmental impac...

  12. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  13. A team approach to preparing for hurricanes and other disasters.

    Science.gov (United States)

    Kendig, Jim

    2009-01-01

    Applying lessons learned in Hurricane Floyd in 1999, a three-hospital system located on Florida's exposed Space Coast was able to better deal with the devastation caused by hurricanes in 2004 and make changes in its plans to better prepare for the named storms which hit its area in 2008. Each new disaster, the author points out, brings with it new challenges which have to be considered in disaster planning.

  14. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    Science.gov (United States)

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  15. Preparing for a Hurricane: Prescription Medications

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    What you should do to protect yourself and your family from a hurricane. As you evacuate, remember to take your prescription medicines with you.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 7/17/2008.

  16. Transportation during and after Hurricane Sandy.

    Science.gov (United States)

    2012-11-01

    "Hurricane Sandy demonstrated the strengths and limits of the transportation infrastructure in New York City and the surrounding region. As a result of the timely and thorough preparations by New York City and the MTA, along with the actions of city ...

  17. Frequent Disasters in Mexico: hurricanes Pauline and Manuel in Acapulco, Guerrero

    Directory of Open Access Journals (Sweden)

    Juan Manuel Rodríguez Esteves

    2017-06-01

    Full Text Available Hurricanes and other tropical storms are natural phenomena that attract the interest of people all over the world, especially when they affect coastal communities. Each year, especially during the hurricane season, it is common to read or see in the different media damage caused by tropical storms in several countries, especially in Latin America and Asia. In Mexico total economic losses associated with natural phenomena has been increasing. During the year 2000 were allocated 230 million US dollars for the reconstruction of the infrastructure affected by hydrometeorological phenomena, while in 2013 damage amounted to $ 4,476 million, peaking during 2010 were recorded when 7,208 million dollars in losses. On the other hand, the total of damage caused by natural phenomena, 92 % were associated with hydrometeorological phenomena, which include hurricanes and other phenomena (SEGOB, 2014. The aim of this paper is to analyze the impacts caused by disasters associated with the influence of hurricanes from a comparative perspective between two phenomena in particular, hurricane Pauline in 1997 and Manuel storm in 2013 events hydrometeorological which affected the Mexican state of Guerrero, but especially to the port of Acapulco. one of the main conclusions of this study refers to that no matter only the intensity of the natural phenomenon to generate damage on society, but the total of damages also refers to the contexts of vulnerability generated by a society with the course of the years.

  18. Estimating the human influence on Hurricanes Harvey, Irma and Maria

    Science.gov (United States)

    Wehner, M. F.; Patricola, C. M.; Risser, M. D.

    2017-12-01

    Attribution of the human-induced climate change influence on the physical characteristics of individual extreme weather events has become an advanced science over the past decade. However, it is only recently that such quantification of anthropogenic influences on event magnitudes and probability of occurrence could be applied to very extreme storms such as hurricanes. We present results from two different classes of attribution studies for the impactful Atlantic hurricanes of 2017. The first is an analysis of the record rainfall amounts during Hurricane Harvey in the Houston, Texas area. We analyzed observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of ENSO. We found that human-induced climate change likely increased Hurricane Harvey's total rainfall by at least 19%, and likely increased the chances of the observed rainfall by a factor of at least 3.5. This suggests that changes exceeded Clausius-Clapeyron scaling, motivating attribution studies using dynamical climate models. The second analysis consists of two sets of hindcast simulations of Hurricanes Harvey, Irma, and Maria using the Weather Research and Forecasting model (WRF) at 4.5 km resolution. The first uses realistic boundary and initial conditions and present-day greenhouse gas forcings while the second uses perturbed conditions and pre-industrial greenhouse has forcings to simulate counterfactual storms without anthropogenic influences. These simulations quantify the fraction of Harvey's precipitation attributable to human activities and test the super Clausius-Clapeyron scaling suggested by the observational analysis. We will further quantify the human influence on intensity for Harvey, Irma, and Maria.

  19. Caribbean Brain coral tracks the Atlantic Multidecadal Oscillation and Past Hurricane Intensity

    NARCIS (Netherlands)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-C.; Keenlyside, N.; Latif, M.; Zinke, J.

    2008-01-01

    It is highly debated whether global warming contributed to the strong hurricane activity observed during the last decade. The crux of the recent debate is the limited length of the reliable instrumental record that exacerbates the detection of possible long-term changes in hurricane activity, which

  20. Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970–2005

    Science.gov (United States)

    Logan, John R.; Issar, Sukriti; Xu, Zengwang

    2016-01-01

    Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970–2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal—a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm’s way while socially vulnerable groups have fewer choices. PMID:27531504

  1. Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2009-01-01

    A universal equation is obtained for air pressure and wind velocity in cyclones, hurricanes and tornadoes as dependent on the distance from the center of the considered wind pattern driven by water vapor condensation. The obtained theoretical estimates of the horizontal profiles of air pressure and wind velocity, eye and wind wall radius in hurricanes and tornadoes and maximum values of the radial, tangential and vertical velocity components are in good agreement with empirical evidence.

  2. Optimization of Evacuation Warnings Prior to a Hurricane Disaster

    Directory of Open Access Journals (Sweden)

    Dian Sun

    2017-11-01

    Full Text Available The key purpose of this paper is to demonstrate that optimization of evacuation warnings by time period and impacted zone is crucial for efficient evacuation of an area impacted by a hurricane. We assume that people behave in a manner consistent with the warnings they receive. By optimizing the issuance of hurricane evacuation warnings, one can control the number of evacuees at different time intervals to avoid congestion in the process of evacuation. The warning optimization model is applied to a case study of Hurricane Sandy using the study region of Brooklyn. We first develop a model for shelter assignment and then use this outcome to model hurricane evacuation warning optimization, which prescribes an evacuation plan that maximizes the number of evacuees. A significant technical contribution is the development of an iterative greedy heuristic procedure for the nonlinear formulation, which is shown to be optimal for the case of a single evacuation zone with a single evacuee type case, while it does not guarantee optimality for multiple zones under unusual circumstances. A significant applied contribution is the demonstration of an interface of the evacuation warning method with a public transportation scheme to facilitate evacuation of a car-less population. This heuristic we employ can be readily adapted to the case where response rate is a function of evacuation number in prior periods and other variable factors. This element is also explored in the context of our experiment.

  3. Hurricane shuts down gulf activity

    International Nuclear Information System (INIS)

    Koen, A.D.

    1992-01-01

    This paper reports that producers in the Gulf of Mexico and plant operators in South Louisiana last week were checking for damage wrought by Hurricane Andrew. In its wake Andrew left evacuated rigs and platforms in the gulf and shuttered plants across a wide swath of the Gulf Coast. Operations were beginning to return to normal late last week. Not all gulf operators, especially in the central gulf, expected to return to offshore facilities. And even producers able to book helicopters did not expect to be able to fully assess damage to all offshore installations before the weekend. MMS officials in Washington estimated that 37,500 offshore workers were evacuated from 700 oil and gas installations on the gulf's Outer Continental Shelf. Gulf oil and gas wells account for about 800,000 b/d of oil and one fourth of total U.S. gas production. MMS was awaiting an assessment of hurricane damage before estimating how soon and how much gulf oil and gas production would be restored

  4. EFFECTS OF HURRICANE IVAN ON WATER QUALITY IN PENSACOLA BAY, FL USA

    Science.gov (United States)

    Pensacola Bay was in the strong NE quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, ...

  5. Application of a regional hurricane wind risk forecasting model for wood-frame houses.

    Science.gov (United States)

    Jain, Vineet Kumar; Davidson, Rachel Ann

    2007-02-01

    Hurricane wind risk in a region changes over time due to changes in the number, type, locations, vulnerability, and value of buildings. A model was developed to quantitatively estimate changes over time in hurricane wind risk to wood-frame houses (defined in terms of potential for direct economic loss), and to estimate how different factors, such as building code changes and population growth, contribute to that change. The model, which is implemented in a simulation, produces a probability distribution of direct economic losses for each census tract in the study region at each time step in the specified time horizon. By changing parameter values and rerunning the analysis, the effects of different changes in the built environment on the hurricane risk trends can be estimated and the relative effectiveness of hypothetical mitigation strategies can be evaluated. Using a case study application for wood-frame houses in selected counties in North Carolina from 2000 to 2020, this article demonstrates how the hurricane wind risk forecasting model can be used: (1) to provide insight into the dynamics of regional hurricane wind risk-the total change in risk over time and the relative contribution of different factors to that change, and (2) to support mitigation planning. Insights from the case study include, for example, that the many factors contributing to hurricane wind risk for wood-frame houses interact in a way that is difficult to predict a priori, and that in the case study, the reduction in hurricane losses due to vulnerability changes (e.g., building code changes) is approximately equal to the increase in losses due to building inventory growth. The potential for the model to support risk communication is also discussed.

  6. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  7. Rebuilding Emergency Care After Hurricane Sandy.

    Science.gov (United States)

    Lee, David C; Smith, Silas W; McStay, Christopher M; Portelli, Ian; Goldfrank, Lewis R; Husk, Gregg; Shah, Nirav R

    2014-04-09

    A freestanding, 911-receiving emergency department was implemented at Bellevue Hospital Center during the recovery efforts after Hurricane Sandy to compensate for the increased volume experienced at nearby hospitals. Because inpatient services at several hospitals remained closed for months, emergency volume increased significantly. Thus, in collaboration with the New York State Department of Health and other partners, the Health and Hospitals Corporation and Bellevue Hospital Center opened a freestanding emergency department without on-site inpatient care. The successful operation of this facility hinged on key partnerships with emergency medical services and nearby hospitals. Also essential was the establishment of an emergency critical care ward and a system to monitor emergency department utilization at affected hospitals. The results of this experience, we believe, can provide a model for future efforts to rebuild emergency care capacity after a natural disaster such as Hurricane Sandy. (Disaster Med Public Health Preparedness. 2014;0:1-4).

  8. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    Science.gov (United States)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  9. Brief communication "Hurricane Irene: a wake-up call for New York City?"

    Directory of Open Access Journals (Sweden)

    J. C. J. H. Aerts

    2012-06-01

    Full Text Available The weakening of Irene from a Category 3 hurricane to a tropical storm resulted in less damage in New York City (NYC than initially was anticipated. It is widely recognized that the storm surge and associated flooding could have been much more severe. In a recent study, we showed that a direct hit to the city from a hurricane may expose an enormous number of people to flooding. A major hurricane has the potential to cause large-scale damage in NYC. The city's resilience to flooding can be increased by improving and integrating flood insurance, flood zoning, and building code policies.

  10. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrina

    Science.gov (United States)

    Lowe, Sarah R.; Godoy, Leandra; Rhodes, Jean E.; Carter, Alice S.

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time…

  11. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    Science.gov (United States)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  12. Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989

    Science.gov (United States)

    Larsen, Matthew C.; Torres-Sanchez, Angel J.

    1992-01-01

    On the morning of September 18, 1989, a category-four hurricane struck eastern Puerto Rico with a sustained wind speed in excess of 46 m/s. The 24-h rainfall accumulation from the hurricane ranged from 100 to 339 mm. Average rainfall intensities ranging from 34 to 39 mm/h were calculated for 4 and 6 h periods, respectively, at a rain gage equipped with satellite telemetry, and at an observer station. The hurricane rainfall triggered more than 400 landslides in the steeply sloping, highly dissected mountains of eastern Puerto Rico. Of these landslides, 285 were mapped from aerial photography which covered 6474 ha. Many of the mapped landslides were on northeast- and northwest-facing slopes at the eastern terminus of the mountains, nearest the hurricane path. The surface area of individual landslides ranged from 18 m2 to 4500 m2, with a median size of 148 m2. The 285 landslides disturbed 0.11% of the land surface in the area covered by aerial photographs. An approximate denudation rate of 164 mm/1000 y was calculated from the volume of material eroded by landsliding and the 10-y rainfall recurrence interval.

  13. From the incident command center oil spills from Hurricanes Katrina and Rita

    Energy Technology Data Exchange (ETDEWEB)

    Guidry, R.J. [Lousiana Oil Spill Coordinator' s Office, Baton Rouge, LA (United States)

    2006-07-01

    Approximately 30.2 million litres of oil were discharged during Hurricanes Katrina and Rita. A total of 230 incidents were reported to the state's spill response community, including ruptured pipelines, damaged and moved storage tanks, refineries, and sunken vessels. By January 2006, industry had reported the recovery of 14.7 million litres of oil. After Hurricane Rita, a further 234 off- and onshore incidents were reported. This paper presented a chronology from August 26 2005 through to June 2006 of clean-up activities for both hurricanes, with specific reference to logistic and communications issues associated with working in environments that are difficult to access due to damaged transportation infrastructure. An outline of the Louisiana Oil Spill Coordinator's Office's role in the incidents was presented, as well as an overview of the Louisiana State Contingency Plan. It was noted that the lack of communications systems caused considerable difficulties for responders. It was concluded that responses to hurricanes can be made more effective by having all response communities incident command structure (ICS)-trained with a thorough knowledge of the National Response Plan as it relates to the National Contingency Plan. Ensuring that plans are operational, having clear lines of authority on all hurricane-related issues, and having a robust communications plan were recommended, as well as the ability to respond without communications.

  14. From the incident command center oil spills from Hurricanes Katrina and Rita

    International Nuclear Information System (INIS)

    Guidry, R.J.

    2006-01-01

    Approximately 30.2 million litres of oil were discharged during Hurricanes Katrina and Rita. A total of 230 incidents were reported to the state's spill response community, including ruptured pipelines, damaged and moved storage tanks, refineries, and sunken vessels. By January 2006, industry had reported the recovery of 14.7 million litres of oil. After Hurricane Rita, a further 234 off- and onshore incidents were reported. This paper presented a chronology from August 26 2005 through to June 2006 of clean-up activities for both hurricanes, with specific reference to logistic and communications issues associated with working in environments that are difficult to access due to damaged transportation infrastructure. An outline of the Louisiana Oil Spill Coordinator's Office's role in the incidents was presented, as well as an overview of the Louisiana State Contingency Plan. It was noted that the lack of communications systems caused considerable difficulties for responders. It was concluded that responses to hurricanes can be made more effective by having all response communities incident command structure (ICS)-trained with a thorough knowledge of the National Response Plan as it relates to the National Contingency Plan. Ensuring that plans are operational, having clear lines of authority on all hurricane-related issues, and having a robust communications plan were recommended, as well as the ability to respond without communications

  15. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    Science.gov (United States)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  16. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  17. How Disasters Affect Local Labor Markets: The Effects of Hurricanes in Florida

    Science.gov (United States)

    Belasen, Ariel R.; Polachek, Solomon W.

    2009-01-01

    This study improves upon the Difference in Difference approach by examining exogenous shocks using a Generalized Difference in Difference (GDD) technique that identifies economic effects of hurricanes. Based on the Quarterly Census of Employment and Wages data, worker earnings in Florida counties hit by a hurricane increase up to 4 percent,…

  18. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Science.gov (United States)

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  19. Just-in-Time Training: The Lessons of Hurricane Katrina, 10 Years Later

    Science.gov (United States)

    Boerner, Heather

    2016-01-01

    Hurricane Katrina reshaped college workforce development programs as thoroughly as it did the coastline--but in this case, the changes were for the good of students, employers and the community. This article discusses the effects and changes made by 4 community colleges who were effected by Hurricane Katrina: (1) Louisiana Community and Technical…

  20. The impact of Hurricane Sandy on the mental health of New York area residents.

    Science.gov (United States)

    Schwartz, Rebecca M; Sison, Cristina; Kerath, Samantha M; Murphy, Lisa; Breil, Trista; Sikavi, Daniel; Taioli, Emanuela

    2015-01-01

    To evaluate the long-term psychological impact of Hurricane Sandy on New York residents. Prospective, cross-sectional study. Community-based study. From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure). Depression, anxiety, and post-traumatic stress disorder (PTSD). Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues. Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.

  1. Monitoring storm tide and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016

    Science.gov (United States)

    Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.

    2017-11-02

    IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-tide sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Matthew. Storm tide, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-tide sensors in USGS history and was completed as part of a coordinated Federal emergency response as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-tide models for maximum and incremental water level and flood extent, and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  2. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    Science.gov (United States)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  3. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  4. Effects of Hurricane Georges on habitat use by captive-reared Hispaniolan Parrots (Amazona ventralis) released in the Dominican Republic

    Science.gov (United States)

    White, T.H.; Collazo, J.A.; Vilella, F.J.; Guerrero, S.A.

    2005-01-01

    We radio-tagged and released 49 captive-reared Hispaniolan Parrots (Amazona ventralis) in Parque Nacional del Este (PNE), Dominican Republic, during 1997 and 1998. Our primary objective was to develop a restoration program centered on using aviary-reared birds to further the recovery of the critically endangered Puerto Rican Parrot (A. vittata). Hurricane Georges made landfall over the release area on 22 September 1998 with sustained winds of 224 km/h, providing us with a unique opportunity to quantify responses of parrots to such disturbances. Quantitative data on such responses by any avian species are scarce, particularly for Amazona species, many of which are in peril and occur in hurricane-prone areas throughout the Caribbean. Mean home ranges of 18 parrots monitored both before and after the hurricane increased (P = 0.08) from 864 ha (CI = 689-1039 ha) pre-hurricane to 1690 ha (CI = 1003-2377 ha) post-hurricane. The total area traversed by all parrots increased > 300%, from 4884 ha pre-hurricane to 15,490 ha post-hurricane. Before Hurricane Georges, parrot activity was concentrated in coastal scrub, tall broadleaf forest, and abandoned agriculture (conucos). After the hurricane, parrots concentrated their activities in areas of tall broadleaf forest and abandoned conucos. Topographic relief, primarily in the form of large sinkholes, resulted in "resource refugia" where parrots and other frugivores foraged after the hurricane. Habitat use and movement patterns exhibited by released birds highlight the importance of carefully considering effects of season, topography, and overall size of release areas when planning psittacine restorations in hurricane-prone areas. ?? The Neotropical Ornithological Society.

  5. Investigation of long-term hurricane activity

    NARCIS (Netherlands)

    Nguyen, B.M.; Van Gelder, P.H.A.J.M.

    2012-01-01

    This paper presents a new approach of applying numerical methods to model storm processes. A storm empirical track technique is utilized to simulate the full tracks of hurricanes, starting with their initial points over the sea and ending with their landfall locations or final dissipations. The

  6. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    Science.gov (United States)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  7. Non-arborescent vegetation trajectories following repeated hurricane disturbance: ephemeral versus enduring responses

    Science.gov (United States)

    Alejandro A. Royo; Tamara Heartsill-Scalley; Samuel Moya; Fred N. Scatena

    2011-01-01

    Hurricanes strongly influence short-term patterns of plant community structure, composition, and abundance and are a major contributor to the maintenance of plant diversity in many forests. Although much research has focused on the immediate and long-term effects of hurricane disturbance on tree diversity, far less attention has been devoted to the non-arborescent...

  8. Initial estimates of hurricane Katrina impacts of Mississippi gulf coast forest resources

    Science.gov (United States)

    Patrick A. Glass; Sonja N. Oswalt

    2007-01-01

    Hurricane Katrina pummeled the Gulf Coast of Mississippi on August 29, 2005. The eye wall of the storm passed directly over Hancock and Pearl River Counties. Harrison, Jackson, Stone, and George Counties on the windward side of the hurricane's path sustained severe damage before the storm's strength dissipated as it moved farther inland (fig. 1).

  9. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  10. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  11. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    Science.gov (United States)

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  12. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest.

    Science.gov (United States)

    Schowalter, T D; Willig, M R; Presley, S J

    2017-02-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Petroleum industry assists hurricane relief

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas

  14. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  15. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    Science.gov (United States)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.

    2017-10-01

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1}). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.

  16. Assessment of Risk of Cholera in Haiti following Hurricane Matthew.

    Science.gov (United States)

    Khan, Rakib; Anwar, Rifat; Akanda, Shafqat; McDonald, Michael D; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita

    2017-09-01

    Damage to the inferior and fragile water and sanitation infrastructure of Haiti after Hurricane Matthew has created an urgent public health emergency in terms of likelihood of cholera occurring in the human population. Using satellite-derived data on precipitation, gridded air temperature, and hurricane path and with information on water and sanitation (WASH) infrastructure, we tracked changing environmental conditions conducive for growth of pathogenic vibrios. Based on these data, we predicted and validated the likelihood of cholera cases occurring past hurricane. The risk of cholera in the southwestern part of Haiti remained relatively high since November 2016 to the present. Findings of this study provide a contemporary process for monitoring ground conditions that can guide public health intervention to control cholera in human population by providing access to vaccines, safe WASH facilities. Assuming current social and behavioral patterns remain constant, it is recommended that WASH infrastructure should be improved and considered a priority especially before 2017 rainy season.

  17. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  18. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  19. Evacuating the Area of a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If a hurricane warning is issued for your area, or authorities tell you to evacuate, take only essential items. If you have time, turn off gas, electricity, and water and disconnect appliances.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/10/2007.

  20. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    Science.gov (United States)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  1. JLAB Hurricane recovery

    International Nuclear Information System (INIS)

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-01-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail

  2. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  3. Forecasting Hurricane Tracks Using a Complex Adaptive System

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  4. Use of outpatient mental health services by homeless veterans after hurricanes.

    Science.gov (United States)

    Brown, Lisa M; Barnett, Scott; Hickling, Edward; Frahm, Kathryn; Campbell, Robert R; Olney, Ronald; Schinka, John A; Casey, Roger

    2013-05-01

    Little is known about the impact of hurricanes on people who are homeless at the time a disaster occurs. Although researchers have extensively studied the psychosocial consequences of disaster produced homelessness on the general population, efforts focused on understanding how homeless people fare have been limited to a few media reports and the gray literature. In the event of a hurricane, homeless veterans may be at increased risk for negative outcomes because of their cumulative vulnerabilities. Health care statistics consistently document that homeless veterans experience higher rates of medical, emotional, substance abuse, legal, and financial problems compared with the general population. This study used the 2004 to 2006 Veterans Health Administration (VHA) Outpatient Medical Dataset to examine the effects of hurricanes on use of outpatient mental health services by homeless veterans. Homeless veterans residing in hurricane-affected counties were significantly more likely to participate in group psychotherapy (32.4% vs. 13.4%, p < .002), but less likely to participate in individual 30-40-min sessions with medical evaluations (3.5% vs. 17.3%, p < .001). The study findings have implications for homeless programs and the provision of VHA mental health services to homeless veterans postdisaster. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  5. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Science.gov (United States)

    The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The EPA Office of Research & Development (ORD) modified the original model from NOAA to fit the model parameters for the Buzzards Bay region. The models show storm surge extent for the Mattapoisett area and therefore the flooding area was reduced to the study area. Areas of flooding that were not connected to the main water body were removed. The files in the geodatabase are:Cat2_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 2 hurricane with 0 ft sea level riseCat4_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 4 hurricane with 0 ft sea level riseCat4_SLR4_Int_Feet_dissolve_Mattapoisett: Future Category 4 hurricane with 4 feet sea level riseThe features support the Weather Ready Mattapoisett story map, which can be accessed via the following link:https://epa.maps.arcgis.com/apps/MapJournal/index.html?appid=1ff4f1d28a254cb689334799d94b74e2

  6. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    Science.gov (United States)

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  7. Impacts of cloud flare-ups on hurricane intensity resulting from departures from balance laws

    Directory of Open Access Journals (Sweden)

    T. N. Krishnamurti

    2012-05-01

    Full Text Available Cloud flare-ups along the inner eye wall of a hurricane lead to enhancement of cloud scale divergence, which in turn leads to a large local enhancement of the departure from balance laws and can lead to local supergradient winds. This scenario is tested using the results from a mesoscale microphysical model at horizontal resolution of 1.33 km for the simulation of hurricane Katrina. Rainwater mixing ratio tags growing cloud elements. The departure from balance laws includes terms such as the local, horizontal and vertical advections of divergence, divergence square and a term invoking the gradient of vertical velocity. It is noted that these terms collectively contribute to a substantial local enhancement of the departure from balance laws. Departures from balance laws are related to the radial gradient wind imbalances in a storm-centred coordinate. In this study, several examples, from the hurricane Katrina simulations, that display this scenario of rapid intensification are illustrated. Organisation of convection in the azimuthal direction seems important for the hurricane scale; cloud flare-ups away from such regions of azimuthal organisation fail to contribute to this scenario for the overall intensification of the hurricane.

  8. Modelling dune erosion, overwash and breaching at Fire Island (NY) during hurricane Sandy

    NARCIS (Netherlands)

    De Vet, P.L.M.; McCall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M.

    2015-01-01

    In 2012, Hurricane Sandy caused a breach at Fire Island (NY, USA), near Pelican Island. This paper aims at modelling dune erosion, overwash and breaching processes that occured during the hurricane event at this stretch of coast with the numerical model XBeach. By using the default settings, the

  9. Risk Perceptions on Hurricanes: Evidence from the U.S. Stock Market.

    Science.gov (United States)

    Feria-Domínguez, José Manuel; Paneque, Pilar; Gil-Hurtado, María

    2017-06-05

    This article examines the market reaction of the main Property and Casualty (P & C) insurance companies listed in the New York Stock Exchange (NYSE) to seven most recent hurricanes that hit the East Coast of the United States from 2005 to 2012. For this purpose, we run a standard short horizon event study in order to test the existence of abnormal returns around the landfalls. P & C companies are one of the most affected sectors by such events because of the huge losses to rebuild, help and compensate the inhabitants of the affected areas. From the financial investors' perception, this kind of events implies severe losses, which could influence the expected returns. Our research highlights the existence of significant cumulative abnormal returns around the landfall event window in most of the hurricanes analyzed, except for the Katrina and Sandy Hurricanes.

  10. Metal concentrations in schoolyard soils from New Orleans, Louisiana before and after Hurricanes Katrina and Rita.

    Science.gov (United States)

    Presley, Steven M; Abel, Michael T; Austin, Galen P; Rainwater, Thomas R; Brown, Ray W; McDaniel, Les N; Marsland, Eric J; Fornerette, Ashley M; Dillard, Melvin L; Rigdon, Richard W; Kendall, Ronald J; Cobb, George P

    2010-06-01

    The long-term environmental impact and potential human health hazards resulting from Hurricanes Katrina and Rita throughout much of the United States Gulf Coast, particularly in the New Orleans, Louisiana, USA area are still being assessed and realized after more than four years. Numerous government agencies and private entities have collected environmental samples from throughout New Orleans and found concentrations of contaminants exceeding human health screening values as established by the United States Environmental Protection Agency (USEPA) for air, soil, and water. To further assess risks of exposure to toxic concentrations of soil contaminants for citizens, particularly children, returning to live in New Orleans following the storms, soils collected from schoolyards prior to Hurricane Katrina and after Hurricane Rita were screened for 26 metals. Concentrations exceeding USEPA Regional Screening Levels (USEPA-RSL), total exposure, non-cancer endpoints, for residential soils for arsenic (As), iron (Fe), lead (Pb), and thallium (Tl) were detected in soil samples collected from schoolyards both prior to Hurricane Katrina and after Hurricane Rita. Approximately 43% (9/21) of schoolyard soils collected prior to Hurricane Katrina contained Pb concentrations greater than 400mgkg(-1), and samples from four schoolyards collected after Hurricane Rita contained detectable Pb concentrations, with two exceeding 1700mgkg(-1). Thallium concentrations exceeded USEPA-RSL in samples collected from five schoolyards after Hurricane Rita. Based upon these findings and the known increased susceptibility of children to the effects of Pb exposure, a more extensive assessment of the soils in schoolyards, public parks and other residential areas of New Orleans for metal contaminants is warranted. 2010 Elsevier Ltd. All rights reserved.

  11. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  12. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    ... evacuation decision-making. To accomplish this, the study provides information on the extent and severity of potential flooding from hurricanes, the associated vulnerable population, capacities of existing public shelters...

  13. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    .... The purpose of the study is to provide the Rhode Island Emergency Management Agency and Rhode Island coastal communities with realistic data quantifying the major factors involved in hurricane...

  14. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  15. Assessing the present and future probability of Hurricane Harvey’s rainfall

    OpenAIRE

    Emanuel, Kerry

    2017-01-01

    Significance Natural disasters such as the recent Hurricanes Harvey, Irma, and Maria highlight the need for quantitative estimates of the risk of such disasters. Statistically based risk assessment suffers from short records of often poor quality, and in the case of meteorological hazards, from the fact that the underlying climate is changing. This study shows how a recently developed physics-based risk assessment method can be applied to assessing the probabilities of extreme hurricane rainf...

  16. 75 FR 3217 - J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11392-009] J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License and Soliciting Comments and Motions To Intervene January 12, 2010. On October 30, 2009, J&T Hydro Company (transferor) and...

  17. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Science.gov (United States)

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  18. The leadership competency evaluation of the hospital deans based on the analysis of situational judgment test%基于情境判断测验的院长领导力评价分析

    Institute of Scientific and Technical Information of China (English)

    张宏; 马达飞; 孙东屹; 张光鹏

    2012-01-01

    目的 探索以领导权变理论为基础的情境判断测验对三级医院院长领导力现状进行评价,为今后针对院长的评价和培训以及院长职业化建设工作提供建设性思路.方法 在领导权变理论基础上开发情境判断测验,对215名三级医院院长实施了领导力评价.结果 院长以“教练型”领导风格为主,并且在与“教练型”领导风格相匹配的管理情境中,院长的领导力水平显著高于其他管理情境.结论 当前三级医院院长的领导风格以“教练型”为主,分析其管理特点与院长多来源于临床学科专家有关;而院长总体领导力处于中等水平,还要进一步通过培训手段加强院长的领导管理能力建设.%Objective The research provided the constructive ideas for evaluation and training of deans of tertiary hospital by analyzing the leadership status quo through using the situational judgment test based on the leadership contingency theory.Methods Based on the leadership contingency theory,we designed situational judgment test for the dean of tertiary hospital.There were 215 participants involved in the leadership evaluation. Results The coaching leadership style occupied the mainly leadership style of deans of tertiary hospital.In the management situation matched by the coaching leadership style,the leadership of the deans was significantly higher than other management situations.Conclusion The main conclusion included,firstly,the coaching leadership style was the mainly leadership style of deans of tertiary hospital.It was strongly correlated with the deans' background thatthey were mainly from clinical professionals.Secondly,the leadership of the deans was at middle level;therefore,it needed to increase the capacity building of deans through management training.

  19. First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission

    Science.gov (United States)

    Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric

    2017-12-01

    We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.

  20. A Near-Annual Record of Hurricane Activity From the Little Bahama Bank Over the Last 700 Years

    Science.gov (United States)

    Winkler, T. S.; van Hengstum, P. J.; Donnelly, J. P.; Sullivan, R.; Albury, N. A.

    2016-12-01

    Long-term and high-resolution records of hurricane activity that extend past the short observational record (8m vibracores collected with a Rossfelder P-3. The previous core analyzed (TPBH-C1, Continental Shelf Research, 2014) was likely obtained from the cave-area of the bluehole, and previous radiocarbon-dated bivalves deeper in the core were likely impacted by an old-carbon effect, casting doubt on the veracity of the previous age-model at this site. Recent overwash beds from Hurricane Jeanne (2004) and Hurricane Floyd (1999) are present at all coretops, and additional radiocarbon dating that includes terrestrial organic matter fragments indicates a near-annual sedimentation rate in the bluehole (>1cm yr-1), with the record spanning the last 700 years. Since 1866 CE, 12 hurricanes with wind speeds exceeding Category 2 on the Saffir-Simpson Scale (wind speeds 154-177 km hr-1) have passed within a 50 km radius of TPBH, many of which can be associated with coarse-grained overwash deposits in the top 200 cm of TPBH-C3. It appears from this high-resolution record that 1500-1650 CE and 1750-1800 CE were active intervals for hurricanes near Abaco, which were previously identified in a lower-resolution (multi-decadal) hurricane reconstruction from Abaco (Blackwood Sinkhole). Additionally, these active intervals coincide with evidence of regional storminess from multiple reconstructions based on historical archives (e.g.: Archivo General de Indias, newspapers, ships' logbooks, meteorological journals), and the 1500-1650 CE active interval falls within a previously identified 1400-1675 CE active interval of intense hurricane strikes on the Northeastern United States. Once the age-model is finalized, further comparison of this record to other regional oceanographic and high-resolution hurricane reconstructions may provide further insight into the drivers of hurricane activity during the last millennium.

  1. Development and Application of Syndromic Surveillance for Severe Weather Events Following Hurricane Sandy.

    Science.gov (United States)

    Tsai, Stella; Hamby, Teresa; Chu, Alvin; Gleason, Jessie A; Goodrow, Gabrielle M; Gu, Hui; Lifshitz, Edward; Fagliano, Jerald A

    2016-06-01

    Following Hurricane Superstorm Sandy, the New Jersey Department of Health (NJDOH) developed indicators to enhance syndromic surveillance for extreme weather events in EpiCenter, an online system that collects and analyzes real-time chief complaint emergency department (ED) data and classifies each visit by indicator or syndrome. These severe weather indicators were finalized by using 2 steps: (1) key word inclusion by review of chief complaints from cases where diagnostic codes met selection criteria and (2) key word exclusion by evaluating cases with key words of interest that lacked selected diagnostic codes. Graphs compared 1-month, 3-month, and 1-year periods of 8 Hurricane Sandy-related severe weather event indicators against the same period in the following year. Spikes in overall ED visits were observed immediately after the hurricane for carbon monoxide (CO) poisoning, the 3 disrupted outpatient medical care indicators, asthma, and methadone-related substance use. Zip code level scan statistics indicated clusters of CO poisoning and increased medicine refill needs during the 2 weeks after Hurricane Sandy. CO poisoning clusters were identified in areas with power outages of 4 days or longer. This endeavor gave the NJDOH a clearer picture of the effects of Hurricane Sandy and yielded valuable state preparation information to monitor the effects of future severe weather events. (Disaster Med Public Health Preparedness. 2016;10:463-471).

  2. Understanding household preferences for hurricane risk mitigation information: evidence from survey responses.

    Science.gov (United States)

    Chatterjee, Chiradip; Mozumder, Pallab

    2014-06-01

    Risk information is critical to adopting mitigation measures, and seeking risk information is influenced by a variety of factors. An essential component of the recently adopted My Safe Florida Home (MSFH) program by the State of Florida is to provide homeowners with pertinent risk information to facilitate hurricane risk mitigation activities. We develop an analytical framework to understand household preferences for hurricane risk mitigation information through allowing an intensive home inspection. An empirical analysis is used to identify major drivers of household preferences to receive personalized information regarding recommended hurricane risk mitigation measures. A variety of empirical specifications show that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow inspection to seek information. However, households with more members living in the home and households who live in manufactured/mobile homes are less likely to allow inspection. While findings imply MSFH program's ability to link incentives offered by private and public agencies in promoting mitigation, households that face a disproportionately higher level of risk can get priority to make the program more effective. © 2014 Society for Risk Analysis.

  3. What role do hurricanes play in sediment delivery to subsiding river deltas?

    Science.gov (United States)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  4. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, James E; Bentley, Samuel J; Snedden, Gregg A; White, Crawford

    2015-12-02

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  5. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Duller, G.A.T.; Donnelly, J.P.

    2009-01-01

    Optical dating has been applied to sediments preserved in Little Sippewissett Marsh, Massachusetts, USA, which are associated with overwashing of the beach barrier during hurricane strikes on the coast. The aims were to determine the hurricane landfall frequency, and make comparisons with indepen...

  6. Divergent responses of leaf herbivory to simulated hurricane effects in a rainforest understory

    Science.gov (United States)

    Chelse Prather

    2014-01-01

    Hurricanes are major disturbances in many forests, but studies showing effects of natural hurricanes on herbivory rates have yielded mixed results. Forest managers could benefit from a better understanding of the effects of disturbances on herbivory to manage for particular recovery or restoration goals after anthropogenic or natural disturbances, such as logging and...

  7. Modeling hurricane evacuation traffic : testing the gravity and intervening opportunity models as models of destination choice in hurricane evacuation.

    Science.gov (United States)

    2006-09-01

    The test was conducted by estimating the models on a portion of evacuation data from South Carolina following Hurricane Floyd, and then observing how well the models reproduced destination choice at the county level on the remaining data. The tests s...

  8. An Analysis of the Observed Low-level Structure of Rapidly Intensifying and Mature Hurricane Earl (2010)

    Science.gov (United States)

    2014-01-01

    structure. J. Atmos. Sci. 49: 919–942. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of hurricane Hugo (1989...structure of rapidly intensifying and mature hurricane Earl (2010) Michael T. Montgomery,a* Jun A. Zhangb and Roger K. Smithc aDepartment of Meteorology...Naval Postgraduate School, Monterey, CA, USA bNOAA Hurricane Research Division, Miami, FL, USA cMeteorological Institute, Ludwig Maximilians, University

  9. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  10. Racial Differences in Posttraumatic Stress Disorder Vulnerability Following Hurricane Katrina Among a Sample of Adult Cigarette Smokers from New Orleans.

    Science.gov (United States)

    Alexander, Adam C; Ali, Jeanelle; McDevitt-Murphy, Meghan E; Forde, David R; Stockton, Michelle; Read, Mary; Ward, Kenneth D

    2017-02-01

    Although blacks are more likely than whites to experience posttraumatic stress disorder (PTSD) after a natural disaster, the reasons for this disparity are unclear. This study explores whether race is associated with PTSD after adjusting for differences in preexisting vulnerabilities, exposure to stressors, and loss of social support due to Hurricane Katrina using a representative sample of 279 black and white adult current and past smokers who were present when Hurricane Katrina struck, and identified it as the most traumatic event in their lifetime. Multiple logistic regression models evaluated whether differential vulnerability (pre-hurricane physical and mental health functioning, and education level), differential exposure to hurricane-related stressors, and loss of social support deterioration reduced the association of race with PTSD. Blacks were more likely than whites to screen positive for PTSD (49 vs. 39 %, respectively, p = 0.030). Although blacks reported greater pre-hurricane vulnerability (worse mental health functioning and lower educational attainment) and hurricane-related stressor exposure and had less social support after the hurricane, only pre-hurricane mental health functioning attenuated the association of race with screening positive for PTSD. Thus, racial differences in pre-hurricane functioning, particularly poorer mental health, may partially explain racial disparities in PTSD after natural disasters, such as Hurricane Katrina. Future studies should examine these associations prospectively using representative cohorts of black and whites and include measures of residential segregation and discrimination, which may further our understanding of racial disparities in PTSD after a natural disaster.

  11. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating

    Science.gov (United States)

    Madsen, A. T.; Duller, G. A. T.; Donnelly, J. P.; Roberts, H. M.; Wintle, A. G.

    2009-08-01

    Optical dating has been applied to sediments preserved in Little Sippewissett Marsh, Massachusetts, USA, which are associated with overwashing of the beach barrier during hurricane strikes on the coast. The aims were to determine the hurricane landfall frequency, and make comparisons with independent age control and the historical record. Written sources of hurricane activity along the American east coast are only considered reliable back to the mid 19th century, but the sedimentary record is potentially much longer. Optical dating was applied to quartz grains extracted from thirteen samples within a sediment core from the salt-marsh. Variability in the luminescence characteristics between aliquots was observed and ~ 33% of the measured aliquots were discarded based upon the ratio of the fast component to the medium component. The majority of the samples gave normal dose distributions implying homogeneous resetting of the luminescence signal at the time of deposition, but three of the samples required application of the minimum age model (MAM). Ages ranging between 20 ± 2 and 594 ± 38 years were obtained and are broadly in agreement with independent chronologies, thus demonstrating the potential of optical dating in this setting. The hurricane record based upon optical dating extends approximately 300 years further back in time than the official National Oceanic Atmospheric Administration (NOAA) record. The localised nature of hurricane landfalls means that it will be necessary to collect multiple cores from a number of different sites in order to build up a complete hurricane record for this part of the coast.

  12. Telehealth at the US Department of Veterans Affairs after Hurricane Sandy.

    Science.gov (United States)

    Der-Martirosian, Claudia; Griffin, Anne R; Chu, Karen; Dobalian, Aram

    2018-01-01

    Background Like other integrated health systems, the US Department of Veterans Affairs has widely implemented telehealth during the past decade to improve access to care for its patient population. During major crises, the US Department of Veterans Affairs has the potential to transition healthcare delivery from traditional care to telecare. This paper identifies the types of Veterans Affairs telehealth services used during Hurricane Sandy (2012), and examines the patient characteristics of those users. Methods This study conducted both quantitative and qualitative analyses. Veterans Affairs administrative and clinical data files were used to illustrate the use of telehealth services 12 months pre- and 12 months post- Hurricane Sandy. In-person interviews with 31 key informants at the Manhattan Veterans Affairs Medical Center three-months post- Hurricane Sandy were used to identify major themes related to telecare. Results During the seven-month period of hospital closure at the Manhattan Veterans Affairs Medical Center after Hurricane Sandy, in-person patient visits decreased dramatically while telehealth visits increased substantially, suggesting that telecare was used in lieu of in-person care for some vulnerable patients. The most commonly used types of Veterans Affairs telehealth services included primary care, triage, mental health, home health, and ancillary services. Using qualitative analyses, three themes emerged from the interviews regarding the use of Veterans Affairs telecare post- Hurricane Sandy: patient safety, provision of telecare, and patient outreach. Conclusion Telehealth offers the potential to improve post-disaster access to and coordination of care. More information is needed to better understand how telehealth can change the processes and outcomes during disasters. Future studies should also evaluate key elements, such as adequate resources, regulatory and technology issues, workflow integration, provider resistance, diagnostic fidelity and

  13. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...

  14. Hurricane Ike versus an Atomic Bomb

    Science.gov (United States)

    Pearson, Earl F.

    2013-01-01

    The destructive potential of one of nature's most destructive forces, the hurricane, is compared to one of human's most destructive devices, an atomic bomb. Both can create near absolute devastation at "ground zero". However, how do they really compare in terms of destructive energy? This discussion compares the energy, the…

  15. The carbon cycle and hurricanes in the United States between 1900 and 2011.

    Science.gov (United States)

    Dahal, Devendra; Liu, Shuguang; Oeding, Jennifer

    2014-06-06

    Hurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.S. landfall between 1900 and 2011 and used hurricane best track database, a meteorological model (HURRECON), National Land Cover Database (NLCD), U. S. Department of Agirculture Forest Service biomass dataset, and pre- and post-MODIS data to quantify individual event and annual biomass mortality. Our estimates show an average of 18.2 TgC/yr of live biomass mortality for 1900-2011 in the US with strong spatial and inter-annual variability. Results show Hurricane Camille in 1969 caused the highest aboveground biomass mortality with 59.5 TgC. Similarly 1954 had the highest annual mortality with 68.4 TgC attributed to landfalling hurricanes. The results presented are deemed useful to further investigate historical events, and the methods outlined are potentially beneficial to quantify biomass loss in future events.

  16. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  17. Urban sprawl and body mass index among displaced Hurricane Katrina survivors.

    Science.gov (United States)

    Arcaya, Mariana; James, Peter; Rhodes, Jean E; Waters, Mary C; Subramanian, S V

    2014-08-01

    Existing research suggests that walkable environments are protective against weight gain, while sprawling neighborhoods may pose health risks. Using prospective data on displaced Hurricane Katrina survivors, we provide the first natural experimental data on sprawl and body mass index (BMI). The analysis uses prospectively collected pre- (2003-2005) and post-hurricane (2006-2007) data from the Resilience in Survivors of Katrina (RISK) project on 280 displaced Hurricane Katrina survivors who had little control over their neighborhood placement immediately after the disaster. The county sprawl index, a standardized measure of built environment, was used to predict BMI at follow-up, adjusted for baseline BMI and sprawl; hurricane-related trauma; and demographic and economic characteristics. Respondents from 8 New Orleans-area counties were dispersed to 76 counties post-Katrina. Sprawl increased by an average of 1.5 standard deviations (30 points) on the county sprawl index. Each one point increase in sprawl was associated with approximately .05kg/m(2) higher BMI in unadjusted models (95%CI: .01-.08), and the relationship was not attenuated after covariate adjustment. We find a robust association between residence in a sprawling county and higher BMI unlikely to be caused by self-selection into neighborhoods, suggesting that the built environment may foster changes in weight. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Simulating the formation of Hurricane Isabel (2003) with AIRS data

    Science.gov (United States)

    Wu, Liguang; Braun, Scott A.; Qu, John J.; Hao, Xianjun

    2006-02-01

    Using the AIRS retrieved temperature and humidity profiles, the Saharan Air Layer (SAL) influence on the formation of Hurricane Isabel (2003) is simulated numerically with the MM5 model. The warmth and dryness of the SAL (the thermodynamic effect) is assimilated by use of the nudging technique, which enables the model thermodynamic state to be relaxed to the profiles of the AIRS retrieved data for the regions without cloud contamination. By incorporating the AIRS data, MM5 better simulates the large-scale flow patterns and the timing and location of the formation of Hurricane Isabel and its subsequent track. By comparing with an experiment without nudging of the AIRS data, it is shown that the SAL may have delayed the formation of Hurricane Isabel and inhibited the development of another tropical disturbance to the east. This case study confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  19. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  20. Mother and Child Reports of Hurricane Related Stressors: Data from a Sample of Families Exposed to Hurricane Katrina

    Science.gov (United States)

    Lai, Betty S.; Beaulieu, Brooke; Ogokeh, Constance E.; Self-Brown, Shannon; Kelley, Mary Lou

    2015-01-01

    Background: Families exposed to disasters such as Hurricane Katrina are at risk for numerous adverse outcomes. While previous literature suggests that the degree of disaster exposure corresponds with experiencing negative outcomes, it is unclear if parents and children report similar levels of disaster exposure. Objective: The purpose of this…

  1. Lessons from Crisis Recovery in Schools: How Hurricanes Impacted Schools, Families and the Community

    Science.gov (United States)

    Howat, Holly; Curtis, Nikki; Landry, Shauna; Farmer, Kara; Kroll, Tobias; Douglass, Jill

    2012-01-01

    This article examines school and school district-level efforts to reopen schools after significant damage from hurricanes. Through an empirical, qualitative research design, four themes emerged as critical to the hurricane recovery process: the importance of communication, resolving tension, coordinating with other services and learning from the…

  2. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    Science.gov (United States)

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. © 2013 Society for Risk Analysis.

  3. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    Science.gov (United States)

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2018-03-01

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (M age  = 9.19) before and 9 months after (M age  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  4. Fire management ramifications of Hurricane Hugo

    Science.gov (United States)

    J. M. Saveland; D. D. Wade

    1991-01-01

    Hurricane Hugo passed over the Francis Marion National Forest on September 22, 1989, removing almost 75 percent of the overstory. The radically altered fuel bed presented new and formidable challenges to fire managers. Tractor-plows, the mainstay of fire suppression, were rendered ineffective. The specter of wind-driven escaped burns with no effective means of ground...

  5. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    Science.gov (United States)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  6. Projecting the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests (1851-2100)

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.

    2009-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Estimates of the carbon emissions resulting from single storms range as high as ~100 Tg C, an amount equivalent to the annual U.S. carbon sink in forest trees. Recent studies have estimated the historic regional carbon emissions from hurricane activity using an empirically based approach. Here, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by maps of mortality and damage based on historic hurricane tracks and future scenarios to predict the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests. Model estimates compare well to previous empirically based estimates, with mean annual biomass loss of 26 Tg C yr-1 (range 0 to ~225 Tg C yr-1) resulting from hurricanes during the period 1851-2000. Using the mechanistic model, we are able to include the effects of both disturbance and recovery on the net carbon flux. We find a regional carbon sink throughout much of the 20th century resulting from forest recovery following a peak in hurricane activity during the late 19th century exceeding biomass loss. Recent increased hurricane activity has resulted in the region becoming a net carbon source. For the future, several recent studies have linked increased sea surface temperatures expected with climate change to increased hurricane activity. Based on these relationships, we investigate a range of scenarios of future hurricane activity and find the potential for substantial increases in emissions from hurricane mortality and reductions in regional carbon stocks. In our scenario with the largest increase in hurricane activity, we find a 35% increase in area disturbed by 2100, but due to the reduction of standing biomass, only a 20% increase in biomass loss per year. Developing this kind of predictive modeling capability that tracks disturbance events and

  7. The Role of Peers in the Relation between Hurricane Exposure and Ataques de Nervios among Puerto Rican Adolescents.

    Science.gov (United States)

    Rubens, Sonia L; Felix, Erika D; Vernberg, Eric M; Canino, Glorisa

    2014-11-01

    Although a relation between disaster exposure and ataques de nervios ( ataques ) has been established in adult samples, little is known about this among youth, including factors that may moderate this relation. This study examined the role of the peer context in the relation between exposure to Hurricane Georges and experiencing a past year and lifetime ataques among a representative community sample of 905 youth (N = 476 boys and 429 girls; ages 11-18) residing in Puerto Rico. Data were gathered from 1999-2000 in Puerto Rico, 12-27 months following Hurricane Georges. Logistic regression analyses found that peer violence significantly predicted experiencing an ataque in the past year. Hurricane exposure and peer violence were both significant predictors of a lifetime experience of an ataque . An interaction was found between hurricane exposure and peer violence, indicating that hurricane exposure was significantly related to a lifetime experience of an ataque among adolescents who do not report associating with violent peers. For participants reporting high levels of peer violence, hurricane exposure did not add additional risk for a lifetime experience of an ataque . Understanding the influence of peers in the relation between hurricane exposure and experiencing an ataque may assist in planning developmentally and culturally sensitive response plans.

  8. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Science.gov (United States)

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  9. Transformative experiences for Hurricanes Katrina and Rita disaster volunteers.

    Science.gov (United States)

    Clukey, Lory

    2010-07-01

    The massive destruction caused by Hurricanes Katrina and Rita in 2005 provided an opportunity for many volunteers to be involved with disaster relief work. Exposure to devastation and personal trauma can have long-lasting and sometimes detrimental effects on people providing help. This qualitative study explored the experience of volunteer relief workers who provided disaster relief services after the hurricanes. Three major themes emerged: emotional reactions that included feelings of shock, fatigue, anger and grief as well as sleep disturbances; frustration with leadership; and life-changing personal transformation. Stress reactions were noted but appeared to be mitigated by feelings of compassion for the victims and personal satisfaction in being able to provide assistance. Suggestions are provided for further research.

  10. Quantifying the Digital Traces of Hurricane Sandy on Flickr

    Science.gov (United States)

    Preis, Tobias; Moat, Helen Susannah; Bishop, Steven R.; Treleaven, Philip; Stanley, H. Eugene

    2013-11-01

    Society's increasing interactions with technology are creating extensive ``digital traces'' of our collective human behavior. These new data sources are fuelling the rapid development of the new field of computational social science. To investigate user attention to the Hurricane Sandy disaster in 2012, we analyze data from Flickr, a popular website for sharing personal photographs. In this case study, we find that the number of photos taken and subsequently uploaded to Flickr with titles, descriptions or tags related to Hurricane Sandy bears a striking correlation to the atmospheric pressure in the US state New Jersey during this period. Appropriate leverage of such information could be useful to policy makers and others charged with emergency crisis management.

  11. Lessons from Hurricane Sandy for port resilience.

    Science.gov (United States)

    2013-12-01

    New York Harbor was directly in the path of the most damaging part of Hurricane Sandy causing significant impact on many of the : facilities of the Port of New York and New Jersey. The U.S. Coast Guard closed the entire Port to all traffic before the...

  12. Subinertial response of the Gulf Stream System to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, Lian; Pietrafesa, Leonard J.; Zhang, Chen

    The evidence of subinertial-frequency (with periods from 2 days to 2 weeks) oceanic response to Hurricane Fran of 1996 is documented. Hurricane Fran traveled northward across the Gulf Stream and then over a cool-core trough, known as the Charleston Trough, due east of Charleston, SC and in the lee of the Charleston Bump during the period 4-5 September, 1996. During the passage of the storm, the trough closed into a gyre to form an intense cool-core cyclonic eddy. This cool-core eddy had an initial size of approximately 130 km by 170 km and drifted northeastward along the Gulf Stream front at a speed of 13 to 15 km/day as a subinertial baroclinic wave. Superimposed on this subinertial-frequency wave were near-inertial frequency, internal inertia-gravity waves formed in the stratified mixed-layer base after the passage of the storm. The results from a three-dimensional numerical ocean model confirm the existence of both near-inertial and subinertial-frequency waves in the Gulf Stream system during and after the passage of Hurricane Fran. Model results also showed that hurricane-forced oceanic response can modify Gulf Stream variability at both near-inertial and subinertial frequencies.

  13. Simulating the effects of social networks on a population's hurricane evacuation participation

    Science.gov (United States)

    Widener, Michael J.; Horner, Mark W.; Metcalf, Sara S.

    2013-04-01

    Scientists have noted that recent shifts in the earth's climate have resulted in more extreme weather events, like stronger hurricanes. Such powerful storms disrupt societal function and result in a tremendous number of casualties, as demonstrated by recent hurricane experience in the US Planning for and facilitating evacuations of populations forecast to be impacted by hurricanes is perhaps the most effective strategy for reducing risk. A potentially important yet relatively unexplored facet of people's evacuation decision-making involves the interpersonal communication processes that affect whether at-risk residents decide to evacuate. While previous research has suggested that word-of-mouth effects are limited, data supporting these assertions were collected prior to the widespread adoption of digital social media technologies. This paper argues that the influence of social network effects on evacuation decisions should be revisited given the potential of new social media for impacting and augmenting information dispersion through real-time interpersonal communication. Using geographic data within an agent-based model of hurricane evacuation in Bay County, Florida, we examine how various types of social networks influence participation in evacuation. It is found that strategies for encouraging evacuation should consider the social networks influencing individuals during extreme events, as it can be used to increase the number of evacuating residents.

  14. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    Science.gov (United States)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  15. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    International Nuclear Information System (INIS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik

    2011-01-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  16. Hurricane Inner-Core Structure as Revealed by GPS Dropwindsondes

    National Research Council Canada - National Science Library

    Leejoice, Robert

    2000-01-01

    New high-resolution information of the vertical thermodynamic and kinematic structure of the hurricane inner-core is now available from aircraft released Global Positioning System (GPS) dropwindsondes...

  17. The Repopulation of New Orleans After Hurricane Katrina

    National Research Council Canada - National Science Library

    McCarthy, Kevin; Peterson, D. J; Sastry, Narayan; Pollard, Michael

    2006-01-01

    What the future size and composition of the population of New Orleans will be in the aftermath of Hurricane Katrina is a topic of intense interest and discussion among current and displaced residents of the city...

  18. Measuring and Comparing Hospital Accessibility for Palm Beach County's Elderly and Nonelderly Populations During a Hurricane.

    Science.gov (United States)

    Prasad, Shivangi

    2017-09-18

    To determine whether, during a hurricane, geographic accessibility to hospitals with emergency care is compromised disproportionately for the elderly than for the nonelderly. The locations of hospitals with emergency health care and a subset of those hospitals functional during a hurricane were compared with the distribution of the elderly population at the block group level in Palm Beach County, Florida. Geographic Information Systems (GIS) proximity analysis (minimum distance to closest hospital) and cumulative distribution functions were used to measure and compare hospital accessibility during normal and hurricane conditions for the elderly and nonelderly populations. Accessibility to closest functional hospital during a hurricane was compromised disproportionately for the elderly. Geographic accessibility to emergency health care is compromised disproportionately for the elderly in Palm Beach County. Compounding the risk is the likelihood of the elderly experiencing a greater health care need during a hurricane. This poses a community public health crisis and calls for effective and collaborative planning between health professionals and disaster planners to address the health care needs of the elderly. (Disaster Med Public Health Preparedness. 2017;page 1 of 5).

  19. A hurricane modification process, applying a new technology tested for warm cloud seeding to produce artificial rains

    Science.gov (United States)

    Imai, T.; Martin, I.; Iha, K.

    A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work

  20. Estimating hurricane hazards using a GIS system

    Directory of Open Access Journals (Sweden)

    A. Taramelli

    2008-08-01

    Full Text Available This paper develops a GIS-based integrated approach to the Multi-Hazard model method, with reference to hurricanes. This approach has three components: data integration, hazard assessment and score calculation to estimate elements at risk such as affected area and affected population. First, spatial data integration issues within a GIS environment, such as geographical scales and data models, are addressed. Particularly, the integration of physical parameters and population data is achieved linking remotely sensed data with a high resolution population distribution in GIS. In order to assess the number of affected people, involving heterogeneous data sources, the selection of spatial analysis units is basic. Second, specific multi-hazard tasks, such as hazard behaviour simulation and elements at risk assessment, are composed in order to understand complex hazard and provide support for decision making. Finally, the paper concludes that the integrated approach herein presented can be used to assist emergency management of hurricane consequences, in theory and in practice.

  1. Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles

    OpenAIRE

    Bennett, Joan W.

    2015-01-01

    In the aftermath of Hurricane Katrina, the levees protecting New Orleans, Louisiana failed. Because approximately 80% of the city was under sea level, widespread flooding ensued. As a resident of New Orleans who had evacuated before the storm and a life-long researcher on filamentous fungi, I had known what to expect. After the hurricane I traveled home with a suitcase full of Petri dishes and sampling equipment so as to study the fungi that were “eating my house.” Not only were surfaces cove...

  2. Extreme Hurricane-Generated Waves in Gulf of Mexico

    National Research Council Canada - National Science Library

    Alberto, Carlos; Fernandes, Santos

    2005-01-01

    .... Although WaveWatchIII (WW3) is used by many operational forecasting centers around the world, there is a lack of field studies to evaluate its accuracy in regional applications and under extreme conditions, such as Hurricanes...

  3. The Impact of Hurricane Katrina on Students’ Behavioral Disorder: A Difference-in-Difference Analysis

    Science.gov (United States)

    Tian, Xian-Liang; Guan, Xian

    2015-01-01

    Objective: The objective of this paper is to examine the impact of Hurricane Katrina on displaced students’ behavioral disorder. Methods: First, we determine displaced students’ likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000–2008. Second, we investigate the impact of hurricane on evacuee students’ in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Results: Preliminary analysis demonstrates a sharp increase in displaced students’ relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students’ relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. Conclusion: When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior. PMID:26006127

  4. The Impact of Hurricane Katrina on Students' Behavioral Disorder: A Difference-in-Difference Analysis.

    Science.gov (United States)

    Tian, Xian-Liang; Guan, Xian

    2015-05-22

    The objective of this paper is to examine the impact of Hurricane Katrina on displaced students' behavioral disorder. First, we determine displaced students' likelihood of discipline infraction each year relative to non-evacuees using all K12 student records of the U.S. state of Louisiana during the period of 2000-2008. Second, we investigate the impact of hurricane on evacuee students' in-school behavior in a difference-in-difference framework. The quasi-experimental nature of the hurricane makes this framework appropriate with the advantage that the problem of endogeneity is of least concern and the causal effect of interest can be reasonably identified. Preliminary analysis demonstrates a sharp increase in displaced students' relative likelihood of discipline infraction around 2005 when the hurricane occurred. Further, formal difference-in-difference analysis confirms the results. To be specific, post Katrina, displaced students' relative likelihood of any discipline infraction has increased by 7.3% whereas the increase in the relative likelihood for status offense, offense against person, offense against property and serious crime is 4%, 1.5%, 3.8% and 2.1%, respectively. When disasters occur, as was the case with Hurricane Katrina, in addition to assistance for adult evacuees, governments, in cooperation with schools, should also provide aid and assistance to displaced children to support their mental health and in-school behavior.

  5. A Complex Adaptive System Approach to Forecasting Hurricane Tracks

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  6. Red-cockaded woodpecker cavity-tree damage by Hurricane Rita: an evaluation of contributing factors

    Science.gov (United States)

    Ben Bainbridge; Kristen A. Baum; Daniel Saenz; Cory K. Adams

    2011-01-01

    Picoides borealis (Red-cockaded Woodpecker) is an endangered species inhabiting pine savannas of the southeastern United States. Because the intensity of hurricanes striking the southeastern United States is likely to increase as global temperatures rise, it is important to identify factors contributing to hurricane damage to Red-cockaded Woodpecker cavity-trees. Our...

  7. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  8. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest

    International Nuclear Information System (INIS)

    Vargas, Rodrigo

    2012-01-01

    A current challenge is to understand what are the legacies left by disturbances on ecosystems for predicting response patterns and trajectories. This work focuses on the ecological implications of a major hurricane and analyzes its influence on forest gross primary productivity (GPP; derived from the moderate-resolution imaging spectroradiometer, MODIS) and soil CO 2 efflux. Following the hurricane, there was a reduction of nearly 0.5 kgC m −2 yr −1 , equivalent to ∼15% of the long-term mean GPP (∼3.0 ± 0.2 kgC m −2 yr −1 ; years 2003–8). Annual soil CO 2 emissions for the year following the hurricane were > 3.9 ± 0.5 kgC m −2 yr −1 , whereas for the second year emissions were 1.7 ± 0.4 kgC m −2 yr −1 . Higher annual emissions were associated with higher probabilities of days with extreme soil CO 2 efflux rates ( > 9.7 μmol CO 2 m −2 s −1 ). The variance of GPP was highly variable across years and was substantially increased following the hurricane. Extreme soil CO 2 efflux after the hurricane was associated with deposition of nitrogen-rich fresh organic matter, higher basal soil CO 2 efflux rates and changes in variance of the soil temperature. These results show that CO 2 dynamics are highly variable following hurricanes, but also demonstrate the strong resilience of tropical forests following these events. (letter)

  9. Daily variation in natural disaster casualties: information flows, safety, and opportunity costs in tornado versus hurricane strikes.

    Science.gov (United States)

    Zahran, Sammy; Tavani, Daniele; Weiler, Stephan

    2013-07-01

    Casualties from natural disasters may depend on the day of the week they strike. With data from the Spatial Hazard Events and Losses Database for the United States (SHELDUS), daily variation in hurricane and tornado casualties from 5,043 tornado and 2,455 hurricane time/place events is analyzed. Hurricane forecasts provide at-risk populations with considerable lead time. Such lead time allows strategic behavior in choosing protective measures under hurricane threat; opportunity costs in terms of lost income are higher during weekdays than during weekends. On the other hand, the lead time provided by tornadoes is near zero; hence tornados generate no opportunity costs. Tornado casualties are related to risk information flows, which are higher during workdays than during leisure periods, and are related to sheltering-in-place opportunities, which are better in permanent buildings like businesses and schools. Consistent with theoretical expectations, random effects negative binomial regression results indicate that tornado events occurring on the workdays of Monday through Thursday are significantly less lethal than tornados that occur on weekends. In direct contrast, and also consistent with theory, the expected count of hurricane casualties increases significantly with weekday occurrences. The policy implications of observed daily variation in tornado and hurricane events are considered. © 2012 Society for Risk Analysis.

  10. The Impact of Hurricane Maria on the Vegetation of Dominica and Puerto Rico Using Multispectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Tangao Hu

    2018-05-01

    Full Text Available As the worst natural disaster on record in Dominica and Puerto Rico, Hurricane Maria in September 2017 had a large impact on the vegetation of these islands. In this paper, multitemporal Landsat 8 OLI and Sentinel-2 data are used to investigate vegetation damage on Dominica and Puerto Rico by Hurricane Maria, and related influencing factors are analyzed. Moreover, the changes in the normalized difference vegetation index (NDVI in the year 2017 are compared to reference years (2015 and 2016. The results show that (1 there is a sudden drop in NDVI values after Hurricane Maria’s landfall (decreased about 0.2 which returns to near normal vegetation after 1.5 months; (2 different land cover types have different sensitivities to Hurricane Maria, whereby forest is the most sensitive type, then followed by wetland, built-up, and natural grassland; and (3 for Puerto Rico, the vegetation damage is highly correlated with distance from the storm center and elevation. For Dominica, where the whole island is within Hurricane Maria’s radius of maximum wind, the vegetation damage has no obvious relationship to elevation or distance. The study provides insight into the sensitivity and recovery of vegetation after a major land-falling hurricane, and may lead to improved vegetation protection strategies.

  11. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  12. Vietnamese Hurricane Response Fact Sheets

    Science.gov (United States)

    Các tờ dữ kiện được cung cấp nơi đây mô tả vai trò của EPA trong việc đáp ứng với bão và cách các chương trình cụ thể cung cấp sự hỗ trợ. The Vietnamese fact sheets provided here describe EPA's role in a hurricane response.

  13. Comparing residential contamination in a Houston environmental justice neighborhood before and after Hurricane Harvey.

    Science.gov (United States)

    Horney, Jennifer A; Casillas, Gaston A; Baker, Erin; Stone, Kahler W; Kirsch, Katie R; Camargo, Krisa; Wade, Terry L; McDonald, Thomas J

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex environmental toxicants. Exposure to them has been linked to adverse health outcomes including cancer, as well as diseases of the skin, liver, and immune system. Based on an ongoing community engagement partnership with stakeholder groups and residents, we conducted a small longitudinal study to assess domestic exposure to PAHs among residents of Manchester, an environmental justice neighborhood located in the East End of Houston, TX. In December, 2016, we used fiber wipes to collect samples of household dust from 25 homes in Manchester. Following Hurricane Harvey, in September 2017, we revisited 24 of the 25 homes to collect soil samples from the front yards of the same homes. Wipes and soil were analyzed for the presence of PAHs using gas chromatography-mass spectrometry (GC-MS) methods. Principal component analysis plots, heatmaps, and PAH ratios were used to compare pre- and post-Hurricane Harvey samples. While direct comparison is not possible, we present three methods for comparing PAHs found in pre-hurricane fiber wipes and post-hurricane soil samples. The methods demonstrate that the PAHs found before and after Hurricane Harvey are likely from similar sources and that those sources are most likely to be associated with combustion. We also found evidence of redistribution of PAHs due to extreme flooding associated with Hurricane Harvey. Residents of the Manchester neighborhood of Houston, TX, are exposed to a range of PAHs in household dust and outdoor soil. While it was not possible to compare directly, we were able to use several methods to assess detected concentrations, changes in site-specific PAH allocations, and PAH origination. Additional research is needed to identify specific sources of domestic PAH exposure in these communities and continued work involving community members and policy makers should aim to develop interventions to reduce domestic exposure to and prevent negative health outcomes

  14. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  15. Hurricane Havoc - Mapping the Mayhem with NOAA's National Water Model

    Science.gov (United States)

    Aggett, G. R.; Stone, M.

    2017-12-01

    With Hurricane Irene as an example, this work demonstrates the versatility of NOAA's new National Water Model (NWM) as a tool for analyzing hydrologic hazards before, during, and after events. Hurricane Irene made landfall on the coast of North Carolina on August 27, 2011, and made its way up the East Coast over the next 3 days. This storm caused widespread flooding across the Northeast, where rain totals over 20" and wind speeds of 100mph were recorded, causing loss of life and significant damage to infrastructure. Large portions of New York and Vermont were some of the hardest hit areas. This poster will present a suite of post-processed products, derived from NWM output, that are currently being developed at NOAA's National Water Center in Tuscaloosa, AL. The National Water Model is allowing NOAA to expand its water prediction services to the approximately 2.7 million stream reaches across the U.S. The series of forecasted and real-time analysis products presented in this poster will demonstrate the strides NOAA is taking to increase preparedness and aid response to severe hydrologic events, like Hurricane Irene.

  16. Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer

    National Research Council Canada - National Science Library

    Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil

    2005-01-01

    .... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...

  17. The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)

    Science.gov (United States)

    Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.

    2017-12-01

    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast

  18. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  19. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992

    International Nuclear Information System (INIS)

    Hebdon, F.J.

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility's actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities

  20. Modelling hurricane exposure and wind speed on a mesoclimate scale: a case study from Cusuco NP, Honduras.

    Science.gov (United States)

    Batke, Sven P; Jocque, Merlijn; Kelly, Daniel L

    2014-01-01

    High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%.

  1. Hurricane Harvey: Infrastructure Damage Assessment of Texas' Central Gulf Coast Region

    Science.gov (United States)

    Mooney, W. D.; Fovenyessy, S.; Patterson, S. F.

    2017-12-01

    We report a detailed ground-based damage survey for Hurricane Harvey, the first major hurricane to make landfall along the central Texas coast since the 1970 Category 3 Hurricane Celia. Harvey, a Category 4 storm, made landfall near Rockport, Texas on August 25th, 2017 at 10 PM local time. From September 2nd to 5th we visited Rockport and 22 nearby cities to assess the severity of the damage. Nearly all damage observed occurred as a direct result of the hurricane-force winds, rather than a storm surge. This observation is in contrast to the severe damage caused by both high winds and a significant storm surge, locally 3 to 5 m in height, in the 2013 Category 5 Hurricane Haiyan, that devastated the Philippines. We have adopted a damage scale and have given an average damage score for each of the areas investigated. Our damage contour map illustrates the areal variation in damage. The damage observed was widespread with a high degree of variability. Different types of damage included: (1) fallen fences and utility poles; (2) trees with branches broken or completely snapped in half; (3) business signs that were either partially or fully destroyed; (4) partially sunken or otherwise damaged boats; (5) and sheet metal sheds either completely or partially destroyed. There was also varying degrees of damage to both residential and commercial structures. Many homes had (6) roof damage, ranging from minor damage to complete destruction of the roof and second story, and (7) siding damage, where parts or whole sections of the homes siding had been removed. The area that had the lowest average damage score was Corpus Christi, and the areas that had the highest average damage score was both Fulton and Holiday Beach. There is no simple, uniform pattern of damage distribution. Rather, the damage was scattered, revealing hot spots of areas that received more damage than the surrounding area. However, when compared to the NOAA wind swath map, all of the damage was contained within

  2. Clinical holistic medicine: the Dean Ornish program ("opening the heart") in cardiovascular disease.

    Science.gov (United States)

    Ventegodt, Søren; Merrick, Efrat; Merrick, Joav

    2006-02-02

    Dean Ornish of the Preventive Medicine Research Institute in Sausalito, California has created an intensive holistic treatment for coronary heart patients with improved diet (low fat, whole foods, plant based), exercise, stress management, and social support that has proven to be efficient. In this paper, we analyze the rationale behind his cure in relation to contemporary holistic medical theory. In spite of a complex treatment program, the principles seem to be simple and in accordance with holistic medical theories, like the Antonovsky concept of rehabilitating the sense of coherence and the life mission theory for holistic medicine. We believe there is a need for the allocation of resources for further research into the aspects of holistic health and its methods, where positive and significant results have been proven and reproduced at several sites.

  3. Comparison of hurricane exposure methods and associations with county fetal death rates, adjusting for environmental quality

    Science.gov (United States)

    Adverse effects of hurricanes are increasing as coastal populations grow and events become more severe. Hurricane exposure during pregnancy can influence fetal death rates through mechanisms related to healthcare, infrastructure disruption, nutrition, and injury. Estimation of hu...

  4. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  5. Predicting the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane Ike

    OpenAIRE

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Son, K.

    2013-01-01

    Following growing public awareness of the danger from hurricanes and tremendous demands for analysis of loss, many researchers have conducted studies to develop hurricane damage analysis methods. Although researchers have identified the significant indicators, there currently is no comprehensive research for identifying the relationship among the vulnerabilities, natural disasters, and economic losses associated with individual bu...

  6. External factors impacting hospital evacuations caused by Hurricane Rita: the role of situational awareness.

    Science.gov (United States)

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to

  7. Estimation of Phytoplankton Responses to Hurricane Gonu over the Arabian Sea Based on Ocean Color Data

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2008-08-01

    Full Text Available In this study the authors investigated phytoplankton variations in the Arabian Sea associated with Hurricane Gonu using remote-sensing data of chlorophyll-a (Chl-a, sea surface temperature (SST and winds. Additional data sets used for the study included the hurricane and Conductivity-Temperature-Depth data. Hurricane Gonu, presenting extremely powerful wind intensity, originated over the central Arabian Sea (near 67.7ºE, 15.1ºN on June 2, 2007; it traveled along a northwestward direction and made landfall in Iran around June 7. Before Hurricane Gonu, Chl-a data indicated relatively low phytoplankton biomass (0.05-0.2 mg m-3, along with generally high SST (>28.5 ºC and weak wind (<10 m s-1 in the Arabian Sea. Shortly after Gonu’s passage, two phytoplankton blooms were observed northeast of Oman (Chl-a of 3.5 mg m-3 and in the eastern central Arabian Sea (Chl-a of 0.4 mg m-3, with up to 10-fold increase in surface Chl-a concentrations, respectively. The Chl-a in the two post-hurricane blooms were 46% and 42% larger than those in June of other years, respectively. The two blooms may be attributed to the storm-induced nutrient uptake, since hurricane can influence intensively both dynamical and biological processes through vertical mixing and Ekman Pumping.

  8. Short-term impacts of Hurricanes Irma and Maria on tropical stream chemistry as measured by in-situ sensors

    Science.gov (United States)

    McDowell, W. H.; Potter, J.; López-Lloreda, C.

    2017-12-01

    High intensity hurricanes have been shown to alter topical forest productivity and stream chemistry for years to decades in the montane rain forest of Puerto Rico, but much less is known about the immediate ecosystem response to these extreme events. Here we report the short-term impacts of Hurricanes Irma and Maria on the chemistry of Quebrada Sonadora immediately before and after the storms. We place the results from our 15-minute sensor record in the context of long-term weekly sampling that spans 34 years and includes two earlier major hurricanes (Hugo and Geoges). As expected, turbidity during Maria was the highest in our sensor record (> 1000 NTU). Contrary to our expectations, we found that solute-flow behavior changed with the advent of the storms. Specific conductance showed a dilution response to flow before the storms, but then changed to an enrichment response during and after Maria. This switch in system behavior is likely due to the deposition of marine aerosols during the hurricane. Nitrate concentrations showed very little response to discharge prior to the recent hurricanes, but large increase in concentration occurred at high flow both during and after the hurricanes. Baseflow nitrate concentrations decreased immediately after Irma to below the long-term background concentrations, which we attribute to the immobilization of N on organic debris choking the stream channel. Within three weeks of Hurricane Maria, baseflow nitrate concentrations began to rise. This is likely due to mineralization of N from decomposing canopy vegetation on the forest floor, and reduced N uptake by hurricane-damaged vegetation. The high frequency sensors are providing new insights into the response of this ecosystem in the days and weeks following two major disturbance events. The flipping of nitrate response to storms, from source limited to transport limited, suggests that these two severe hurricanes have fundamentally altered the nitrogen cycle at the site in ways

  9. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  10. Nature Run for the North Atlantic Ocean Hurricane Region: System Evaluation and Regional Applications

    Science.gov (United States)

    Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.

    2016-02-01

    A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).

  11. Impacts of Hurricanes Frances and Jeanne on Two Nourished Beaches along the Southeast Florida Coast

    NARCIS (Netherlands)

    Benedet, L.; Campbell, T.; Finkl, C.W.; Stive, M.J.F.; Spadoni, R.

    2005-01-01

    Site inspections and beacli profile surveys of nourislied beaclies in the city of Boca Raton, and Town of Palm Beach, Florida show that the nourished beaches protected the shore from hurricane impacts in 2004. Striking the southeast coast of Florida within 20 days of each other. Hurricane Frances

  12. Building infrastructure to prevent disasters like Hurricane Maria

    Science.gov (United States)

    Bandaragoda, C.; Phuong, J.; Mooney, S.; Stephens, K.; Istanbulluoglu, E.; Pieper, K.; Rhoads, W.; Edwards, M.; Pruden, A.; Bales, J.; Clark, E.; Brazil, L.; Leon, M.; McDowell, W. G.; Horsburgh, J. S.; Tarboton, D. G.; Jones, A. S.; Hutton, E.; Tucker, G. E.; McCready, L.; Peckham, S. D.; Lenhardt, W. C.; Idaszak, R.

    2017-12-01

    2000 words Recovery efforts from natural disasters can be more efficient with data-driven information on current needs and future risks. We aim to advance open-source software infrastructure to support scientific investigation and data-driven decision making with a prototype system using a water quality assessment developed to investigate post-Hurricane Maria drinking water contamination in Puerto Rico. The widespread disruption of water treatment processes and uncertain drinking water quality within distribution systems in Puerto Rico poses risk to human health. However, there is no existing digital infrastructure to scientifically determine the impacts of the hurricane. After every natural disaster, it is difficult to answer elementary questions on how to provide high quality water supplies and health services. This project will archive and make accessible data on environmental variables unique to Puerto Rico, damage caused by Hurricane Maria, and will begin to address time sensitive needs of citizens. The initial focus is to work directly with public utilities to collect and archive samples of biological and inorganic drinking water quality. Our goal is to advance understanding of how the severity of a hazard to human health (e.g., no access to safe culinary water) is related to the sophistication, connectivity, and operations of the physical and related digital infrastructure systems. By rapidly collecting data in the early stages of recovery, we will test the design of an integrated cyberinfrastructure system to for usability of environmental and health data to understand the impacts from natural disasters. We will test and stress the CUAHSI HydroShare data publication mechanisms and capabilities to (1) assess the spatial and temporal presence of waterborne pathogens in public water systems impacted by a natural disaster, (2) demonstrate usability of HydroShare as a clearinghouse to centralize selected datasets related to Hurricane Maria, and (3) develop a

  13. Estimating hypothetical present-day insured losses for past intense hurricanes in the French Antilles

    Science.gov (United States)

    Thornton, James; Desarthe, Jérémy; Naulin, Jean-Philippe; Garnier, Emmanuel; Liu, Ye; Moncoulon, David

    2015-04-01

    On the islands of the French Antilles, the period for which systematic meteorological measurements and historic event loss data are available is short relative to the recurrence intervals of very intense, damaging hurricanes. Additionally, the value of property at risk changes through time. As such, the recent past can only provide limited insight into potential losses from extreme storms in coming years. Here we present some research that seeks to overcome, as far as is possible, the limitations of record length in assessing the possible impacts of near-future hurricanes on insured properties. First, using the archives of the French overseas departments (which included administrative and weather reports, inventories of damage to houses, crops and trees, as well as some meteorological observations after 1950) we reconstructed the spatial patterns of hazard intensity associated with three historical events. They are: i) the 1928 Hurricane (Guadeloupe), ii) Hurricane Betsy (1956, Guadeloupe) and iii) Hurricane David (1979, Martinique). These events were selected because all were damaging, and the information available on each is rich. Then, using a recently developed catastrophe model for hurricanes affecting Guadeloupe, Martinique, Saint-Barthélemy and Saint-Martin, we simulated the hypothetical losses to insured properties that the reconstructed events might cause if they were to reoccur today. The model simulated damage due to wind, rainfall-induced flooding and storm surge flooding. These 'what if' scenarios provided an initial indication of the potential present-day exposure of the insurance industry to intense hurricanes. However, we acknowledge that historical events are unlikely to repeat exactly. We therefore extended the study by producing a stochastic event catalogue containing a large number of synthetic but plausible hurricane events. Instrumental data were used as a basis for event generation, but importantly the statistical methods we applied permit

  14. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  15. Estimating soil turnover rate from tree uprooting during hurricanes in Puerto Rico

    Science.gov (United States)

    Lenart, M.T.; Falk, D.A.; Scatena, F.N.; Osterkamp, W.R.

    2010-01-01

    Soil turnover by tree uprooting in primary and secondary forests on the island of Puerto Rico was measured in 42 study plots in the months immediately after the passage of a Category 3 hurricane. Trunk basal area explained 61% of the variability of mound volume and 53% of the variability of mound area. The proportion of uprooted trees, the number of uprooted trees, or the proportion of uprooted basal area explained 84-85% of the variation in hurricane-created mound area. These same variables explain 79-85% of the variation in mound volume. The study indicates that the soil turnover period from tree uprooting by Puerto Rican hurricanes is between 1600 and 4800 years. These rates are faster than soil turnover by landslides and background treefall in the same area and provide a useful age constraint on soil profile development and soil carbon sequestration in these dynamic landscapes. ?? 2009 Elsevier B.V.

  16. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Science.gov (United States)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  17. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    OpenAIRE

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS A...

  18. The effects of Hurricane Sandy on trauma center admissions.

    Science.gov (United States)

    Curran, T; Bogdanovski, D A; Hicks, A S; Bilaniuk, J W; Adams, J M; Siegel, B K; DiFazio, L T; Durling-Grover, R; Nemeth, Z H

    2018-02-01

    Hurricane Sandy was a particularly unusual storm with regard to both size and location of landfall. The storm landed in New Jersey, which is unusual for a tropical storm of such scale, and created hazardous conditions which caused injury to residents during the storm and in the months following. This study aims to describe differences in trauma center admissions and patterns of injury during this time period when compared to a period with no such storm. Data were collected for this study from patients who were admitted to the trauma center at Morristown Medical Center during Hurricane Sandy or the ensuing cleanup efforts (patients admitted between 29 October 2012 and 27 December 2012) as well as a control group consisting of all patients admitted to the trauma center between 29 October 2013 and 27 December 2013. Patient information was collected to compare the admissions of the trauma center during the period of the storm and cleanup to the control period. A total of 419 cases were identified in the storm and cleanup period. 427 were identified for the control. Striking injuries were more common in the storm and cleanup group by 266.7% (p = 0.0107); cuts were more common by 650.8% (p = 0.0044). Medical records indicate that many of these injuries were caused by Hurricane Sandy. Self-inflicted injuries were more common by 301.3% (p = 0.0294). There were no significant differences in the total number of patients, mortality, or injury severity score between the two cohorts. The data we have collected show that the conditions caused by Hurricane Sandy and the following cleanup had a significant effect on injury patterns, with more patients having been injured by being struck by falling or thrown objects, cut while using tools, or causing self-inflicted injuries. These changes, particularly during the cleanup period, are indicative of environmental changes following the storm which increase these risks of injury.

  19. The location of displaced New Orleans residents in the year after Hurricane Katrina.

    Science.gov (United States)

    Sastry, Narayan; Gregory, Jesse

    2014-06-01

    Using individual data from the restricted version of the American Community Survey, we examined the displacement locations of pre-Hurricane Katrina adult residents of New Orleans in the year after the hurricane. More than one-half (53 %) of adults had returned to-or remained in-the New Orleans metropolitan area, with just under one-third of the total returning to the dwelling in which they resided prior to Hurricane Katrina. Among the remainder, Texas was the leading location of displaced residents, with almost 40 % of those living away from the metropolitan area (18 % of the total), followed by other locations in Louisiana (12 %), the South region of the United States other than Louisiana and Texas (12 %), and elsewhere in the United States (5 %). Black adults were considerably more likely than nonblack adults to be living elsewhere in Louisiana, in Texas, and elsewhere in the South. The observed race disparity was not accounted for by any of the demographic or socioeconomic covariates in the multinomial logistic regression models. Consistent with hypothesized effects, we found that following Hurricane Katrina, young adults (aged 25-39) were more likely to move further away from New Orleans and that adults born outside Louisiana were substantially more likely to have relocated away from the state.

  20. Economic impacts of hurricanes on forest owners

    Science.gov (United States)

    Jeffrey P. Prestemon; Thomas P. Holmes

    2010-01-01

    We present a conceptual model of the economic impacts of hurricanes on timber producers and consumers, offer a framework indicating how welfare impacts can be estimated using econometric estimates of timber price dynamics, and illustrate the advantages of using a welfare theoretic model, which includes (1) welfare estimates that are consistent with neo-classical...

  1. Integrating UAV and orbital remote sensing for spatiotemporal assessment of coastal vegetation health following hurricane events

    Science.gov (United States)

    Bernardes, S.; Madden, M.; Jordan, T.; Knight, A.; Aragon, A.

    2017-12-01

    Hurricane impacts often include the total or partial removal of vegetation due to strong winds (e.g., uprooted trees and broken trunks and limbs). Those impacts can usually be quickly assessed following hurricanes, by using established field and remote sensing methods. Conversely, impacts on vegetation health may present challenges for identification and assessment, as they are disconnected in time from the hurricane event and may be less evident. For instance, hurricanes may promote drastic increases in salinity of water available to roots and may increase exposure of aerial parts to salt spray. Derived stress conditions can negatively impact biological processes and may lead to plant decline and death. Large areas along the coast of the United States have been affected by hurricanes and show such damage (vegetation browning). Those areas may continue to be impacted, as climate projections indicate that hurricanes may become more frequent and intense, resulting from the warming of ocean waters. This work uses remote sensing tools and techniques to record and assess impacts resulting from recent hurricanes at Sapelo Island, a barrier island off the coast of the State of Georgia, United States. Analyses included change detection at the island using time series of co-registered Sentinel 2 and Landsat images. A field campaign was conducted in September 2017, which included flying three UAVs over the island and collecting high-overlap 20-megapixel RGB images at two spatial resolutions (1 and 2 inches/pixel). A five-band MicaSense RedEdge camera, a downwelling radiation sensor and calibration panel were used to collect calibrated multispectral images of multiple vegetation types, including healthy vegetation and vegetation affected by browning. Drone images covering over 600 acres were then analyzed for vegetation status and damage, with emphasis to vegetation removal and browning resulting from salinity alterations and salt spray. Results from images acquired by drones

  2. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    Science.gov (United States)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  3. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    Science.gov (United States)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  4. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    Science.gov (United States)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  5. Weathering the storm: hurricanes and birth outcomes.

    Science.gov (United States)

    Currie, Janet; Rossin-Slater, Maya

    2013-05-01

    A growing literature suggests that stressful events in pregnancy can have negative effects on birth outcomes. Some of the estimates in this literature may be affected by small samples, omitted variables, endogenous mobility in response to disasters, and errors in the measurement of gestation, as well as by a mechanical correlation between longer gestation and the probability of having been exposed. We use millions of individual birth records to examine the effects of exposure to hurricanes during pregnancy, and the sensitivity of the estimates to these econometric problems. We find that exposure to a hurricane during pregnancy increases the probability of abnormal conditions of the newborn such as being on a ventilator more than 30min and meconium aspiration syndrome (MAS). Although we are able to reproduce previous estimates of effects on birth weight and gestation, our results suggest that measured effects of stressful events on these outcomes are sensitive to specification and it is preferable to use more sensitive indicators of newborn health. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Spatial-Temporal Analysis of Openstreetmap Data after Natural Disasters: a Case Study of Haiti Under Hurricane Matthew

    Science.gov (United States)

    Xu, J.; Li, L.; Zhou, Q.

    2017-09-01

    Volunteered geographic information (VGI) has been widely adopted as an alternative for authoritative geographic information in disaster management considering its up-to-date data. OpenStreetMap, in particular, is now aiming at crisis mapping for humanitarian purpose. This paper illustrated that natural disaster played an essential role in updating OpenStreetMap data after Haiti was hit by Hurricane Matthew in October, 2016. Spatial-temporal analysis of updated OSM data was conducted in this paper. Correlation of features was also studied to figure out whether updates of data were coincidence or the results of the hurricane. Spatial pattern matched the damaged areas and temporal changes fitted the time when disaster occurred. High level of correlation values of features were recorded when hurricane occurred, suggesting that updates in data were led by the hurricane.

  7. Staying Safe in Your Home During a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If you are not ordered to evacuate, and you stay in your home through a hurricane, there are things you can do to protect yourself and your family.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 8/13/2008.

  8. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is

  9. Bleeding Mud: The Testimonial Poetry of Hurricane Mitch in Nicaragua

    Directory of Open Access Journals (Sweden)

    Erin S Finzer

    2015-01-01

    Full Text Available Beginning with Rubén Darío, Nicaragua has long prided itself in being a country of poets. During the Sandinista Revolution, popular poetry workshops dispatched by Minister of Culture Ernesto Cardenal taught peasants and soldiers to write poetry about everyday life and to use poetry as a way to work through trauma from the civil war. When Hurricane Mitch--one of the first superstorms that heralded climate change--brought extreme flooding to Nicaragua in 1998, poetry again served as a way for victims to process the devastation. Examining testimonial poetry from Hurricane Mitch, this article shows how the mud and despair of this environmental disaster function as palimpsests of conquest and imperial oppression.

  10. A tool for rapid post-hurricane urban tree debris estimates using high resolution aerial imagery

    Science.gov (United States)

    Zoltan Szantoi; Sparkle L Malone; Francisco Escobedo; Orlando Misas; Scot Smith; Bon Dewitt

    2012-01-01

    Coastal communities in the southeast United States have regularly experienced severe hurricane impacts. To better facilitate recovery efforts in these communities following natural disasters, state and federal agencies must respond quickly with information regarding the extent and severity of hurricane damage and the amount of tree debris volume. A tool was developed...

  11. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    Science.gov (United States)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  12. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  13. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    Science.gov (United States)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  14. Utilizing NASA Earth Observations to Assess Impacts of Hurricanes Andrew and Irma on Mangrove Forests in Biscayne Bay National Park, FL

    Science.gov (United States)

    Kumar, A.; Weber, S.; Remillard, C.; Escobar Pardo, M. L.; Hashemi Tonekaboni, N.; Cameron, C.; Linton, S.; Rickless, D.; Rivero, R.; Madden, M.

    2017-12-01

    Extreme weather events, such as hurricanes, pose major threats to coastal communities around the globe. However, mangrove forests along coastlines act as barriers and subdue the impacts associated with these catastrophic events. The Biscayne Bay National Park mangrove forest located near the city of Miami Beach was recently affected by the category four hurricane Irma in September of 2017. This study analyzed the impact of Hurricane Irma on Biscayne Bay National Park mangroves. Several remote sensing datasets including Landsat 8 Operational Land Imager (OLI), Sentinel 2-Multi Spectral Imager (MSI), PlanetScope, and aerial imagery were utilized to assess pre-and post-hurricane conditions. The high-resolution aerial imagery and PlanetScope data were used to map damaged areas within the national park. Additionally, Landsat 8 OLI and Sentinel-2 MSI data were utilized to estimate changes in biophysical parameters, including gross primary productivity (GPP), before and after Hurricane Irma. This project also examined damages associated with Hurricane Andrew (1992) using historical Landsat 5 Thematic Mapper (TM) data. These results were compared to GPP estimates following Hurricane Irma and suggested that Hurricane Andrew's impact was greater than that of Irma in Biscayne Bay National Park. The results of this study will help to enhance the mangrove health monitoring and shoreline management programs led by officials at the City of Miami Beach Public Works Department.

  15. How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?

    Science.gov (United States)

    Anandhi, A.

    2017-12-01

    The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.

  16. Family and peer social support and their links to psychological distress among hurricane-exposed minority youth.

    Science.gov (United States)

    Banks, Donice M; Weems, Carl F

    2014-07-01

    Experiencing a disaster such as a hurricane places youth at a heightened risk for psychological distress such as symptoms of posttraumatic stress disorder (PTSD), anxiety, and depression. Social support may contribute to resilience following disasters, but the interrelations of different types of support, level of exposure, and different symptoms among youth is not well understood. This study examined associations among family and peer social support, level of hurricane exposure, and their links to psychological distress using both a large single-time assessment sample (N = 1,098) as well as a longitudinal sample followed over a 6-month period (n = 192). Higher levels of hurricane exposure were related to lower levels of social support from family and peers. Higher levels of family and peer social support demonstrated both concurrent and longitudinal associations with lower levels of psychological distress, with associations varying by social support source and psychological distress outcome. Findings also suggested that the protective effects of high peer social support may be diminished by high hurricane exposure. The results of this study further our understanding of the role of social support in hurricane-exposed youths' emotional functioning and point to the potential importance of efforts to bolster social support following disasters.

  17. High-Amplitude Atlantic Hurricanes Produce Disparate Mortality in Small, Low-Income Countries.

    Science.gov (United States)

    Dresser, Caleb; Allison, Jeroan; Broach, John; Smith, Mary-Elise; Milsten, Andrew

    2016-12-01

    Hurricanes cause substantial mortality, especially in developing nations, and climate science predicts that powerful hurricanes will increase in frequency during the coming decades. This study examined the association of wind speed and national economic conditions with mortality in a large sample of hurricane events in small countries. Economic, meteorological, and fatality data for 149 hurricane events in 16 nations between 1958 and 2011 were analyzed. Mortality rate was modeled with negative binomial regression implemented by generalized estimating equations to account for variable population exposure, sequence of storm events, exposure of multiple islands to the same storm, and nonlinear associations. Low-amplitude storms caused little mortality regardless of economic status. Among high-amplitude storms (Saffir-Simpson category 4 or 5), expected mortality rate was 0.72 deaths per 100,000 people (95% confidence interval [CI]: 0.16-1.28) for nations in the highest tertile of per capita gross domestic product (GDP) compared with 25.93 deaths per 100,000 people (95% CI: 13.30-38.55) for nations with low per capita GDP. Lower per capita GDP and higher wind speeds were associated with greater mortality rates in small countries. Excessive fatalities occurred when powerful storms struck resource-poor nations. Predictions of increasing storm amplitude over time suggest increasing disparity between death rates unless steps are taken to modify the risk profiles of poor nations. (Disaster Med Public Health Preparedness. 2016;10:832-837).

  18. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  19. Leveraging Social Media Data to Understand Disaster Resilience: A Case Study of Hurricane Isaac

    Science.gov (United States)

    Zou, L.; Lam, N.; Cai, H.

    2017-12-01

    Coastal communities are facing multiple threats from natural hazards, such as hurricanes, flooding, and storm surge, and show uneven response and recovery behaviors. To build a sustainable coast, it is critical to understand how coastal hazards affect humans and how to enhance disaster resilience. However, understanding community resilience remains challenging, due to the lack of real-time data describing community's response and recovery behaviors during disasters. Public discussion through social media platforms provides an opportunity to understand these behaviors by categorizing real-time social media data into three main phases of emergency management - preparedness, response, and recovery. This study analyzes the spatial-temporal patterns of Twitter use and content during Hurricane Isaac, which struck coastal Louisiana on August 29, 2012. The study area includes counties affected by Hurricane Isaac in Louisiana and Mississippi. The objectives are three-fold. First, we will compute a set of Twitter indices to quantify the Twitter activities during Hurricane Issac and the results will be compared with those of Hurricane Sandy to gain a better understanding of human response in extreme events. Second, county-level disaster resilience in the affected region will be computed and evaluated using the Resilience Inference Measurement (RIM) model. Third, we will examine the relationship between the geographical and social disparities in Twitter use and the disparities in disaster resilience and evaluate the role of Twitter use in disaster resilience. Knowledge gained from this study could provide valuable insights into strategies for utilizing social media data to increase resilience to disasters.

  20. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  1. Magnetorotational and Parker instabilities in magnetized plasma Dean flow as applied to centrifugally confined plasmas

    International Nuclear Information System (INIS)

    Huang Yimin; Hassam, A.B.

    2003-01-01

    The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear (magnetorotational instability) and magnetic buoyancy (Parker instability). It is shown that the flow shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability could occur. For a high Mach number (M S ), high Alfven Mach number (M A ) system with M S M A > or approx. πR/a (R/a is the aspect ratio), the Parker instability is unstable for long axial wavelength modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed

  2. Drag Coefficient Comparisons Between Observed and Model Simulated Directional Wave Spectra Under Hurricane Conditions

    Science.gov (United States)

    2016-04-19

    the Wave Model (WAM; Hasselmann t al., 1988 ), and Simulating Waves Nearshore ( SWAN ; Booij et al., 999...of the circle represents the maximum wind speed of the hurricane. The black lines in the vicinity of the hurricane track represent the aircraft...contour maps and black contour lines for the model spec- ra at the same location. Then, the model spectra energy exceeds RA pk are plotted as

  3. Comparing residential contamination in a Houston environmental justice neighborhood before and after Hurricane Harvey.

    Directory of Open Access Journals (Sweden)

    Jennifer A Horney

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are complex environmental toxicants. Exposure to them has been linked to adverse health outcomes including cancer, as well as diseases of the skin, liver, and immune system. Based on an ongoing community engagement partnership with stakeholder groups and residents, we conducted a small longitudinal study to assess domestic exposure to PAHs among residents of Manchester, an environmental justice neighborhood located in the East End of Houston, TX.In December, 2016, we used fiber wipes to collect samples of household dust from 25 homes in Manchester. Following Hurricane Harvey, in September 2017, we revisited 24 of the 25 homes to collect soil samples from the front yards of the same homes. Wipes and soil were analyzed for the presence of PAHs using gas chromatography-mass spectrometry (GC-MS methods. Principal component analysis plots, heatmaps, and PAH ratios were used to compare pre- and post-Hurricane Harvey samples.While direct comparison is not possible, we present three methods for comparing PAHs found in pre-hurricane fiber wipes and post-hurricane soil samples. The methods demonstrate that the PAHs found before and after Hurricane Harvey are likely from similar sources and that those sources are most likely to be associated with combustion. We also found evidence of redistribution of PAHs due to extreme flooding associated with Hurricane Harvey.Residents of the Manchester neighborhood of Houston, TX, are exposed to a range of PAHs in household dust and outdoor soil. While it was not possible to compare directly, we were able to use several methods to assess detected concentrations, changes in site-specific PAH allocations, and PAH origination. Additional research is needed to identify specific sources of domestic PAH exposure in these communities and continued work involving community members and policy makers should aim to develop interventions to reduce domestic exposure to and prevent negative

  4. Performance of social network sensors during Hurricane Sandy.

    Directory of Open Access Journals (Sweden)

    Yury Kryvasheyeu

    Full Text Available Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the "friendship paradox", is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users' network centrality effectively translate into moderate awareness advantage (up to 26 hours; and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple "sentiment sensing" technique that can detect and locate disasters.

  5. Home care during the aftermath of Hurricane Hugo.

    Science.gov (United States)

    Chubon, S J

    1992-06-01

    During the course of field observations for an ethnographic study of home care nurses' job stress, Hurricane Hugo struck the community, causing extensive damage. The nurses' office building was heavily damaged by wind and water, and their office was not habitable for almost a week. The author had observed the nurses' work practices over 10 weeks before the hurricane. In the aftermath of the storm, the nurses were simultaneously disaster victims and caregivers for other victims. They experienced grief, anger, and frustration about their losses, as well as conflict between their family- and work-related responsibilities. Their experiences and behaviors were consistent with those described in prior disaster research literature, lending further support to the earlier studies. A major asset for these nurses was their open, supportive work environment. They were able to accept and affirm one another's negative feelings and to provide support to each other as they dealt with their losses.

  6. Performance of Social Network Sensors during Hurricane Sandy

    Science.gov (United States)

    Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel

    2015-01-01

    Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the “friendship paradox”, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users’ network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple “sentiment sensing” technique that can detect and locate disasters. PMID:25692690

  7. 44 CFR 206.209 - Arbitration for Public Assistance determinations related to Hurricanes Katrina and Rita (Major...

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Arbitration for Public Assistance determinations related to Hurricanes Katrina and Rita (Major disaster declarations DR-1603, DR... determinations related to Hurricanes Katrina and Rita (Major disaster declarations DR-1603, DR-1604, DR-1605, DR...

  8. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  9. Effects of Asymmetric Secondary Eyewall on Tropical Cyclone Evolution in Hurricane Ike (2008)

    Science.gov (United States)

    Zhang, Guosheng; Perrie, William

    2018-02-01

    The secondary eyewall plays an important role in tropical cyclone evolution and intensification and is routinely assumed to be axisymmetric. A unique opportunity to investigate the characteristics of the secondary eyewall in two dimensions is provided by the high spatial resolution (about 1 km) sea surface winds that were observed by spaceborne synthetic aperture radar over Hurricane Ike (2008). Here we extract the asymmetric characteristics using our Symmetric Hurricane Estimates for Winds model and analyze the related hurricane evolution by comparisons with aircraft measurements. Compared to the classic eyewall replacement cycle theory, our investigation finds that the primary eyewall did not weaken and the secondary eyewall did not shrink over a period of more than 30 hr. We suggest that the reason for this persistence is that a boundary layer inflow pathway is provided by the relatively low winds in the asymmetric secondary eyewall area, as observed by synthetic aperture radar.

  10. SPATIAL-TEMPORAL ANALYSIS OF OPENSTREETMAP DATA AFTER NATURAL DISASTERS: A CASE STUDY OF HAITI UNDER HURRICANE MATTHEW

    Directory of Open Access Journals (Sweden)

    J. Xu

    2017-09-01

    Full Text Available Volunteered geographic information (VGI has been widely adopted as an alternative for authoritative geographic information in disaster management considering its up-to-date data. OpenStreetMap, in particular, is now aiming at crisis mapping for humanitarian purpose. This paper illustrated that natural disaster played an essential role in updating OpenStreetMap data after Haiti was hit by Hurricane Matthew in October, 2016. Spatial-temporal analysis of updated OSM data was conducted in this paper. Correlation of features was also studied to figure out whether updates of data were coincidence or the results of the hurricane. Spatial pattern matched the damaged areas and temporal changes fitted the time when disaster occurred. High level of correlation values of features were recorded when hurricane occurred, suggesting that updates in data were led by the hurricane.

  11. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  12. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  13. How Schools Responded to Student Mental Health Needs Following Hurricanes Katrina and Rita. Fact Sheet

    Science.gov (United States)

    RAND Corporation, 2007

    2007-01-01

    This fact sheet summarizes a study that examined how schools in the U.S. Gulf Coast region perceived the mental health needs of students after Hurricanes Katrina and Rita and how schools responded. According to the report, despite strong initial efforts to support the mental health needs of students displaced by Hurricanes Katrina and Rita, many…

  14. Impact of Hurricane Iniki on native Hawaiian Acacia koa forests: damage and two-year recovery

    Science.gov (United States)

    Robin A. Harrington; James H. Fownes; Paul G. Scowcroft; Cheryl S. Vann

    1997-01-01

    Damage to Hawaiian Acacia koa forest by Hurricane Iniki was assessed by comparison with our previous measures of stand structure and leaf area index (LAI) at sites along a precipitation/elevation gradient on western Kauai. Reductions in LAI ranged from 29 to 80% and were correlated with pre-hurricane LAI and canopy height. The canopy damage...

  15. The Psychological Impact from Hurricane Katrina: Effects of Displacement and Trauma Exposure on University Students

    Science.gov (United States)

    Davis, Thompson E., III; Grills-Taquechel, Amie E.; Ollendick, Thomas H.

    2010-01-01

    The following study examined the reactions of university students to Hurricane Katrina. A group of 68 New Orleans area students who were displaced from their home universities as a result of the hurricane were matched on race, gender, and age to a sample of 68 students who had been enrolled at Louisiana State University (LSU) prior to the…

  16. Combination of microfluidic high-throughput production and parameter screening for efficient shaping of gold nanocubes using Dean-flow mixing.

    Science.gov (United States)

    Thiele, Matthias; Knauer, Andrea; Malsch, Daniéll; Csáki, Andrea; Henkel, Thomas; Köhler, J Michael; Fritzsche, Wolfgang

    2017-04-11

    Metal nanoparticles and their special optical properties, the so-called localized surface plasmon resonance (LSPR), facilitate many applications in various fields. Due to the strong dependency of the LSPR on particle geometry, their synthesis is a challenging and time-consuming procedure especially for non-spherical shapes. In contrast, micromixers offer new experimental approaches and therefore enable the simplification of several processes. By using a zigzag micromixer (Dean-Flow-Mixer, DFM) that induces Dean-flow secondary flow patterns, we theoretically and experimentally show the mixing efficiency. Thus, we highlight the advantages of using it in the multistep synthesis of Au nanoparticles. Based on a narrow size distribution of Au nanocubes and an increased yield in combination with higher reproducibility, we depict the need for and advantage of the DFM to control the incubation times during the growth process. We further show that, by using the DFM, easy and very fast Au nanocube edge length tuning (53 nm, 58 nm, 70 nm and 75 nm) is possible by simultaneously reducing the consumption of the materials by up to 95%. We finally demonstrate the versatile abilities by using the DFM for parameter screening on examples of different halides and accessible bromide in the growth solutions. Therefore, we highlight the optimal concentration for the different growth regimes and the influences on the Au nanoparticle morphology (spheres, cubes and rods) and their defined shaping.

  17. Sooty tern (Onychoprion fuscatus survival, oil spills, shrimp fisheries, and hurricanes

    Directory of Open Access Journals (Sweden)

    Ryan M. Huang

    2017-05-01

    Full Text Available Migratory seabirds face threats from climate change and a variety of anthropogenic disturbances. Although most seabird research has focused on the ecology of individuals at the colony, technological advances now allow researchers to track seabird movements at sea and during migration. We combined telemetry data on Onychoprion fuscatus (sooty terns with a long-term capture-mark-recapture dataset from the Dry Tortugas National Park to map the movements at sea for this species, calculate estimates of mortality, and investigate the impact of hurricanes on a migratory seabird. Included in the latter analysis is information on the locations of recovered bands from deceased individuals wrecked by tropical storms. We present the first known map of sooty tern migration in the Atlantic Ocean. Our results indicate that the birds had minor overlaps with areas affected by the major 2010 oil spill and a major shrimp fishery. Indices of hurricane strength and occurrence are positively correlated with annual mortality and indices of numbers of wrecked birds. As climate change may lead to an increase in severity and frequency of major hurricanes, this may pose a long-term problem for this colony.

  18. Breakup of New Orleans Households after Hurricane Katrina

    Science.gov (United States)

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  19. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 1-Decision Support System.

    Science.gov (United States)

    Davidson, Rachel A; Nozick, Linda K; Wachtendorf, Tricia; Blanton, Brian; Colle, Brian; Kolar, Randall L; DeYoung, Sarah; Dresback, Kendra M; Yi, Wenqi; Yang, Kun; Leonardo, Nicholas

    2018-03-30

    This article introduces a new integrated scenario-based evacuation (ISE) framework to support hurricane evacuation decision making. It explicitly captures the dynamics, uncertainty, and human-natural system interactions that are fundamental to the challenge of hurricane evacuation, but have not been fully captured in previous formal evacuation models. The hazard is represented with an ensemble of probabilistic scenarios, population behavior with a dynamic decision model, and traffic with a dynamic user equilibrium model. The components are integrated in a multistage stochastic programming model that minimizes risk and travel times to provide a tree of evacuation order recommendations and an evaluation of the risk and travel time performance for that solution. The ISE framework recommendations offer an advance in the state of the art because they: (1) are based on an integrated hazard assessment (designed to ultimately include inland flooding), (2) explicitly balance the sometimes competing objectives of minimizing risk and minimizing travel time, (3) offer a well-hedged solution that is robust under the range of ways the hurricane might evolve, and (4) leverage the substantial value of increasing information (or decreasing degree of uncertainty) over the course of a hurricane event. A case study for Hurricane Isabel (2003) in eastern North Carolina is presented to demonstrate how the framework is applied, the type of results it can provide, and how it compares to available methods of a single scenario deterministic analysis and a two-stage stochastic program. © 2018 Society for Risk Analysis.

  20. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    Science.gov (United States)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  1. Multivariate Analysis of MODerate Resolution Imaging Spectroradiometer (MODIS Aerosol Retrievals and the Statistical Hurricane Intensity Prediction Scheme (SHIPS Parameters for Atlantic Hurricanes

    Directory of Open Access Journals (Sweden)

    Mohammed M. Kamal

    2012-09-01

    Full Text Available MODerate Resolution Imaging Spectroradiometer (MODIS aerosol retrievals over the North Atlantic spanning seven hurricane seasons are combined with the Statistical Hurricane Intensity Prediction Scheme (SHIPS parameters. The difference between the current and future intensity changes were selected as response variables. For 24 major hurricanes (category 3, 4 and 5 between 2003 and 2009, eight lead time response variables were determined to be between 6 and 48 h. By combining MODIS and SHIPS data, 56 variables were compiled and selected as predictors for this study. Variable reduction from 56 to 31 was performed in two steps; the first step was via correlation coefficients (cc followed by Principal Component Analysis (PCA extraction techniques. The PCA reduced 31 variables to 20. Five categories were established based on the PCA group variables exhibiting similar physical phenomena. Average aerosol retrievals from MODIS Level 2 data in the vicinity of UTC 1,200 and 1,800 h were mapped to the SHIPS parameters to perform Multiple Linear Regression (MLR between each response variable against six sets of predictors of 31, 30, 28, 27, 23 and 20 variables. The deviation among the predictors Root Mean Square Error (RMSE varied between 0.01 through 0.05 and, therefore, implied that reducing the number of variables did not change the core physical information. Even when the parameters are reduced from 56 to 20, the correlation values exhibit a stronger relationship between the response and predictors. Therefore, the same phenomena can be explained by the reduction of variables.

  2. THE IMPACT OF HURRICANE BETA ON THE FORESTS OF PROVIDENCIA ISLAND, COLOMBIA, SOUTHWEST CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Ruiz Jorge

    2010-12-01

    Full Text Available One of the consequences of global warming in the Caribbean is an increase in thefrequency and intensity of hurricanes. Little is known on the impact of this naturalphenomenon on forests, particularly for dry tropical forests. Understanding this impactin terms of structure and species richness is important for forest management. Slowmoving Hurricane Beta, a category 1, struck Old Providence island, Colombia, inOctober 29, 2005. Before Beta woody vegetation was characterized by 88 2 x 50 mplots (0.01 ha established throughout the island following the protocol by Gentry(1982; 59 plots were studied fi ve years earlier and 29 plots four to fi ve monthsearlier. The impact of hurricane Beta was assessed within 11 plots located in the DryTropical Forests of Old Providence, six months after the hurricane. The These plotswere measured in species composition, diameter at breast height (DBH, and heightwere measured within these plots. There was a considerable reduction in the numberof individuals, stems, height, basal areas, and there was no signifi cant differencebetween DBH. Height damage was positively associated with increasing DHB class.Furthermore, based on the results of species richness, even after controlling for thedifferent number of individuals, through rarefaction, there was no major differencebefore and after Beta.

  3. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    Science.gov (United States)

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  4. A Simulation Tool for Hurricane Evacuation Planning

    Directory of Open Access Journals (Sweden)

    Daniel J. Fonseca

    2009-01-01

    Full Text Available Atlantic hurricanes and severe tropical storms are a serious threat for the communities in the Gulf of Mexico region. Such storms are violent and destructive. In response to these dangers, coastal evacuation may be ordered. This paper describes the development of a simulation model to analyze the movement of vehicles through I-65, a major US Interstate highway that runs north off the coastal City of Mobile, Alabama, towards the State of Tennessee, during a massive evacuation originated by a disastrous event such a hurricane. The constructed simulation platform consists of a primary and two secondary models. The primary model is based on the entry of vehicles from the 20 on-ramps to I-65. The two secondary models assist the primary model with related traffic events such as car breakdowns and accidents, traffic control measures, interarrival signaling, and unforeseen emergency incidents, among others. Statistical testing was performed on the data generated by the simulation model to indentify variation in relevant traffic variables affecting the timely flow of vehicles travelling north. The performed statistical analysis focused on the closing of alternative on-ramps throughout the Interstate.

  5. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  6. Evaluation of the hurricanes Gustav and Ike impact on healing mud from San Diego River using nuclear and geochemical techniques

    International Nuclear Information System (INIS)

    Diaz Rizo, Oscar; Gelen Rudnikas, Alina Katia; Rodriguez, D'Alessandro; Arado Lopez, Juana O.; Dominguez Rodriguez, Roberto; Gonzalez Hernandez, Patricia; Melian Rodriguez, Clara M.; Suarez Munnoz, Margaret; Fagundo Castillo, Juan R.; Blanco Padilla, Dagoberto

    2011-01-01

    Effects induced by the hurricanes Gustav and Ike on San Diego River mud characteristics have been studied. X-ray fluorescence analysis, gamma spectrometry and measurement of some physico-chemical characteristics in mud samples, collected before and after hurricane impacts, shows that hurricanes induced changes in mud major composition and in some other mud characteristics. The average sedimentation rate determined by gamma spectrometry in San Diego River outlet permitted to estimate that the original mud characteristics will be recovered never before than 5-7 years. Further studies of the influence of mud characteristics changes due the hurricanes impact in mud therapeutic properties are recommended.(author)

  7. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms

    International Nuclear Information System (INIS)

    Liu Haibin; Davidson, Rachel A.; Apanasovich, Tatiyana V.

    2008-01-01

    This paper presents new statistical models that predict the number of hurricane- and ice storm-related electric power outages likely to occur in each 3 kmx3 km grid cell in a region. The models are based on a large database of recent outages experienced by three major East Coast power companies in six hurricanes and eight ice storms. A spatial generalized linear mixed modeling (GLMM) approach was used in which spatial correlation is incorporated through random effects. Models were fitted using a composite likelihood approach and the covariance matrix was estimated empirically. A simulation study was conducted to test the model estimation procedure, and model training, validation, and testing were done to select the best models and assess their predictive power. The final hurricane model includes number of protective devices, maximum gust wind speed, hurricane indicator, and company indicator covariates. The final ice storm model includes number of protective devices, ice thickness, and ice storm indicator covariates. The models should be useful for power companies as they plan for future storms. The statistical modeling approach offers a new way to assess the reliability of electric power and other infrastructure systems in extreme events

  8. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane

    Science.gov (United States)

    William H. McDowell; Daniel Liptzin

    2014-01-01

    Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...

  9. [Hurricane Paloma's effects on seagrasses along Jardines de la Reina Archipelago, Cuba].

    Science.gov (United States)

    Guimarais, Mayrene; Zúñiga, Adán; Pina, Fabián; Matos, Felipe

    2013-09-01

    Seagrasses are one of the most important coastal ecosystems since they promote organic matter flow, nutrient cycling, food availability and refuge. Until now, reports on damages caused by storms and hurricanes on seagrass beds are uncommon and highly variable. The seagrass meadows of the East end of Jardines de la Reina archipelago were surveyed from Nov. 29th to Dec. 5th of 2008, in order to determinate the effects from the passing of Hurricane Paloma: a category three storm on the Saffir-Simpsom scale. A rapid field assessment of the affected areas was carried out using the manta tow technique. In six sites, seagrass was quantitatively evaluated using a 15cm diameter core (four sampling units per site) and shoot density was calculated. Remote sensing techniques were used to estimate seagrass cover. To estimate the percentage of affected areas, a Region of Interest (ROI) was first created over a Landsat image. The percentage of seagrass affected within the ROI was estimated through direct georeferentiation of the contours of the damaged area and with a comparison to the total seagrass extension. To find possible explanations for damages, a false colour image was created using the near infrared band, to highlight the differences between emerged and submerged zones. The direction of winds was estimated using ArcGis 9.2 creating circular buffers, from the centre of the hurricane and generating lines tangent to the buffers. Seagrass in the region was dominated by the angiosperm Thalassia testudinum. Regional mean density was 1 321 +/- 721 shoots/m2, a value regarded as high for the Caribbean area. Seagrass meadows were partly affected by sediment accumulation on the shoots of T. testudinum and uprooting rhizomes. The 7.6 km2 disturbed area represented 1% of the total seagrass area. Other sites, closer to the centre of the hurricane, did not show any damages on the marine vegetation. The keys location with respect to the hurricane track was the most likely cause of the

  10. Five Years Later: Recovery from Post Traumatic Stress and Psychological Distress Among Low-Income Mothers Affected by Hurricane Katrina

    OpenAIRE

    Paxson, Christina; Fussell, Elizabeth; Rhodes, Jean; Waters, Mary

    2011-01-01

    Hurricane Katrina, which struck the Gulf Coast of the United States in August 2005, exposed area residents to trauma and extensive property loss. However, little is known about the long-run effects of the hurricane on the mental health of those who were exposed. This study documents long-run changes in mental health among a particularly vulnerable group—low income mothers—from before to after the hurricane, and identifies factors that are associated with different recovery trajectories. Longi...

  11. Necessity of countermeasures for hurricane, typhoon and cyclone in accordance with the progress of global warming

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Sugiyama, Kenichiro

    2014-01-01

    In recent years, according to the progress of global warming, hurricanes and typhoons getting bigger and bigger, about 20% increase per decade. Hurricanes and typhoons are given thermal energy from vaporizing steam from surface of sea water. Hurricane Sandy attacked New York on 22-29, Oct. 2012. Typhoon 26th attacked Ohshima, Oct. 2013, and Typhoon 30th attacked Philippine on Nov. 4-11. Tropical cyclone Phailin attacked India on Oct. 12, 2013. Its diameter was 2300km. They were all category 5. Human beings are now on the front of the natural disasters. We think the risk is higher than active faults that moves only several thousand years period. In the US, a nuclear power plant stopped its operation when a category 5 hurricane arrived nearby, which was monitored from a weather satellite. The countermeasures for tornado and tsunami will be effective for typhoon. NRA found the lack of description in the new regulatory guideline and they said the management plan should be considered by licensees. The Japan Society of Maintenology will start preparing the guideline for typhoon. (author)

  12. Motivational Factors Underlying College Students' Decisions to Resume Their Educational Pursuits in the Aftermath of Hurricane Katrina

    Science.gov (United States)

    Phillips, Theresa M.; Herlihy, Barbara

    2009-01-01

    This study explored college student persistence at a historically Black university affected by Hurricane Katrina. Predictor variables including sex, residence status, Pell Grant status, campus housing status, college grade point average, attendance before Hurricane Katrina, and attendance at the university by parents or another close relative were…

  13. Evaluation of long-term community recovery from Hurricane Andrew: sources of assistance received by population sub-groups.

    Science.gov (United States)

    McDonnell, S; Troiano, R P; Barker, N; Noji, E; Hlady, W G; Hopkins, R

    1995-12-01

    Two three-stage cluster surveys were conducted in South Dade County, Florida, 14 months apart, to assess recovery following Hurricane Andrew. Response rates were 75 per cent and 84 per cent. Sources of assistance used in recovery from Hurricane Andrew differed according to race, per capita income, ethnicity, and education. Reports of improved living situation post-hurricane were not associated with receiving relief assistance, but reports of a worse situation were associated with loss of income, being exploited, or job loss. The number of households reporting problems with crime and community violence doubled between the two surveys. Disaster relief efforts had less impact on subjective long-term recovery than did job or income loss or housing repair difficulties. Existing sources of assistance were used more often than specific post-hurricane relief resources. The demographic make-up of a community may determine which are the most effective means to inform them after a disaster and what sources of assistance may be useful.

  14. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, F.J. [Institute of Nuclear Power Operations, Atlanta, GA (United States)

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility`s actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities.

  15. Storm Surge and Wave Impact of Low-Probability Hurricanes on the Lower Delaware Bay—Calibration and Application

    Directory of Open Access Journals (Sweden)

    Mehrdad Salehi

    2018-05-01

    Full Text Available Hurricanes pose major threats to coastal communities and sensitive infrastructure, including nuclear power plants, located in the vicinity of hurricane-prone coastal regions. This study focuses on evaluating the storm surge and wave impact of low-probability hurricanes on the lower Delaware Bay using the Delft3D dynamically coupled wave and flow model. The model comprised Overall and Nested domains. The Overall model domain encompassed portions of the Atlantic Ocean, Delaware Bay, and Chesapeake Bay. The two-level Nested model domains encompassed the Delaware Estuary, its floodplain, and a portion of the continental shelf. Low-probability hurricanes are critical considerations in designing and licensing of new nuclear power plants as well as in establishing mitigating strategies for existing power facilities and other infrastructure types. The philosophy behind low-probability hurricane modeling is to establish reasonable water surface elevation and wave characteristics that have very low to no probability of being exceeded in the region. The area of interest (AOI is located on the west bank of Delaware Bay, almost 16 miles upstream of its mouth. The model was first calibrated for Hurricane Isabel (2003 and then applied to synthetic hurricanes with very low probability of occurrence to establish the storm surge envelope at the AOI. The model calibration results agreed reasonably well with field observations of water surface elevation, wind velocity, wave height, and wave period. A range of meteorological, storm track direction, and storm bearing parameters that produce the highest sustained wind speeds were estimated using the National Weather Service (NWS methodology and applied to the model. Simulations resulted in a maximum stillwater elevation and wave height of 7.5 m NAVD88 and 2.5 m, respectively, at the AOI. Comparison of results with the U.S. Army Corps of Engineers, North Atlantic Coastal Comprehensive Study (USACE-NACCS storm surge

  16. Challenges in estimating the health impact of Hurricane Sandy using macro-level flood data.

    Science.gov (United States)

    Lieberman-Cribbin, W.; Liu, B.; Schneider, S.; Schwartz, R.; Taioli, E.

    2016-12-01

    Background: Hurricane Sandy caused extensive physical and economic damage but the long-term health impacts are unknown. Flooding is a central component of hurricane exposure, influencing health through multiple pathways that unfold over months after flooding recedes. This study assesses concordance in Federal Emergency Management (FEMA) and self-reported flood exposure after Hurricane Sandy to elucidate discrepancies in flood exposure assessments. Methods: Three meter resolution New York State flood data was obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. FEMA data was compared to self-reported flood data obtained through validated questionnaires from New York City and Long Island residents following Sandy. Flooding was defined as both dichotomous and continuous variables and analyses were performed in SAS v9.4 and ArcGIS 10.3.1. Results: There was a moderate agreement between FEMA and self-reported flooding (Kappa statistic 0.46) and continuous (Spearman's correlation coefficient 0.50) measures of flood exposure. Flooding was self-reported and recorded by FEMA in 23.6% of cases, while agreement between the two measures on no flooding was 51.1%. Flooding was self-reported but not recorded by FEMA in 8.5% of cases, while flooding was not self-reported but indicated by FEMA in 16.8% of cases. In this last instance, 84% of people (173/207; 83.6%) resided in an apartment (no flooding reported). Spatially, the most concordance resided in the interior of New York City / Long Island, while the greatest areas of discordance were concentrated in the Rockaway Peninsula and Long Beach, especially among those living in apartments. Conclusions: There were significant discrepancies between FEMA and self-reported flood data. While macro-level FEMA flood data is a relatively less expensive and faster way to provide exposure estimates spanning larger geographic areas affected by Hurricane Sandy than micro-level estimates from cohort studies, macro

  17. Rhode Island hurricanes and tropical storms: A fifty-six year summary 1936-1991. Technical memo

    International Nuclear Information System (INIS)

    Vallee, D.R.

    1993-03-01

    The paper was compiled to provide a general overview of all tropical cyclone activity near Rhode Island since 1936. The year of 1936 is arbitrary, chosen mainly to include a 'not so well known' system prior to the well documented Great New England Hurricane of 1938. Thirty-one such storms have affected the state in the past 56 years, either making landfall along the coast of southern New England, or passing close enough over the offshore waters to spread tropical storm or hurricane force conditions into the area. The intensities of these systems have ranged from weak, disorganized tropical storms to full fledged major hurricanes. The one feature common to almost all of the storms was a rapid acceleration toward Rhode Island, which greatly reduced the time to prepare and evacuate

  18. Hurricanes, climate change and the cholera epidemic in Puerto Rico of 1855-1856.

    Science.gov (United States)

    Christenson, Bernard

    2008-01-01

    Hurricanes and global climate changes may affect the environmental factors of cholera dynamics in warm coastal areas, vulnerable to seasonal or sporadic outbreaks. The cholera epidemic of Puerto Rico in 1855-1856 had a profound effect on the Puerto Rican society; but it was not influenced by any climatic events, such as preceding hurricanes or storms based on past documentary sources. Particularly, the environmental non-toxigenic strains of Vibrio Cholerae in Puerto Rican water sources can maintain their pathogenic potential for sporadic or erratic toxigenic cholera outbreaks--if a "perfect storm" ever occurs.

  19. Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

    Directory of Open Access Journals (Sweden)

    Lucy Wells

    2010-10-01

    Full Text Available Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5m deep in Grand Turk, at Oasis (October 2006 and at Governor’s Beach (November 2007. Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor’s Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor’s Beach. After hurricanes Hanna and Ike (September 2008 the Governor’s Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure. Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas. Rev. Biol. Trop. 58 (Suppl. 3: 141-149. Epub 2010 October 01.

  20. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well